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Abstract

In the polytope membership problem, we are given a convex polytope P ⊂ Rd for constant
d ≥ 2, and the objective is to preprocess P into a data structure so that, given any query
point q ∈ Rd, it is possible to determine efficiently whether q ∈ P . We consider this
problem in an approximate setting. Given an approximation parameter ε > 0, an ε-
approximate polytope membership query returns a positive result if q ∈ P , a negative
result if the distance from q to P is greater than ε · diam(P ), and it may return either
result otherwise.

We presented the first data structures especially tailored to approximate polytope
membership. Initially, we showed how to answer queries in O(1/ε(d−1)/4) time using
optimal O(1/ε(d−1)/2) storage. Later, we improved the analysis of the same data structure
to O(log(1/ε)/ε(d−1)/8) query time for the same optimal storage. Switching to a different
approach, we finally obtained an optimal data structure with O(log(1/ε)) query time
and O(1/ε(d−1)/2) storage. Our data structures yield dramatic improvements to several
well-studied geometric approximation problems, where the input is a set of n points and
α > 0 is an arbitrarily small constant:

• We reduce the storage needed to answer approximate nearest neighbor queries in
polylogarithmic time from O(n/εd−1) to O(n/εd/2).

• We reduce the time to approximate the diameter from O((n+ 1/εd−2) log(1/ε)) to
O(n log(1/ε) + 1/ε(d−1)/2+α).

• We reduce the time to construct an ε-kernel from O((n+ 1/εd−2) log(1/ε)) to near-
optimal O(n log(1/ε) + 1/ε(d−1)/2+α).

• We reduce the expected time to approximate the bichromatic closest pair from
O(n/εd/3) to O(n/εd/4+α).

• We reduce the expected time to approximate the minimum bottleneck Euclidean
spanning tree from O((n log n)/εd/3) to O((n log n)/εd/4+α).

While our initial approach to approximate polytope membership was based on stan-
dard techniques of grids and quadtrees, our most efficient data structure presents the first
algorithmic application of Macbeath regions, a classical structure from convex geometry.
The data structure consists of a hierarchy of John ellipsoids of Macbeath regions, where
each level of the hierarchy provides a certain degree of approximation of the boundary of
the polytope.
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Resumé

Dans le problème d’appartenance à un polytope, on a un polytope convexe P ⊂ Rd pour
une constante d ≥ 2, et l’objectif est de représenter P par une structure de données de
façon que, si on reçoit un point de requête q ∈ Rd, on peut rapidement déterminer si
q ∈ P . On considère ce problème dans un contexte d’approximation. Étant donné un
paramètre ε > 0, la requête doit renvoyer une réponse positive si q ∈ P , une réponse
négative si la distance de q à P est supérieure à ε · diam(P ), et sinon on peut avoir
n’importe quelle réponse, où diam(P ) est le diamètre de P .

On a présenté les premières structures de données développées spécialement pour
l’approximation de l’appartenance à un polytope. Initialement, on a montré comment
répondre aux requêtes en temps O(1/ε(d−1)/4) avec un stockage optimal de O(1/ε(d−1)/2).
Ensuite, on a raffiné l’analyse de la même structure de données pour obtenir temps de
requête O(log(1/ε)/ε(d−1)/8) avec le même stockage optimal. Finalement, on a étudié une
approche différente pour obtenir une structure de données optimale avec temps de requête
O(log(1/ε)) et stockage O(1/ε(d−1)/2) . Nos structures de données apportent d’énormes
améliorations pour plusieurs problèmes classiques d’approximation géométrique, où l’en-
trée est un ensemble de n points et α > 0 est une constante arbitrairement petite :

• On réduit le stockage pour approximer le plus proche voisin en temps polylogarith-
mique de O(n/εd−1) à O(n/εd/2).

• On réduit le temps pour approximer le diamètre de O((n + 1/εd−2) log(1/ε)) à
O(n log(1/ε) + 1/ε(d−1)/2+α).

• On réduit le temps pour construire un ε-noyau de O((n + 1/εd−2) log(1/ε)) à
O(n log(1/ε) + 1/ε(d−1)/2+α).

• On réduit le temps d’un algorithme probabiliste pour approximer les deux points
les plus rapprochés bichromatiques de O(n/εd/3) à O(n/εd/4+α).

