
Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Programming Level-up
Lecture 1 - Introduction and Basic Python Programming

Jay Morgan

16th September 2022

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Outline

1 Introduction

Course introduction

Contact information

2 Python

Introducing Python

Types of data

Working with strings

Compound data structures

Conditional expressions

Iteration

Functions

3 Exercise

Library system

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

What. . . ? Why. . . ?

Programming is much more than the act of programming a
small script. Even if you’ve programmed before, doing so for a
research project requires a lot of rigour to ensure the results
you’re reporting are correct, and reproducible.
There is so much surrounding the act of programming that it
can get a little overwhelming. Things from setting up a
programming environment to managing multiple experiments on
the supercomputers can involve many languages and
understanding of technologies.
This course is designed to take you from not being able to
program at all to being able to do it comfortably for your
research and work.

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

What is this course going to teach me?

1 Programming with the Python Programming Language.
Basic syntax.
Introduction to the basics of object oriented programming
(OOP).
Numerical computing with numpy/pandas/scipy.

2 Doing your programming in a Linux-based Environment
(GNU/Linux) and being comfortable with the organisation of
this Linux environment.

Setting up a research (reproducible) environment.
Executing experiments.

3 Interacting with the Super-computers/clusters.
Interaction with SLURM (management of jobs).

4 Taking the results from a program you’ve created, be able to
visualise them and include them in reports/papers.

LATEX/Markdown.
Plotting.

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

How the course will be delivered

2/3 hour sessions over the next 2 months.
Throughout the lecture, there will be small exercises to try out
what we’ve learnt. We will go through the answers to these
exercises.
At the end of the lecture we will have a larger exercise that will
become more challenging. These exercises are not marked, but
again, just an opportunity to try out what you’ve learnt. The
best way to learn how to program is to program.

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Rough timeline

Lecture Topic Description

1 Introduction - Course introduction
- Basic Python programming

2 Python classes - Introduction to OOP
3 Project management - Creating/importing modules

- Anaconda/pip
4 Programming environments - PyCharm

- Jupyter notebooks
5 Numerical computing - Numpy

- Scipy
6 Numerical computing - Pandas

- Visualisations
7 Basics of GNU/Linux - Using the terminal
8 Bash scripting - Bash scripting
9 High performance computing - SLURM

- Singularity
10 Reporting - LATEX

- Markdown

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Where to find me

My name is Dr Jay Morgan. I am a researcher work on Deep
Learning in Astrophysics.

Email: jay.morgan@univ-tln.fr
Lecture slides and other contact on my website:
https://pageperso.lis-lab.fr/jay.morgan/

https://pageperso.lis-lab.fr/jay.morgan/

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Python

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Python

Python is a high-level1 programming
language created in 1991.
While it is an old language, its
become vastly popular thanks to its
use in data science and other
mathematics-based disciplines.
While also being able to perform
tasks such as GUI, web-development
and much more.
Because the language is high-level
and interpreted, programmers can
often find themselves more
productive in Python than in other
languages such as say C++.

1As we go through our lectures we’ll understand what it means for the
language to be /high-level/ and /interpreted/ and why that is helpful for us.

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

A first program

We’re going to start with the ’Hello, World’ program that prints
Hello, World! to the screen. In python this is as simple as writing:

1 print("Hello, World!") # this prints: Hello, World!

Results:
=> Hello, World!

NOTE anything following a # is a comment and is completely ignored
by the computer. It is there for you to document your code for
others, and most importantly, for yourself.

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Running this program

Before we can run this program, we need to save it somewhere. For
this, will create a new file, insert this text, and save it as
<filename>.py, where <filename> is what we want to call the
script. This name doesn’t matter for its execution.

Once we have created the script, we can run it from the command
line. We will get into the command line in a later lecture, but right
now all you need to know is:

3 python3 <filename>.py

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

An alternative method of running python

You may notice that if you don’t give python a filename to run, you
will enter something called the REPL.

4 Python 3.9.5 (default, Jun 4 2021, 12:28:51)
5 [GCC 7.5.0] :: Anaconda, Inc. on linux
6 Type "help", "copyright", "credits" or "license" for more

information.↪→

7 >>>

REPL stands for READ, EXECUTE, PRINT, LOOP.

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Variables

A variable is a symbol associated with a value. This value can differ
widely, and we will take a look at different types of values/data later.

Neverthless, variables are useful for referring to values and storing to
the results of a computation.

8 x = 1
9 y = 2

10 z = x + y
11 print(z) # prints: 3
12

13 # variables can be /overwritten/
14 z = "hello, world"
15 print(z) # prints: hello, world

Results:
=> 3
=> hello, world

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Primitive data types

Primitive data types are the most fundamental parts of programming,
they cannot be broken down.

