
Introduction Data Structure Conclusions

Optimal Approximate Polytope Membership

Sunil Arya
Hong Kong University of Science and Technology

Guilherme da Fonseca
Université d’Auvergne and LIMOS

David Mount
University of Maryland, College Park

SODA 2017



Introduction Data Structure Conclusions

Polytope Membership Queries

Polytope Membership Queries

Given a polytope P in d-dimensional space, preprocess
P to answer membership queries:

Given a point q, is q ∈ P?

Assume that dimension d is a constant and
P is given as intersection of n halfspaces

Dual of halfspace emptiness searching

For d ≤ 3
Query time: O(log n) Storage: O(n)

For d ≥ 4
Query time: O(log n) Storage: O(nbd/2c)

out
in



Introduction Data Structure Conclusions

Approximate Polytope Membership Queries

Approximate Version

An approximation parameter ε > 0 is given
(at preprocessing time)

Assume the polytope has diameter 1

If the query point’s distance from P :

0: answer must be inside
≥ ε: answer must be outside
> 0 and < ε: either answer is acceptable

Previous solutions were either:

Time-efficient
Query time: O(log 1

ε ) Storage: O(1/εd−1)

Space-efficient
Query time: Õ(1/ε(d−1)/8) Storage: O(1/ε(d−1)/2)

out
in

ε

?



Introduction Data Structure Conclusions

Time Efficient Solution [BFP82]

ε
P

Create a grid with cells of diameter ε

For each column, store the topmost
and bottommost cells intersecting P

Query processing:

Locate the column that contains q
Compare q with the two extreme
values

Time Efficient Solution [BFP82]

O(1/εd−1) columns

Query time: O(log 1
ε ) ← optimal

Storage: O(1/εd−1)



Introduction Data Structure Conclusions

Time Efficient Solution [BFP82]

ε
P

Create a grid with cells of diameter ε

For each column, store the topmost
and bottommost cells intersecting P

Query processing:

Locate the column that contains q
Compare q with the two extreme
values

Time Efficient Solution [BFP82]

O(1/εd−1) columns

Query time: O(log 1
ε ) ← optimal

Storage: O(1/εd−1)



Introduction Data Structure Conclusions

Time Efficient Solution [BFP82]

ε

q

P

Create a grid with cells of diameter ε

For each column, store the topmost
and bottommost cells intersecting P

Query processing:

Locate the column that contains q
Compare q with the two extreme
values

Time Efficient Solution [BFP82]

O(1/εd−1) columns

Query time: O(log 1
ε ) ← optimal

Storage: O(1/εd−1)



Introduction Data Structure Conclusions

Space Efficient Solution [AFM11, AFM12]

Preprocess:

Input P , ε

t = Õ(1/ε(d−1)/8)

Q← unit hypercube

Split-Reduce(Q)

Split-Reduce(Q)

Find an ε-approximation of Q ∩ P
If at most t facets, then
Q stores them

Otherwise, subdivide Q and recurse

Query time: Õ(1/ε(d−1)/8)

Storage: O(1/ε(d−1)/2) ← optimal

t = 2



Introduction Data Structure Conclusions

Space Efficient Solution [AFM11, AFM12]

Preprocess:

Input P , ε

t = Õ(1/ε(d−1)/8)

Q← unit hypercube

Split-Reduce(Q)

Split-Reduce(Q)

Find an ε-approximation of Q ∩ P
If at most t facets, then
Q stores them

Otherwise, subdivide Q and recurse

Query time: Õ(1/ε(d−1)/8)

Storage: O(1/ε(d−1)/2) ← optimal

t = 2



Introduction Data Structure Conclusions

Space Efficient Solution [AFM11, AFM12]

Preprocess:

Input P , ε

t = Õ(1/ε(d−1)/8)

Q← unit hypercube

Split-Reduce(Q)

Split-Reduce(Q)

Find an ε-approximation of Q ∩ P
If at most t facets, then
Q stores them

Otherwise, subdivide Q and recurse

Query time: Õ(1/ε(d−1)/8)

