
Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Programming Level-up
Lecture 2 - More advanced Python & Classes

Jay Morgan

2021-10-01

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Outline

1 Proxy

Univ-tln proxy

2 Advanced syntax

List comprehensions

Exceptions

Working with data

Working with strings

3 OOP

Classes

4 Exercise

Exercise

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Setting up a proxy in Linux – environment variables

Environment variables are variables that are set in the Linux
environment and are used to configure some high-level details in
Linux.

The command to create/set an environment is:

export VARIABLE_NAME=""

Exporting a variable in this way will mean VARIABLE_NAME will be
accessible while you’re logged in. Every time you log in you will have
to set this variable again.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Setting up a proxy in Linux – univ-tln specific

In the université de Toulon, you’re required to use the university’s
proxy server to access the internet. Therefore, in Linux at least, you
will have to tell the system where the proxy server is with an
environment variable.

export HTTP_PROXY='<username>:<password>@proxy.univ-tln.fr:3128'
export HTTPS_PROXY='<username>:<password>@proxy.univ-tln.fr:3128'
export FTP_PROXY='<username>:<password>@proxy.univ-tln.fr:3128'

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Setting up a proxy in the .bashrc

If you don’t wish to set the variable every time log in, you should
enter the same commands into a .bashrc in your home directory.

export HTTP_PROXY='...'
export HTTPS_PROXY='...'
export FTP_PROXY='...'

When you log in, the .bashrc file will be run and these variables will
be set for you.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

List comprehensions

We have seen previously how for loops work. Knowing the syntax of
a for loop and wanting to populate a list with some data, we might
be tempted to write:

x = []
for i in range(3):

x.append(i)

print(x)

Results:
=> [0, 1, 2]

While this is perfectly valid Python code, Python itself provides ’List
comprehensions’ to make this process easier.

x = [i for i in range(3)]

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

List comprehensions – syntax

The syntax of a list comprehensions is:

[<variable> for <variable> in <iterable>]

We can also perform similar actions with a dictionary

[<key>, <value> for <key>, <value> in <dictionary.items()>]

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

List comprehensions – dictionary

Python doesn’t restrict us to list comprehensions, but we can do a
similar operation to create a dictionary.

x = [2, 5, 6]
y = {idx: val for idx, val in enumerate(x)}
print(y)

Results:
=> {0: 2, 1: 5, 2: 6}

Here, every item in x has been associated with its numerical index as
a key thanks to the enumerate function that returns both the index
and value at iteration in the for loop.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

List comprehensions – using if’s

Perhaps we only want to optionally perform an action within the list
comprehension? Python allows us to do this with the inline if
statement we’ve seen in the previous lecture.

x = [i if i < 5 else -1 for i in range(7)]
print(x)

Results:
=> [0, 1, 2, 3, 4, -1, -1]

We add the inline <var> if <condition> else <other-var>
before the for loop part of the comprehension.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

List comprehension – using if’s

There is another type of if statement in a list comprehension, this
occurs when we don’t have an else.

x = [i for i in range(7) if i < 3]
print(x)

Results:
=> [0, 1, 2]

In this example, we’re only ’adding’ to the list if the condition (i < 3)
is true, else the element is not included in the resulting list.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

List comprehensions – multiple for’s

If we like, we can also use nested for loops by simply adding another
for loop into the comprehension.

x = [(i, j) for i in range(2) for j in range(2)]

print(x)

Results:
=> [(0, 0), (0, 1), (1, 0), (1, 1)]

In this example, we’re creating a tuple for each element, effectively
each combination of 1 and 0.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Quick Exercise – List comprehension

Using list comprehension, create a list of even numbers from 6
to 20, and assign this list to the variable named even_numbers.
Create a new variable called even_numbers_dict, create a
dictionary using the comprehension syntax. The keys of the
dictionary should be the index of each element in
even_numbers, while the value should be the even number.
What is the 5th even number?

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Dealing with Errors

When programming, its good to be defensive and handle errors
gracefully. For example, if you’re creating a program, that as part of
its process, reads from a file, its possible that this file may not exist
at the point the program tries to read it. If it doesn’t exist, the
program will crash giving an error such as: FileNotfoundError.

