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Problem Statement
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Which separator is best? I

To get to the point of create such a decision boundary, we are going
to look at three methods that build off of one another. These are:
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Which separator is best? II

1 Maximal Margin classifier (MMC).

2 Support Vector classifier (SVC).

3 Support Vector Machine (SVM).

For the maximal margin classifier, we wish to position the decision
boundary directly in the centre of these classes (more on this in the
next slides), thus ‘maximising the margin’. The constraint for this
model to which we must optimise is:

yi(β0 + xβ1) ≥M

where yi ∈ [−1, 1] (the label of the binary classification), and M is
the margin between classes that we wish to maximise.
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A 1-dimensional example
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Widest margin
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Support vectors

Bias/Variance trade-off: If one of these support vectors changes then
the maximal margin classifier will drastically change. This model has
low bias, and high variance.
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Accounting for miss-classifications I

yi(β0 + xβ1) ≥M(1− εi)

This type of classifier is called the Support Vector Classifier with a
soft-margin as it allows for miss-classifications to reduce the model’s
variance.

where εi is the positive slack variable for each data point. In practice,
the sum of all slack variables are bound by a user-defined norm:
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Accounting for miss-classifications II

∑
i εi ≤ D, where D is the tolerance for violating the margin of the

SVC hyperplane.

There are three scenarios given the slack variable:

εi = 0 the data point lies on the correct side of the hyperplane
and not within the margin (i.e. the point is correctly classified).

εi > 0 the point lies with the margin but on the correct side of
the separator.

εi > 1 the point lies on the wrong side of the separator (i.e. that
the data point is miss-classified).
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Accounting for miss-classifications III

Solution of the optimisation problem can be re-framed as unknown
parameters (α) of the function f(x) and the inner product to all
other support vectors:

f(x) = β0 +

m∑
i=1

αi〈x, xi〉

As the constant β0 the number of allowed miss-classifications
increases also.
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1-dimensional

1 dimensional space with a 0-dimensional separator, a point.
flat affine 0-dimensional subspace
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2-dimensional

2 dimensional space with a 1-dimensional separator, a line
flat affine 1-dimensional subspace
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3-dimensional

3-dimensional space with a 2-dimensional seperator, a plane
flat affine 2-dimensional subspace
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4+-dimensional

Here we lose the ability to be able to visualise the space easily. . . but
nevertheless we can still create a SVC model. The separator in this
space we refer to as a hyperplane.

Side note
Technically all of the seperators in 1/2/3 dimensions can also be
called hyperplanes, but we generally only this say this for 4+. . .
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How do we separate this space
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Add dimensionality

We’ll take this 1-dimensional space, and add another dimension
where the y-axis is x2. Suddenly, we’re able to separate the space:
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How do we find an applicable transformation?

To make the space linearly separable in the previous example, we
transformed the data into a higher dimension with the x2

transformation. But how do we decide which transformation to
apply?

We’ll look at two types of transformations:

1 Polynomial Kernel
2 Radial Basis Function (RBF) Kernel

Instead of using the inner product, we now choose to use a kernel K,
and then our solution to the decision boundary looks like:

f(x) = β0 +

m∑
i=1

αiK(x, xi)

This then is our Support Vector Machine we have been working
towards. The kernel in this case, allows the method to classify
non-linear relationships, which just wasn’t possible with the maximal
margin classifier or the support vector classifier.



Machine
Learning

Jay Morgan

Introduction
Problem
Statement

Classifying the
space
Finding the best
separator

Support Vector
Classifier

Terminology

Non-separable
spaces

Polynomial Kernel I

(a× b+ r)d

Where r and d are user-defined parameters to the kernel.