Storage: O(1/ε(d−1)/2) ← optimal

t = 2



Introduction Data Structure Conclusions

Space Efficient Solution [AFM11, AFM12]

Preprocess:

Input P , ε

t = Õ(1/ε(d−1)/8)

Q← unit hypercube

Split-Reduce(Q)

Split-Reduce(Q)

Find an ε-approximation of Q ∩ P
If at most t facets, then
Q stores them

Otherwise, subdivide Q and recurse

Query time: Õ(1/ε(d−1)/8)

Storage: O(1/ε(d−1)/2) ← optimal

t = 2



Introduction Data Structure Conclusions

Space Efficient Solution [AFM11, AFM12]

Preprocess:

Input P , ε

t = Õ(1/ε(d−1)/8)

Q← unit hypercube

Split-Reduce(Q)

Split-Reduce(Q)

Find an ε-approximation of Q ∩ P
If at most t facets, then
Q stores them

Otherwise, subdivide Q and recurse

Query time: Õ(1/ε(d−1)/8)

Storage: O(1/ε(d−1)/2) ← optimal

t = 2



Introduction Data Structure Conclusions

New Results

New solution is space-efficient and time-efficient:

Approximate Polytope Membership:

Query time: O(log 1
ε ) ← optimal

Storage: O(1/ε(d−1)/2) ← optimal
(Previous storage: O(1/εd−1) [BFP82])

Consequence:

Approximate Nearest Neighbor Searching:

Query time: O(log n)
Storage: O(n/εd/2)
(Previous storage: O(n/εd−1) [Har01])



Introduction Data Structure Conclusions

New Results

New solution is space-efficient and time-efficient:

Approximate Polytope Membership:

Query time: O(log 1
ε ) ← optimal

Storage: O(1/ε(d−1)/2) ← optimal
(Previous storage: O(1/εd−1) [BFP82])

Consequence:

Approximate Nearest Neighbor Searching:

Query time: O(log n)
Storage: O(n/εd/2)
(Previous storage: O(n/εd−1) [Har01])



Introduction Data Structure Conclusions

Techniques

Previous solutions use grids and quadtrees

Similar width in all directions

Our solution uses a
hierarchy of Macbeath regions:

Adapt to the curvature of the body
Narrow in directions of high curvature
Wide in directions of low curvature



Introduction Data Structure Conclusions

Macbeath Regions [Mac52]

K

x

M(x)

M ′(x)

Given a convex body K, x ∈ K, and λ > 0:

Mλ(x) = x+ λ((K − x) ∩ (x−K))

M(x) = M1(x): intersection of K and
K reflected around x

M ′(x) = M1/5(x)

Properties

M ′(x) ∩M ′(y) 6= ∅ ⇒ M ′(x) ⊆M(y)

y ∈M ′(x) ⇒ δ(y) = Θ(δ(x)), where
δ(x): distance from x to ∂K



Introduction Data Structure Conclusions

Macbeath Regions [Mac52]

K

x

Given a convex body K, x ∈ K, and λ > 0:

Mλ(x) = x+ λ((K − x) ∩ (x−K))

M(x) = M1(x): intersection of K and
K reflected around x

M ′(x) = M1/5(x)

Properties

M ′(x) ∩M ′(y) 6= ∅ ⇒ M ′(x) ⊆M(y)

y ∈M ′(x) ⇒ δ(y) = Θ(δ(x)), where
δ(x): distance from x to ∂K



Introduction Data Structure Conclusions

Macbeath Regions [Mac52]

K

x

2x−K

Given a convex body K, x ∈ K, and λ > 0:

Mλ(x) = x+ λ((K − x) ∩ (x−K))

M(x) = M1(x): intersection of K and
K reflected around x

M ′(x) = M1/5(x)

Properties

M ′(x) ∩M ′(y) 6= ∅ ⇒ M ′(x) ⊆M(y)

y ∈M ′(x) ⇒ δ(y) = Θ(δ(x)), where
δ(x): distance from x to ∂K



Introduction Data Structure Conclusions

Macbeath Regions [Mac52]

