
Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Programming Level-up
Lecture 4 – An Introduction to Numerical Computing in Python

Jay Morgan

11th October 2021

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Outline

1 NumPy

What is NumPy

Working with NumPy

Indexing Arrays

Reshaping and Resizing

Arithmetic Operations

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

What is NumPy?

NumPy (https://numpy.org/) is one of the fundamental Python
libraries for scientific computing. In essence, its aim is to make vector
and array processing in Python much more efficient. Therefore, it
would be your go-to for (numerical) data processing.

Numerical data processing with NumPy can, most often that not, be
magnitudes faster than what you can write in Python, even if the
operations are the same. This is because NumPy is partly written in
C.

For example, if we want to compute the matrix multiplication of two
arrays:

A = [[1, 4], [9, 5]] # 2 dimensional 'matrices' A and B
B = [[1, 2], [3, 4]]
C = [[0, 0], [0, 0]] # our result 'pre-allocated' with zeros

for i in range(len(A)):
for j in range(len(B)):

for k in range(len(B)):
C[i][j] += A[i][k] * B[k][j]

https://numpy.org/

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

What is NumPy?

The previous example is quite un-weidly. We have to manually loop
through the matrices and apply the computation for each element.
This can be very slow in Python. NumPy provides a much cleaner
and quicker interface:

import numpy as np
A = np.array([[1, 4], [9, 5]])
B = np.array([[1, 2], [3, 4]])
C = A @ B # or np.matmul(A, B)
print(C)

Results:
=> [[13 18]
=> [24 38]]

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Install NumPy

Before we can use NumPy, we must first install it if its not already.
NumPy can easily be installed with one of your package managers of
choice. For example, if you want to install via conda:

conda install numpy

or with pip:

pip install numpy

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Creating a numpy array

As we’ve seen previously, we use np.array to create a numpy array
from a Python data type

A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(A)

Results:
=> [[1 2 3]
=> [4 5 6]
=> [7 8 9]]

We’ve created a 3x3 matrix of integers. Note that, out-of-the-box,
NumPy doesn’t support ragged arrays (matrices that are not
rectangular), so this will not work as you expect:

A = np.array([[1], [1, 2]])

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Basic attributes

A numpy array has various attributes that are useful for our
numerical computing. Some of these include:

A = np.array([[1, 4], [9, 5]])

print(A.shape) # the shape of the array
print(A.size) # number of elements
print(A.ndim) # number of dimensions
print(A.nbytes) # storage used
print(A.dtype) # data type of elements

Results:
=> (2, 2)
=> 4
=> 2
=> 32
=> int64

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Different data types

In the previous example, the elements in the array we int64. But
normally, we will see float64. However, there are many other
available data types, where each of the different data types affects
how much memory is used to represent the data.

int (8, 16, 32, 64)
uint (unsigned integers)
bool
float (8, 16, 32, 64)
complex

https://numpy.org/doc/stable/user/basics.types.html
https:
//numpy.org/doc/stable/reference/arrays.dtypes.html

https://numpy.org/doc/stable/user/basics.types.html
https://numpy.org/doc/stable/reference/arrays.dtypes.html
https://numpy.org/doc/stable/reference/arrays.dtypes.html

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Creating arrays with different dtypes

When creating a NumPy array, NumPy will select what it thinks to
be the most appropriate data type. However, we can tell NumPy
explicitly what the data type should be with the dtype argument.

A = np.array([[1, 2], [9, 5]], dtype=np.int8)
print(A)
print(A.dtype)

A = np.array([[1, 2], [9, 5]], dtype=np.float)
print(A)
print(A.dtype)

Results:
=> [[1 2]
=> [9 5]]
=> int8
=> [[1. 2.]
=> [9. 5.]]
=> float64

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Different ways of creating arrays

NumPy also provides us with a number of different functions to
create arrays. Instead of doing this:

A = np.array([[0, 0], [0, 0]])

We could instead use the np.zeros function, passing a tuple where
each element of the tuple describes how many elements should be
made in each dimension:

A = np.zeros((2,)) # 1 dimensional
A = np.zeros((2, 2)) # 2 dimensional
A = np.zeros((2, 5, 5)) # 3 dimensional

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Different ways of creating arrays

Another commonly used array creation function is the
np.random.randn function. This creates an array where elements
are sampled from a normal distribution.