• On réduit le temps d’un algorithme probabiliste pour approximer l’arbre couvrant
Euclidien d’étranglement minimal de O((n log n)/εd/3) à O((n log n)/εd/4+α).

Alors que notre solution initiale était basée sur de techniques bien connues comme
les grilles et quadtrees, notre structure de données la plus efficace présente la première
application algorithmique des régions de Macbeath, une structure classique de la géométrie
convexe. La structure de donnés utilise une hiérarchie d’ellipsoïdes de John des régions
de Macbeath, où chaque niveau de la hiérarchie fournit un certain degré d’approximation
du bord du polytope.
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Chapter 1

Introduction

The field of computational geometry greatly succeeded its initial goal of designing effi-
cient algorithms and data structures for numerous planar problems, such as convex hull,
Voronoi diagram, point location, and range searching [51]. However, major barriers were
encountered when trying to solve these problems in arbitrary dimensions. In fact, several
lower bound results show that these problems require a processing time of roughly nd,
where n is the input size and d is the dimension. In order to surpass this barrier, called
the curse of dimensionality, we resort to finding approximate solutions instead of exact
ones.

Most of my current research topics are in the area of geometric approximation (see [65]
for an introductory textbook). I’m particularly interested in approximations with respect
to distances in spaces of constant dimension d. I focus this dissertation around one such
problem: approximate polytope membership. Several fundamental problems are closely
related to approximate polytope membership, and are also presented in this dissertation.

The work presented herein is based on four conference papers and one journal pa-
per. The conference papers were presented in STOC 2011 [11], SODA 2012 [13], SODA
2017 [16], and SoCG 2017 [14]. The journal paper compiling the first two conference pa-
pers appeared at SIAM Journal on Computing [17]. All these papers were the fruit of my
collaboration with Sunil Arya (Hong Kong University of Science and Technology) and my
PhD advisor David Mount (University of Maryland) after the conclusion of my PhD. The
papers cover a much greater level of detail than the present dissertation. The objective
here is to survey the state of art of the problem, presenting some of the simplest proofs
to give an idea of the type of argument used. Detailed proofs of all results can be found
in the attached papers.

This dissertation is organized as follows. In Chapter 2, I consider the approximate
polytope membership problem per se. After defining the problem and surveying previous
work, I present two data structures that we proposed to solve the problem. The first data
structure, called Split-Reduce, is based on a simple quadtree construction. However, it is
not easy to analyze its complexity, and tight bounds remain an open problem. We prove
some simple upper and lower bounds from [11] and give a high level idea of the improved
bounds upper bounds from [13]. Then, I describe a completely different data structure [16],
whose construction is much less elementary, but whose analyses is somewhat simpler. I
present an informal definition of the data structure, and give one simple proof to hint at
the kind of tools used.
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In Chapter 3, I consider some of the several applications of approximate polytope
membership. I start with our original motivating application [11] of approximate nearest
neighbor searching. After surveying the rich history of the problem, I present the reduction
from approximate nearest neighbor to approximate polytope membership. Then, I move
to the problem of ε-kernels, giving an intuitive idea of our construction [14]. Next, I
present the problems of diameter, bichromatic closest pair, and Euclidean trees, showing
how these problems reduce to approximate polytope membership.

In Chapter 4, I briefly present some ongoing work. First I discuss the problem of
approximating the Minkowski sum of two convex bodies, with the application of approxi-
mating the width of a convex body. Another ongoing work that I mention is the problem
of approximate nearest neighbor searching in non-Euclidean metrics. I also discuss a re-
lated result in discrete geometry, where we consider the complexity of an approximating
convex body [12,15]. Finally, I list some open problems.

I use the standard computational geometry approach, which focuses on asymptotic
complexities in the real RAM model of computation, unless otherwise specified. In most
geometric approximation problems, a parameter ε > 0 is given to limit the approximation
error allowed: the closer ε is to zero, the closer to an exact solution we get. Some works
on geometric approximation assume that ε is a constant, while other works consider that
ε is an asymptotic variable that approaches zero. The results presented herein are of the
latter kind. The main goal of my work is to reduce ε-dependencies, for example, from
1/εd to 1/εd/2. Furthermore, we assume that d is a constant, therefore hiding some often
unavoidable exponential dependencies on d such as 2d. Throughout, we use the term
polytope to mean a bounded convex body with flat faces.
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Chapter 2

Approximate Polytope Membership

Polytopes are key structures in many areas of mathematics and computation. In this
dissertation, we consider a fundamental search problem related to polytopes. Let P denote
a convex body in Rd, that is, a closed, convex set of bounded diameter that has a nonempty
interior. The polytope membership problem is that of preprocessing P so that it is possible
to determine efficiently whether a given query point q ∈ Rd lies within P . Throughout,
we assume that the dimension d is a fixed constant that is at least 2.