4 "Hello" # string
5 1 # integer
6 1.0 # float
7 True # Boolean (or bool for short)

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Primitive data type

We can get the type of some data by using the type(...) function.
For example,

8 print(type(5))
9 print(type(5.0))

10

11 x = "all cats meow"
12

13 print(type(x))

Results:
=> <class 'int'>
=> <class 'float'>
=> <class 'str'>

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Basic Math with primitives

Using these primitive data types, we can do some basic math
operations!

5 print(1 + 2) # Addtion
6 print(1 - 2) # Subtraction
7 print(1 * 2) # Multiplication
8 print(1 / 2) # Division
9 print(2 ** 2) # Exponent

10 print(3 % 2) # Modulo operator

Results:
=> 3
=> -1
=> 2
=> 0.5
=> 4
=> 1

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Basic Math

Sometimes types get converted to the same type:

8 print(1.0 + 2) # float + integer = float

Results:
=> 3.0

Even more interesting is with Booleans!

3 True + True

Results:
=> 2

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

BODMAS in Python

Like in mathematics, certain math operator take precedence over
others.

B - Brackets
O - Orders (roots, exponents)
D - division
M - multiplication
A - addition
S - subtraction.

To make the context clear as to what operations to perform first, use
brackets.

3 (5 / 5) + 1
4 5 / (5 + 1)

Results:
=> 2.0
=> 0.8333333333333334

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Basic Math – Quick exercise

Write the following equation in python:

(5 + 2)× (102 + 10)2

Remember to use parentheses () to ensure that operations take
precedence over others.

Your answer should come out as: 1575.0

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Formatting strings

In many previous examples when we’ve printed strings, we’ve done
something like:

4 age = 35
5

6 print("The value of age is", age)

Results:
=> The value of age is 35

While this works in this small context, it can get pretty cumbersome
if we have many variables we want to print, and we also want to
change how they are displayed when they are printed.

We’re going to take a look now at much better ways of printing.

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Better ways of printing strings - %

The first method is using %. When we print, we first construct a
string with special delimiters, such as %s that denotes a string, and
%d that denotes a number. This is telling Python where we want the
values to be placed in the string.

Once we’ve created the string, we need to specify the data, which we
do with % (...). Like, for example:

3 age = 35
4 name = "John"
5

6 print("%d years old" % age) # no tuple for one variable
7 print("%s is %d years old" % (name, age))

Results:
=> 35 years old
=> John is 35 years old

Here we are specifying the a string %s and number %d, and then
giving the variables that correspond with that data type.

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Better ways of printing strings – data specifiers

The special delimiters correspond with a data type. Here are some of
the most common:

%s – For strings
%d – For numbers
%f – For floating point numbers.

There are others such as %x that prints the hexadecimal
representation, but these are less common. You can find the full list
at: https://docs.python.org/3/library/stdtypes.html#
old-string-formatting

https://docs.python.org/3/library/stdtypes.html#old-string-formatting
https://docs.python.org/3/library/stdtypes.html#old-string-formatting

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Better ways of printing strings – floating points

When using these delimiters, we can add modifiers to how they
format and display the value. Take a very common example, where
we have a floating point value, and, when printing it, we only want to
print to 3 decimal places. To accomplish this, we again use %f but
add a .3 to between the % and f. In this example, we are printing π
to 3 decimal places.

4 print("Pi to 3 digits is: %.3f" % 3.1415926535)

Results:
=> Pi to 3 digits is: 3.142

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Better ways of printing strings – floating points

In the previous example, we used .3 to specify 3 decimal places. If
we put a number before the decimal, like 10.3 we are telling Python
make this float occupy 10 spaces and this float should have 3 decimal
places printed. When it gets printed, you will notice that it shifts to
the right, it gets padded by space. If we use a negative number in
front of the decimal place, we are telling python to shift it to the left.

3 print("Pi to 3 digits is: %10.3f" % 3.1415926535)
4 print("Pi to 3 digits is: %-10.3f" % 3.1415926535)

Results:
=> Pi to 3 digits is: 3.142
=> Pi to 3 digits is: 3.142

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Better ways of printing strings – f-strings

The final method of formatting strings is a newcomer within the
language, it is the so-called f-string. Where a f character is
prefixed to the beginning of the string you’re creating. f-string’s
allow you to use Python syntax within the string (again delimited by
{}.

Take this for example where we are referencing the variables name
and age directly.

4 name = "Jane"
5 age = 35
6

7 print(f"{name} is {age} years old")

Results:
=> Jane is 35 years old

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Better ways of printing strings – f-strings

f-string’s allow you to execute Python code within the string. Here
we are accessing the value from the dictionary by specifying the key
within the string itself! It certainly makes it a lot easier, especially if
we only need to access the values for the string itself.

3 contact_info = {"name": "Jane", "age": 35}
4

5 print(f"{contact_info['name']} is {contact_info['age']} years
old")↪→

Results:
=> Jane is 35 years old

https://pyformat.info/

https://pyformat.info/

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Better ways of printing strings – f-string

We can still format the values when using f-string. The method is
similar to those using the %f specifiers.

