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Abstract

We introduce a method to decide whether a graph G admits a realiza-
tion on the plane in which two vertices lie within unitary distance from one
another exactly if they are neighbors in G. Such graphs are called unit
disk graphs, and their recognition is a known NP-hard problem. By itera-
tively discretizing the plane, we build a sequence of geometrically defined
trigraphs—graphs with mandatory, forbidden and optional adjacencies—
until either we find a realization of G or the interruption of such a sequence
certifies that no realization exists. Additionally, we consider the proposed
method in the scope of the more general Distance Geometry Problem with
Ranges, where arbitrary intervals of pairwise distances are allowed.

Keywords: unit disk graph, distance geometry, discretization, trigraph

1. Introduction

The fundamental Distance Geometry Problem (DGP) consists in deter-
mining a set of points whose pairwise distances are known a priori. More
formally, the input comprises a graph where the weight of each edge indicates
the exact intended distance between its incident vertices in a realization of
the graph in some metric space.
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The generality of the DGP embraces a variety of applications, notably
in wireless sensor networks, pattern recognition, computational biology and
astronomy, to cite but a few. A survey on the theory of Euclidean Distance
Geometry and its most important applications, with special emphasis to
molecular conformation problems, can be found in [7]. Recently, researchers
of multidisciplinary fields were brought together in a workshop dedicated to
the theme [1], where a preliminary version of this paper was presented.

We consider a generalization of the DGP where the exact distances be-
tween vertices are replaced by intervals. We call it the Distance Geometry
Problem with Ranges (DGPR). The applicability of such a generalized model
is clear. Distance ranges may be due to imprecisions—for example, in mea-
suring intermolecular distances—or to natural relaxations of exact distances
into intervals of allowed distances—for instance, in the deployment of a wire-
less telecommunication infrastructure, where some antennas should be nei-
ther too close (to avoid interference) nor too far from one another (to allow
for a control communication channel between them).

First and foremost, we focus on the case where each range is either [0, 1] or
(1,∞). Given such restriction, the problem corresponds exactly to a classic
NP-hard problem in Graph Theory, namely the recognition of unit disk
graphs. The technique we introduce, based on an iterative discretization
of the continuous solution space along with a tripartition of the edges of
an auxiliary graph, is nevertheless general enough to suit the (unrestricted)
DGPR with only minor modifications.

This paper is organized as follows. In Section 2, we give a brief account on
unit disk graphs, discussing the importance and the difficulty of recognizing
them. In Section 3, we introduce the concept of trigraph realizations, which is
central in our discretization technique. In Section 4, we propose a method for
unit disk graph recognition which has proved to work well for graphs with a
small number of vertices. In Section 5, we present some experimental results,
including the unprecedented computational recognition of several graphs. In
Section 6, we consider the prospects of leveraging our technique to the more
general scope of the DGPR, posing a series of open theoretical questions. In
Section 7, we make our concluding remarks.

Throughout the text, we denote the vertex set and the edge set of a
graph G respectively as V (G) and E(G), as usual. The set of neighbors of v
is denoted N(v), with d(v) = |N(v)|. An edge incident to vertices v and w is
written vw, or, if v or w are numbers, {v, w}. All norms ∥·∥ are Euclidean.

2



Figure 1: (a) A unit disk graph G; (b) a model of congruent disks for G; (c) a formal
UDG realization of G; (d) the graph K2,3, which is not a UDG.

2. Unit disk graphs

A unit disk graph (UDG) is a graph whose vertices can be mapped to
points on the plane and whose edges are defined by pairs of points within
unitary Euclidean distance from one another. Unit disk graphs can also be
regarded as intersection graphs of coplanar congruent disks, and they have
been widely studied in recent times owing to their relevance in wireless sensor
networks [8].

Definition 1. Given a graph G, a UDG realization of G is a function
ϕ : V (G)→ R2 such that, for some real number d > 0 and all u, v ∈ V (G),

• ∥ϕ(u)− ϕ(v)∥ ≤ d, if uv ∈ E(G); and

• ∥ϕ(u)− ϕ(v)∥ > d, if uv /∈ E(G).

A graph is a UDG if and only if it admits a UDG realization. For con-
venience, the value of d is often taken to be 1, hence the name “unit” disk
graph. In this paper, we consider it to be so, unless marked otherwise. The
graph in Figure 1(a) is a UDG, whereas the graph in Figure 1(d) is not.
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The problem of recognizing whether a given graph is a UDG is NP-
hard [2], and the fastest known recognition algorithm is doubly exponen-
tial [10]. It is not known for the time being whether the problem belongs
to NP, since the size of the natural certificate comprising the coordinates of
the vertices (i.e., a UDG realization) is not polynomially bounded under the
classic model of computation over finite strings [9], and no other polynomial
certificates are known.

Whereas many applications would benefit from the ability to obtain
feasible UDG realizations, being able to prove that some graphs are not
UDG would also have immediate consequences. For example, in [11], Wu et
al. conjecture that the graph in Figure 2(a) is not a UDG. The correctness
of such conjecture would imply a decrease from 3.8 to 3.6 in the maximum
asymptotic ratio between the size of a maximal independent set2 and the
size of a minimum connected dominating set3 in any given unit disk graph,
thus affecting the approximation factor of algorithms that estimate the lat-
ter number by computing the former. Another example was obtained in [3].
The graph in Figure 2(b) is a UDG (a geometric realization was provided
in [4]) and corresponds to the worst known instance for an algorithm that
approximates the minimum dominating set of a unit disk graph. Such a
graph establishes a lower bound of 4.8 for that algorithm’s approximation
factor, while an upper bound of 44/9 > 4.8 is the best that has been proved.
It is not known, however, whether the graph in Figure 2(c) is a UDG. Being
able to decide it either way would tighten one of those bounds, reducing the
current gap between them.

To date, all graphs which have successfully been classified with respect
to the family of UDG have been done so by trial and error or by ad-hoc
geometric methods. In face of the lack of efficient algorithms to solve the
UDG recognition problem, a search-oriented computational solution comes
in handy, at least for instances of modest size. However, an obvious hindrance
to approaching the problem by exhaustive search is the fact that the set of
functions from V (G) onto R2 is uncountable. In the next sections, we try to
overcome this fact by judiciously discretizing the solution space.

2A set S ⊆ V (G) is an independent set if no two vertices of S are adjacent in graph G.
3A set D ⊆ V (G) is a (connected) dominating set if (D is connected and), for all

w ∈ V (G) \D, there is a vertex v ∈ D such that vw ∈ E(G).
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Figure 2: (a) Graph conjectured in [11] not to be a UDG; (b) unit disk graph that sets
the lower bound for the approximation factor of the algorithm introduced in [3]; (c) is this
graph a UDG?

3. Trigraph realizations

We are about to introduce a novel technique for the recognition of unit
disk graphs. A concept that is central to our approach is that of trigraph
realizations, which, loosely speaking, are placements of vertices on the plane
where each pairwise distance either belongs to the intended range or falls out
of it by only a narrow margin. The rationale is that if a certain placement
of vertices is not even one such trigraph realization, then no small corrective
perturbation could turn them into a UDG realization, and hence a whole
chunk of the (continuous) solution space can be immediately discarded.