Perhaps this file is non-essential to the operation of the program, and
we can continue without the file. In these cases, we will want to
appropriately catch the error to prevent it from stopping Python.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Try-catch

Try-catches are keywords that introduce a scope where the
statements are executed, and if an error (of a certain type IndexError
in this example) occurs, different statements could be executed.

In this example, we are trying to access an element in a list using an
index larger than the length of the list. This will produce an
IndexError. Instead of exiting Python with an error, however, we
can catch the error, and print a string.

x = [1, 2, 3]

try:
print(x[3])

except IndexError:
print("Couldn't access element")

Results:
=> Couldn't access element

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Try-catch – capturing messages

If we wanted to include the original error message in the print
statement, we can use the form:

except <error> as <variable>

This provides us with an variable containing the original error that we
can use later on in the try-catch form.

x = [1, 2, 3]

try:
print(x[3])

except IndexError as e:
print(f"Couldn't access elements at index beacuse: {e}")

Results:
=> Couldn't access elements at index beacuse: list index out of range

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Types of exceptions

There are numerous types of errors that could occur in a Python.
Here are just some of the most common.

IndexError – Raised when a sequence subscript is out of range.
ValueError – Raised when an operation or function receives an
argument that has the right type but an inappropriate value
AssertionError – Raised when an assert statement fails.
FileNotFoundError – Raised when a file or directory is requested
but doesn’t exist.

The full list of exceptions in Python 3 can be found at:
https://docs.python.org/3/library/exceptions.html

https://docs.python.org/3/library/exceptions.html

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Assertions

One of the previous errors (AssertionError) occurs when an assert
statement fails. Assert is a keyword provided to test some condition
and raise an error if the condition is false. It typically requires less
code than an if-statement that raises an error, so they might be
useful for checking the inputs to functions, for example:

def my_divide(a, b):
assert b != 0
return a / b

my_divide(1, 2)
my_divide(1, 0)

Here we are checking that the divisor is not a 0, in which case
division is not defined.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

More on lists

In a previous lecture, we found that we can add .append() to the
end of a variable of a type list to add an element to the end of the
list. Lists have many more methods associated with them that will be
useful when programming in Python.

Lists have a number of other convenient functions1.

Some of these include:

my_list.insert(0, "dog") # insert "dog" at index 0
my_list.count(2) # count the number of times 2 appears
my_list.reverse() # reverse the list

1https://docs.python.org/3/tutorial/datastructures.html

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

More on sets – union

Sets, while containing only unique elements, have a number of useful
functions to perform certain set operations. Take for example the
union (elements that are in either sets) of two sets:

x = set([1, 2, 3, 4, 5])
y = set([5, 2, 6, -1, 10])

print(x.union(y))

Results:
=> {1, 2, 3, 4, 5, 6, 10, -1}

The syntax of using these methods follows:

<set_1>.function(<set_2>)

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

More on sets – intersection

Or the intersection (the elements that are in both) of two sets:

x = set([1, 2, 3, 4, 5])
y = set([5, 2, 6, -1, 10])

print(x.intersection(y))

Results:
=> {2, 5}

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

More on sets – set difference

And the set difference (the elements that in set 1, but not in set 2):

x = set([1, 2, 3, 4, 5])
y = set([5, 2, 6, -1, 10])

print(x.difference(y))

Results:
=> {1, 3, 4}

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

More on set – subsets

We can even return a boolean value if set 1 is a subset of set 2:

x = set([1, 2, 3, 4, 5])
y = set([5, 2, 6, -1, 10])
z = set([1, 2, 3, 4, 5, 6, 7])

print(x.issubset(y))
print(x.issubset(z))

Results:
=> False
=> True

For a full list of what methods are available with sets, please refer to:
https://realpython.com/python-sets/#operating-on-a-set

https://realpython.com/python-sets/#operating-on-a-set

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Better indexing – slices

If we wanted to access an element from a data structure, such as a
list, we would use the [] accessor, specifying the index of the
element we wish to retrieve (remember that indexes start at zero!).
But what if we ranted to access many elements at once? Well to
accomplish that, we have a slice or a range of indexes (not to be
confused with the range function). A slice is defined as:

start_index:end_index

where the end_index is non inclusive – it doesn’t get included in the
result. Here is an example where we have a list of 6 numbers from 0
to 5, and we slice the list from index 0 to 3. Notice how the 3rd
index is not included.

