
Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots
Programming Level-up
An Introduction to Matplotlib

Jay Morgan



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Outline

1 Matplotlib

Introduction

Various plotting types

Customising plots



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

What is Matplotlib?

In summary:

Matplotlib is one of the defacto plotting libraries for Python.
While there are many others and certainly some that are built
for specific plot types, Matplotlib continues to pervade scientific
plotting.
You can create basic plots (such as line or scatter plots) to more
complicated plots that include interactivity.



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Installing and importing Matplotlib

Matplotlib can be installed via conda:

1 conda install matplotlib

or with pip:

2 pip install matplotlib

Remember! You can install packages in ipython REPL/juypter
notebook by inserting a ’ !’ to the beginning of a shell command.



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Basic plotting

First, we will import the matplotlib module. The plotting function is
located within the pyplot package within matplotlib. The use of this
package is so common that 99% of Python users will alias this import
as plt:

3 import matplotlib.pyplot as plt

With this package now imported, we can now use the plot function.
To begin with, let’s just plot a simple line chart. In this case, the
plot function takes an x and y argument, where x denotes the
values along the x-axis and y are the values along the y-axis.

4 x = np.linspace(-10, 10, 100)
5 y = np.sin(x)
6 plt.plot(x, y)

In this example, we have created two vectors. The first x, creates a
vector of 100 values from -10 to 10. y is the sin function applied to x.
Finally, in the third line, we plot the sin wave using these two vectors.



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Basic plotting



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Different types of Plots

There are many different types of plots that one can make using
matplotlib. These include the most popular:

Line plots
Scatter plots
Bar plots
Histograms
Box plots
Image plots

We’re going to take a look at how we create each type of plot,
examining what type of inputs they require.



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Line plots

We’ve already seen one example of a line plot. This plot draws a line
between each x,y point. For instance in the previous example, we
created a sin wave by ’sampling’ such wave using 100 samples from
-10 to 10. Let’s see what happens when we sample only 10 points:

7 x = np.linspace(-10, 10, 10)
8 y = np.sin(x)
9 plt.plot(x, y)



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Line plots

We see the results are a less than ideal representation of a sin wave
as plot will simply draw a straight line from each point.



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Scatter plots

If we want to see where each sample of the sin wave is, we could use
instead the scatter plot, which will (by default) place a small circle at
every x,y value. To create a scatter plot, we use scatter instead of
the plot function. The arguments to this function are the same,
however.

10 x = np.linspace(-10, 10, 10)
11 y = np.sin(x)
12 plt.scatter(x, y)



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Scatter plots

Now we can see the position of each individual sample from the sin
wave. If we, once again, sample 100 points from this curve, we will
see better results.



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Scatter plots

13 x = np.linspace(-10, 10, 100)
14 y = np.sin(x)
15 plt.scatter(x, y)



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Bar plots

Bar plots are a simple plot that again takes an x and a y, where x is
the numerical position of the bar’s centre, and y is the height of the
bar.

16 x = np.arange(0, 8)
17 y = np.random.uniform(2, 7, len(x))
18 plt.bar(x, y)



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Histograms

Histograms allow us to visualise the distribution of values. In
matplotlib, we can create a histogram of a vector by using the hist
function that takes only the vector as its argument.

19 x = np.random.randn(1000)
20 plt.hist(x)



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Box plots

Box plots also allow us to visualise the distribution, but the
distribution of values within a group. In this example we’re visualising
the distribution of 3 groups. Using the boxplot function, we pass a
matrix.

21 x = np.random.randn(10, 3)
22 plt.boxplot(x)



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Image plots

In matplotlib, we can plot an ’image’ – that is a 2D matrix – using
the imshow function. For example:

23 fig = plt.figure()
24 x = np.random.randn(10, 10)
25 plt.imshow(x)



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Image plots

Of course, given the name, we can then use imshow to plot an image
as well, as long as we have the image loaded as a 2D array of values.

26 import PIL # using the PIL module to read an image
27 img = np.array(PIL.Image.open("images/Lenna.png"))
28 plt.imshow(img)



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Different types of Plots

There are many more different types of plots you can make using
matplotlib. You can find a comprehensive list at:

https://matplotlib.org/stable/plot_types/index.html

https://matplotlib.org/stable/plot_types/index.html


Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Subplots

What if we wanted to create many plots side-by-side? For this we
can use the subplots function. This function takes the number of
rows, and number of columns to create. It returns two values, the
first is the figure (entire figure), and the second value is a list of sub
figures. Using this list, we can place a plot of each of them.

29 x = np.linspace(-10, 10, 100)
30 y = np.sin(x)
31 z = np.cos(y)
32

33 fig, ax = plt.subplots(1, 2)
34 # ax is a list of sub figures
35 ax[0].plot(x, y)
36 ax[1].plot(x, z)



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Subplots



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Adding a legend

Or we could put them onto the same plot. Matplotlib will
automatically give them a different colour. If we use the label
argument to plot, we can also give them a name that will appear
when we call legend().