For some positive ϵ ∈ Q, consider the set Qϵ = {x ∈ Q : x = dϵ, d ∈ Z},
and let Cϵ = Qϵ×Qϵ be a discrete set of 2-dimensional coordinates. We call
Cϵ an ϵ-mesh. The smaller the value of ϵ, the greater the granularity of the
mesh. We say Cϵ1 is thinner than Cϵ2 (equivalently, Cϵ2 is thicker than Cϵ1)
if the granularity of Cϵ1 is greater than that of Cϵ2 , i.e. if ϵ1 < ϵ2. A mesh
can be regarded as the set of pairwise intersection points of equally spaced
vertical and horizontal lines. Sometimes it is also convenient to refer to a cell
of a mesh, denoting the points of the plane that lie inside the square defined
by two consecutive horizontal lines and two consecutive vertical lines. Any
graph realization whose image is a subset of Cϵ is said to be ϵ-discrete.
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Definition 2. Let G be a graph and let Cϵ be a mesh. An ϵ-discrete trigraph
realization (or simply trigraph realization, if ϵ is clear in the context or can be
disregarded) of G is a function ψϵ : V (G)→ Cϵ such that, for all u, v ∈ V (G),

• ∥ψϵ(u)− ψϵ(v)∥ < 1 + ϵ
√
2, if uv ∈ E(G);

• ∥ψϵ(u)− ψϵ(v)∥ > 1− ϵ
√
2, if uv /∈ E(G).

Notice that a trigraph realization ofG is not necessarily a UDG realization
of G. On the other hand, every (discrete) UDG realization of G is a trigraph
realization of G. Given a mesh Cϵ and a trigraph realization ψϵ of G, we
define the trigraph H[ψϵ] as the complete graph whose vertex set is V (G)
and where each edge uv in E(H[ψϵ]) denotes one of three possible adjacency
types:

(i) a mandatory adjacency, if ∥ψϵ(u)− ψϵ(v)∥ ≤ 1− ϵ
√
2;

(ii) a forbidden adjacency, if ∥ψϵ(u)− ψϵ(v)∥ ≥ 1 + ϵ
√
2; or

(iii) an optional adjacency, if 1− ϵ
√
2 < ∥ψϵ(u)− ψϵ(v)∥ < 1 + ϵ

√
2.

A trigraph realization ψϵ of a graph G can therefore be regarded as a mapping
of V (G) onto points of an ϵ-mesh such that the trigraph H[ψϵ], defined as
discussed, satisfies the following conditions for all vertices u, v ∈ V (G):

• if uv ∈ E(G), then the corresponding adjacency type, inH[ψϵ], is either
mandatory or optional; and

• if uv /∈ E(G), then the corresponding adjacency type, inH[ψϵ], is either
forbidden or optional.

A nice way of visualizing the trigraph H[ψϵ] is through a trigraph disk
model similar to the disk model given in Figure 1(b). The single, yet crucial
difference is that now each disk actually comprises two concentric circles: an
inner, closed circle of diameter 1−ϵ

√
2, and an outer, open circle of diameter

1 + ϵ
√
2. The circular crown between the two circles can be regarded as an

area of uncertainty (a “gray area”). Whenever two inner circles intersect,
the adjacency between the corresponding vertices is mandatory; whenever
two disks do not intersect at all, the adjacency between those vertices is
forbidden; and, finally, whenever two gray areas intersect, but the inner
circles do not intersect, the adjacency between those vertices is optional.
Figure 3 illustrates the concept.
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Figure 3: A trigraph disk model, where the only mandatory adjacency is {2, 3}; the
forbidden adjacencies are {1, 3}, {1, 4} and {2, 4}; and the optional adjacencies are {1, 2}
and {3, 4}.

Definition 3. Given an ϵ-mesh, for some positive rational ϵ, the discretiza-
tion function fϵ : R2 → Cϵ is defined as

fϵ(x, y) =
(⌊x

ϵ

⌋
ϵ,
⌊y
ϵ

⌋
ϵ
)
.

In other words, fϵ(x, y) returns the bottom-left corner of the cell of Cϵ

containing the point (x, y).
The following two lemmas provide the stopping criteria for our method.

The discretization function defined above will be used in the proof of the
second lemma and throughout the whole text.

Lemma 1. Let G be a graph, and let ψϵ be a trigraph realization of G.
If all optional adjacencies in H[ψϵ] correspond to pairs of neighbors in G
(alternatively, to pairs of non-neighbors in G), then G is a UDG.

Proof — If there are no optional adjacencies in H[ψϵ], then ψϵ is clearly
a UDG realization of G. Otherwise, suppose each optional adjacency vw
in H[ψϵ] is such that vw ∈ E(G). In this case, a UDG realization of G
can immediately be obtained by scaling all coordinates in the image of ψϵ

through a division by the maximum distance in ψϵ describing an optional
adjacency. If, on the other hand, each optional adjacency vw in H[ψϵ] is
such that vw /∈ E(G), then, by dividing all coordinates by the maximum
distance in ψϵ describing a mandatory adjacency, the ensuing mapping is a
UDG realization of G.

Lemma 2. If G is a UDG, then G admits a trigraph realization ψϵ for all
positive ϵ ∈ Q.

7



Figure 4: (a–d) Trigraph realizations for the graph in Figure 1(a). Each trigraph real-
ization was obtained by submitting the UDG realization given in Figure 1(c) to the dis-
cretization function fϵ (see Definition 3), for ϵ = 0.6, 0.3, 0.15 and 0.075, respectively. In
(a), vertices 4 and 5 are placed at coincident points. Hollow circles indicate the placement
of the vertices before the discretization.

Proof — Let G be a UDG, and let ϕ be a UDG realization of G. For some
positive ϵ ∈ Q, let Cϵ be an ϵ-mesh. Let ψϵ = ϕ ◦ fϵ be the mapping from
V (G) onto Cϵ that we obtain by submitting each point in the image of ϕ to
the discretization function fϵ (see Figure 4). We show that ψϵ is a trigraph
realization of G. Let u, v be two vertices of G, and let r = ∥ϕ(u) − ϕ(v)∥
and r′ = ∥ψϵ(u) − ψϵ(v)∥. The absolute difference |r′ − r| is less than ϵ

√
2,

since both points are discretized towards the bottom-left corners of their
containing cells, for a maximum relative displacement that is strictly less
than the diagonal of a cell. As a consequence, if uv ∈ E(G) then r ≤ 1 and
r′ < 1 + ϵ

√
2; and if uv /∈ E(G) then r > 1 and r′ > 1− ϵ

√
2. The function

ψϵ is therefore a trigraph realization of G, which concludes the proof.

We remark that, for ϵ > 1/
√
2, the ϵ-mesh Cϵ is so thick that, for any

graph G, even a trivial function such as ψϵ(v) = (0, 0) for all v ∈ V (G)
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Figure 5: (a–d) Trigraph disk models of increasing granularity, respective to the trigraph
realizations given in Figure 4.

would be a perfectly valid trigraph realization of G. Indeed, all pairwise
distances in this case would be zero, hence all adjacencies in H[ψϵ] would
be optional, because zero belongs to (1 − ϵ

√
2, 1 + ϵ

√
2) when ϵ > 1/

√
2. If

one thinks about a trigraph disk model for H[ψϵ], the inner circles would all
have diameter zero, and the whole disks would consist of “gray” (optional
adjacency) areas. The existence of trivial trigraph realizations in meshes
that are too thick renders such meshes useless from the standpoint of the
trigraph-based discretization method explained in Section 4. Intuitively, the
thinner the mesh, the closer to a UDG realization a trigraph realization is
expected to be (see Figure 5).