K

x

M(x)

2x−K

Given a convex body K, x ∈ K, and λ > 0:

Mλ(x) = x+ λ((K − x) ∩ (x−K))

M(x) = M1(x): intersection of K and
K reflected around x

M ′(x) = M1/5(x)

Properties

M ′(x) ∩M ′(y) 6= ∅ ⇒ M ′(x) ⊆M(y)

y ∈M ′(x) ⇒ δ(y) = Θ(δ(x)), where
δ(x): distance from x to ∂K



Introduction Data Structure Conclusions

Macbeath Regions [Mac52]

K

x

M(x)

M ′(x)

2x−K

Given a convex body K, x ∈ K, and λ > 0:

Mλ(x) = x+ λ((K − x) ∩ (x−K))

M(x) = M1(x): intersection of K and
K reflected around x

M ′(x) = M1/5(x)

Properties

M ′(x) ∩M ′(y) 6= ∅ ⇒ M ′(x) ⊆M(y)

y ∈M ′(x) ⇒ δ(y) = Θ(δ(x)), where
δ(x): distance from x to ∂K



Introduction Data Structure Conclusions

Macbeath Regions [Mac52]

K Given a convex body K, x ∈ K, and λ > 0:

Mλ(x) = x+ λ((K − x) ∩ (x−K))

M(x) = M1(x): intersection of K and
K reflected around x

M ′(x) = M1/5(x)

Properties

M ′(x) ∩M ′(y) 6= ∅ ⇒ M ′(x) ⊆M(y)

y ∈M ′(x) ⇒ δ(y) = Θ(δ(x)), where
δ(x): distance from x to ∂K



Introduction Data Structure Conclusions

Macbeath Regions [Mac52]

K Given a convex body K, x ∈ K, and λ > 0:

Mλ(x) = x+ λ((K − x) ∩ (x−K))

M(x) = M1(x): intersection of K and
K reflected around x

M ′(x) = M1/5(x)

Properties

M ′(x) ∩M ′(y) 6= ∅ ⇒ M ′(x) ⊆M(y)

y ∈M ′(x) ⇒ δ(y) = Θ(δ(x)), where
δ(x): distance from x to ∂K



Introduction Data Structure Conclusions

Macbeath Regions [Mac52]

K Given a convex body K, x ∈ K, and λ > 0:

Mλ(x) = x+ λ((K − x) ∩ (x−K))

M(x) = M1(x): intersection of K and
K reflected around x

M ′(x) = M1/5(x)

Properties

M ′(x) ∩M ′(y) 6= ∅ ⇒ M ′(x) ⊆M(y)

y ∈M ′(x) ⇒ δ(y) = Θ(δ(x)), where
δ(x): distance from x to ∂K



Introduction Data Structure Conclusions

Macbeath Regions [Mac52]

K

≈

Given a convex body K, x ∈ K, and λ > 0:

Mλ(x) = x+ λ((K − x) ∩ (x−K))

M(x) = M1(x): intersection of K and
K reflected around x

M ′(x) = M1/5(x)

Properties

M ′(x) ∩M ′(y) 6= ∅ ⇒ M ′(x) ⊆M(y)

y ∈M ′(x) ⇒ δ(y) = Θ(δ(x)), where
δ(x): distance from x to ∂K



Introduction Data Structure Conclusions

Macbeath Ellipsoids

M ′(x)

John Ellipsoid [Joh48]

For every centrally symmetric convex body K
in Rd, there exist ellipsoids E1, E2 such that
E1 ⊆ K ⊆ E2 and E2 is a

√
d-scaling of E1

Macbeath Ellipsoid

E(x): enclosed John ellipsoid of M ′(x)

Mλ(x) ⊆ E(x) ⊆M ′(x) for
λ = 1/(5

√
d)



Introduction Data Structure Conclusions

Macbeath Ellipsoids

M ′(x)