x = [0, 1, 2, 3, 4, 5]
print(x[0:3])

Results:
=> [0, 1, 2]

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Better indexing – range

When we use start_index:end_index, the slice increments by 1
from start_index to end_index. If we wanted to increment by a
different amount we can use the slicing form:

start_index:end_index:step

Here is an example where we step the indexes by 2:

x = list(range(100))
print(x[10:15:2])

Results:
=> [10, 12, 14]

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Better indexing – reverse

One strange fact about the step is that if we specify a negative
number for the step, Python will work backwards, and effectively
reverse the list.

x = list(range(5))

print(x[::-1])

Results:
=> [4, 3, 2, 1, 0]

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Better indexing – range

In a previous example, I created a slice like 0:3. This was a little
wasteful as we can write slightly less code. If we write :end_index,
Python assumes and creates a slice from the first index (0) to the
end_index. If we write start_index:, Python assumes and creates
a slice from start_index to the end of the list.

x = list(range(100))

print(x[:10])
print(x[90:])

Results:
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
=> [90, 91, 92, 93, 94, 95, 96, 97, 98, 99]

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Better indexing – backwards

Finally, we also work backwards from the end of list. If we use a
negative number, such as -1, we are telling Python, take the elements
from the end of the list. -1 is the final index, and numbers lower than
-1 work further backwards through the list.

x = list(range(100))

print(x[-1])
print(x[-2])

Results:
=> 99
=> 98

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Better indexing –backwards

Slicing with negative indexes, also works. Here we are creating a slice
from the end of the list - 10, to the last (but not including) index.

x = list(range(100))

print(x[-10:-1])

Results:
=> [90, 91, 92, 93, 94, 95, 96, 97, 98]

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Quick Exercise – Slicing

Create a list of elements from 0 to 100, of every 3rd number
(e.g. use a range with a step).
First, slice the first 5 indexes.
Second, get the last 10 indexes.
Third, get the 50th to 55th (inclusive) indexes.
Challenge get the last 10 indexes, but only using positive indexes
up to 10.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Formatting strings

In many previous examples when we’ve printed strings, we’ve done
something like:

age = 35

print("The value of age is", age)

Results:
=> The value of age is 35

While this works in this small context, it can get pretty cumbersome
if we have many variables we want to print, and we also want to
change how they are displayed when they are printed.

We’re going to take a look now at much better ways of printing.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Better ways of printing strings - %

The first method is using %. When we print, we first construct a
string with special delimiters, such as %s that denotes a string, and
%d that denotes a number. This is telling Python where we want the
values to be placed in the string.

Once we’ve created the string, we need to specify the data, which we
do with % (...). Like, for example:

age = 35
name = "John"

print("%d years old" % age) # no tuple for one variable
print("%s is %d years old" % (name, age))

Results:
=> 35 years old
=> John is 35 years old

Here we are specifying the a string %s and number %d, and then
giving the variables that correspond with that data type.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Better ways of printing strings – data specifiers

The special delimiters correspond with a data type. Here are some of
the most common:

%s – For strings
%d – For numbers
%f – For floating point numbers.

There are others such as %x that prints the hexadecimal
representation, but these are less common. You can find the full list
at: https://docs.python.org/3/library/stdtypes.html#
old-string-formatting

https://docs.python.org/3/library/stdtypes.html#old-string-formatting
https://docs.python.org/3/library/stdtypes.html#old-string-formatting

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Better ways of printing strings – floating points

When using these delimiters, we can add modifiers to how they
format and display the value. Take a very common example, where
we have a floating point value, and, when printing it, we only want to
print to 3 decimal places. To accomplish this, we again use %f but
add a .3 to between the % and f. In this example, we are printing π
to 3 decimal places.

print("Pi to 3 digits is: %.3f" % 3.1415926535)

Results:
=> Pi to 3 digits is: 3.142

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Better ways of printing strings – floating points