We conclude this section with a third lemma about UDG realizations.
The corollary that follows plays a role in the performance of our method.

Lemma 3. If G is a UDG, then there is a UDG realization of G in which no
distance between two vertices is exactly 1 (that is, no two disks are tangent
on the associated disk model), and no distance between two vertices is zero
(that is, no two disks are coincident on the associated disk model).
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Proof — Let ϕ be a realization of G with vertices at distance exactly 1 from
one another, and let r = 1 + γ be the smallest distance in ϕ between two
non-neighbors in G. Now, for all v ∈ V (G), we define ϕ′(v) = ϕ(v)/(1 + γ′),
for some positive γ′ < γ. The ensuing mapping ϕ′ : V (G) → R2 is clearly a
UDG realization of G with no two vertices at distance exactly 1 from one
another, since the distance in ϕ′ between two neighbors in G is at most
1/(1 + γ′) < 1, and the distance in ϕ′ between two non-neighbors in G is at
least (1 + γ)/(1 + γ′) > 1.

Now let ϕ be a realization of G with no vertices at distance exactly 1
from one another, and let γ be the minimum |1 − ∥ϕ(u) − ϕ(v)∥| over all
u, v ∈ V (G). Suppose there are two coincident vertices w, z ∈ V (G), that is,
ϕ(w) = ϕ(z). We define ϕ′ : V (G) → R2 as a mapping that is identical to ϕ
except for the image of w, which we define as ϕ′(w) = ϕ(w)+(γ′, 0), for some
positive γ′ < γ. In other words, we perturb slightly the position of one of
the former coincident vertices, in such a way that the relative displacement
between w and every other vertex of G is strictly less than γ. Now ϕ′(w)
and ϕ′(z) are not coincident, and clearly ϕ′ is a UDG realization of G, since
the distance in ϕ′ between two neighbors in G is at most 1− γ + γ′ < 1, and
the distance in ϕ′ between two non-neighbors in G is at least 1 + γ − γ′ > 1.
By repeating the argument with all pairs of originally coincident vertices, we
obtain a realization of G with no two vertices at distance 1 from each other
and no coincident vertices.

Corollary 1. For any positive rational ϵ and any two vertices u and v of
a unit disk graph G, there is an ϵ-discrete trigraph realization ψϵ of G such
that ψϵ(u) ̸= ψϵ(v).

Proof — By Lemma 3, if G is a UDG then G admits a realization ϕ such
that ϕ(u) ̸= ϕ(v). We can now follow the same reasoning as in the proof of
Lemma 2, if we just translate all points in the image of ϕ—or, equivalently, we
translate the mesh underneath them—until ϕ(u) and ϕ(v) belong to distinct
cells, and only then we apply the discretization function.

4. The algorithm

We now formulate a computational method for the recognition of unit
disk graphs. Its basic operation is a search for discrete realizations of the in-
put graph G on a certain ϵ-mesh, until either a (discrete) UDG realization is
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Algorithm 1: UDG recognition

input: a connected graph G, an initial granularity initial epsilon

ouput: YES, if G is a unit disk graph;
NO, otherwise

1. ϵ← initial epsilon

2. repeat

3. result ← has discrete realization(G, ϵ)

4. if result = YES then return YES

5. if result = NO or ϵ = ϵmin then return NO

6. ϵ← max{refine granularity(ϵ), ϵmin}

Procedure 2: has discrete realization

input: a connected graph G, a rational ϵ > 0

ouput: YES, if G admits an ϵ-discrete UDG realization;
NO, if G admits no ϵ-discrete trigraph realizations;
TRIGRAPH ONLY, otherwise

1. ψ ← an array with |V (G)| null’s /∗ current coordinates ∗/
2. π ← a permutation of V (G) corresponding to the visitation order

of a breadth-first-search on G

3. return place next vertex (G, ϵ, π, 1, ψ)

found or no trigraph realizations are available for G on the considered mesh.
The computational effort of conducting an exhaustive search on a mesh that
is too thin is, however, obviously high. We therefore start from a moder-
ately thick ϵ-mesh (the initial value ϵ, passed as a parameter, is typically set
slightly below 1/

√
2, say 0.7), where the number of points is small, and we

search through all possible ϵ-discrete trigraph realizations of G. We do so by
positioning each vertex v ∈ V (G), one by one, at a point chosen from a set of
candidate locations for v on the ϵ-mesh. Whenever a vertex has no candidate
locations, we backtrack and attempt different placements of the previous
vertices. If a trigraph realization satisfying the conditions of Lemma 1 is
ever found, then the algorithm returns YES (G is a UDG). If, on the other

11



Procedure 3: place next vertex

input: a connected graph G, a rational ϵ > 0,
a permutation π of V (G),
the index j in π of the next vertex to be placed,
an array ψ with the coordinates of vertices already placed

ouput: YES, if G admits an ϵ-discrete UDG realization;
NO, if G admits no ϵ-discrete trigraph realizations;
TRIGRAPH ONLY, otherwise

1. v ← π(j)

2. P ← {p ∈ Cϵ : ∥p− ψ[π(k)]∥ < 1 + ϵ
√
2, ∀k < j, π(k) ∈ N(v)}\

{p ∈ Cϵ : ∥p− ψ[π(k)]∥ ≤ 1− ϵ
√
2, ∀k < j, π(k) /∈ N(v)}

3. if j = 1 then P ← {(0, 0)}
4. if j = 2 then P ← P ∩ {p ∈ Cϵ : ordinate(p) = 0, abscissa(p) > 0}
5. if j = 3 then P ← P ∩ {p ∈ Cϵ : ordinate(p) ≥ 0}
6. found trigraph ← False

7. for all p ∈ P do

8. ψ[v]← p

9. if j = |V (G)| then
10. found trigraph ← True

11. if is UDG realization(G, ϵ, ψ) then return YES

12. result ← place next vertex (G, ϵ, π, j + 1, ψ)

13. if result = YES then return YES

14. if result = TRIGRAPH ONLY then found trigraph ← True

15. if found trigraph = False then return NO

16. return TRIGRAPH ONLY

hand, no trigraph realization exists at the considered granularity, then, by
Lemma 2, G is not a UDG, and the algorithm returns NO. Finally, if one
or more ϵ-discrete trigraph realization do exist, but none satisfies Lemma 1,
then the search starts over, iteratively, on a thinner mesh—whose granularity
is given by some function refine granularity. A simple such function divides
the current granularity by 2, but it is also possible to make it so that the
attempted granularities correspond to any other desired sequence, such as
0.7, 0.7/2, 0.7/3, 0.7/4, etc. Note that, the thinner the mesh, the higher the
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probability of obtaining a conclusive answer, yet the computational effort is
also substantially higher.

Algorithm 1 depicts the basics of the proposed method. The subroutines
get trigraph realizations and place next vertex are given separately as Pro-
cedures 2 and 3. The subroutine is UDG realization simply checks whether
the given trigraph realization satisfies the conditions of Lemma 1. The pseu-
docodes for is UDG realization and refine granularity are omited.

