
Shadoks Approach for Lifelong Multi-Agent Path Finding

Aldo Gonzalez-Lorenzo1, Guilherme D. da Fonseca1

1Aix Marseille Univ, CNRS, LIS, France
aldo.gonzalez-lorenzo@univ-amu.fr, guilherme.fonseca@lis-lab.fr

Abstract
The League of Robot Runners is a challenge about lifelong
multi-agent path finding, where participants must submit al-
gorithms to solve a set of ten instances. This technical note
presents the algorithms that the Shadoks team used to find the
best solution for six of the ten instances at the main round of
2023.

Introduction
The League of Robot Runners is a competition about solving
ten instances of the lifelong multi-agent path finding prob-
lem (Ma et al. 2017). In 2023, our team, called Shadoks, won
the “Line Honours” category for finding the best solution to
six of the ten instances, and got second position in the other
two categories.

Table 1 lists our best solution for each instance and the
best solution known.

Instance Algorithm Our best solution Best solution
I-01 PlannerLazy 10385 10385
I-02 PlannerLazy 49181 49186
I-03 PlannerLong 3042 3042
I-04 PlannerLong 1741 1741
I-05 PlannerLazy 7293 7432
I-06 PlannerLazy 197275 197275
I-07 PlannerComb 5809 5914
I-08 PlannerSAT 6059 6059
I-09 PlannerGame 19943 28954
I-10 PlannerLazy 194677 194677

Table 1: For each instance, we show the algorithm we used,
the maximum number of finished tasks we obtained, and the
maximum number of finished tasks found by any team in
the competition. We highlight the instances for which we
obtained the best solution.

While not working in the field of robotics, we have al-
ready won the CG:SHOP 2021 competition about multi-
agent path finding (Crombez et al. 2022). Taking advantage
of our previous work, specially our conflict-based optimiza-
tion algorithm, we designed and tested a number of algo-
rithms with several parameters and options. We note that the

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

CG:SHOP competition is very different, since we have un-
limited computing time and the agents can move in an un-
bounded map. We hope that our original ideas, albeit naive,
may inspire researchers in the field.

Competition Environment
This section presents the rules and technicalities of the com-
petition, see the website1 for more details.

Each instance consists of a map and a number n of agents.
The map is a bounded regular grid with obstacles. Each
agent has an initial position, that is a location (a point of the
grid with integer coordinates) and a direction (north, east,
south or west), and an assigned task at some location. Time
is discretized in timesteps. At each timestep, agents may per-
form the following actions: move forward, turn right, turn
left or wait. However, agents are not allowed to move to an
obstacle, occupy the same location (known as a vertex colli-
sion) nor exchange locations (edge collision). Once an agent
finishes a task, that is, it reaches the location of its task, it is
assigned a new task. The problem is to finish as many tasks
as possible within an unknown number of timesteps.

The map of each instance is unknown although it belongs
to a set of five possible maps that are known to all par-
ticipants. The number of agents and their initial locations
are unknown. The tasks are only known when they are as-
signed to an agent, that is in the first timestep and every time
an agent finishes a task. The total number of timesteps is
also unknown. Participants submit programs to implement
a planner for solving the problem. A planner works in two
stages:
1. In the preprocessing stage, the map and the number of

agents is revealed to the planner. The planner has 30 min-
utes to analyze this input and precomputing information,
such as distances between the locations.

2. In the planning stage, the initial locations of the agents
and their tasks are revealed. The planner has one second
to compute and submit the actions of all the robots. The
number of timesteps is unknown, but bounded by 5000.

At the end of the execution, the participants only know how
many tasks where finished in each instance. While the ten in-
stances are not known, the participants are allowed to mod-
ify their code in order to infer some limited information

1https://www.leagueofrobotrunners.org

about each instance such as the map, the number of agents,
and the total number of timesteps.

Algorithms
We present in this section three algorithms developed by
our team. Our implementation is quite complex because we
sought the best results instead of elegant algorithms, so we
try to keep the presentation simple.

PlannerLong
This algorithm computes a plan, that is conflict-free path
for each agent from its initial position to its task, which de-
termines the actions to perform. At each timestep, we must
compute a valid path for the agents that have a new task,
which may need to change the paths that are already com-
puted for other agents.