In the previous example, we used .3 to specify 3 decimal places. If
we put a number before the decimal, like 10.3 we are telling Python
make this float occupy 10 spaces and this float should have 3 decimal
places printed. When it gets printed, you will notice that it shifts to
the right, it gets padded by space. If we use a negative number in
front of the decimal place, we are telling python to shift it to the left.

print("Pi to 3 digits is: %10.3f" % 3.1415926535)
print("Pi to 3 digits is: %-10.3f" % 3.1415926535)

Results:
=> Pi to 3 digits is: 3.142
=> Pi to 3 digits is: 3.142

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Quick Exercise – printing with %

Creating a dictionary containing the following information:

Key Value
name Jane
age 35
lon -3.52352
lat 2.25222

Print (using the % operator) the values of this dictionary so that
the result looks like: "Jane (located at -3.5, 2.2) is 35 years old"

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Better ways of printing strings – .format()

Another way of performing ’string interpolation’ where the values
associated with variables are printed with strings is accomplished
using the .format() method.

To use this method, create a string with {} delimiters, and after the
string, call the .format() method, where the arguments to this
method are the values you want to include in the string. The number
of values passed to .format() should be the same as the number of
{} in the string.

name = "Jane"
age = 35

print("{} is {} years old".format(name, age))

Results:
=> Jane is 35 years old

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Better ways of printing strings – .format()

To be more explicit and clear with which values go where in the
string, we can name them by putting some same into the {} tokens.
When we call the .format() function, we then use the same name
as named parameters.

name = "Jane"
age = 35

print("{the_name} is {the_age} years old".format(the_name=name,
the_age=age))

Results:
=> Jane is 35 years old

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Better ways of printing strings – alignment

.format() allows us to some quite complicated things with the
display of strings. Take this for example where we are setting the
alignment of the values.

The syntax of formatting strings can be a language of it’s own right!
So we won’t go too deep into it here. However, you can find all you
need to know about formatting here: https://docs.python.org/
3/library/string.html#format-string-syntax

print("|{:<10}|{:^10}|{:>10}|".format('all','dogs','bark'))
print("-" * 34)

Results:
=> |all | dogs | bark|
=> ----------------------------------

https://docs.python.org/3/library/string.html#format-string-syntax
https://docs.python.org/3/library/string.html#format-string-syntax

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Better ways of printing strings – f-strings

The final method of formatting strings is a newcomer within the
language, it is the so-called f-string. Where a f character is
prefixed to the beginning of the string you’re creating. f-string’s
allow you to use Python syntax within the string (again delimited by
{}.

Take this for example where we are referencing the variables name
and age directly.

name = "Jane"
age = 35

print(f"{name} is {age} years old")

Results:
=> Jane is 35 years old

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Better ways of printing strings – f-strings

f-string’s allow you to execute Python code within the string. Here
we are accessing the value from the dictionary by specifying the key
within the string itself! It certainly makes it a lot easier, especially if
we only need to access the values for the string itself.

contact_info = {"name": "Jane", "age": 35}

print(f"{contact_info['name']} is {contact_info['age']} years old")

Results:
=> Jane is 35 years old

https://pyformat.info/

https://pyformat.info/

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Better ways of printing strings – f-string

We can still format the values when using f-string. The method is
similar to those using the %f specifiers.

pi = 3.1415926535
print(f"Pi is {pi:.3f} to 3 decimal places")

Results:
=> Pi is 3.142 to 3 decimal places

Many more examples can be found at:
https://zetcode.com/python/fstring/

https://zetcode.com/python/fstring/

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Quick Exercise – printing with f-string

Creating a dictionary containing the following information:

Key Value
name Jane
age 35
lon -3.52352
lat 2.25222

Print (using an f-string) the values of this dictionary so that
the result looks like: "Jane (located at -3.5, 2.2) is 35 years old"

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Operations on strings – splitting

Apart from formatting, there are plenty more operations we can
perform on strings. We are going to highlight some of the most
common here.