McDiarmid and Müller have shown [9, Lemma 7.4] that, if G is a UDG,
then G admits a realization where the diameter d of the disks (as per Defini-
tion 1), as well as the coordinates of the disk centers, are integers of absolute

value at most 22
Θ(n)

, with n = |V (G)|. That is to say that G admits a real-
ization where all coordinates are rationals of the form k/d, for k, d ∈ Z and

both k and d are at most 22
Θ(n)

. In other words, G admits an ϵmin-discrete
realization for ϵmin = 1/d = 1/(22

Θ(n)
). Thus, in a worst-case scenario, the

number of iterations performed by our method is O(log 22Θ(n)
) = O(2Θ(n)).

While this may be interesting from a theoretical standpoint, assuring that
such a discretize-and-search strategy is destined to work in finite time (as
opposed to a possibly endless, inconclusive search in the uncountable space
V (G)× R2), it is clear that graphs with many vertices may demand exorbi-
tant running time—and that is what motivates a series of pruning-intended
enhancements over our core idea.

4.1. Pruning

In most backtracking-based approaches, enormous gain in performance
can be noticed if the search trees are pruned as much—and as early—as
possible. On that basis, we have devised a number of performance-enhancing
improvements on our method’s basic ideas.

Refining thicker trigraph realizations into thinner ones. The knowledge ac-
quired during the exploration of thicker meshes can be used to speed up the
work on thinner meshes. Note that, if a graph G admits a UDG realization
ϕ, then the application of the discretization function fϵ yields an ϵ-discrete
trigraph realization of G, as argued in the proof of Lemma 2. But then again
the discretization function f2ϵ applied to that very same ϕ would yield a
2ϵ-discrete trigraph realization for G. As a corollary, if a certain placement
ψ2ϵ of vertices on the 2ϵ-mesh is not a trigraph realization of G, then no
ϵ-discrete trigraph realization of G can exist with vertices placed at points
of the ϵ-mesh whose images under f2ϵ correspond to ψ2ϵ. This is so because
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clearly f2ϵ ◦ fϵ(v) = f2ϵ(v) for all v ∈ V (G). Therefore, we can restrict our
search, on the ϵ-mesh, to refinements, so to speak, of each trigraph realization
found at the 2ϵ granularity. In other words, we may only attempt a certain
placement ψϵ of vertices on the ϵ-mesh if there has been found a trigraph
realization ψ2ϵ such that f2ϵ(ψϵ(v)) = ψ2ϵ(v) for all v ∈ V (G). Fortunately,
the points ψϵ(v) that satisfy such condition can be easily spotted. They are
the bottom-left corners of the four cells of the ϵ-mesh which lie inside the
cell of the 2ϵ-mesh whose bottom-left corner is ψ2ϵ(v). Though we have ac-
tually implemented this idea, the actual coding is a bit demanding, and we
refrained from transcribing it into the pseudocode presented in this text for
the sake of clarity.

Choosing an appropriate placement order. Tackling the most restricted de-
cisions first usually pays off in backtracking-based approaches. Indeed, the
order in which the vertices are placed on the mesh, in our method, may
have considerable impact on its performance. Rather than considering the
vertices in some arbitrary order, we follow the order obtained by a (breadth-
first) search performed on the graph (Procedure 2, line 2). By doing so, each
vertex v that is considered for placement—except for the very first one—is
a neighbor of at least one vertex w already placed on the mesh, thus re-
stricting the candidate points for v to those belonging to the (mandatory or
optional) adjacency region surrounding w. As for the initial vertex, however,
the fastest YES answers have been in most cases obtained when we started
from the vertex with minimum degree. While this may be a bit counterin-
tuitive, a possible explanation is that, when we tackle a “heavily restricted”
region of the graph too early, we have plenty of room to make unfortunate
choices that will only lead to a dead end later in the placement process, lead-
ing us to backtrack repeatedly until possibly all arrangements of the vertices
in that subgraph have been attempted. By postponing the placement of the
troublesome subgraph to a later stage, when plenty of other vertices have
already been placed, the limited available room may allow us to backtrack in
a cheaper fashion, after placing but a few vertices of that subgraph. On the
other hand, if there is a subgraph which is not a UDG, then the algorithm
would almost surely save precious time by attempting its placement earlier
in the process.

Separating two vertices. In view of Corollary 1, our method may restrict its
search to trigraph realizations in which u and v have distinct images, for
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whichever predefined u, v ∈ V (G). For simplicity, we choose u and v to be
the two first vertices in the placement order.

Disregarding translations, rotations and reflections. Owing to a possible
translation of the intended mesh before the discretization function is ap-
plied, the first vertex in the placement order can be placed without loss
of generality at a cell whose bottom-left corner is the origin (0, 0) of the
mesh (Procedure 3, line 3). Furthermore, owing to a possible rotation of the
mesh, the second vertex in the placement order can always be placed at a
cell whose bottom-left corner has non-negative abscissa and ordinate zero.
Actually, because of the separation of the two first vertices discussed in the
previous paragraph, a strictly positive abscissa can be used instead (Proce-
dure 3, line 4). Finally, owing to a possible reflection over the zero-ordinate
axis, the third vertex can always be placed on or above that axis (Proce-
dure 3, line 5). These measures reduce to a significant extent the number of
candidate positions for the three first vertices.

Constraining the candidate locations. Every vertex that gets placed on the
mesh has a direct impact on the candidate locations of all vertices not yet
placed. Say w ∈ V (G) has just been placed at point ψϵ(w). Now, for every
vertex v to the right of w in the placement order, if v is a neighbor of w in
G then v must be placed sufficiently close to w (that is, within distance less
than 1 + ϵ

√
2 from w), and if v is not a neighbor of w in G then v must be

placed sufficiently far from w (that is, at a distance greater than 1 − ϵ
√
2

from w). Any points of the ϵ-mesh which do not satisfy such restrictions are
not even considered as candidate locations (Procedure 3, line 2).

4.2. Further improvements

We now discuss two possible improvements to the overall performance of
our method.

Keeping track of candidate positions dynamically. The determination of the
set P (v) of candidate locations for each vertex v is carried out as a set op-
eration in line 2 of Procedure 3. It takes into consideration the constraints
imposed by all vertices w (both neighbors and non-neighbors of v) to the
left of v in the placement order. As a first possible enhancement, it may be
worthwhile to keep track of each P (w) throughout the whole execution of the
algorithm rather than calculating them on-the-fly. After initializing P (w),
for all w ∈ V (G), with all points of the mesh contained inside a bounding
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circle of radius |V (G)|−1 centered at the origin, the placement of each vertex
w ̸= v on a point ψ(w) of the ϵ-mesh triggers the following update of P (v),
for each v yet to be placed: if w is a neighbor of v in the input graph G,
then all points whose distances to ψ(w) are at least 1 + ϵ

√
2 (the forbidden

adjacency region around ψ(w)) are removed from P (v); otherwise, if w is not
a neighbor of v in G, then all points whose distances to ψ(w) are at most
1 − ϵ

√
2 (the mandatory adjacency region around ψ(w)) are removed from

P (v). By doing so, the next vertex to be placed can be chosen, for instance,
among those with the fewest placement options (rather than following a pre-
defined sequence), and—more importantly—the whole search subtree rooted
at the current configuration can be immediately dropped whenever one of
the vertices yet to be placed is left with an empty set of candidate locations.

