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Motivation: Untangling TSP Tours

2d Euclidean TSP (NP-hard):

Input: A set of n points called cities.
Output: The shortest tour (polygon whose vertices are the cities).

Heuristics output tours with crossings.

A tour with crossings can be shortened using flips:

choose two crossing segments and remove them,
choose two non-crossing segments and insert them,
repeat until there are no crossings.

a city
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A Potential Argument

An infinite flip sequence?

No.

Measuring progress with a potential,
i.e., an integer function on tours which is:

bounded
decreasing at each step.

1 ≤ Φrank when sorted by length(T )︸ ︷︷ ︸
potential of the tour T

≤ n!

1216.78 12

1216.09 11

1216.00 10

1215.93 9

1215.72 8

1214.96 7

1214.38 6

1213.62 5

1213.41 4

1213.34 3

1213.26 2

1212.56 1
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The Longest Flip Sequences

The deletion choice may impact the number of flips.

We know of no clever way to choose.

D(n): number of flips in the longest flip sequences.

We want bounds on D(n).
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The Flip Graph

The deletion choice may impact the number of flips.

We know of no clever way to choose.

D(n): number of flips in the longest flip sequences.

We want bounds on D(n).
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Previous Bounds on the Longest Flip Sequences

n2 ≼

Dconvex(n)︷ ︸︸ ︷
cities in convex position ≼ n2︸︷︷︸

next slide

n2 ≼

D(n,t)︷ ︸︸ ︷
t non-convex cities ≼ n2t︸︷︷︸

new

n2 ≼

D(n)︷ ︸︸ ︷
cities in general position ≼ n3︸︷︷︸

1980

≼ n!︸︷︷︸
previous slide
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Convex Proof

n2 ≼ Dconvex(n) ≼ n2

n2 ≼ D(n, t) ≼ n2t

n2 ≼ D(n) ≼ n3
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Proving Dconvex(n) = O(n2)

Φcrossings(T ): number of crossings in the tour T .

Φcrossings = O(n2)

Φcrossings decreases at each flip:

s
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n2 ≼ Dconvex(n) ≼ n2
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From Segments to Lines

Φcrossings may not decrease at each flip:

Idea: consider line-segment crossings instead.

L: lines through two cities.

Φℓ(T ): number of crossings with a line ℓ in the tour T .

ΦL =
∑

ℓ∈LΦℓ

O(n2) lines, O(n) crossings per line =⇒ ΦL = O(n3).

Φℓ does not increase at a flip.

ΦL decreases at each flip.

s

L

`
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Line Potentials

Φcrossings may not decrease at each flip:

Idea: consider line-segment crossings instead.

L: lines through two cities.

Φℓ(T ): number of crossings with a line ℓ in the tour T .

ΦL =
∑

ℓ∈LΦℓ

O(n2) lines, O(n) crossings per line =⇒ ΦL = O(n3).

Φℓ does not increase at a flip.

ΦL decreases at each flip.
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ΦL is Bounded

Φcrossings may not decrease at each flip:

Idea: consider line-segment crossings instead.

L: lines through two cities.

Φℓ(T ): number of crossings with a line ℓ in the tour T .

ΦL =
∑

ℓ∈LΦℓ

O(n2) lines, O(n) crossings per line =⇒ ΦL = O(n3).

Φℓ does not increase at a flip.

ΦL decreases at each flip.

s

`

L

`



On the Longest Flip
Sequence

to Untangle Segments in the
Plane

Introduction

Convex Proof

1980 Proof

Segments to Lines

Line Potentials

Bounded

Decreasing

Crossing

New Proof

Conclusion

ΦL Decreases

Φcrossings may not decrease at each flip:

Idea: consider line-segment crossings instead.

L: lines through two cities.

Φℓ(T ): number of crossings with a line ℓ in the tour T .

ΦL =
∑

ℓ∈LΦℓ

O(n2) lines, O(n) crossings per line =⇒ ΦL = O(n3).

Φℓ does not increase at a flip.

ΦL decreases at each flip.
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What Is a Crossing

A single point intersection between a line and a segment is a crossing if it is
not an endpoint of the segment.

Yes! No! No!
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New Proof

n2 ≼ Dconvex(n) ≼ n2

n2 ≼ D(n, t) ≼ n2t

n2 ≼ D(n) ≼ n3
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Near Convex Sets

Near Convex sets: the n points are convex except t of them.

n = 9 t = 3
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Φ: a Mixed Potential

Φ =

O(n2)

︷ ︸︸ ︷
Φcrossings︸ ︷︷ ︸

may not decrease!

+

O(n2t)

︷︸︸︷
ΦL′︸ ︷︷ ︸

compensate Φcrossings?

= O(n2t)

L′: lines through at least one non-convex point.

}O(nt)
∪ lines through two consecutive convex points. }O(n)

Case 1. If Φcrossings decreases, then so does Φ
(because ΦL′ does not increase) ✓

Case 2. If not,

if p is non-convex: ✓

` ∈ L′

` ∈ L′

` ∈ L′
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Does Φ Decreases? Yes!

Φ =

O(n2)︷ ︸︸ ︷
Φcrossings︸ ︷︷ ︸

may not decrease!

+

O(n2t)︷︸︸︷
ΦL′︸ ︷︷ ︸

compensate Φcrossings?

= O(n2t)
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Conclusion

n2 ≼ Dconvex(n) ≼ n2

n2 ≼ D(n, t) ≼ n2t

n2 ≼ D(n) ≼ n2︸︷︷︸
2016 conjecture

≼ n3
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From Tours to Segments

Being a tour is not used in the proofs.

A flip choice may preserve:

nothing special, i.e., being a set of n segments → D
being a red-blue matching → DRB

being a tour → DTSP

...

D,DRB,DTSP are the same asymptotically.
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Conclusion

n2 ≼ Dconvex(n) ≼ n2

n2 ≼ D(n, t) ≼ n2t

n2 ≼ D(n) ≼ n2︸︷︷︸
2016 conjecture

≼ n3

Thank you!
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Reductions

2D(n) ≤ DRB(2n) ≤ D(2n) 2DRB(n) ≤ DTSP(3n) ≤ D(3n)
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Distinct Flips

The same pair of segments can be flipped multiple times in the same sequence.

Counting distinct flips means that we do not count this multiplicity.

A balancing argument:

There are O(n
3

k ) flips decreasing ΦL by at least k.

There are O(n2k2) flips decreasing ΦL by less than k:
We enumerate them by sweeping a line.

We choose k = n1/3.

p1

p4
q1

q2

qk

q−1

q−2
q−k

qk−1

q−k+1

/∈ Q

...

...
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