The first we’re going to look at is splitting a string by a delimiter
character using the .split() method. If we don’t pass any
argument to the .split() method, then by default, it will split by
spaces. However, we can change this by specifying the delimiter.

my_string = "This is a sentence, where each word is separated by a space"

print(my_string.split())
print(my_string.split(","))

Results:
=> ['This', 'is', 'a', 'sentence,', 'where', 'each', 'word', 'is', 'separated', 'by', 'a', 'space']
=> ['This is a sentence', ' where each word is separated by a space']

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Operations on strings – joining

As .split() splits a single string into a list, .join() joins a list of
strings into a single string. To use .join(), we first create a string
of the delimiter we want to use to join the list of strings by. In this
example we’re going to use "-". Then we call the .join() method,
passing the list as an argument.

The result is a single string using the delimiter to separate the items
of the list.

x = ['This', 'is', 'a', 'sentence,', 'where', 'each', 'word', 'is', 'separated', 'by', 'a', 'space']

print("-".join(x))

Results:
=> This-is-a-sentence,-where-each-word-is-separated-by-a-space

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Operations on strings – changing case

Other common operations on strings involve change the case. For
example:

Make the entire string uppercase or lowercase
Making the string title case (every where starts with a capital
letter).
Stripping the string by removing any empty spaces either side of
the string.

Note we can chain many methods together by doing
.method_1().method_2(), but only if they return string. If they
return None, then chaining will not work.

x = " this String Can change case"

print(x.upper())
print(x.lower())
print(x.title())
print(x.strip())
print(x.strip().title())

Results:
=> THIS STRING CAN CHANGE CASE
=> this string can change case
=> This String Can Change Case
=> this String Can change case
=> This String Can Change Case

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Operations on strings – replacing strings

To replace a substring, we use the .replace() method. The first
argument is the old string you want to replace. The second argument
is what you want to replace it with.

x = "This is a string that contains some text"

print(x.replace("contains some", "definitely contains some"))

Results:
=> This is a string that definitely contains some text

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Operations on strings – does it contain a substring?

We can check if a string exists within another string using the in
keyword. This returns a Boolean value, so we can use it as a
condition to an if statement.

x = "This is a string that contains some text"

if "text" in x:
print("It exists")

Results:
=> It exists

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Introduction to classes

A class is some representation (can be abstract) of an object. Classes
can be used to create some kind of structure that can be
manipulated and changed, just like the ways you’ve seen with lists,
dictionaries, etc.

Classes allow us to perform Object-oriented Programming (OOP),
where we represent concepts by classes.

But to properly understand how classes work, and why we would
want to use them, we should take a look at some examples.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Basic syntax

We’re going to start off with the very basic syntax, and build up
some more complex classes.

To create a class, we use the class keyword, and give our new class a
name. This introduces a new scope in Python, the scope of the class.

Typically, the first thing we shall see in the class is the __init__
function.

class <name_of_class>:
def __init__(self, args*):

<body>

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Init method

The __init__ function is a function that gets called automatically
as soon as a class is made. This init function can take many
arguments, but must always start with a self.

In this example, we are creating a class that represents an x, y
coordinate. We’ve called this class Coordinate, and we’ve defined
our init function to take an x and y values when the class is being
created.

Note its more typical to use titlecase when specifying the class name.
So when reading code its easy to see when you’re creating a class
versus calling a function. You should use this style.

class Coordinate:
def __init__(self, x, y):

self.x = x
self.y = y

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Instantiating

To create an instance of this class, call the name of the class as you
would a function, and pass any parameters you’ve defined in the init
function.

In this example, we are creating a new vector using Vector(...)
and we’re passing the x and y coordinate.

class Vector:
def __init__(self, x, y):

self.x = x
self.y = y

point_1 = Vector(5, 2)

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Class variables

In the previous example, we’ve been creating a class variables by
using self.<variable_name>. This is telling Python this class
should have a variable of this name.

It allows then to reference the variable when working with the class.

class Vector:
def __init__(self, x, y):

self.x = x
self.y = y
self.length = self.x + self.y

point_1 = Vector(5, 2)
print(point_1.x)
print(point_1.y)
print(point_1.length)

Results:
=> 5
=> 2
=> 7

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Class Methods

A class can have many methods associated with it. To create a new
method, we create a function within the scope of the class, remember
that the first parameter of the function should be self.