A = np.random.randn(2, 2)
print(A)

Results:
=> [[-0.68213848 -0.44274759]
=> [0.6748596 0.64244208]]

Note the interface is a little different than .zeros, where instead of
passing a tuple, we pass multiple arguments to the function.

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Different ways of creating arrays

It is also convenient to create arrays with ranges of elements.

A = np.arange(5, 10) # optional step
print(A)

Results:
=> [5 6 7 8 9]

A = np.linspace(5, 10, 20)
print(A)

Results:
=> [5. 5.26315789 5.52631579 5.78947368 6.05263158 6.31578947
=> 6.57894737 6.84210526 7.10526316 7.36842105 7.63157895 7.89473684
=> 8.15789474 8.42105263 8.68421053 8.94736842 9.21052632 9.47368421
=> 9.73684211 10.]

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Different ways of creating arrays

There are many more ways to create arrays. Some include:

np.ones - a matrix of 1’s
np.eye - an identity matrix
np.diag - create a matrix with supplied elements across the
diagonal
np.fromfunction - load elements from the return of a function
np.fromfile - load elements from a data file

Though, the best resource for understanding is NumPy’s own
documentation on the subject:
https://numpy.org/doc/stable/user/basics.creation.html

https://numpy.org/doc/stable/user/basics.creation.html

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Slicing NumPy arrays

In native Python, when we have a ’matrix’ like data structure (just a
list of lists), and we want to access a particular element from this
matrix, we have to do something like:

A = [[1, 2], [3, 4]]
print(A[1][0])

Results:
=> 3

However, in NumPy, we seperate the indexes by comma:

A = np.array([[1, 2], [3, 4]])
print(A[1, 0])

Results:
=> 3

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Slicing NumPy Arrays

If we wanted to get all elements from the 2nd column we would use
the : notation. For example:

A = np.array([[1, 2], [3, 4]])
print(A[:, 1])

Results:
=> [2 4]

Likewise, all elements from the 2nd row:

print(A[1, :])

Results:
=> [3 4]

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Slicing NumPy Arrays

Note that when we slice an array, we are not copying the elements:

A = np.array([[1, 2], [3, 4]])
b = A[:, 1]

b[0] = 10

print(A)

Results:
=> [[1 10]
=> [3 4]]

Any modification you make to the b variable will also affect A. For
that we must use .copy()

A = np.array([[1, 2], [3, 4]])
b = A[:, 1].copy()
...

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Slicing NumPy Arrays

Figure: Johansson, R., Johansson, R., & John, S. (2019). Numerical
Python (Vol. 1). Apress.P

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Boolean Indexing

NumPy arrays can also be composed of boolean elements

A = np.array([[1, -1], [0, 5]])
print(A > 0)

Results:
=> [[True False]
=> [False True]]

And we can also use boolean elements to help with indexing:

values_above_zero = A[A > 0]
print(values_above_zero)

Results:
=> [1 5]

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Boolean Indexing

Therefore we can apply computations to only part of the array using
this indexing feature:

mask = A > 0
A[mask] = A[mask] + 10
print(A)

Results:
=> [[11 -1]
=> [0 15]]

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Reshape

After an array has been created, we can modify its structure/shape
using various functions. The first we shall look at is .reshape. For
example, let us create a vector of 4 elements and then reshape it into
an array of 2x2 elements. Of course, the new shape of the array must
be proportional to the original number of elements: 2x2 elements = 4
elements.