3 pi = 3.1415926535
4 print(f"Pi is {pi:.3f} to 3 decimal places")

Results:
=> Pi is 3.142 to 3 decimal places

Many more examples can be found at:
https://zetcode.com/python/fstring/

https://zetcode.com/python/fstring/

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Operations on strings – splitting

Apart from formatting, there are plenty more operations we can
perform on strings. We are going to highlight some of the most
common here.

The first we’re going to look at is splitting a string by a delimiter
character using the .split() method. If we don’t pass any
argument to the .split() method, then by default, it will split by
spaces. However, we can change this by specifying the delimiter.

3 my_string = "This is a sentence, where each word is separated by
a space"↪→

4

5 print(my_string.split())
6 print(my_string.split(","))

Results:
=> ['This', 'is', 'a', 'sentence,', 'where', 'each', 'word', 'is', 'separated', 'by', 'a', 'space']
=> ['This is a sentence', ' where each word is separated by a space']

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Operations on strings – joining

As .split() splits a single string into a list, .join() joins a list of
strings into a single string. To use .join(), we first create a string
of the delimiter we want to use to join the list of strings by. In this
example we’re going to use "-". Then we call the .join() method,
passing the list as an argument.

The result is a single string using the delimiter to separate the items
of the list.

4 x = ['This', 'is', 'a', 'sentence,', 'where', 'each', 'word',
'is', 'separated', 'by', 'a', 'space']↪→

5

6 print("-".join(x))

Results:
=> This-is-a-sentence,-where-each-word-is-separated-by-a-space

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Operations on strings – changing case

Other common operations on strings involve change the case. For
example:

Make the entire string uppercase or lowercase
Making the string title case (every where starts with a capital
letter).
Stripping the string by removing any empty spaces either side of
the string.

Note we can chain many methods together by doing
.method_1().method_2(), but only if they return string. If they
return None, then chaining will not work.

3 x = " this String Can change case"
4

5 print(x.upper())
6 print(x.lower())
7 print(x.title())
8 print(x.strip())
9 print(x.strip().title())

Results:
=> THIS STRING CAN CHANGE CASE
=> this string can change case
=> This String Can Change Case
=> this String Can change case
=> This String Can Change Case

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Operations on strings – replacing strings

To replace a substring, we use the .replace() method. The first
argument is the old string you want to replace. The second argument
is what you want to replace it with.

7 x = "This is a string that contains some text"
8

9 print(x.replace("contains some", "definitely contains some"))

Results:
=> This is a string that definitely contains some text

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Container data types/Data structures

Container data types or data structures, as the name suggests, are
used to contain other things. Types of containers are:

Lists
Dictionaries
Tuples
Sets

3 [1, "hello", 2] # list
4 {"my-key": 2, "your-key": 1} # dictionary (or dict)
5 (1, 2) # tuple
6 set(1, 2) # set

We’ll take a look at each of these different container types and
explore why we might want to use each of them.

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

An aside on Terminology

To make our explanations clearer and reduce confusion, each of the
different symbols have unique names.

I will use this terminology consistently throughout the course, and it
is common to see the same use outside the course.

[] brackets (square brackets).
{ } braces (curly braces).
() parentheses.

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Lists

A hetreogenious container. This means that it can store any type of
data.

7 x = [1, "hello", 2]

Elements can be accessed using indexing [] notation. For example:

8 print(x[0]) # this will get the first element (i.e. 1)
9 print(x[1]) # the second element (i.e. "hello")

10 print(x[2]) # the third element (i.e. 2)

Results:
=> 1
=> hello
=> 2

notice how the first element is the 0-th item in the list/ we say that
python is 0-indexed.

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Better indexing – slices

If we wanted to access an element from a data structure, such as a
list, we would use the [] accessor, specifying the index of the
element we wish to retrieve (remember that indexes start at zero!).
But what if we ranted to access many elements at once? Well to
accomplish that, we have a slice or a range of indexes (not to be
confused with the range function). A slice is defined as:

start_index:end_index

where the end_index is non inclusive – it doesn’t get included in the
result. Here is an example where we have a list of 6 numbers from 0
to 5, and we slice the list from index 0 to 3. Notice how the 3rd
index is not included.

2 x = [0, 1, 2, 3, 4, 5]
3 print(x[0:3])

Results:
=> [0, 1, 2]

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Better indexing – range

When we use start_index:end_index, the slice increments by 1
from start_index to end_index. If we wanted to increment by a
different amount we can use the slicing form:

start_index:end_index:step

Here is an example where we step the indexes by 2:

2 x = list(range(100))
3 print(x[10:15:2])

Results:
=> [10, 12, 14]

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Better indexing – reverse

One strange fact about the step is that if we specify a negative
number for the step, Python will work backwards, and effectively
reverse the list.