Even in these functions, we can refer to our self.x and self.y
within this new function.

You’ll notice that to call this function, we using the .length()
method similar to how we’ve worked with strings/lists/etc. This is
because in Python, everything is an object!

class Vector:
def __init__(self, x, y):

self.x = x
self.y = y

def length(self):
return self.x + self.y

my_point = Vector(2, 5)
print(my_point.length())

Results:
=> 7

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

dunder-methods

While we could, for example, create a function called .print(),
sometimes we would like to use the in built functions like print().
When creating a class, there is a set of dunder-methods
(double-under to reference the two ’__’ characters either side of the
function name).

One of these dunder-methods is __repr__, which allows us to
specify how the object looks when its printed.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

dunder-methods

class OldVector:
def __init__(self, x, y):

self.x = x
self.y = y

print(OldVector(2, 5))

class Vector:
def __init__(self, x, y):

self.x = x
self.y = y

def __repr__(self):
return f"Vector({self.x}, {self.y})"

print(Vector(2, 5))

Results:
=> <__main__.OldVector object at 0x7f658721e250>
=> Vector(2, 5)

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

dunder-methods

There are many more dunder-methods you should know when
creating classes. We shall go through:

__len__ – specify how the length of the class should be
computed.
__getitem__ – how to index over the class
__call__ – how to use the class like a function
__iter__ – what to do when iteration starts
__next__ – what to do at the next step of the iteration

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

__len__

The __len__ function allows us to specify how the len() function
acts on the class. Take this hypothetical dataset. We create a
__len__ function that returns the length of the unique elements in
the dataset.

class Dataset:
def __init__(self, data):

self.data = data

def __len__(self):
"""Return the length of unique elements"""
return len(set(self.data))

data = Dataset([1, 2, 3, 3, 3, 5, 1])
print(len(data))

Results:
=> 4

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

__getitem__

Next __getitem__ allows us to index over a class. This new function
must include self and a variable to pass the index. Here I’ve used
idx. In this function I am simply indexing on the on the classes
self.data.

class Dataset:
def __init__(self, data):

self.data = data

def __getitem__(self, idx):
return self.data[idx]

data = Dataset([1, 2, 3, 3, 3, 5, 1])
print(data[2])

Results:
=> 3

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

__call__

In a small number of cases, it is nice to use the class just like a
function. This is what __call__ allows us to do. In this function we
specify what should happen when class is ’called’ like a function. In
this simple example, we are creating a function that prints the type of
food being used as a parameter to the function.

class Jaguar:
def __call__(self, food):

print(f"The jaguar eats the {food}.")

food = "apple"
animal = Jaguar()

animal(food)

Results:
=> The jaguar eats the apple.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

__iter__ and __next__

__iter__ and __next__ allow us to make our class iterable, i.e. we
can use it in a for loop for example.

The __iter__ function should define what happens when we start
the iteration, and __next__ defines what happens at every step of
the iteration.

Let’s take a look at an example where we have an iterable set of
prime numbers.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

__iter__ and __next__

class Primes:
def __init__(self):

self.primes = [2, 3, 5, 7, 11]

def __iter__(self):
self.idx = 0
return self

def __len__(self):
return len(self.primes)

def __next__(self):
if self.idx < len(self):

item = self.primes[self.idx]
self.idx += 1
return item

else:
raise StopIteration

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

__iter__ and __next__

And now we can iterate over this class

prime_numbers = Primes()

for prime_number in prime_numbers:
print(prime_number)

Results:
=> 2
=> 3
=> 5
=> 7
=> 11

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Inheritance

One special thing about OOP is that its normally designed to provide
inheritance – this is true in Python. Inheritance is where you have a
base class, and other classes inherit from this base class. This means
that the class that inherits from the base class has access to the
same methods and class variables. In some cases, it can override
some of these features.

Let’s take a look an example.

class Animal:
def growl(self):

print("The animal growls")

def walk(self):
raise NotImplementError

Here we have created a simple class called Animal, that has two
functions, one of which will raise an error if its called.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Inheritance

We can inherit from this Animal class by placing our base class in ()
after the new class name.

