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m R: Set of n red points
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m Question 1: Can we match R to B
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Cubic Upper Bound for D(n) [BM16, vL81]

m Consider n? lines by red-blue pairs

m Potential of segment s:
number of lines properly crossing s

m Potential of matching:
sum of the segment potentials

m Initial potential < n(n — 1)?
m Flip reduces potential by at least 2

m Hence,
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X, H, and T States

m Each pair of segments defines a state:
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m Hence at most (g) flips
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Can we avoid flipping the same pair of
segments twice?

What is the number of flips involving a
fixed point? A fixed segment?

What about non-bipartite matchings?
What about TSP tours?
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