The difficulty of this approach is to find a valid set of paths
for all agents because the map is bounded and has obstacles.
This algorithm uses three parameters: α, β and µ. At the
beginning of each timestep, we put into a queue the agents
with a new task (or equivalently, agents with an empty path).
Then, for each agent a in the queue, we search a path π
to the task of a that minimizes the length of the path plus
α ·

∑
a′∈C(q(a

′) + 1)β where C is the set of agents whose
path has a conflict with π and q(a′) denotes the number of
times an agent a′ has been enqueued in this timestep. This
is achieved with A* search. We assign this path π to a, and
for each conflicting agent a′ ∈ C, we remove its path and
enqueue it.

The goal of this procedure is to balance the shortness of
the paths with the exploration of more paths in order to find
a valid plan. If we set α = 0, every agent gets a shortest path
to its task by removing all the necessary agents; thus, this is
very unlikely to find an assignment of paths to all agents. On
the other hand, by setting α ≫ 0, we disregard the length of
the path and simply unplan as few agents as possible. The
parameter β penalizes unplanning the same agent several
times, forcing the algorithm to search for different paths. A
large value of β will compute very different paths because
we cannot unplan the same agents, whereas a value closer to
0 will take more time to explore similar paths.

However, there exist configurations in which this proce-
dure runs into an infinite loop. To avoid such loop, if the
agent a has been enqueued more than µ times, we take an
agent a′ ∈ C (if there is any) and a position of its path that
has a conflict with π, and forbid a′ from being at that posi-
tion at the same timestep.

If we find a valid assignment of paths before 1 second,
we run the algorithm again with lower values of α and β.
In practice, this means that we spend more time looking for
a valid plan, but we find shorter paths. We keep the set of
paths that minimizes

∑
|π(a)|1−d, where |π(a)| denotes the

length of the path of an agent a and d is the density of the
instance, that is the number of agents divided by the number
of non-obstacle locations of the map. The motivation of this
formula is that, in a dense instance, long paths are likely to
be replanned in a later timestep; therefore, optimizing their
length is not important.

The A* search algorithm is guided by the exact distances.
In the preprocessing stage, we precompute all pair-wise
distances between locations, and for each pair of locations
(p, p′), we save the directions from p that get closer to p′. If
there are m non-obstacle locations in a map, these directions
can be stored with 2 ·m2 bits, which fits in memory. Hence,
the heuristic function h of the A* search algorithm uses
these directions to estimate the distance to the task.

The best solution for instance I-04 was found with a
variant of this algorithm with two differences:

• We compute as many plans as possible in each timestep
and we keep the plan that maximizes the function∑

max(0, 40 − |π(a)|). This means that we only min-
imize paths of length less than 40.

• At each planning, we reset 25% of the paths from the
plan of the previous timestep.

PlannerLazy
The approach in this algorithm is to compute short paths for
each agent towards its tasks instead of computing the full
path. These paths have the following properties:

• There are no collisions between the paths.
• Their lengths are bounded by a parameter λ ∈ Z.
• They may be empty.

At the beginning of the planning stage, we put all the
agents in a queue and set their paths as empty. Then, each
timestep is divided into two parts: updating paths (taking
most of the time) and computing actions.

In the first part, we process the agents in the queue for as
long as possible in the allowed time (0.91 seconds). For each
agent, we compute a path towards its task avoiding the other
paths using A* search. We stop this search if (1) we reach
the task, (2) we find a path of length λ or (3) there are no
nodes to explore because no path exists. We assign this path
to the agent and move the agent to the back of the queue.

The choice of the parameter λ controls the time spent
computing a path. A small value of λ allows to compute
paths for many agents, while a large value allows agents to
see far away and choose the best path towards their task,
avoiding congestion in corridors.

In the second part, we extract the actions and prevent
collisions. Note that vertex collisions may occur because
the paths of the agents have different lengths. We identify
the moving agents that produce a vertex collision, make
them wait, reset their paths and put them in the front of the
queue for the next timestep. Then, we submit the actions
derived from the current paths.

A problem with this algorithm is that, since we plan
agents with a bounded time horizon, it may produce con-
gestion in narrow parts of the map. For this reason, we intro-
duced a system of barriers for instances I-06 and I-10.
For each location of the map, we define a set of directions
in which agents are allowed to move. These barriers are de-
fined by hand and written into a text file that is read by the
planner. They try to alternate directions of moving robots

between odd and even rows and columns while ensuring the
existence of a path between any two locations. The barriers
are not strictly enforced, but are used to guide the explo-
ration of the A* search.

In addition, we compute a congestion map that counts the
number of planned agents that pass by each location in the
next 15 timesteps to detect congested parts of the map, such
as corridors. The A* search algorithm of PlannerLazy uses
this congestion map to break ties and try to avoid congestion.