A = np.arange(1, 5)

mat_A = A.reshape(2, 2)
print(mat_A)
print(A) # A is not changed! No need for copy

Results:
=> [[1 2]
=> [3 4]]
=> [1 2 3 4]

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Flatten

If we wanted to take a 2d array and reshape it into a vector, we could
of course use the .reshape function again. But we could also use
.flatten.

flat_A = mat_A.flatten()
print(flat_A)

Results:
=> [1 2 3 4]

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Flatten

When specifying the new dimensionality of the reshaped array, -1 is a
shortcut to specify the dimensionality to allow reshaping to occur
correctly. For example:

A = np.arange(1, 5)
print(A)

print(A.reshape(2, -1))

Results:
=> [1 2 3 4]
=> [[1 2]
=> [3 4]]

We’re telling NumPy to create an array with 2 elements on the 1st
dimension, and then however many elements on the second
dimension.

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Add a dimension

We can add and remove dimensions using .expand_dims and
.squeeze, respectively.

print(A)
print(np.expand_dims(A, 1))

Results:
=> [1 2 3 4]
=> [[1]
=> [2]
=> [3]
=> [4]]

We are taking a vector and adding a dimension. Note that we have
to use np.expand_dims passing the object we want to expand and
not A.expand_dims.

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Add a dimension

We can use an indexing trick with None to do the expansion in just
the same way:

print(A)
print(A[:, None])

Results:
=> [1 2 3 4]
=> [[1]
=> [2]
=> [3]
=> [4]]

Where None indicates to NumPy where we want to add the new
dimension.

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Remove a dimension

If we want to instead remove a dimension, we can use .squeeze()

print(A[:, None].squeeze(1))

Results:
=> [1 2 3 4]

We are removing the 2nd dimension, but note that the elements
must be singletons. So you cannot squeeze a 2x2 array.

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Matrix transpose

Another useful feature is the matrix transpose:

print(mat_A)

print(mat_A.transpose())

Results:
=> [[1 2]
=> [3 4]]
=> [[1 3]
=> [2 4]]

or even:

print(mat_A.T)

Results:
=> [[1 3]
=> [2 4]]

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Composing arrays

If we have multiple arrays we want to ’join’ together, we can use
np.hstack for horizontally joining, or np.vstack for vertically
joining arrays. Note the dimensions must match in the direction your
stacking.

A = np.array([1, 2, 3])
B = np.array([4, 5, 6])

print(np.hstack([A, B]))

Results:
=> [1 2 3 4 5 6]

print(np.vstack([A, B]))

Results:
=> [[1 2 3]
=> [4 5 6]]

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Arithmetic Operations

We have already seen some basic examples of arithmetic operations
in NumPy. But its worth looking at these in detail.

One of the best reasons to use NumPy is that the computations are
vectorized and can be broadcast. We’ll see examples of what these
mean.

A = np.array([1, 2, 3])
B = np.array([[1, 2, 3],

[4, 5, 6]])

print(A * B)

Results:
=> [[1 4 9]
=> [4 10 18]]

We can perform vector and matrix arithmetic using Python’s infix
operators like +, *, etc.

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Arithmetic Operations

When we perform arithmetic operations, NumPy will convert the
data into arrays for us. While this can help, its not best practice for
vectors and matrices, for scalars it will be fine.

A = [1, 2, 3]

print(A * B)

Results:
=> [[1 4 9]
=> [4 10 18]]

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Broadcasting

When we are working with singletons or scalar values, NumPy will
automatically perform the broadcasting for us. So for example, if we
want to double each element of an array:

print(B * 2)

Results:
=> [[2 4 6]
=> [8 10 12]]

NumPy will automatically broadcast the scalar 2 to every element of
the shape and size of B.

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Comparison with Functions

NumPy provides, in many cases, both infix and function operations.