E(x) John Ellipsoid [Joh48]

For every centrally symmetric convex body K
in Rd, there exist ellipsoids E1, E2 such that
E1 ⊆ K ⊆ E2 and E2 is a

√
d-scaling of E1

Macbeath Ellipsoid

E(x): enclosed John ellipsoid of M ′(x)

Mλ(x) ⊆ E(x) ⊆M ′(x) for
λ = 1/(5

√
d)



Introduction Data Structure Conclusions

Macbeath Ellipsoids

M ′(x)

E(x)

Mλ(x)

John Ellipsoid [Joh48]

For every centrally symmetric convex body K
in Rd, there exist ellipsoids E1, E2 such that
E1 ⊆ K ⊆ E2 and E2 is a

√
d-scaling of E1

Macbeath Ellipsoid

E(x): enclosed John ellipsoid of M ′(x)

Mλ(x) ⊆ E(x) ⊆M ′(x) for
λ = 1/(5

√
d)



Introduction Data Structure Conclusions

Covering with Macbeath Ellipsoids

Covering (see [Bar07])

Given:

K: convex body

δ: small positive parameter

There exist ellipsoids E(x1), . . . , E(xk)

δ(x1) = · · · = δ(xk) = δ

Cover: Every ray from the origin
intersects some ellipsoid

k = O(1/δ(d−1)/2) [AFM16]

δ



Introduction Data Structure Conclusions

Covering with Macbeath Ellipsoids

Covering (see [Bar07])

Given:

K: convex body

δ: small positive parameter

There exist ellipsoids E(x1), . . . , E(xk)

δ(x1) = · · · = δ(xk) = δ

Cover: Every ray from the origin
intersects some ellipsoid

k = O(1/δ(d−1)/2) [AFM16]

δ



Introduction Data Structure Conclusions

Covering with Macbeath Ellipsoids

Covering (see [Bar07])

Given:

K: convex body

δ: small positive parameter

There exist ellipsoids E(x1), . . . , E(xk)

δ(x1) = · · · = δ(xk) = δ

Cover: Every ray from the origin
intersects some ellipsoid

k = O(1/δ(d−1)/2) [AFM16]

δ



Introduction Data Structure Conclusions

Hierarchy of Macbeath Ellipsoids

Hierarchy

Given:

K: convex body

ε: small positive parameter

Hierarchy:

Each level i a δi-covering

` = Θ(log 1
ε ) levels

δ0 = Θ(1), δ` = Θ(ε)

δi+1 = δi/2

E,E′ are parent/child if

Levels are consecutive
Same ray from the origin
intersects E and E′

Each node has O(1) children



Introduction Data Structure Conclusions

Hierarchy of Macbeath Ellipsoids

Hierarchy

Given:

K: convex body

ε: small positive parameter

Hierarchy:

Each level i a δi-covering

` = Θ(log 1
ε ) levels

δ0 = Θ(1), δ` = Θ(ε)

δi+1 = δi/2

E,E′ are parent/child if

Levels are consecutive
Same ray from the origin
intersects E and E′

Each node has O(1) children



Introduction Data Structure Conclusions

Hierarchy of Macbeath Ellipsoids

Hierarchy

Given:

K: convex body

ε: small positive parameter

Hierarchy:

Each level i a δi-covering

` = Θ(log 1
ε ) levels

δ0 = Θ(1), δ` = Θ(ε)

δi+1 = δi/2

E,E′ are parent/child if

Levels are consecutive
Same ray from the origin
intersects E and E′

Each node has O(1) children



Introduction Data Structure Conclusions

Ray Shooting from the Origin

Ray Shooting from the Origin
(generalizes polytope membership)

Preprocess:

K: convex body

ε: small positive parameter

Query:

Oq: ray from the origin towards q

Query algorithm:

Find an ellipsoid intersecting Oq
at level 0

Repeat among children at next level

Stop at leaf node

Leaf ellipsoid ε-approximates
boundary

O

q



Introduction Data Structure Conclusions

Ray Shooting from the Origin

Ray Shooting from the Origin
(generalizes polytope membership)

