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Linear models

Having learnt a little about what it means to learn, we’re going to
look at our first Machine Learning algorithm, the staple for much of
statistics, numeric prediction using a linear model.
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What is a linear model? I

A linear model is a prediction (a response) to an input variable. We
have the following terms:

Response/prediction – the output of the model.

Dependant variable – the variable upon which the prediction is
being made.

For a linear model based on one dependant we have the following:

y = β0 + β1x

where y is the response/output/prediction of the model, x is the
dependant variable, and β0, β1 are the model parameters.
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Slope & intercept I

If we look at our linear model equation, we’ll notice that it’s the
same equation for a straight line.

As we’ve seen, the linear model, or linear regression, has two
parameters: β1, β0. What do these parameters represent?
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Slope & intercept II

The β1 parameter is the slope or strength of relationship
between the dependant variable and the response.
Meanwhile, the β0 parameter is called the intercept, as it’s the
value of the response when the dependant variable is zero.

Let’s look at these two parameters.
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Slope & intercept III

Here we see that when β1 is 0 (left figure), any change in x results in
0 change in y. While, with β1 = 2, y increases two-fold by every
change in x. Finally, when the slope is negative, we see that y
decreases.

Notice how the line is at 5 when x is zero, this is because β0 = 5.
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Multiple variables

So we’ve seen how we can take an input variable x, and through the
combination multiplication and addition with the learnt β0, β1 values,
we can create a pretty accurate prediction.

However, this was only for a singular variable.

In our dataset, we have many variables/features/columns that we
may want to use for our prediction. It may be possible to get an even
more accurate prediction by adding features to our linear regression
model.

y = β0 +

m∑
i=1

xiβi

where m is the number of features/variables we’re adding to the
model.
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Supporting example

Let’s have a look at how we would use this linear model with one of
the datasets: The Boston housing prices.

Figure 1: Scatter plot of the number of rooms in a house against the house
valuation. In this plot we can see a positive effect with some outliers to
this trend.
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Let’s fit a linear model I

We have seen that there seems to be some correlation between the
number of rooms and the house price. I.e. we can use the number of
rooms of the house to get the estimated price. To get an estimated
price we’ll use our linear model:

y = β0 + β1x

In this case, x will be the number of rooms. But what values should
we set for β0 and β1? Or put another way, what is optimal value for
our model parameters.

We’ll return to the question of optimal later, but for now, let’s just
select some random values!

β0 = 1

β1 = 1
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Let’s fit a linear model II

Figure 2: A linear model line overlayed onto the boston house prices
dataset. Blue circles represent samples from the dataset, while the trend
line is shown in red.



Machine
Learning

Jay Morgan

Linear
Regression
Introduction to
linear models

Model parameters

Training a linear
regressor

Fitting the line
directly

Logistic
Regression
Classification

Probability /
likelihood

Maximum
likelihood

Binary
Cross-Entropy

Let’s fit a linear model III

Well that doesn’t look very good, it could be ’fit’ better to what
we’re seeing in the scatter plot! I wonder how wrong the linear model
is – how incorrect our predicted house prices are?
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Evaluating our initial linear model I

To evaluate how well, or in this case, how badly our linear model is
doing, let’s compare the predicted value from the model against the
actual house price. For example, we’ll take a single sample from our
dataset.

If we have 4 rooms, our model estimates the house price to be
2(4) + 5 = 13, $13,000, but the actual cost was $24,000. This means
we have underestimated the cost by $11,000.

What we’ve done there is the following:

δ = |y − ŷ|

where ŷ is β0 + β1x

We’ve calculated the difference or delta between the real house price
y and the predicted house price.
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Evaluating our initial linear model II

That gives us the error for one sample though, what about for the
whole dataset? Well we could take the mean over all samples:

MAE(X;β0, β1) =
1

N

N∑
i=0

|yi − (β0 + β1xi)|

If we calculate that our linear model we see that the average
difference between our estimated value and real value is $15,000!

Another common method of calculating how well or how badly our
model is performing is to use the sum of squared residuals or perhaps
more commonly known in the field of machine learning: mean
squared error (MSE).

MSE(X;β0, β1) =
1

N

N∑
i=0

(y − (β0 + β1xi))
2
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Getting better model parameters I

Okay, so we made our initial guess at the model parameters (random
values for β0, β1), and these weren’t very good. We were incorrectly
guessing the house value by $15,000. So how do we get better
values?

Well if we visualise how badly we do vs the value for β1 we get the
following:
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Getting better model parameters II

Figure 3: Mean absolute error (MAE) between the true and predicted
house values when varying the value for β1 parameter in the linear model.



Machine
Learning

Jay Morgan

Linear
Regression
Introduction to
linear models

Model parameters

Training a linear
regressor

Fitting the line
directly

Logistic
Regression
Classification

Probability /
likelihood

Maximum
likelihood

Binary
Cross-Entropy

Getting better model parameters III

In figure 3, we see that as we change the β1 parameter, the mean
absolute error (MAE), i.e. the average difference between the
predicted house prices and the true house prices, changes. Ideally, we
would like the error or loss to be as low as possible. In this case,
when β0 = 1 the lowest possible loss we can hope to achieve with the
linear model is ~ $5,500.

But what value for β1 gets us this lowest value for the loss? Looking
at the graph, we see that the lowest point on the loss curve is
somewhere between 0 and 5. Maybe even 4? While we could look at
the curve and pick these parameter values, we’re going to use a
better method – one that give us an optimal value for this loss curve
automatically.

We’re going to look at the method called Gradient Descent.