3 x = list(range(5))
4

5 print(x[::-1])

Results:
=> [4, 3, 2, 1, 0]

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Better indexing – range

In a previous example, I created a slice like 0:3. This was a little
wasteful as we can write slightly less code. If we write :end_index,
Python assumes and creates a slice from the first index (0) to the
end_index. If we write start_index:, Python assumes and creates
a slice from start_index to the end of the list.

3 x = list(range(100))
4

5 print(x[:10])
6 print(x[90:])

Results:
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
=> [90, 91, 92, 93, 94, 95, 96, 97, 98, 99]

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Better indexing – backwards

Finally, we also work backwards from the end of list. If we use a
negative number, such as -1, we are telling Python, take the elements
from the end of the list. -1 is the final index, and numbers lower than
-1 work further backwards through the list.

4 x = list(range(100))
5

6 print(x[-1])
7 print(x[-2])

Results:
=> 99
=> 98

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Better indexing –backwards

Slicing with negative indexes, also works. Here we are creating a slice
from the end of the list - 10, to the last (but not including) index.

4 x = list(range(100))
5

6 print(x[-10:-1])

Results:
=> [90, 91, 92, 93, 94, 95, 96, 97, 98]

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Lists – adding data

If we want to add items to the end of the list, we use the append
function:

3 my_list = []
4

5 my_list.append("all")
6 my_list.append("dogs")
7 my_list.append("bark")
8

9 print(my_list)

Results:
=> ['all', 'dogs', 'bark']

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Dictionaries

Dictionaries are a little different from lists as each ’element’ consists
of a key-pair value. Let’s have a look at some examples where the
dictionaries contains one element:

3 my_dictionary = {"key": "value"}
4 my_other_dict = {"age": 25}

To access the value, we get it using [key] notation:

5 my_other_dict["age"]

Results:
=> 25

NOTE keys are unique, i.e:

3 my_dictionary = {"age": 25, "age": 15}
4 my_dictionary["age"]

Results:
=> 15

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Dictionaries

The key in the dictionary doesn’t necessarily need to be a string. For
example, in this case, we have created two key-pair elements, where
the keys to both are tuples of numbers.

3 my_dictionary = {(1, 2): "square", (3, 4): "circle"}
4

5 print(my_dictionary[(1, 2)])

Results:
=> square

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Dictionaries – adding data

If we want to add data to a dictionary, we simply perform the
accessor method with a key that is not in the dictionary:

3 my_dict = {}
4

5 my_dict["name"] = "James"
6 my_dict["age"] = 35
7

8 print(my_dict)

Results:
=> {'name': 'James', 'age': 35}

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Dictionaries – Quick Exercise

Create a dictionary for the following address, and assign it a
variable name called address:

Key Value

number 22
street Bakers Street
city London

Print out the address’s street name using the [] accessor with
the correct key.

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Tuples

3 my_tuple = (1, 56, -2)

Like lists, elements of the tuple can be accessed by their position in
the list, starting with the 0-th element:

4 print(my_tuple[0]) # => 1
5 print(my_tuple[1]) # => 56
6 print(my_tuple[2]) # => -2

Results:
=> 1
=> 56
=> -2

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Tuples

Unlike lists, tuples cannot be changed after they’ve been created. We
say they are immutable. So this will not work:

5 my_tuple[2] = "dogs" # creates an Error

Results:
=> Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/tmp/pyKdIIcx", line 18, in <module>
File "<string>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Sets

Sets in Python are like tuples, but contain only unique elements.

You can use the set() function (more on functions later!),
supplying a list, to create a set:

7 my_set = set([1, 2, 2, 2, 3, 4])
8 my_set

Results:
=> {1, 2, 3, 4}

Notice how there is only one ’2’ in the resulting set, duplicate
elements are removed.

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Sets – adding data

If we want to add data to a set, we use the .add() method. The
element used as an argument to this function will only be added to
the set if it is not already in the set.

3 my_set = set([])
4

5 my_set.add(1)
6 my_set.add(2)
7 my_set.add(1)
8

9 print(my_set)

Results:
=> {1, 2}

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

If statement

If statements allow for branching paths of execution. In other words,
we can execute some statements if some conditions holds (or does
not hold).

The structure of a simple if statement is:

3 if <condition>:
4 <body>

5 x = 2
6 y = "stop"
7

8 if x < 5:
9 print("X is less than five")

10 if y == "go":
11 print("All systems go!!")

Results:
=> X is less than five

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

If statement

In the previous example, the first print statement was only executed
if the x < 5 evaluates to True, but in python, we can add another
branch if the condition evaluates to False. This branch is denoted
by the else keyword.

3 x = 10
4

5 if x < 5:
6 print("X is less than five")
7 else:
8 print("X is greater than or equal to five")

Results:
=> X is greater than or equal to five

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

If statement – does it contain a substring?