Imposing predefined permutations of symmetric homogeneous sets. Suppose
a graph G has k pendant vertices with a common neighbor v. Clearly, if
G admits a trigraph realization ψϵ for some ϵ > 0, then G admits k! quasi-
identical trigraph realizations, one for each permutation of those pendant
vertices along the points that correspond to their images under ψϵ. As a
consequence, our method may care about just one such permutation without
loss of generality, disregarding all candidate placements which do not conform
to it. More generally, if H = {u1, . . . , uh} is a homogeneous set4 of G, and
the subgraph of G induced by H is either an independent set or a clique5,
then it is possible to restrict the search to mappings ψϵ of G that satisfy
ψϵ(u1) ≤ . . . ≤ ψϵ(uh) according to some total order “≤” of the points of the
mesh. Our current implementation accepts that such sets H are informed
by the user (and some of our computational results indeed benefited from
this kind of input), but it does not detect them automatically—which would
be a nice feature. It may also be possible to exploit other types of graph
automorphisms to shave off computational effort that would otherwise be
spent on redundant placement attempts.

We are currently investigating the two aforementioned algorithmic en-
hancements, along with some additional geometric lemmata expected to al-

4A subset S of the vertices of a graphG is a homogeneous set ofG if, for all v ∈ V (G)\S,
either v is a neighbor of all vertices in S or v is a non-neighbor of all vertices in S.

5A subset S of the vertices of a graph G is a clique of G if all vertices of S are neighbors
of one another in G.
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low for even more efficient pruning.

4.3. Worst-case instances

Our method never goes any further than the granularity corresponding
to McDiarmid and Müller’s ϵmin. It does not have to, since it can safely
state that the input graph is not a UDG if it fails to find a realization in the
ϵmin-mesh. In [9], McDiarmid and Müller not only prove that every unit disk
graph on n vertices admits an integer realization where all coordinates are at
most 22

Θ(n), but also prove the existence of UDGs which only admit integer
realizations where at least one coordinate is 22

Θ(n). These latter graphs are
certainly worst-case instances for our method.

There is, however, a whole family F of graphs which, despite not being
UDG, do admit an ϵ-discrete trigraph realization for all ϵ > 0. Such graphs
also constitute input instances for which our method is doomed to halt only
at the ϵmin granularity (with a NO answer, in this case).

Take, for instance, the complete bipartite graph6 K2,3, with vertex set
{1, 2} ∪ {a, b, c}. We draw an equilateral triangle T of unitary side, and
place vertices 1 and a coincidently on one of its corners, 2 and b on another
corner, and vertex c on the remaining corner. Now, for some ϵ > 0, we
apply the discretization function fϵ on T , producing a (somewhat distorted)
“ϵ-discrete equilateral triangle” T ′. To check that the ensuing mapping is a
trigraph realization of the K2,3, just note that the distance between vertices
placed at the same corner of T ′ is zero, describing a mandatory adjacency
(unless ϵ > 1/

√
2, in which case the adjacency is optional), and those vertices

are indeed neighbors in the graph; and the distance between all other vertices
fall in the range (1− ϵ

√
2, 1+ ϵ

√
2), describing optional adjacencies and thus

validating the model. The same reasoning applies to the K3,3, whose vertex
set {1, 2, 3} ∪ {a, b, c} may be positioned on the ϵ-mesh in exactly the same
fashion as theK2,3, if we just let the neighbors 3 and c coincide. The complete
bipartite graph Kx,3, however, is not a UDG if x ≥ 2 [6, Corollary 4.6], hence
both the K2,3 and the K3,3 belong to F . As for the K3,4, our method was
able to find a NO certificate at the ϵ = 7/80 granularity.

6A bipartite graph G is a graph whose vertices are partitioned into two subsets A
and B, such that all edges of G are incident to a vertex in A and a vertex in B. A
complete bipartite graph, denoted Kx,y, is a bipartite graph with partite sets A and B,
with |A| = x, |B| = y, such that every vertex in A is adjacent to every vertex in B.
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Another example is the K2,4, with vertex set {1, 2} ∪ {a, b, c, d}. If we
place the vertices a, b, c and d at the corners of a rhombus consisting of two
equilateral triangles with a common side of length 1, and we place the two
remaining vertices at the endpoints of that common side, then we can now
discretize those points to obtain an ϵ-discrete trigraph realization for all ϵ > 0.
Indeed, all adjacencies in the post-discretization trigraph will be optional, ex-
cept possibly for mandatory adjacencies between the two coincident vertices
at each endpoint of the shortest diagonal of the rhombus (the common side
of the equilateral triangles) and a forbidden adjacency between the vertices
at the endpoints of the longest diagonal. Since the former vertices are in-
deed neighbors, and the latter, non-neighbors, in the K2,4, such adjacency
types are in perfect conformity with the requirements of a trigraph realiza-
tion. However, the K2,4 is not a UDG, since it contains an induced K2,3. It
therefore belongs to F .

Yet another member of F is the K1,6. It consists of a central vertex adja-
cent to 6 pendant vertices. Place the central vertex of theK1,6 at the center of
a regular hexagon of unitary side, and each pendant vertex at a corner of that
hexagon. By applying the discretization function fϵ to the center and corners
of the hexagon, the resulting mapping is an ϵ-discrete trigraph realization of
the K1,6 regardless of ϵ. Indeed, all adjacencies between the central vertex
and the pendant vertices will be optional in the associated trigraph, and the
adjacencies between two pendant vertices—which are pairwise non-neighbors
in the K1,6—will be either optional or forbidden in the trigraph. The K1,6,
however, is not a UDG [8], hence it belongs to F . A similar reasoning shows
that the K1,7 also belongs to F . Because it contains an induced K1,6, it is not
a UDG. However, if we place its vertices prior to the discretization exactly as
we did to the K1,6, with its seventh pendant vertex placed coincidently with
the central vertex, we obtain a trigraph realization. The K1,8, which is not
a UDG for the same reason as the K1,7, does not belong to F , and indeed a
NO certificate was provided by our method, based on the fact that the K1,8

admits no ϵ-discrete trigraph realizations when ϵ = 7/120.
We can also argue that all co-bipartite graphs7 that are not UDG belong

to F .8 By placing the vertices of one of the cliques at a point and the vertices

7A co-bipartite graph is the complement of a bipartite graph, that is, its vertices can be
partitioned into two cliques A and B, with whatever number of edges between A and B.

8We thank the anonymous referee for this accurate observation.
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Figure 6: (a) The graph G, whose vertices are partitioned into an induced (P7)
2 =: S

and a K4; (b) pre-discretization placement of the vertices of G (the vertices of the K4

are placed coincidently at the center of the arc); (c) general scheme for members of a
subfamily of F .

of the other clique at another point at distance exactly 1, the adjacencies
between elements from different cliques will all be optional in the trigraph,
no matter the granularity ϵ of the discretization function.

Finally, one can possibly come up with rather obscure subclasses of F ,
so that an interesting characterization of F seems unlikely. The following
lemma illustrates one such subclass.

Lemma 4. If a graph G has an induced subgraph S which is the power9 of
a path, S = (Pk)

t, with k ≤ 5t+ 6, and G \ S is a clique, then G admits an
ϵ-discrete trigraph realization for all positive rational ϵ.