37 x = np.linspace(-10, 10, 100)
38 y = np.sin(x)
39 z = np.tan(y)
40 fig, ax = plt.subplots()
41 ax.plot(x, y, label="sin(x)")
42 ax.plot(x, z, label="tan(x)")
43 ax.legend()



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Adding a legend



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Position the legend in different places

We can change the position of the legend by specifying a different
integer value for the loc argument (or string values such as ’upper
left’, ’upper right’, . . . ). Additionally, we can change the number of
columns the legend has with the ncol argument.

44 x = np.linspace(-10, 10, 100)
45 y = np.sin(x)
46 z = np.tan(y)
47

48 fig, ax = plt.subplots()
49 ax.plot(x, y, label="sin(x)")
50 ax.plot(x, z, label="tan(x)")
51 ax.legend(loc=1, ncol=2)

You can find the API reference for the different arguments to legend
at: https://matplotlib.org/stable/api/legend_api.html?
highlight=legend#module-matplotlib.legend

https://matplotlib.org/stable/api/legend_api.html?highlight=legend#module-matplotlib.legend
https://matplotlib.org/stable/api/legend_api.html?highlight=legend#module-matplotlib.legend


Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Position the legend in different places



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Modifying the x/y axis

Good graphs always have their axis’s labelled. To do this in
matplotlib, if we have a subplot object, we use set_xlabel, or we
can use plt.xlabel(...). Here is an example with an subplot
object:

52 x = np.linspace(-10, 10, 100)
53 y = np.sin(x)
54 z = np.tan(y)
55

56 fig, ax = plt.subplots()
57 ax.plot(x, y, label="sin(x)")
58 ax.plot(x, z, label="tan(x)")
59 ax.legend(loc=1, ncol=2)
60 ax.set_xlabel("x")
61 ax.set_ylabel("y")



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Modifying the x/y axis



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Changing figure size

A common change you may want to make to your figure is to change
its size or aspect ratio. figure() or subplots() take an optional
argument called figsize. This argument expects a tuple
representing the width and height of the figure in inches.

62 fig = plt.figure(figsize=(8, 2.5))
63

64 # or most likely
65 fig, ax = plt.subplots(figsize=(8, 2.5))
66 x = np.linspace(-10, 10, 100)
67 y = np.sin(x)
68 z = np.tan(y)
69 ax.plot(x, y, label="sin(x)")
70 ax.plot(x, z, label="tan(x)")
71 ax.legend(loc=1, ncol=2)
72 ax.set_xlabel("x")
73 ax.set_ylabel("y")

Here we are creating a figure with 8 inches of width, and 2.5 inches
of height.



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Changing figure size



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Changing figure size

This is especially useful when you have many sub-figures, as by
default, they will be ’squashed’ into the default aspect ratio. We can
’give them more space’ by modifying this figsize argument when
creating the many sub-figures.

74 fig, ax = plt.subplots(1, 2, figsize=(8, 2.5))
75 x = np.linspace(-10, 10, 100)
76 y = np.sin(x)
77 z = np.tan(y)
78 ax[0].plot(x, y, label="sin(x)")
79 ax[1].plot(x, z, label="tan(x)")



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Changing figure size



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Line properties

When creating a plot, there are many different properties you can
change. Some of these include:

color – the colour of the line
alpha – the amount of transparency (1.0 is opaque, 0.0 is
transparent)
linewidth, lw – the width of the stroke width
linestyle, ls – the style of the line (i.e. a dotted line)

There are also some properties for the markers, i.e. the circles in the
scatter plot. These properties are:

marker – the type of marker (you can use different shapes
instead of a circle
markersize – the size of the mark
markerfacecolor – colour of the marker
markeredgewidth – outline width of the marker.



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Line properties

If this example we are modifying some of the line properties that
include the color (c), setting it to a string value of "green". The
linewidth (lw) to be thicker, and making the line to be a dotted line
by specifying the linestyle (ls) to "=–={".

80 fig = plt.figure()
81 x = np.linspace(-5, 5, 100)
82 y = np.sin(x)
83 plt.plot(x, y,
84 c="green", # or color
85 lw=3, # or linewidth
86 ls="--")



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Colormaps

When we create a heatmap using imshow, the gradients of colour are
automatically set. Yet, we can control the colour gradient using a
colour map. First we must import cm from matplotlib:

87 from matplotlib import cm

Then we can get a colour map with 10 levels using get_cmap:

88 blues = cm.get_cmap("Blues", 10) # 10 levels
89 reds = cm.get_cmap("Reds", 2) # 2 levels

You can find a full list of different colour maps at: https:
//matplotlib.org/stable/tutorials/colors/colormaps.html

https://matplotlib.org/stable/tutorials/colors/colormaps.html
https://matplotlib.org/stable/tutorials/colors/colormaps.html


Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Colourmaps

Now that we have our new colour maps, we can pass it as an cmap
argument when we create a plot.