It follows from standard results in projective duality that deciding membership in a
polytope defined as the intersection of n halfspaces is equivalent to answering halfspace
emptiness queries for a set of n points. In dimension d ≤ 3, it is possible to build a data
structure of linear size that can answer such queries in logarithmic time [51]. In higher
dimensions, however, all known exact data structures with roughly linear space have
a query time of Ω̃

(
n1−1/bd/2c)1 [72], which is unacceptably high for many applications.

Polytope membership is a special case of polytope intersection queries [28,46,53]. Barba
and Langerman [28] showed that for any fixed d, it is possible to preprocess polytopes
in Rd so that given two such polytopes that have been translated and rotated, it can be
determined whether they intersect each other in time that is logarithmic in their total
combinatorial complexity. However, the preprocessing time and space grow as the com-
binatorial complexity of the polytope raised to the power bd/2c. Since the combinatorial
complexity of a polytope with n vertices can be as high as Θ(nbd/2c), the storage upper
bound is roughly O(nd

2/4).
The lack of efficient exact solutions motivates the question of whether polytope mem-

bership queries can be answered approximately. We provide two strongly related defini-
tions for approximate polytope membership. Let ε be a positive real parameter, and let
diam(P ) denote P ’s diameter. Given a query point q ∈ Rd, a weak ε-approximate polytope
membership query returns a positive result if q ∈ P , a negative result if the distance from
q to its closest point in P is greater than ε · diam(P ), and it may return either result
otherwise (see Figure 2.1(a)).

Sometimes it is useful to use a stronger definition of approximation, sensitive not only
to the diameter, but to directional widths. Consider an expanded convex body P ′ ⊃ P .
A query returns a positive result if the query point q is inside P , a negative result if q is
outside P ′, and may return either result otherwise. In the weak version, we define P ′ as

1Throughout, we use Õ(·) and Ω̃(·) as variants of O(·) and Ω(·), respectively, that ignore logarithmic
factors.
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Figure 2.1: Approximate polytope membership: (a) weak problem formulation, (b) strong
problem formulation.

the set of points that lie within distance ε · diam(P ) of P , thus defining a body whose
Hausdorff distance from P is ε · diam(P ).

In the strong ε-approximate polytope membership query, we define P ′ as follows. For
any nonzero vector v ∈ Rd, consider the two supporting hyperplanes for P that are normal
to v. Translate each of these hyperplanes outward by a distance of ε · widthv(P ), and
consider the closed slab-like region lying between them. Define P ′ to be the intersection
of this (infinite) set of slabs (see Figure 2.1(b)). This is clearly a stronger approximation
than the Hausdorff-based definition.

A solution for the weak version can be converted into a solution for the strong version
using standard fattening techniques [5]. This reduction does not affect polynomial asymp-
totic complexities, since the value of ε is only changed by a constant factor. Therefore,
we refer to the weak version when solving the problem, but we may apply the stronger
version when using approximate polytope membership as a black box.

Polytope membership queries, both exact and approximate, arise in many application
areas, such as linear-programming and ray-shooting queries [38, 44, 71, 73, 79], nearest
neighbor searching and the computation of extreme points [39,49], collision detection [58],
and machine learning [37].

Existing solutions to approximate polytope membership queries have been based on
straightforward applications of classic polytope approximation techniques. Given a poly-
tope P , we say that a polytope P ′ is an outer ε-approximation of P if P ⊆ P ′, and the
Hausdorff distance between P ′ and P is at most ε ·diam(P ) (see Figure 2.1(a)). An inner
ε-approximation is defined similarly but with P ′ ⊆ P . Dudley [54] showed that there
exists an outer ε-approximating polytope for any bounded convex body in Rd formed by
the intersection of O

(
1/ε(d−1)/2

)
halfspaces, and Bronshteyn and Ivanov [35] proved an

analogous bound on the number of vertices needed to obtain an inner ε-approximation.
Both bounds are known to be optimal in the worst case since Ω

(
1/ε(d−1)/2

)
halfspaces
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are necessary to approximate an Euclidean ball (see, e.g., [36]). These results have been
applied to a number of problems, for example, the construction of coresets [5].