Proof — Let u1, ..., uk be the vertices of S in their order of appearance in
Pk, and consider some positive ϵ ∈ Q. We construct an ϵ-discrete trigraph
realization of G. Place the vertices ui, for i = 1, . . . , k, consecutively along
the boundary of a circle of unitary radius, in such a way that uj and uj+1, for
j = 1, . . . , k−1, are the endpoints of an arc subtending an angle of 60/(t+1)
degrees, and place the vertices of the clique G \ S coincidently at the center
of the circle, as illustrated in Figure 6. Now apply the discretization function
fϵ to all those points. We show that the ensuing mapping ψϵ is a trigraph

9The kth power Gk of a graph G is a supergraph of G formed by adding an edge
between all pairs of vertices of G within distance at most k from one another.
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realization of G. First, if v and w are two vertices of G \ S, then their
images under ψϵ are coincident, defining either a mandatory (if ϵ ≤ 1/

√
2) or

optional (if ϵ > 1/
√
2) adjacency in the trigraph model, and thus conforming

to their being neighbors of each other in G. Suppose, now, that v belongs
to S, and w to G \ S. Since the distance between v and w prior to the
discretization was exactly 1 (the radius of the circle), after the discretization
such distance belongs to the interval (1− ϵ

√
2, 1+ ϵ

√
2), defining an optional

adjacency, hence it does not matter whether v and w are neighbors in G.
We are left with the adjacency type between two vertices ui and uj in S, for
1 ≤ i < j ≤ k. If j − i ≤ t, then ui and uj are neighbors in (Pk)

t, and the
central angle αi,j of the smallest arc whose endpoints were occupied by ui
and uj before the discretization measures

αi,j = min

{
60 · j − i

t+ 1
, 360− 60 · j − i

t+ 1

}
degrees, which is less than 60 degrees for |i − j| ≤ t. Consequently, the
distance between those endpoints was less than 1, and the post-discretization
distance ∥ψϵ(ui)− ψϵ(uj)∥ is less than 1 + ϵ

√
2, satisfying the first condition

in the definition of a trigraph realization (Section 3, Definition 2). If, on the
other hand, j − i ≥ t + 1, then ui and uj are neighbors in (Pk)

t, and αi,j

measures no less than 60 degrees, once k ≤ 5t+6 implies j−i ≤ k−1 ≤ 5t+5
(the first term in the expression of αi,j does not exceed 300 degrees). The
pre-discretization distance between ui and uj was therefore no less than 1,
and now ∥ψϵ(ui) − ψϵ(uj)∥ is greater than 1 − ϵ

√
2, satisfying the second

condition in Definition 2.

As an immediate corollary, if G satisfies the condition of Lemma 4 and G
is not a UDG, then G ∈ F .

5. Computational Results

We implemented our technique using the Python language10, and we were
able to classify several small graphs. Our implementation included all the
enhancements discussed in Section 4.1. In all tests, we started from granu-
larity ϵ = 0.7/2 and, whenever needed, we used a refine granularity function

10The code is available in https://www.dropbox.com/s/v0if1zloa43bliq/udg_

model_generator.py.
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which divides the current ϵ by 2. The sole exception was for input instance
K1,8, where we started from ϵ = 0.7/12 (avoiding the high computational
demands of ϵ = 0.7/16 which would ensue after an inconclusive answer at
ϵ = 0.7/8).

5.1. Classifying particular graphs

Figures 7, 8, 9 and 10 depict the instances processed in our first exper-
iment. They include, but are not limited to, all connected graphs (free of
isomorphism) with up to 5 vertices and all connected graphs with 6 ver-
tices and up to 8 edges. The results, presented in Tables 1 and 2, omit the
coordinates of the UDG realizations for economy of space.

It is noteworthy that the only graph with less than 6 vertices which is not
a UDG is the K2,3, a graph that belongs to the family F of “pathological”
graphs, as discussed in Section 4.3. We skipped that instance. As for graphs
with 6 or more vertices, those which have not been classified by our method
belong to one of two groups. The first group comprises those graphs which
are known not to be UDG, since they contain an induced K2,3. Each of
them can easily be shown to belong to F (by following the same ideas we
employed in Section 4.3), hence our method would take a long time to produce
a NO certificate. We skipped those instances as well. The second group
consists of a single graph that remains undecided. It satisfies the condition
of Lemma 4. Therefore, if it is not a UDG, then it belongs to F , and again
a NO answer would only be produced by our method after exhausting all
possible placements on the ϵmin-mesh. Because that would be too much
processing, we interrupted the execution midway through.

For 88 out of 98 instances, our method obtained a YES certificate quite
instantly. The two NO answers, corresponding to the complete bipartite
graphs K3,4 and K1,8, took considerably longer, even though they benefited
largely from the second performance enhancement11 discussed in Section 4.2.

5.2. Obtaining YES certificates for random graphs

Our first experiment confirmed that YES certificates are much easier to
obtain than NO certificates. Indeed, for instances that are UDG, the algo-

11Since the partite sets of V (G) in every complete bipartite graph G are homogeneous
sets which are also independent sets, it was possible to restrict our search to candidate
realizations where the image of vertices in a same partite set conformed with some fixed,
predefined ordering.
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Figure 7: All connected graphs with less than 5 vertices.

Figure 8: All connected graphs with 5 vertices.

Figure 9: Some connected graphs with up to 9 vertices.
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Figure 10: All connected graphs with 6 vertices and at most 8 edges.
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Figure 11: Output obtained for random graphs with 7, 8 and 9 vertices. The horizontal
axis corresponds to the probability p of the Gn,p model, and the results refer to 100 random
instances of each Gn,p model in all graphics. The graphics to the left indicate the number
of YES certificates obtained within a given time limit. The graphics to the right indicate
the average time and the standard deviation to produce a YES certificate.
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input time UDG 0.7/ϵ
K1 0.249s yes 2
K2 0.217s yes 2
P3 0.245s yes 2
K3 0.266s yes 2
P4 0.228s yes 2
K1,3 0.264s yes 2
C4 0.235s yes 4
D3(4) 0.256s yes 2
K4 − e 0.250s yes 2
K4 0.250s yes 2
P5 0.215s yes 2
G1 0.198s yes 2
K1,4 0.185s yes 4
G2 0.197s yes 2
G3 0.180s yes 2
G4 0.181s yes 2

input time UDG 0.7/ϵ
G5 0.180s yes 2
C5 0.196s yes 4
G6 0.196s yes 2
G7 0.181s yes 2
G8 0.179s yes 2
K2,3 ∈ F no —
G9 0.179s yes 2
G10 0.179s yes 2
G11 0.183s yes 2
G12 0.180s yes 4
G13 0.215s yes 2
G14 0.184s yes 2
G15 0.217s yes 4
K5 − e 0.218s yes 2
K5 0.224s yes 2

Table 1: Output obtained for graphs in Figures 7 and 8. The third column indicates
whether the input graph is a UDG. The K2,3 belongs to the family F—as discussed in
Section 4.3—and was intentionally skipped.

rithm stops whenever it finds a UDG realization. On the other hand, for
graphs that are not UDG, the algorithm must exhaust all possible place-
ments at some granularity—having found no trigraph realizations—before it
outputs a NO answer. Moreover, worst-case YES instances are apparently
rarer (see Section 4.3). In practice, if one knows beforehand that some small
graph G is realizable—as seems to be the case in most Distance Geometry
applications—then one can expect our method to find a realization for G in
reasonable time with high probability.