Operation Infix Function
Addition + np.add
Subtraction - np.subtract
Multiplication * np.multiply
Division / np.divide
Matrix Multiplication @ np.matmul
Power ** np.power
Cos/Tan/Sin np.cos, np.tan, np.sin
Square root np.sqrt
Exponential, Logarithm np.exp, np.log

https:
//numpy.org/doc/stable/reference/routines.math.html

https://numpy.org/doc/stable/reference/routines.math.html
https://numpy.org/doc/stable/reference/routines.math.html

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

More complex operations

There are a number of different operations one can perform on a
matrix. Such as the dot product of two matrices:

A = np.array([1, 2])
B = np.array([[1, 2], [3, 4]])
print(np.dot(A, B))

Results:
=> [7 10]

The inner product:

print(np.inner(A, B))

Results:
=> [5 11]

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

More complex operations

One mystical function is the einsum function. This function can
effectively replace other functions like dot and inner but it takes
some understanding on how it works. einsum is the application of
Einstein Summation, a succinct method of describing the
multiplication between matrices. Lets first look at an example of the
outer product:

print(np.einsum('i,ij->j', A, B))

Results:
=> [7 10]

Or the inner product:

print(np.einsum('j,ij->i', A, B))

Results:
=> [5 11]

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

More complex operations

In einsum we are giving a letter for each dimension of each array we
pass to the function.

So with: ’i,ij->j’ for the inner product of matrices A and B, we
are saying that the first dimension of A (its only dimension) is labelled
i, while for B the dimensions are labelled as i and j respectively. The
labels that exist in both sequences are summed over.

Einsum can take a little time to fully understand and appreciate, but
it can be a very powerful function with a very succinct syntax.

https://www.youtube.com/watch?v=CLrTj7D2fLM - Khan
Academy - Einstein Summation Convention

https://www.youtube.com/watch?v=CLrTj7D2fLM

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Vectorizing a function

Lets say you have some function that computes the square of a
number:

def my_square(x):
return x**2

print(my_square(4))

Results:
=> 16

As the function is simple, it takes one argument and returns one
argument, we can pass a NumPy array and will get the correct result.

A = np.arange(1, 10)
print(my_square(A))

Results:
=> [1 4 9 16 25 36 49 64 81]

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Vectorize a function

However, if the function is more complicated, it will not work.

def myfunc(a, b):
"Return a-b if a>b, otherwise return a+b"
if a > b:

return a - b
else:

return a + b

print(myfunc(A, 2))

Results:
=> Traceback (most recent call last):
=> File "<stdin>", line 1, in <module>
=> File "/tmp/pyqVNaN0", line 3, in <module>
=> File "/tmp/babel-jHhWMz/python-nKlyRH", line 8, in <module>
=> print(myfunc(A, 2))
=> File "/tmp/babel-jHhWMz/python-nKlyRH", line 3, in myfunc
=> if a > b:
=> ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Vectorize a function

To allow us to use this function over an array, we can use the
np.vectorize function to create a new function, which applies
myfunc over each element.

vfunc = np.vectorize(myfunc)
print(vfunc(A, 2))

Results:
=> [3 4 1 2 3 4 5 6 7]

Here we pass the function we want to vectorize myfunc to the
np.vectorize function. The return of this function is another
function!

Programming
Level-up

Jay Morgan

NumPy
What is NumPy

Working with
NumPy

Indexing Arrays

Reshaping and
Resizing

Arithmetic
Operations

Reading more

We’ve only scratched the surface of what NumPy can offer us! One
of the best starting points for learning about NumPy is NumPy’s own
user guide on the web:
https://numpy.org/doc/stable/user/index.html

Linear Algebra tutorial
https://numpy.org/doc/stable/user/tutorial-svd.html

Boolean expressions https://numpy.org/doc/stable/
reference/routines.logic.html

Set operations https:
//numpy.org/doc/stable/reference/routines.set.html

https://numpy.org/doc/stable/user/index.html
https://numpy.org/doc/stable/user/tutorial-svd.html
https://numpy.org/doc/stable/reference/routines.logic.html
https://numpy.org/doc/stable/reference/routines.logic.html
https://numpy.org/doc/stable/reference/routines.set.html
https://numpy.org/doc/stable/reference/routines.set.html

	NumPy
	What is NumPy
	Working with NumPy
	Indexing Arrays
	Reshaping and Resizing
	Arithmetic Operations