PlannerSAT
This algorithm is designed for dense instances. Here, each
timestep is independent. The objective is to find a next adja-
cent location for each agent, making as many agents as pos-
sible closer to their task, and compute the actions to move
the agents to these locations.

At each timestep, we sort the agents by distance from their
tasks. We call F the set of agents whose next location is
closer to their respective tasks. For each agent a ∈ F , we
define B(a) as a bound of the number of actions required
to reach its next location, which depends on its orientation.
At the beginning, F = ∅. For i = 1, . . . , n, we assign next
locations for the agents such that:

1. Agents in F remain in F , even if they may have different
locations.

2. For each agent a ∈ F , it can reach its next location within
B(a) steps.

3. The ith agent must get closer to its task.

We solve this problem using conflict optimiza-
tion (Crombez et al. 2022, 2023). We initialize the queue
with the ith agent, ai, and add it to F with B(ai) = 3.
For each agent in the queue, we identify the locations that
respect the first two conditions and choose the location
that minimizes

∑
(q(a) + 1)2 for all agents a that have a

vertex or edge collision with the current agent. We run this
algorithm until we find a valid assignment of locations or
until an agent is enqueued a number µ of times. If we find a
solution, we add the agent to F and set B(ai) to the number
of steps required to reach its next location.

The parameter µ then controls the time spent with each
agent. A small value allows us to process many agents, while
a large value will find more agents that can move towards
their task.

To compute the actions to be submitted, we first make the
agents that are not facing their next location turn. Then, we
make the agents that cannot move because their next loca-
tion is occupied by a turning agent wait and we back propa-
gate from these waiting agents to identify all the agents that
cannot move. The remaining agents move normally.

Discussion
The three algorithms presented in the previous section were
designed for different types of instances depending on their
density: PlannerLong for sparse instances, PlannerLazy for
intermediate instances and PlannerSAT for very dense in-
stances where it is inefficient to compute full or partial paths
for all agents.

The choice of the parameters should be guided by run-
ning the algorithms on test instances. Our approach is to try
to keep the planner as busy as possible during the time al-
lowed for each timestep while comparing the results after a
large enough number of timesteps. However, note that the
actual results depend on the computational capabilities of
the hardware used.

Conclusion
This technical note presents the three algorithms used to find
the best solution for six of the ten instances of the 2023 main
round of the League of Robot Runners competition. The de-
scription of the algorithms is simplified, since the actual im-
plementation is convoluted given the need to find the best
possible solution to win the competition and the limited al-
lowed time.

We plan to further study every algorithm that we de-
veloped to better understand their efficiency on different
types of instances and the impact of the different options
and parameters and to compare them with state-of-the-art
algorithms in lifelong multi-agent path planning.

We conclude this article with three characteristics of our
methodology that could be helpful for future participants of
the competition.
1. We tried very different algorithms, some of which where

designed only for a single instance. Our work shows that
it is inappropriate to solve all problems using a single
algorithm.

2. It is helpful to have as much information as possible
about the instance to solve, such as the map, the number
of agents and the number of timesteps. This knowledge
allows for running tests and finding the most efficient al-
gorithm with the best choice of parameters for each in-
stance.

3. The computation and solutions must be inspected in de-
tail to detect pitfalls, since multi-agent path finding often
produces errors such as infinite loops, unplanned agents
and congestion.

References
Crombez, L.; da Fonseca, G. D.; Fontan, F.; Gerard, Y.;
Gonzalez-Lorenzo, A.; Lafourcade, P.; Libralesso, L.; Mo-
mege, B.; Spalding-Jamieson, J.; Zhang, B.; and Zheng,
D. W. 2023. Conflict Optimization for Binary CSP Applied
to Minimum Partition into Plane Subgraphs and Graph Col-
oring. ACM Journal of Experimental Algorithmics, 28: 1–
13.
Crombez, L.; da Fonseca, G. D.; Gerard, Y.; Gonzalez-
Lorenzo, A.; Lafourcade, P.; and Libralesso, L. 2022.
Shadoks Approach to Low-Makespan Coordinated Motion
Planning. ACM J. Exp. Algorithmics, 27: 3.2:1–3.2:17.
Ma, H.; Li, J.; Kumar, T. K. S.; and Koenig, S. 2017. Life-
long Multi-Agent Path Finding for Online Pickup and De-
livery Tasks. In Larson, K.; Winikoff, M.; Das, S.; and
Durfee, E. H., eds., Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems, AAMAS 2017,
São Paulo, Brazil, May 8-12, 2017, 837–845. ACM.