In our second experiment, we employed our method to classify a number
of random graphs with 7, 8 and 9 vertices from the Gn,p model, where an
instance G is generated with a predefined number n of vertices, and where
an edge vw belongs to G with probability p for all v, w ∈ V (G). We did
not consider disconnected instances. Furthermore, we defined a maximum
allowed execution time per instance, after which we would halt the execution
and accept an inconclusive answer. Had we not done so, the overall time
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input time UDG 0.7/ϵ
H5,1 0.249s yes 2
P6 0.247s yes 2
H5,2 0.276s yes 2
H5,3 0.233s yes 2
H5,4 0.267s yes 4
K1,5 0.859s yes 8
H6,1 0.271s yes 2
H6,2 0.183s yes 2
H6,3 0.198s yes 4
H6,4 0.195s yes 2
H6,5 0.180s yes 2
H6,6 0.179s yes 2
H6,7 0.180s yes 2
H6,8 0.180s yes 4
H6,9 0.180s yes 4
H6,10 0.179s yes 2
H6,11 0.179s yes 2
H6,12 0.196s yes 4
C6 0.179s yes 2
H7,1 0.181s yes 4
H7,2 0.196s yes 2
H7,3 0.179s yes 4
H7,4 0.181s yes 2
H7,5 0.231s yes 4
H7,6 0.197s yes 2
H7,7 0.216s yes 2
H7,8 0.223s yes 4
H7,9 0.232s yes 2
H7,10 0.231s yes 4
H7,11 0.218s yes 2
H7,12 ∗ ? —
H7,13 0.225s yes 2
H7,14 0.217s yes 2
H7,15 0.234s yes 2

input time UDG 0.7/ϵ
H7,16 0.202s yes 4
H7,17 0.198s yes 4
H7,18 ∈ F no —
H7,19 ∈ F no —
H8,1 0.184s yes 2
H8,2 0.180s yes 4
H8,3 0.180s yes 2
H8,4 0.250s yes 4
H8,5 0.180s yes 2
H8,6 0.179s yes 2
H8,7 0.181s yes 2
H8,8 0.180s yes 2
H8,9 0.196s yes 2
H8,10 0.213s yes 4
H8,11 0.179s yes 2
H8,12 0.180s yes 2
H8,13 0.180s yes 2
H8,14 0.247s yes 4
K2,4 ∈ F no —
H8,15 ∈ F no —
K3,3 − e ∈ F no —
H8,16 ∈ F no —
H8,17 0.200s yes 2
H8,18 0.222s yes 2
H8,19 0.214s yes 2
H8,20 0.418s yes 4
(C6)

2 0.300s yes 4
P7 0.286s yes 2
W6 0.320s yes 4
K3,4 1h54min no 8
C8 0.319s yes 2
K1,8 22h56min no 12
F4 0.494s yes 4

Table 2: Output for graphs in Figures 9 and 10. The instance H7,12, marked “∗”, satisfies
the condition of Lemma 4 (it consists of an induced P4 and a K2) and remains undecided.
Instances marked “∈ F” present an induced K2,3 and are known to belong to the family F .
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to decide thousands of instances would be prohibitive. Still, a considerable
number of YES certificates were produced rather quickly. Since we employed
a random graph model whose instances are not always unit disk graphs, the
actual ratio of fast YES answers produced by our method must be even higher
if the input is restricted to graphs known to be UDG. The results displayed
in Figure 11 can therefore be regarded as estimates on lower bounds for
the probability that our method finds a realization for unit disk graphs of
different sizes in reasonable time.

It is also interesting to notice that higher ratios of YES certificates
were obtained when the expected density of the Gn,p instance—which grows
with p—was either too low or too high. This result probably matches one’s
intuition, since the vertices of too sparse a graph have but a few neighbors
imposing proximity constraints, while the vertices of a dense graph may flock
together without too many non-neighborhood restrictions.

6. The Distance Geometry Problem with Ranges

The promising results presented in Section 5 invite us to leverage the
proposed technique to the Distance Geometry Problem with Ranges, where
each pair of adjacent vertices in a graph G is assigned its own interval of
accepted distances. No distance restrictions are imposed over pairs of vertices
that are not adjacent in G. One looks for a realization of G respecting those
accepted distances in some (continuous) metric space. For ease of exposition,
we henceforth assume the latter to be the Euclidean plane.

In Section 3, we introduced the idea of a discrete trigraph realization.
Such concept, which allows for a pragmatic discretization of the space, ex-
tends naturally to the much more general DGPR. One defines a discretization
function and obtains an upper bound, as tight as possible, to the pairwise rel-
ative displacement it may produce. Then the accepted intervals are relaxed
just enough to incorporate that maximal relative displacement. If, even with
such a relaxation, a certain placement of vertices is not at all valid, then a
whole bunch of otherwise candidate solutions (on the continuous space) can
be immediately ruled out. Some additional difficulties appear, though, when
arbitrary ranges are allowed.

A first obstacle is the existence of perfectly realizable instances which
admit no realization with only rational coordinates. An easy example is the
complete graph on 3 vertices whose edges are assigned the same interval [1, 1]
of accepted distances. A unitary equilateral triangle is a realization (the only
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one) for such an instance, yet at least one coordinate will be irrational. The
following three examples—actually, three “variations on a theme”—give a bit
more of intuition on the existence of such irrational DGPR instances, even
when the ranges are not trivial intervals.

The first example is a K7 (the complete graph on 7 vertices) with an edge
set partitioned into two groups. The edges of the first group induce a K1,6

and are assigned the interval [0, 1] of accepted distances; those of the second
group—all remaining edges—are assigned the range [1,∞).12 Such a DGPR
instance has a unique realization (short of rotations, translations and reflec-
tions), where the coordinates are (0, 0), (1, 0), (1/2,

√
3/2), (−1/2,

√
3/2),

(−1, 0), (−1/2,−
√
3/2) and (1/2,−

√
3/2). The second example consists

again of a K7 with two groups of edges: those which induce a 6-wheel13 and
are assigned the range [0, 1]; and the remaining edges, which are assigned the
range [1, 2]. This instance also admits a unique realization, with exactly the
same coordinates as those in the previous example. The third example con-
sists yet again of a K7, but now all edges get the interval [1, 2] of accepted
distances. The only possible realization for such a DGPR instance is the
same one as in the previous examples.

It is clear that our method shall not find a realization for such instances.
This poses the following question:

• For a positive integer d, which DGPR realizable instances admit a
realization (in Rd) with only rational coordinates?

A sufficient condition, so that small perturbations may lead each vertex
with irrational coordinates to a nearby point with only rational coordinates,
is given by the following lemma:

Lemma 5. Let G be a DGPR instance whose distance intervals are all open,
or all left-open, or all right-open, and let d be a positive integer. If G admits
a realization in Rd, then G admits a realization in Rd where all coordinates
are rational.

Proof — Let ϕ be a realization of G in Rd . We first consider the case where
all intervals are open, i.e. they are both left- and right-open. Suppose ϕ(v),

12Notice the similarity between this instance and a typical instance for the UDG prob-
lem, where the ranges are either [0, 1] or (1,∞).