Preprocess:

K: convex body

ε: small positive parameter

Query:

Oq: ray from the origin towards q

Query algorithm:

Find an ellipsoid intersecting Oq
at level 0

Repeat among children at next level

Stop at leaf node

Leaf ellipsoid ε-approximates
boundary

O

q



Introduction Data Structure Conclusions

Ray Shooting from the Origin

Ray Shooting from the Origin
(generalizes polytope membership)

Preprocess:

K: convex body

ε: small positive parameter

Query:

Oq: ray from the origin towards q

Query algorithm:

Find an ellipsoid intersecting Oq
at level 0

Repeat among children at next level

Stop at leaf node

Leaf ellipsoid ε-approximates
boundary

O

q



Introduction Data Structure Conclusions

Analysis

O

q

Out-degree: O(1)

Query time per level: O(1)

Number of levels: O(log 1
ε )

Query time: O(log 1
ε )

Storage for bottom level:
O(1/ε(d−1)/2)

Geometric progression of storage
per level

Total storage: O(1/ε(d−1)/2)



Introduction Data Structure Conclusions

Impact

q

Approximate Nearest Neighbor

Preprocess n points such that, given a query point q, we can find a point
within at most 1 + ε times the distance to q’s nearest neighbor

For log 1
ε ≤ m ≤ 1/εd/2

Query time: O(log n+ 1/(m εd/2)) Storage: O(nm)

If m = 1/εd/2

Query time: O(log n) Storage: O(n/εd/2)



Introduction Data Structure Conclusions

What else is in the paper?

Proofs

Witness (important to find the
approximate nearest neighbor)

Reduction from ANN to
approximate ray shooting

Full Paper

arxiv.org/abs/1612.01696

O

q

witness

http://arxiv.org/abs/1612.01696


Introduction Data Structure Conclusions

Conclusions and Open Problems

Our approximate polytope membership data structure is optimal

Query time: O(log 1
ε )

Storage: O(1/ε(d−1)/2)

Still, several open problems remain

Further improvements to approximate nearest neighbor searching?

Generalization to k-nearest neighbors?

Other applications of the hierarchy?

Recent applications of the hierarchy

Near-optimal ε-kernel computation

Approximate diameter

Approximate bichromatic closest pair



Introduction Data Structure Conclusions

Bibliography

[AFM11] S. Arya, G. D. da Fonseca, and D. M. Mount. Approximate polytope
membership queries. In Proc. 43rd Annu. ACM Sympos. Theory Comput., pages
579–586, 2011.

[AFM12] S. Arya, G. D. da Fonseca, and D. M. Mount. Polytope approximation and the
Mahler volume. In Proc. 23rd Annu. ACM-SIAM Sympos. Discrete Algorithms,
pages 29–42, 2012.

[AFM16] S. Arya, G. D. da Fonseca, and D. M. Mount. On the combinatorial complexity
of approximating polytopes. In Proc. 32nd Internat. Sympos. Comput. Geom.,
pages 11:1–11:15, 2016.

[Bar07] I. Bárány. Random polytopes, convex bodies, and approximation. In W. Weil,
editor, Stochastic Geometry, volume 1892 of Lecture Notes in Mathematics,
pages 77–118, 2007.

[Har01] S. Har-Peled. A replacement for Voronoi diagrams of near linear size. In Proc.
42nd Annu. IEEE Sympos. Found. Comput. Sci., pages 94–103, 2001.

[Joh48] F. John. Extremum problems with inequalities as subsidiary conditions. In
Studies and Essays Presented to R. Courant on his 60th Birthday, pages
187–204, 1948.

[Mac52] A. M. Macbeath. A theorem on non-homogeneous lattices. Annals of
Mathematics, 54:431–438, 1952.



Introduction Data Structure Conclusions

Sculpture by José Mérino

Thank you!


	Introduction
	Data Structure
	Conclusions

