Designing Linear-Time Approximation Algorithms for Unit Disk Graphs

Guilherme D. da Fonseca
Aix Marseille Université and LIS

2019
Unit Disk Graphs

- **Unit disk graph**: Intersection graph of unit-disks in the plane
- Applications in wireless networks
- Neither planar nor perfect:
 - K_i and C_i are UDGs for all i
- Recognition: NP-Hard, $\exists \mathbb{R}$-complete
 - Doubly exponential algorithm exists
- Vertex coordinates (disk centers) are real numbers
Approximation Algorithms

Two types of algorithms:
- Geometric: vertex coordinates
 Edge \(pq \) if \(\|pq\| \leq 2 \)
- Graph-based: adjacency information only

PTASs for several problems:
(even without geometry)
- Minimum Dominating Set
- Maximum (Weight) Independent Set
- Minimum (Weight) Vertex Cover
- ...

PTASs have high complexity:
\(O(n^{10}) \) to 4-approximate the minimum dominating set
Our goal:

What approximation factor can we achieve in near-linear time?

- For geometric algorithms: $O(n \log^{O(1)} n) = \tilde{O}(n)$ time
- For graph algorithms: $O((n + m) \log^{O(1)} n) = \tilde{O}(n + m)$ time

n: number of vertices
m: number of edges
Two Optimization Problems

- **Independent Set**: Subset of points with minimum distance > 2
- **Maximum Independent Set (MIS)**: Maximize cardinality
- **Dominating Set**: Subset of points D such that all input points are within distance at most 2 from a point in D
- **Minimum Dominating Set (MDS)**: Minimize cardinality
Greedy Algorithms

Maximal Independent Set

- Maximal independent set gives a 5-approximation to both:
 - Maximum independent set
 - Minimum dominating set
- Can be computed in $O(n + m)$ time

\[
I \leftarrow \emptyset
\]

For each $v \in V(G)$:

\[
I \leftarrow I \cup \{v\}
\]

Remove v and its neighbors from G
Geometric Version

- Takes $O(n)$ time using $O(1)$-time hashing
- Hash points into grid
- Cells of diameter 2
- Algorithm:

 \[
 I \leftarrow \emptyset \\
 \text{For each } v \in V(G):
 \]

 \[
 I \leftarrow I \cup \{v\}
 \]

 Empty v’s cell
 Remove v’s neighbors from cells nearby

- Each point is examined at most 25 times (cells nearby)
Approximation for Maximum Independent Set

- Unit disk graph: no induced $K_{1,6}$
- I^*: optimal solution
- I: algorithm solution (maximal independent set)
- For each vertex v added to I at most 5 neighbors of v in I^* are removed
- Conclusion: $|I^*| \leq 5|I|$
- 5-approximation
Improvement for Maximum Independent Set

- Sort vertices from left to right
- Run the same algorithm
- Right neighbors form 3 cliques
- 3-approximation for MIS
- $O(n \log n)$ time to sort
- Much slower without geometry
Approximation for Minimum Dominating Set

- Unit disk graph: no induced $K_{1,6}$
- D^*: optimal solution
- D: algorithm solution (maximal independent set)
- Each vertex v in D has at most 5 neighbors in D^*
- Conclusion: $|D| \leq 5|D^*|$
- 5-approximation
- Sorting won’t help!
Local Search

Local Search

- Build a suboptimal solution S
- Find two *small* sets L_0, L_1
- Say $|L_0|, |L_1| < k$
- Make $S \leftarrow (S \setminus L_0) \cup L_1$
- Verify that S is feasible
- Maximization: use $|L_0| < |L_1|$
- Minimization: use $|L_0| > |L_1|$
- Repeat until no further improvement possible
Local Search for Minimum Dominating Set

Irreducible corona:

\(D \): independent dominating set

\(C \subset D \) is a **corona** centered at vertex \(c \) if:

- \(|C| = 5 \)
- \(C \) is an independent set
- \(c \) is adjacent to all \(c \)

\(C, c \) is **reducible** if \(D \setminus C \cup \{c\} \) is a dominating set

Reducible corona:

Theorem

If \(D \) has no reducible corona, then \(D \) is a \(\frac{44}{9}\)-approximation to the minimum dominating set.

- Such \(D \) can be computed in \(O(n + m) \) time without geometry or \(O(n \log n) \) time with geometry
Lower Bound of 4.8 (against 4.89 UB)

\[OPT = 5 \]
\[|D| = 5 \cdot 4 + 4 = 24 \]
Proof Technique

Several geometric results needed:

- Lemma 1 (Pál 1921): If a set of points P has diameter 1, then P can be enclosed by a circle of radius $1/\sqrt{3}$.

- Lemma 2 (Fodor 2007): The radius of the smallest circle enclosing 13 points with mutual distance ≥ 1 is $(1 + \sqrt{5})/2$.

- Lemma 3 (Fejes Tóth 1953): Every packing of two or more congruent disks in a convex region has density at most $\pi/\sqrt{12}$.

- Lemma 4: The closed neighborhood of a clique in a unit disk graph contains at most 12 independent vertices.