We can check if a string exists within another string using the in
keyword. This returns a Boolean value, so we can use it as a
condition to an if statement.

3 x = "This is a string that contains some text"
4

5 if "text" in x:
6 print("It exists")

Results:
=> It exists

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

If statement – Quick Exercise 1

Create a variable called age and assign the value of this variable
35.
Create and if statement that prints the square of age if the
value of age is more than 24.
This if statement should have an else condition, that prints age
divided by 2.
What is the printed value?

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

If statement

If we wanted to add multiple potential paths, we can add more using
the elif <condition> keywords.

Note: The conditions are checked from top to bottom, only
executing the else if none evaluate to True. The first condition that
evaluates to True is executed, the rest are skipped.

3 x = 15
4

5 if x < 5:
6 print("X is less than five")
7 elif x > 10:
8 print("X is greater than ten")
9 else:

10 print("X is between five and ten")

Results:
=> X is greater than ten

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

If statement

Sometimes, we might want to conditionally set a variable a value.
For this, we can use an inline if statement. The form of an inline if
statement is:

<value-if-true> if <condition> else <value-if-false>

3 x = 10
4

5 y = 5 if x > 5 else 2
6

7 print(x + y)

Results:
=> 15

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Boolean Logic

As we’ve seen, if statements are checking for conditions to evaluate
to True or False. In python we use various comparison operators to
check for conditions that evaluate to Booleans.

Comparison operators

< less than
<= less than or equal to
> greater than
>= greater than or equal to
== is equal to
not negation

If we want to check for multiple conditions, we can use conjunctives
or disjunctive operators to combine the Boolean formulas.

Conjunctives/Disjunctives

and all boolean expressions must evaluate to true
or only one expression needs to be true

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Boolean Logic

Using not you can invert the Boolean result of the expression.

3 print(not True)

Results:
=> False

3 x = 10
4

5 if not x == 11:
6 print("X is not 11")

Results:
=> X is not 11

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Boolean Logic

Let’s take an example using the and keyword. and here is checking
that x is above or equal to 10 and y is exactly 5. If either of the
conditions is False, python will execute the else path (if there is
one, of course!).

3 x = 10
4 y = 5
5

6 if x >= 10 and y == 5:
7 z = x + y
8 else:
9 z = x * y

10

11 print(z)

Results:
=> 15

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Boolean Logic

Here we see the use of the or keyword. If any of the conditions
evaluates to True then the whole condition evaluates to True.

3 x = 10
4 y = 5
5

6 if x < 5 or y == 5:
7 print("We got here!")
8 else:
9 print("We got here instead...")

Results:
=> We got here!

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Boolean Logic

Note: or is short-circuiting. This means that if tests the conditions
left-to-right, and when it finds something that is True it stops
evaluating the rest of the conditions.

3 x = 10
4

5 if x < 20 or print("We got to this condition"):
6 print("The value of x is", x)

Results:
=> The value of x is 10

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Boolean Logic

If your Boolean logic refers to a single variable, you can combine the
logic without the and and or. But its not always common.

For example,

3 x = 7
4

5 if x < 10 and x > 4:
6 print("X is between 5 and 10")

Can be the same as:

7 x = 7
8

9 if 5 < x < 10:
10 print("X is between 5 and 10")

Results:
=> X is between 5 and 10

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

For loop

Looping or iteration allows us to perform a series of actions multiple
times. We are going to start with the more useful for loop in
python. The syntax of a for loop is:

3 for <variable_name> in <iterable>:
4 <body>

5 for i in range(3):
6 print(i)

Results:
=> 0
=> 1
=> 2

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

For loop – break

The previous example loops over the body a fix number of times. But
what if we wanted to stop looping early? Well, we can use the break
keyword. This keyword will exit the body of the loop.

5 for i in range(10):
6 if i > 5:
7 break
8 print(i)

Results:
=> 0
=> 1
=> 2
=> 3
=> 4
=> 5

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

For loop – continue

A different keyword you might want to use is continue. Continue
allows you to move/skip onto the next iteration without executing
the entire body of the for loop.

8 for i in range(10):
9 if i % 2 == 0:

10 continue
11 print(i)

Results:
=> 1
=> 3
=> 5
=> 7
=> 9

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

For loop – ranges

Instead of using continue like in the previous slide, the range
function provides us with some options:

range(start, stop, step)

In this example, we are starting our iteration at 10, ending at 15, but
stepping the counter 2 steps.

7 for i in range(10, 15, 2):
8 print(i)

Results:
=> 10
=> 12
=> 14

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

For loop – loop over collections

For loops allow us to iterate over a collection, taking one element at
a time. Take for example, a list, and for every item in the list we
print its square.