Here we are creating two classes, Tiger and Duck. Both of these new
classes inherit from Animal. Also, both of these classes are overriding
the walk functions. But they are not creating a growl method
themselves.

class Tiger(Animal):
def walk(self):

print("The Tiger walks through the jungle")

class Duck(Animal):
def walk(self):

print("The Duck walks through the jungle")

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Inheritance

Look at what happens when we create instances of these classes, and
call the functions. First we see that the correct method has been
called. I.e. for the duck class, the correct walk method was called.

first_animal = Tiger()
second_animal = Duck()

first_animal.walk()
second_animal.walk()

Results:
=> The Tiger walks through the jungle
=> The Duck walks through the jungle

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Inheritance

But what happens if we call the .growl() method?

first_animal.growl()
second_animal.growl()

Results:
=> The animal growls
=> The animal growls

We see that it still works. Even though both Duck and Tiger didn’t
create a .growl() method, it inherited it from the base class
Animal. This works for class methods and class variables.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

An object based library system

We’re going to improve on our library system from last lecture.
Instead of a functional style of code, we’re going to use a OOP
paradigm to create our solution.

Like last time, we’re going to create our solution one step at a time.

First, we need to create our class called Database. This database is
going to take an optional parameter in its init function – the data. If
the user specifies data (represented as a list of dictionaries like last
time), then the class will populate a class variable called data, else
this class variable will be set to an empty list.

Summary:

Create a class called Database.
When creating an instance of Database, the user can optionally
specify a list of dictionaries to initialise the class variable data
with. If no data is provided, this class variable will be initialised
to an empty list.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Adding data

We will want to include a function to add data to our database.

Create a class method called add, that takes three arguments (in
addition to self of course), the title, the author, and the release
date.

This add function adds the new book entry to the end of data.
Populate this database with the following information.

Title Author Release Date
Moby Dick Herman Melville 1851
A Study in Scarlet Sir Arthur Conan

Doyle
1887

Frankenstein Mary Shelley 1818
Hitchhikers Guide to
the Galaxy

Douglas Adams 1879

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Locating a book

Create a class method called locate by tile that takes the title of the
book to look up, and returns the dictionary of all books that have
this title. Unlike last time, we don’t need to pass the data as an
argument, as its contained within the class.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Updating our database

Create a class method called update that takes 4 arguments:, 1) the
key of the value we want to update 2) the value we want to update it
to 3) the key we want to check to find out if we have the correct book
and 4) the value of the key to check if we have the correct book.

db.update(key="release year", value=1979, where_key="title",
where_value="Hitchhikers Guide to the Galaxy")

Use this to fix the release data of the Hitchhiker’s book.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Printed representation

Using the __str__ dunder-method (this is similar to __repr__ as we
saw before), create a function that prints out a formatted
representation of the entire database as a string. Some of the output
should look like:

Library System

Entry 1:
- Name: Moby Dick
- Author: Herman Melville
- Release Date: 1851
...

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Extending our OOP usage

So far we’ve used a list of dictionaries. One issue with this is that
there is no constraints on the keys we can use. This will certainly
create problems if certain keys are missing.

Instead of using dictionaries. We can create another class called Book
that will take three arguments when it is initialised: name, author,
and release_date. The init function should initialise three class
variables to save this information.

Modify the database to, instead of working with a list of dictionaries,
work with a list of Book objects.

Programming
Level-up

Jay Morgan

Proxy
Univ-tln proxy

Advanced
syntax
List
comprehensions

Exceptions

Working with
data

Working with
strings

OOP
Classes

Exercise
Exercise

Printed representation – challenge.

Improve upon the printed representation of the last exercise but
instead of bulleted lists, use formatted tables using f-string
formatting (https://zetcode.com/python/fstring/).

The output should look like this:

Library System

Name	Author	Release Data
Moby Dick	Herman Melville	1851
...

Notice how Release date is right justified, while Name and Author are
left justified.

https://zetcode.com/python/fstring/

	Proxy
	Univ-tln proxy

	Advanced syntax
	List comprehensions
	Exceptions
	Working with data
	Working with strings

	OOP
	Classes

	Exercise
	Exercise