- Lemma 5: The closed d-neighborhood of a vertex in a unit disk graph contains at most $\pi(2d + 1)^2/\sqrt{12}$ independent vertices, for integer $d \geq 1$.
Strip Decomposition

Independent Set with Strips (Quadratic)

- Break the problem into horizontal strips of height 2
- Solve MIS for each strip exactly
- Return maximum among all even or odd strips

Good: 2-approximation even for weighted version

Bad: Don’t know how to solve MIS exactly for each strip in $\tilde{O}(n)$ time (but $O(n^2 \log n)$ is possible)
Use strips of height at most $\sqrt{3}$

Resulting graphs are co-comparability

Solve each strip exactly

Separation 2 between strips

Multiple shifts need to be considered

Approximation factor: $1 + \frac{2}{\sqrt{3}} + \varepsilon < 2.16$
Exact MIS Inside a Strip

- Height of the strip: $\sqrt{3}$
- Dynamic programming
- v_1, \ldots, v_n: vertices sorted by x coordinate
- For k from 1 to n:
 \[f(k) = \text{maximum independent set of } v_1, \ldots, v_k \]
- Recurrence (cocomparability graph):
 \[f(k) = 1 + \max_{i<k \text{ and } \|v_i v_k\|>2} f(i) \]
- Query uses semi-dynamic data structure: \(O(\log^2 n) \) time per query
- MIS can be solved in \(O(n \log^2 n) \) time
- Extends to weighted version (extra \(O(\log n) \) factor)
Shifting Coresets

(1) Break the original problem into subproblems of $O(1)$ diameter (shifting strategy)

(2) Build a coreset with $O(1)$ points for each subproblem, which gives an α-approximation to the subproblem

(3) Solve the coreset optimally

(4) Combine the solutions into an $(\alpha + \varepsilon)$-approximation
Breaking Independent Set instance into $O(1)$-diameter subproblems (shifting strategy):

- Set k to smallest integer with $\left(\frac{k}{k-2}\right)^2 \geq 1 + \frac{\varepsilon}{4}$
- Use grids of size $2k$
- Create k^2 shifted grids with even origins
- Contract grid cells by 1 in all directions
- Each contracted cell is a subproblem
Analysis of Shifting Strategy

- Contracted cells are distance 2 apart: union preserves independence
- 4-approximation in yellow area
- Yellow area gets much bigger than white area as $k \to \infty$
- Expected number of OPT points in white area is small
- Maximum is larger than expectation
Constant-Diameter Coreset for MIS

- **Coreset**: Subset with $O(1)$ points that approximates the original solution
- **Algorithm**:
 - Create grid with cells of diameter \(0.29 < (2 - \sqrt{2})/2\)
 - Select a point of maximum weight inside each cell (coreset)
 - Find the optimal independent set among the selected points
- We need to prove it gives a 4-approximation!
Proof of 4-Approximation of MIS

- Consider the optimal independent set
- Moving points by at most 0.29, we obtain a planar graph
- Planar graphs are 4-colorable
- The color of maximum weight is a 4-approximation
Lower Bound of 3.25

- P_1: Set of points from the figure
- P_2: Multiply coordinates from P_1 by $(1 + \varepsilon)$ and weights by $(1 - \varepsilon)$
- $P_1 \cup P_2$ gives a lower bound of 3.25
 - P_2 is independent
 - MWIS: P_2, with $w(P_2) \approx 3.25$
 - Coreset: P_1
 - P_1 has MWIS with weight 1
Minimum Dominating Set Algorithm

- Break the problem into subproblems of $O(1)$ diameter using the shifting strategy
- Cells need to be expanded rather than contracted
- We’ll present only the coreset
Constant-Diameter Coreset for MDS

Algorithm:
- Create grid with cells of diameter 0.24
- Select the points of min and max x and y coordinates
- Find the optimal dominating set using the coreset points, but dominating every point
- We need to prove it’s a 4-approximation!
Proof of 4-Approximation of MDS

- Either point p from OPT is in the coreset (great!)
- Or there are points q_1, q_2 near p with angle $\geq 90^\circ$
- We dominate all points dominated by p using at most 4 points q_1, q_2, q_3, q_4
Lower Bound of 4

- 4-approximation
- Optimal solution
- Remaining disks
Conclusion

Greedy:
- 5-approximation to IS and DS in linear time with or without geometry
- 3-approximation to IS in $O(n \log n)$ time with geometry

Local search:
- $44/9$-approximation to DS in $O(n + m)$ time without geometry
- $44/9$-approximation to DS in $O(n \log n)$ time with geometry

Strip decomposition:
- 2.16-approximation to IS in $O(n \log^2 n)$ time with geometry
- Generalizes to weighted version in $O(n \log^3 n)$ time

Shifting coresets:
- $(4 + \varepsilon)$-approximation to IS and DS in $O(n)$ time with geometry
- Generalizes to weighted version for IS
Open Problems

- Other techniques that yield near-linear-time approximation algorithms?
- Can we prove inapproximability in near-linear-time?
- Can we improve the analysis of existing algorithms?
- Can we do better than 3-approximation for the chromatic number (greedy)?
- Maximum independent set without geometry better than greedy?
- Minimum *weight* dominating set?
- Intersection of other shapes: general disks, pseudo-disks, line segments, axis-aligned rectangles...
Thank you!

Photo by Gilbert Garcin