5 my_list = [1, 5, 2, 3, 5.5]
6

7 for el in my_list:
8 print(el**2)

Results:
=> 1
=> 25
=> 4
=> 9
=> 30.25

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

For loop – loop over collections

This kind of looping can work for tuples and sets, but as we have
seen, dictionaries are a little different. Every ’element’ in a dictionary
consists of a key and a value. Therefore when we iterate over items
in a dictionary, we can assign the key and value to different variables
in the loop.

Note the use of the .items() after the dictionary. We will explore
this later.

7 my_dict = {"name": "jane", "age": 35, "loc": "France"}
8

9 for el_key, el_val in my_dict.items():
10 print("Key is:", el_key, " value is: ", el_val)

Results:
=> Key is: name and the value is: jane
=> Key is: age and the value is: 35
=> Key is: location and the value is: France

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

For loop – loop over collections

We could also loop over the keys in the dictionary using the .keys()
method instead of .items().

5 my_dict = {"name": "jane", "age": 35, "loc": "France"}
6

7 for the_key in my_dict.keys():
8 print(the_key)

Results:
=> name
=> age
=> loc

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

For loop – loop over collections

Or, the values using .values().

5 my_dict = {"name": "jane", "age": 35, "loc": "France"}
6

7 for the_value in my_dict.values():
8 print(the_value)

Results:
=> jane
=> 35
=> France

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

For loop – List comprehensions

We have seen previously how for loops work. Knowing the syntax of
a for loop and wanting to populate a list with some data, we might
be tempted to write:

5 x = []
6 for i in range(3):
7 x.append(i)
8

9 print(x)

Results:
=> [0, 1, 2]

While this is perfectly valid Python code, Python itself provides ’List
comprehensions’ to make this process easier.

3 x = [i for i in range(3)]

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

For loop – List comprehensions – syntax

The syntax of a list comprehensions is:

4 [<variable> for <variable> in <iterable>]

We can also perform similar actions with a dictionary

5 [<key>, <value> for <key>, <value> in <dictionary.items()>]

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

For loop – List comprehensions – using if’s

Perhaps we only want to optionally perform an action within the list
comprehension? Python allows us to do this with the inline if
statement we’ve seen in the previous lecture.

6 x = [i if i < 5 else -1 for i in range(7)]
7 print(x)

Results:
=> [0, 1, 2, 3, 4, -1, -1]

We add the inline <var> if <condition> else <other-var>
before the for loop part of the comprehension.

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

For loop – List comprehension – using if’s

There is another type of if statement in a list comprehension, this
occurs when we don’t have an else.

3 x = [i for i in range(7) if i < 3]
4 print(x)

Results:
=> [0, 1, 2]

In this example, we’re only ’adding’ to the list if the condition (i < 3)
is true, else the element is not included in the resulting list.

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

For loop – List comprehensions – multiple for’s

If we like, we can also use nested for loops by simply adding another
for loop into the comprehension.

3 x = [(i, j) for i in range(2) for j in range(2)]
4

5 print(x)

Results:
=> [(0, 0), (0, 1), (1, 0), (1, 1)]

In this example, we’re creating a tuple for each element, effectively
each combination of 1 and 0.

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

For loop – List comprehensions – dictionary

Python doesn’t restrict us to list comprehensions, but we can do a
similar operation to create a dictionary.

3 x = [2, 5, 6]
4 y = {idx: val for idx, val in enumerate(x)}
5 print(y)

Results:
=> {0: 2, 1: 5, 2: 6}

Here, every item in x has been associated with its numerical index as
a key thanks to the enumerate function that returns both the index
and value at iteration in the for loop.

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

For loop – Quick Exercise

Create a list of elements:
2
"NA"
24
5

Use a for loop to iterate over this list.
In the body of the for loop, compute 2x+ 1, where x is the
current element of the list.
Store the result of this computation in a new variable y, and
then print y.

Note You cannot compute 2x+ 1 of "NA", therefore you will to use
an if statement to skip onto the next iteration if it encounters this.
Hint try: type(...) =!= str

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

While loop

A while loop is another looping concept like for but it can loop for
an arbitrary amount of times. A while loop looks to see if the
condition is True, and if it is, it will execute the body.

The syntax of the while loop is:

3 while <condition>:
4 <body>

5 i = 0
6

7 while i < 3:
8 print(i)
9 i = i + 1

Results:
=> 0
=> 1
=> 2

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

While loop

5 x = 0
6 y = 1
7

8 while x + y < 10:
9 print("X is,", x, "and y is", y)

10 x = x + 1
11 y = y * 2
12

13 print("X ended as", x, ", while y is", y)

Results:
=> X is, 0 and y is 1
=> X is, 1 and y is 2
=> X is, 2 and y is 4
=> X ended as 3 , while y is 8

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Functions

Functions are a re-usable set of instructions that can take some
arguments and possible return something.

The basic structure of a function is as follows:

6 def <function_name>(args*):
7 <body>
8 (optional) return

args* are 0 to many comma separated symbols.
body is to be indented by 4 spaces.