13A k-wheel is a k-cycle plus a (k+1)th vertex adjacent to all vertices in the cycle. The
graph labeled W6 in Figure 9 is a 6-wheel.
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for some v ∈ V (G), has an irrational coordinate, and let w1, . . . , wd(v) be the
neighbors of v in G, with (ai, bi) the range of acceptable distances associated
to each edge vwi, for i = 1, . . . , d(v). The locus Bi of all candidate locations
for v with respect to wi is the difference of two balls centered in ϕ(wi), an
open one with radius bi and a closed one with radius ai, hence Bi is an open
set. Consequently, the intersection B = ∩i=1,...,d(v)Bi is also an (non-empty,
because ϕ is a realization of G) open set. We can therefore replace the
irrational image ϕ(v) by any point in B with only rational coordinates—by
the density of rationals, there exists such a point—and the ensuing mapping
is still a realization of G. By repeating this procedure for each point with
an irrational coordinate, we obtain the desired realization of G with only
rational coordinates.

Now we consider the case where some of the intervals are right-closed,
so that each edge vw ∈ E(G) is associated to an interval which is either
(avw, bvw) or (avw, bvw]. If we define c as

c = max
vw∈E(G)

{
avw

∥ϕ(v)− ϕ(w)∥

}
,

we can multiply all coordinates in the image of ϕ by (c + 1)/2 to obtain
a realization ϕ′ of G where ∥ϕ′(v) − ϕ′(w)∥ < bvw for all v, w ∈ V (G).
As a consequence, it is always possible to replace the original intervals by
intervals that are open on both sides. By repeating now the argument for
open intervals, we infer the existence of a realization of G which is free of
irrational coordinates.

The case where some of the intervals are left-closed is analogous.

If one of the conditions in Lemma 5 are met, the existence of a solution
with only rational coordinates ensures that a slightly modified Algorithm 1
can find a realization of G in finite time if a realization exists. However, we
must also determine a criterion that allows the algorithm to stop even when
the input graph G is not realizable. In the case of unit disk graphs, the result
of McDiarmid and Müller provides the most refined granularity at which we
must perform our search. Unfortunately, we know of no analogous for the
more general DGPR. And so we pose the next question, borrowing the idea
of an ϵ-discrete realization from Section 3.

• For which DGPR instances G can one determine a rational ϵ (or, better
yet, the maximum rational ϵ) such that, ifG is realizable, thenG admits
an ϵ-discrete realization?
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Here again we are able to establish a sufficient condition on the ranges of
the input instance. The main tool is a result from Grigor’ev and Vorobjob [5]
that determines the (absolute) size of the solution of a system of polynomial
inequalities. We recall such result in the form given in [9].

Lemma 6 (Grigor’ev & Vorobjob [5]). For each d ∈ N there exists a constant
C = C(d) such that the following hold. Suppose that h1, ..., hk are polynomials
in n variables with integer coefficients and degrees deg(hi) < d. Suppose
further that the bitsizes of all coefficients are less than B. If there exists a
solution (x1, ..., xn) ∈ Rn of the system {h1 ≥ 0, ..., hk ≥ 0}, then there also
exists one with |x1|, ..., |xn| ≤ exp[(B + ln k)Cn].

Theorem 7. Let G be a realizable instance of the DGPR with V (G) =
{vi}ni=1, and let (aij, bij) be the range associated to each edge vivj ∈ E(G).
If, for all i, j, the bounds aij and bij are rational numbers not greater than
some fixed constant c, then G admits a realization where all coordinates are
rational numbers with bitsize O(2n).

Proof — The realizability of a DGPR instance G obviously does not change
if we multiply all the distance ranges by some constant factor k > 0. There-
fore, there is a clear correspondence between a realization ϕ of G and an
integer solution (x1, y1, . . . , xn, yn, k) of the system of 2|E(G)| + 1 inequali-
ties 

(xi − xj)2 + (yi − yj)2 > (kaij)
2

(xi − xj)2 + (yi − yj)2 < (kbij)
2

k > 0,

where the two first inequalities apply to all i, j such that vivj ∈ E(G). Indeed,
if we let ϕ(vi) = (xi/k, yi/k) for all i, then ϕ is a realization of G with only
rational coordinates. Furthermore, if all integers in the solution of such
system have bitsizes O(2n), then so does each coordinate in the image of ϕ.

To prove the O(22n) bound for the absolute value of those integers (or,
equivalently, the O(2n) bound for their bitsizes), we follow the same argu-
ment, based on Lemma 6, that was used in [9] for realizations of unit disk
graphs with bounded integer coordinates. We are in a position to do that
because all our distance ranges are open intervals, that is, all the inequalities
in the above system are strict. After replacing the r2’s in McDiarmid and
Müller’s original text [9, proof of Lemma 7.4] with the appropriate (kaij)

2’s
and (kbij)

2’s, and not without some tedious manipulations, we obtain the
intended bound.
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Theorem 7 implies that the DGPR analogous of Algorithm 1 has a NO-
answer stopping criterion if all ranges are open intervals. However, a simple
scaling argument identical to the one used in the proof of Lemma 5 proves it
sufficient that all intervals are left-open (or all intervals are right-open).

Another important question regards the complexity of the DGPR. After
all, as discussed in Section 2, not even when restricted to ranges [0, 1] and
(1,∞) is the DGPR known to be in NP. Considering the above observations
about the inexistence of rational realizations for certain realizable inputs, it
is natural to consider the following question:

• What is the complexity of the DGPR?

In addition to the above computational questions, the DGPR brings
about at least one additional “geometric flavored” question that establishes
a connection between Distance Geometry and Combinatorial Geometry:

• What is the maximum number of points that can be placed at pairwise
distance at least d and at most D − d?

This is the case where the DGPR instance is a complete graph with all
ranges [d,D − d], and corresponds precisely to the problem of packing disks
of diameter d in a circle of diameter D.

7. Conclusion and future directions

A slight modification in the definition of the Distance Geometry Funda-
mental Problem disclosed a connection with a classic recognition problem
in Graph Theory. We believe that techniques for recognizing and obtaining
realizations for some classes of geometric graphs can contribute to—and ben-
efit from—the ever-growing repertoire of tools being put together in the field
of Distance Geometry.

Proving that a graph is a UDG is fairly simple when one knows a real-
ization of the graph, a natural certificate. On the other hand, no method
other than exhausting a huge discrete space whose coordinates have 22

Θ(n)

bits was known so far for proving that a graph is not a UDG. In this sense,
the possibility of exhibiting a computational certificate for a NO answer in
affordable time—even if restricted to graphs of modest size—may probably
be regarded as the main contribution of our trigraph-based method.
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Two are the main research lines that open up from the current work.
First, there are plenty of reasonably small graphs—for example, those in Fig-
ures 2(a) and 2(c)—whose membership to the UDG class remains unknown.
Those graphs certainly deserve definitive answers. The proposed approach
stands good chances of providing such answers, specially in light of numerous
promising improvements that may still be attempted on the current pruning
criteria (see Section 4.2). Second, the generalization of the Distance Geome-
try Fundamental Problem into the form of the Distance Geometry Problem
with Ranges—a formulation that shows a strong potential for applications—
evidences the connections between Distance Geometry, Graph Theory and
Combinatorial Geometry. We believe that several nice theoretical problems
might show up once these connections are more clearly established.
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