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Crossing-Free Matchings

R: Set of n red points
B: Set of n blue points

Question 1: Can we match R to B
using non-crossing line segments?
Answer: Yes, and we can compute in
O(n log n) time [HS92]
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Flips

A flip replaces a crossing pair of
segments by non-crossing segments

Question 2: Will flipping always lead
to a crossing-free matching?
Answer: Yes, the total Euclidean
length decreases and there are only n!
possible matchings

Question 3: How many flips?
Answer: Hard to say...
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NP-Hardness

We show that finding the minimum number of flips is NP-hard
In fact, even a constant-factor approximation is NP-hard

. . .
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Little d and Big D

Some untangle sequences are shorter than others

d(n): length of the shortest untangle sequence (worst-case)
D(n): length of the longest untangle sequence
Clearly: d(n) ≤ D(n)
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Cubic Upper Bound for D(n) [BM16, vL81]

Consider n2 lines by red-blue pairs
Potential of segment s:
number of lines properly crossing s

Potential of matching:
sum of the segment potentials
Initial potential ≤ n(n− 1)2

Flip reduces potential by at least 2
Hence,

D(n) ≤ n(n− 1)2

2
=
(

n

2

)
(n− 1) 0 + 0 = 0

1 + 1 = 2
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History of Bounds

n!

]

d(n)
shortest flip sequence longest flip sequence

D(n)
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Convex Case

General bounds have large gaps
What if the points are in convex position?

Number of crossings decreases at each flip
Tight bounds for D(n)
Almost tight bounds for d(n)
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What if the red points are colinear?
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State of the Art Bounds

d(n) bounds lower upper

general 3
2n− 2, new

(
n
2
)
(n− 1), [BM16, vL81]

convex 3
2n− 2, new 2n− 2, [BMS19]

red-on-a-line n− 1, [BM16]
(

n
2
)
, new

D(n) bounds lower upper

general 3
2
(

n
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)
− n

4 , new
(

n
2
)
(n− 1), [BM16, vL81]

convex
(
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2
)
, [BM16]

(
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2
)
, [BMS19]
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(
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Section 2

NP-Hard

Problem:
Input: Matching M , integer k
Output: Is there an untangle sequence of length at most k?
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RPM 3-SAT

Variation of 3-SAT [DBK12]:
Clauses are all positive or all negative
Planar orthogonal drawing

x1 x6

x1 ∨ x2 ∨ x3 x3 ∨ x4 ∨ x5

x3 ∨ x5 ∨ x6

x2 ∨ x3 ∨ x4

x2 x3 x4 x5
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Variable Gadget

Variable gadgets can be flipped to be true or false

x = 0

x = 1

x
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OR Gadget

Used to build clauses

0 ∨ 0

0 ∨ 1

1 ∨ 0

1 ∨ 1



Complexity Results on
Untangling Red-Blue

Matchings

Introduction

NP-Hard
RPM 3SAT

Variable

OR

Clause

Padding

Everything

d(n) ≤

d(n) ≥

D(n) ≤

D(n) ≥

Conclusion

Clause Gadget
Clause gadgets are 2 OR gadgets to have 3 inputs
Clause gadgets connect to variable gadgets
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Padding Gadget

Padding gadgets serve to increase the number of flips
Each clause has a padding gadget
If the clause is not satisfied, the padding gadget is flipped
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Padding gadgets serve to increase the number of flips
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If the clause is not satisfied, the padding gadget is flipped
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All Gadgets Together

. . .
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Section 3

d(n) ≤
(

n
2
)

for the red-on-a-line case
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X, H, and T States

Each pair of segments defines a state:

X H T

Convex case:
No T states
Every flip increases |H|
Hence at most

(
n
2
)

flips
What if the points are not in convex position?
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|H| May Not Increase

In general, |H| may not increase:

s

s1
s2

s′2

s′1

s

s1, s2 X
s, s1 H
s, s2 T

s′
1, s′

2 H
s, s′

1 T
s, s′

2 T

Multiple copies of s would make |H| decrease
|H| decreases if the upper cone is empty
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Algorithm for Red-on-a-Line

To bound d(n) we can choose segments to flip
Top segment: segment with the topmost blue point

Algorithm for Red-on-a-Line

Always flip top segment s1 with top segment
s2 among segments that cross s1

If s1 has no crossing, solve both sides of s1
recursively

s1s2

Since the line containing s1 crosses no segment, both sides are independent
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To bound d(n) we can choose segments to flip
Top segment: segment with the topmost blue point

Algorithm for Red-on-a-Line

Always flip top segment s1 with top segment
s2 among segments that cross s1

If s1 has no crossing, solve both sides of s1
recursively

s1

recursive calls

Since the line containing s1 crosses no segment, both sides are independent
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Analysis of the Number of Flips

s1s2

Lemma:
Flipping the top segments s1, s2 increases the
number of H pairs

We do not count the H pairs between
different recursive calls
Total number of pairs:

(
n
2
)

Hence,
d(n) ≤

(
n

2

)
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d(n) ≥ 3
2n− 2

for the convex case
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3
2

n− 2 crossings

Lemma:
Every flip starting from a fence reduces
the number of crossings by 1
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D(n) ≤
(

n
2
)

n+4
6

for the red-on-a-line case
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k-crossings and k-observed crossings

Red points numbered from left to
right r1, . . . , rn and consider rk

k-pair: Pair of segments with red
points ri, rj and i ≤ k ≤ j

Project blue points from rk

k-observed crossing: projected
segments cross
crossing k-pairs are k-observed
crossing

r1 r2 r3 r4 r5 r6

k = 3
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Potential

r1 r2 r3 r4 r5 r6

↘ ↙ ↘ ↘↙ ↓

Φk: Number of k-pairs forming
k-observed crossings
By number of pairs i, j with i 6= j
and 1 ≤ i ≤ k ≤ j ≤ n:

Φk ≤ k(n− k + 1)− 1
= k(n + 1)− k2 − 1

Lemma:
Φk decreases for each flipped k-crossing
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Sum

Φ: Sum of Φk

Φ =
n∑

k=1
Φk ≤

n∑
k=1

(
k(n + 1)− k2 − 1

)
= (n + 1)

n∑
k=1

k −
n∑

k=1
k2 − n =

(
n

2

)
n + 4

3

Φ decreases by at least 2 for each flip
(1 unit for k corresponding to each red point of the flip)
Hence, for red-on-a line D(n) ≤

(
n
2
)

n+4
6

Compare to D(n) ≤
(

n
2
)
(n− 1) in general
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D(n) ≥ 3
2
(

n
2
)
− n

4

for the red-on-a-line case
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Other NP-Complete Problems?

1 The shortest flip sequence...
1 for a TSP tour?
2 for a red-on-a-line matching?
3 for a convex instance?

2 What about the longest flip
sequence?
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Better Bounds?

1 Better bounds if the input is a
crossing-free matching plus an extra
segment?

2 Can we avoid flipping the same pair of
segments twice?

3 What is the number of flips involving a
fixed point? A fixed segment?

4 What about non-bipartite matchings?
5 What about TSP tours?
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