This is only the function definition however. To make it do
something, we must ’call’ the function, and supply the arguments as
specified in the definition.

9 def say_hello(): # function definition
10 print("Hello, World!")
11

12 say_hello() # calling the function

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Functions

We’ve already seen some functions provided by Python.

print itself is a function with a single argument: what we want to
print.

13 print("Hello, World!")
14 # ^ ^
15 # | |
16 # | user supplied argument
17 # |
18 # function name

set is another function that takes a single argument: a collection of
data with which to make a set:

19 set([1, 2, 2, 3, 4])

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Example usage of a function

Let’s make a function that takes two numbers and adds them
together:

20 def my_addition(a, b):
21 result = a + b
22 return result
23

24 x = 2
25 y = 3
26 z = my_addition(2, 3) # return 5 and stores in z
27 print(z)

Results:
=> 5

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Functions – Quick Exercise

Create a function called my_square. This function should take
one argument (you can call this argument what you like).
The body of the function should compute and return the square
of the argument.
Call this function with 5.556.
Store the result of calling this function, and print it.
What is the result?

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Re-usability with Functions

Functions are better illustrated through some examples, so let’s see
some!

3 name_1 = "john"
4 name_2 = "mary"
5 name_3 = "michael"
6

7 print("Hello " + name_1 + ", how are you?")
8 print("Hello " + name_2 + ", how are you?")
9 print("Hello " + name_3 + ", how are you?")

The above is pretty wasteful. Why? Because we are performing the
exact same operation multiple times, with only the variable changed.

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Re-usability with Functions

By abstracting the actions we want to perform into a function, we
can ultimately reduce the amount of code we write. Be a lazy
programmer!

10 name_1 = "john"
11 name_2 = "mary"
12 name_3 = "michael"
13

14 def say_hello(name):
15 print("Hello " + name + ", how are you?")
16

17 say_hello(name_1)
18 say_hello(name_2)
19 say_hello(name_3)

In this example, we’ve used the function as defined with the def
pattern to write the print statement once. Then, we’ve called the
function with each variable as its argument.

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Named parameters

We’ve seen in previous examples that, when we create a function, we
give each of the arguments (if there are any) a name.

When calling this function, we can specify these same names such as:

20 def say_hello(name):
21 print("Hello,", name)
22

23 say_hello("Micheal")
24 say_hello(name="Micheal")

Results:
=> Hello, Micheal
=> Hello, Micheal

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Named parameters

By specifying the name of the parameter we’re using with the called
function, we can change the order

4 def say_greeting(greeting, name):
5 print(greeting, name, "I hope you're having a good day")
6

7 say_greeting(name="John", greeting="Hi")

Results:
=> Hi John I hope you're having a good day

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Optional/Default/Positional arguments

When we call a function with arguments without naming them, we
are supplying them by position.

3 def say_greeting(greeting, name):
4 print(greeting, name, "I hope you're having a good day")
5

6 say_greeting(#first position, #section position)

The first position gets mapped to variable name of greeting inside
the body of the say_greeting function, while the second position
gets mapped to name.

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Optional/Default/Positional arguments

Sometimes when creating a function we may want to use default
arguments, these are arguments that are used if the call to the
function does not specify what their value should be. For example.

7 def say_greeting(name, greeting="Hello"):
8 print(greeting, name, "I hope you're having a good day")
9

10 say_greeting("John")
11 say_greeting("John", "Hi") # supply greeting as positional

argument↪→

Results:
=> Hello John I hope you're having a good day
=> Hi John I hope you're having a good day

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Optional/Default/Positional arguments

Note if you supply a default argument in the function definition, all
arguments after this default argument must also supply a default
argument.

So, this won’t work:

4 def say_greeting(name="Jane", greeting):
5 print(greeting, name, "I hope you're having a good day")
6

7 say_greeting("John", "Hi")

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Recap on arguments

8 # defining the function
9

10 def say_greeting(name, greeting) # no default arguments
11 def say_greeting(name, greeting="Hello") # greeting is a default

argument↪→

12 def say_greeting(name="Jane", greeting="Hello") # both arguments
have a default↪→

13

14 # calling the functions
15

16 say_greeting("John", "Hi") # both arguments are provided by
position↪→

17 say_greeting(name="John", greeting="Hi") # arguments are
supplied by name↪→

18 say_greeting(greeting="Hi", name="John") # the position of named
arguments do not matter↪→

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Function doc-strings

To make it clear for a human to quickly understand what a function
is doing, you can add an optional doc-string. This is a string that is
added directly after the initial definition of the function:

19 def my_function(x, y):
20 """I am a docstring!!!"""
21 return x + y

Some common use cases for docstrings are explaining what the
parameters are that it expects, and what it returns.