We show how, using this kernel, we needn’t explicitly transform the
data to the higher dimensions as the kernel is equal to the dot
product in these higher dimension feature spaces:

For convience, let r = 1
2 , and d = 2. Expanding the brackets:

(a× b+ 1

2
)(a× b+ 1

2
)

and simplifying to:

ab+ a2b2 +
1

4
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Polynomial Kernel II

Which can be represented as the dot product:

(a, a2,
1

4
) · (b, b2, 1

4
)

where a is the coordinate of the first sample on the first dimension,
a2 is the coordinate on the second dimension and so on. Since 1

4 is
present in both sides of the expression, we can drop this.

Therefore we see that, instead of computing the dot product in the
higher dimensions, it is sufficient to apply the kernel.
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Radial Basis Function Kernel

e−γ(a−b)
2

where γ is the scale of the kernel. This kernel generalises to infinite
dimensions, and we return to how this can be true at the end of the
lecture.
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Kernel Trick

Let φ(x) be a function transformation into a higher dimension. So we
would have the following equation to compute the relationship in the
higher dimension space:

φ(xi) · φ(xj)

The kernel trick is that we have a kernel function
K(xi, xj) = 〈φ(xi), φ(xj)〉 to which computes the relationship as if
xi, xj was in a higher dimension, without needing to explicitly
transformation xi, xj to these higher dimensional feature spaces!



Machine
Learning

Jay Morgan

Introduction
Problem
Statement

Classifying the
space
Finding the best
separator

Support Vector
Classifier

Terminology

Non-separable
spaces

How the RBF works in infinite dimensions I

We are going to take a look at an interesting aspect of the RBF
kernel: how does it work in infinite dimensions? But first, we’ll revisit
the polynomial kernel. Let’s take our polynomial kernel with r = 0,
we have:

(a× b+ r)d = adbd

All this does is scale the space on the one dimension.

But we can also add multiple polynomial kernels with different values
for d.

a1b1 + a2b2 + ...+ a∞b∞

And it continues to scale the space to infinity. We shall show how the
RBF kernel works in very much this way.

Let’s first take our RBF kernel and expand the brackets and simplify:
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How the RBF works in infinite dimensions II

e−γ(a−b)
2

= e−γ(a
2−ab+b2−ab) (1)

= e−γ(a
2−ab+b2−ab) (2)

= e−γ(a
2+b2)eγ2ab (3)

Setting γ = 1
2 to remove the 2 from the second term we have:

e−γ(a
2+b2)eab

We can use taylor series expansion (a function is equal to an infinite
sum) on the second term. For example, we have the taylor series
expansion for some function f :

f(x) = f(a) +
f ′(a)

1!
(x− a) + f ′′(a)

2!
(x− a)2 + ...

f∞(a)

∞!
(x− a)∞
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How the RBF works in infinite dimensions III

The same can be done for an exponential where the d
dxe

x = ex:

ex = ea +
ea

1!
(x− a) + ea

2!
(x− a)2 + ...+

ea

∞!
(x− a)∞

But what is a? A can be anything so long as f(a) exists. So let’s
choose something that makes our life simpler. We know that e0 = 1,
so let a = 0 :

ex = 1 +
1

1!
x+

1

2!
x2 + ...+

1

∞!
x∞

thus, going back our RBF kernel we have:

eab = 1 +
1

1!
ab+

1

2!
(ab)2 + ...+

1

∞!
(ab)∞
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How the RBF works in infinite dimensions IV

This looks very much like what the polynomial kernel was doing!
Then if we take this term and position it in terms of a dot product
instead we have:

eab =

(
1,

√
1

1!
a,

√
1

2!
a2, ...,

√
1

∞!
a∞

)
·

(
1,

√
1

1!
b,

√
1

2!
b2, ...,

√
1

∞!
b∞

)

And we can add the left term in terms of a dot product√
e−

1
2 (a

2+b2), which conciseness, we’ll refer to as s

e−
1
2 (a

2+b2)eab =

(
s, s

√
1

1!
a, s

√
1

2!
a2, ..., s

√
1

∞!
a∞

)
·

(
s, s

√
1

1!
b, s

√
1

2!
b2, ..., s

√
1

∞!
b∞

)
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