If we visualise our loss curve again, and visualise where β1 = 1 is on
this curve, we will see:
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Getting better model parameters IV
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Getting better model parameters V

So we want this rot dot to move down the loss curve and reach the
bottom of the curve. Using the Gradient Descent algorithm, we’re
going to take very small steps down the loss curve.
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Getting better model parameters VI

To determine which way is up, and which way is down the curve, we
use the Gradient of the curve (hence Gradient Descent). We compute
the gradient using finite differences method:

∆ =
f(x+ h)− f(x)

h

where f(x) is the loss when β1 takes on the value of x. h is a very
small value.
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Getting better model parameters VII
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Getting better model parameters VIII

If we select h = 0.5 then we will have the formula:

∆β1
=
L(β1 + 0.5)− L(β1)

β1

where L represents our loss function, MAE. If we calculate this we
have:

∆β1
=
L(β1 + 0.5)− L(β1)

h

=
L(1.5)− L(1)

0.5

=
12− 15

0.5
= −6.0

Given that the gradient is a negative number, we know that the curve
is going down/decreasing. So we will want to move β1 in this
direction – we want to move β1 so that the loss decreases.
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Getting better model parameters IX

β1 = β1 − η∆β1

If we plug in the numbers we’ve calculated for when β1 = 1 we get
and eta = 0.5:

β1 = β1 − η∆β1

= 1.0− (0.5 ∗ −6.0)

= 1.0− (−3.0)

= 4.0

Our new value for the β1 parameter (β1) is computed by taking its
original value and subtracting the gradient modulated/multiplied by
η. η in this case is what will allow us to take our small steps. It is
important to set η to a suitably small value, as high values for η will
cause the Gradient Descent to behave erratically, and even, make our
loss worse!
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Getting better model parameters X

Figure 4: Plotting the effect of η on the step change of w.
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Getting better model parameters XI

In figure 4, we’ve varied the value of η and computed 10 steps of
updating the β1 parameter in our linear model. When η = 0.05, we
see that β1 is slowly being updated in a way that is causing our loss
to decrease, but it is more so slowly that we don’t reach the optimal
value for β1. When η = 3, each change in β1 is too large, so we
over-shoot the optimal value, and end up bouncing back and forth
without ever improving. Finally, when we set η = 0.3, the changes in
β1 are sufficiently large enough such that we reach the global minima
in time, but they are also small enough so that we don’t over-shoot
this same minimum.

If we then apply the Gradient Descent algorithm to both parameters
of the linear model β0, β1, then we can find the optimal trend line for
this data. Furthermore, visualising this will look something like figure
??.

images/lm_learn.gif

images/lm_learn.gif
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Solving the linear model directly

The way we’ve trained our linear regression is not necessarily the
best, yes it does help us understand how we can optimise to a
solution (especially if not all of our data can fit into memory at the
same time). But, when it comes to linear models, we can compute
the values for β0, β1 directly.

This is called a closed-form solution.

β1 =
N
∑
xy −

∑
x
∑
y

N
∑

(x2)−
∑

(x)2

β0 =

∑
y − β1

∑
x

N

where N is the number of samples in our data.
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Moving from regression to classification

We now turn to the problem of classification. We have seen in some
of our toy datasets (namely the Iris dataset), that we don’t want to
predict a continuous value, but rather predict the class each data
point belongs to.

To predict the class, we use a model called a logistic regressor.

A logistic regressor is a model from the class of ‘Generalised Linear
Models’ (GLM). In fact, the linear regressor we investigated in the
previous section is also part of this class of models.
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Multi-class vs binary classification

In terms of Iris dataset, this means we
want to select one class from 3 possible
classes.
We’ll return to the problem of multiple
classes later. But let’s suppose that we
only want to decide if the flower is a
Setosa, or not Setosa. We’ve changed
our classification problem from
multi-class to binary classification.
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Probability likelihood

Our model will eventually look like this, where we have two classes of
points, and for each point we give a probability (p) that our point
belongs to a class.
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Making it linear

If we apply the logarithm to each probability, we get back to our
linear line.

log

(
p

1− p

)
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Enter the maximum likelihood

But there is a problem. . . we can no longer use the sum of residuals
as the value would always be ∞, but instead we can use the
maximum likelihood. First we project each sample to its ’odds’ (i.e.
the value of y on the linear line).
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Back to the probability curve

Our logistic or ’sigmoid’ function:

p =
1

1 + e−(β0+β1x)
=

e(β0+β1x)

1 + e(β0+β1x)
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Likelihood

Probability of class 1

p(1) = p

Probability of class 0 (or not class 1).

p(0) = 1− p

Maximum likelihood loss (which we wish to maximise), using the
points on the probability curve:

L = (0.9) + (0.89) + (0.6) + (1− 0.4) + (1− 0.2) + (1− 0.05)
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Optimising the curve

images/lr_learn.gif

images/lr_learn.gif


Machine
Learning

Jay Morgan

Linear
Regression
Introduction to
linear models

Model parameters

Training a linear
regressor

Fitting the line
directly

Logistic
Regression
Classification

Probability /
likelihood

Maximum
likelihood

Binary
Cross-Entropy

Binary Cross-Entropy

We could still use MSE in order to compute our models loss. This
may still work. But there is another objective function that we would
use for binary classification problems: Binary Cross-entropy (BCE).

BCE(X;β0, β1) = −(Y log(β0+β1∗X)+(1−Y ) log(1−β0+β1∗X))

Issues when using MSE for binary classification:

MSE is non-convex for binary classification problems.
MSE assumes the data was generated from a normal distribution,
while binary classification problems form a Bernoulli distribution.
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