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Multi-line docstrings

If your explanation is a little longer than a line, a multiline docstring
can be created as long as you’re using """ three quotation marks
either side of the string

22 def my_function(x, y):
23 """
24 This is my realllly long docstring
25 that explains how the function works. But sometimes
26 its best not to explain the obvious
27 """
28 return x + y

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Understanding scope

In this example we have two scopes which can be easily seen by the
indentation. The first is the global scope. The second scope is the
scope of the function. The scope of the function can reference
variables in the larger scope. But once the function scope exits, we
can no longer reference the variables from the function.

29 x = 10
30

31 def compute_addition(y):
32 return x + y
33

34 print(compute_addition(10))
35 print(x)
36 print(y) # does not work

Results:
=> 20
=> 10

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Understanding scope

Even though we can reference the global scope variable from the
scope of the function, we can’t modify it like this:

4 x = 10
5

6 def compute_addition_2(y):
7 x = x + 5 # error local variable referenced before

assignment↪→

8 return x + y
9

10 print(compute_addition_2(10))

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Understanding scope

If we really wanted to reference a variable in a global scope and
modify its value, we could use the global keyword. Doing this
makes the function output something different every time it is called.
This can make it difficult to debug incorrect programs.

11 x = 10
12

13 def compute_addition_2(y):
14 global x
15 x = x + 5
16 return x + y
17

18 print(compute_addition_2(10))
19 print(x)
20 print(compute_addition_2(10))

Results:
=> 25
=> 15
=> 30

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Understanding scope

In almost all cases, avoid using global variables. Instead pass the
variables as parameters. This can reduce a source of potential errors
and ensure that if a function is called multiple times, the output can
be more consistent and expected.

5 x = 10
6

7 def compute_addition_3(x, y):
8 x = x + 5
9 return x + y

10

11 print(compute_addition_3(x, 10))
12 print(x)
13 print(compute_addition_3(x, 10))

Results:
=> 25
=> 10
=> 25

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Use what you’ve learnt!

We’re going to create a library system to help locate and lookup
information about books. For example, we want to know the author
of book called ’Moby Dick’.

To create this system, we are going to do it in stages. First, we will
want to create our database of books:

Title Author Release Date

Moby Dick Herman Melville 1851
A Study in Scarlet Sir Arthur Conan

Doyle
1887

Frankenstein Mary Shelley 1818
Hitchhikers Guide to
the Galaxy

Douglas Adams 1879

Our database is going to be a list of dictionaries. Where each
dictionary is a row from this table. For example, one of the
dictionaries will have the key "title" and a value "Moby Dick".

Create this database and call it db.

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Locating Books

Create a function called locate_by_title that takes the
database to look through, and the title to look up as arguments.
This function should check each dictionary, and if the title is the
same as what was searched for, it should return the whole
dictionary.
Test this function by calling the locate_by_title function
with db and "Frankenstein". You should get {"title":
"Frankenstein", "author": ...}.

Note you should include docstrings to describe the arguments to the
function, and what it will return.

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Selecting a subset

Now that we can find books by the title name, we also want to find
all books that were released after a certain data.

Create a function called books_released_after that takes two
arguments: the database to look through, and the year.
This function should look through the database, if it finds a
book that was released after the year, it should add it to a list of
books that is returned from this function.
Test this function by calling books_released_after with db
and 1850. This function call should return a list containing
three dictionaries. The first entry should be ’Moby Dick’ and the
section should be ’A Study in Scarlet’, etc.

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Updating our database

Oh no! ’Hitchhikers Guide to the Galaxy’ was released in 1979 not
1879, there must have been a typo. Let’s create a function to update
this.

Create a function called update, that takes 5 arguments: 1) the
database to update, 2) the key of the value we want to update
3) the value we want to update it to 4) the key we want to
check to find out if we have the correct book and 5) the value of
the key to check if we have the correct book.

5 update(db,
6 key="release year",
7 value=1979,
8 where_key="title",
9 where_value="Hitchhikers Guide to the Galaxy")

Programming
Level-up

Jay Morgan

Introduction
Course
introduction

Contact
information

Python
Introducing
Python

Types of data

Working with
strings

Compound data
structures

Conditional
expressions

Iteration

Functions

Exercise
Library system

Extended exercise

In the previous steps we created functions locate_by_title
and books_released_after. These two functions are similar in
a way that they are selecting a subset of our database (just by
different criteria).
For this harder exercise, can we create a single function called
query that allows us to do both locate_by_title and
books_released_after.
An example call to this query function may look like:

10 results = query(db,
11 where_key="title",
12 where_value="Moby Dick",
13 where_qualifier="exactly")

where_qualifier should accept strings like "exactly",
"greater than", and "less than".

	Introduction
	Course introduction
	Contact information

	Python
	Introducing Python
	Types of data
	Working with strings
	Compound data structures
	Conditional expressions
	Iteration
	Functions

	Exercise
	Library system