90 x = np.random.randn(10, 10)
91 y = np.random.randn(10, 10)
92 fig, ax = plt.subplots(1, 2, figsize=(8, 3))
93 p1 = ax[0].imshow(x, cmap=blues)
94 p2 = ax[1].imshow(y, cmap=reds)
95 fig.colorbar(p1, ax=ax[0])
96 fig.colorbar(p2, ax=ax[1])



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Ticks

If we want to customise the numbers along each axis, we use the
set_xticks for the x-axis and set_yticks for the y-axis. These
functions take the list of locations for each ’tick’, and optionally a list
of labels to use instead of the numbers.

97 x = np.linspace(-2, 2, 100)
98 y = np.sin(x)
99

100 bx = np.arange(2, 7)
101 by = np.random.uniform(2, 7, len(bx))
102

103 fig, ax = plt.subplots(1, 2, figsize=(8, 3))
104 ax[0].plot(x, y)
105 ax[0].set_xticks([-2, 0, 2])
106 ax[1].bar(bx, by)
107 ax[1].set_xticks(bx, ["a", "b", "c", "d", "e"])



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Ticks



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Grids

In all of the previous plots, the background has no grids, they are
simply white. If we wanted to add grid lines to the plot we use the
.grid() method. This function, by default, adds the major grid lines.

108 x = np.linspace(-2, 2, 100)
109 y = np.sin(x)
110 z = np.tan(x)
111 fig, ax = plt.subplots(1, 2, figsize=(8, 3))
112 ax[0].plot(x, y)
113 ax[0].grid()
114 ax[1].plot(x, z)
115 ax[1].grid(which="both", color="r")



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Grids



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Scale

The default behaviour of matplotlib is to plot using a linear scale. In
certain situations, we want view the plot using a different scale. For
this we can use set_yscale.

116 x = np.linspace(-2, 10, 100)
117 y = np.exp(x)
118 fig, ax = plt.subplots(1, 2, figsize=(8, 3))
119 ax[0].plot(x, y)
120 ax[0].grid()
121 ax[1].plot(x, y)
122 ax[1].set_yscale('log')
123 ax[1].grid()



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Setting the plot limits

By default, matplotlib will calculate the minimum and maximum
values of the data, and use those values to set the limits of the plot.
Using set_xlim and set_ylim we can change this default behaviour.

124 x = np.linspace(-2, 2, 100)
125 y = np.sin(x)
126 fig, ax = plt.subplots(1, 2, figsize=(8,3))
127 ax[0].plot(x, y)
128 ax[0].set_ylim(-1, 2)
129 ax[1].plot(x, y)
130 ax[1].set_xlim(-3, 3)



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Annotations

We can annotate our plot in a number of way:

.axhline – plot a horizontal line (axvline for vertical lines)/

.annotate – add text to the plot at a certain position.

131 x = np.linspace(-2, 2, 100)
132 y = np.sin(x)
133 fig, ax = plt.subplots()
134 ax.plot(x, y)
135 ax.axhline(0, c='gray', ls='--')
136 ax.annotate("0th line", (-2, 0), xytext=(-1.5, 0.25),
137 arrowprops=dict(facecolor='black', shrink=0.05,
138 width=0.5, headwidth=5.0))



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Annotations



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Creating a twin axes plot

Sometimes you will want to display multiple sub-plots on the same
plot, but where each have a very different range in values. Instead of
having a single y-axis, with twinx() we can create a two y-axis plot.

139 x = np.arange(10, 100)
140 y = np.exp(x)
141 z = np.log(x)
142

143 fig, ax = plt.subplots(1, 2)
144 ax[0].plot(x, y, label="exp(x)")
145 ax[0].plot(x, z, label="log(x)")
146 ax[0].legend()
147

148 ax2 = ax[1].twinx()
149 ax[1].plot(x, y)
150 ax2.plot(x, z, color="orange")
151 ax2.tick_params(axis="y", labelcolor="orange")



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Creating a twin axes plot



Programming
Level-up

Jay Morgan

Matplotlib
Introduction

Various plotting
types

Customising plots

Learn more

There are many many more types of plots you can create with
matplotlib. I would recommend that you read the documentation to
fully appreciate everything that it can visualise:

Gallery –
https://matplotlib.org/stable/gallery/index.html

Plotting tutorials –
https://matplotlib.org/stable/tutorials/index.html

Basic plot types –
https://matplotlib.org/stable/plot_types/index.html

https://matplotlib.org/stable/gallery/index.html
https://matplotlib.org/stable/tutorials/index.html
https://matplotlib.org/stable/plot_types/index.html

	Matplotlib
	Introduction
	Various plotting types
	Customising plots