Dudley’s construction provides a naïve solution to the approximate polytope member-
ship problem. Construct an ε-approximation P ′, and determine whether q lies within all
its bounding halfspaces. This approach takes O(1/ε(d−1)/2) query time and space. An al-
ternative simple solution was proposed by Bentley et al. [30]. Create a d-dimensional grid
with cells of diameter ε and, for every column along the xd-axis, store the two extreme xd
values where the column intersects P . This algorithm produces an approximation P ′ with
O(1/εd−1) facets. Given a query point q, it is easy to determine if q ∈ P ′ in logarithmic
time (or even in constant time if we assume a model of computation that supports the
floor function), but the space required by the approach is O(1/εd−1).

We are the first to present data structures especially tailored to approximate polytope
membership. Our first data structure is based on a simple quadtree construction algo-
rithm, called split-reduce. However, the analysis of the storage space of the data structure
obtained by this algorithm is highly non-trivial. We present upper and lower bound to
the storage. The data structure, upper and lower bounds to the storage, and applications
have been presented in STOC 2011 [11]. An improved upper bound has been presented in
SODA 2012 [13]. A journal version compiling both papers and additional details appears
at SIAM Journal on Computing [17] and is attached to this dissertation. We present the
split-reduce approach in Section 2.1.

While the split-reduce data structure is both simple and practical, the question of
whether it is possible to achieve query time O(log 1

ε
) with minimum storage O(1/ε(d−1)/2)

has remained open. We give an affirmative answer to this question. We abandon the
quadtree-based approach in favor of a data structure involving a hierarchy of ellipsoids.
These ellipsoids are selected through a sampling process that is inspired by a classical
structure from the theory of convexity, called Macbeath regions [70]. This optimal data
structure has been presented in SODA 2017 [16]. A faster preprocessing algorithm is pre-
sented in SoCG 2017 [14], together with many applications. Both papers are attached to
this dissertation. We present the key ideas of the Macbeath region approach in Section 2.2.

2.1 Split-Reduce
As mentioned in the previous Section, Dudley’s construction [54] gives a data structure
with optimal storage space of O(1/ε(d−1)/2), while Bentley et al. [30] gives optimal query
time. These two extreme solutions raise the question of whether a tradeoff is possible
between space and query time. Before presenting our results, it is illustrative to consider
a very simple method for generating such a tradeoff. Given a polytope P , we say that a
polytope P ′ is an absolute ε-approximation of P if the Hausdorff distance between P ′ and
P is at most ε, regardless of the diameter of P . It follows immediately from Dudley’s result
that we can obtain an absolute ε-approximation to a polytope P of diameter diam(P )
with O((diam(P )/ε)(d−1)/2) facets.

Given r ∈ [ε, 1], subdivide the bounding hypercube into a regular grid of cells of
diameter r and, for each cell that intersects the polytope’s boundary, apply Dudley’s
absolute approximation to this portion of the polytope. By a straightforward packing
argument, the number of occupied cells is O(1/rd−1). Since each cell is of diameter O(r),
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P

Figure 2.2: Example of the Split-Reduce algorithm with t = 2.

each can be approximated to absolute error ε using O((r/ε)(d−1)/2) facets per cell. Subject
to minor technical details, the result is a data structure of spaceO(1/(εr)(d−1)/2) and query
time O((r/ε)(d−1)/2). This interpolates nicely between the two extremes for ε ≤ r ≤ 1.
The space-time trade-off is illustrated in Figure 2.4(a).

Given the optimality of Dudley’s approximation, it may be tempting to think that
the above tradeoff is optimal, but we will demonstrate that it is possible to do better.
(To see why, observe that each piece of the polytope’s boundary carries only a portion of
the polytope’s total curvature. Clarkson has shown that, when curvature is constrained,
Dudley’s bound is not tight [50].) We show that it is possible to achieve significantly
better space-time tradeoffs for approximate polytope membership.

The data structure and its construction are both extremely simple. The data structure
consists of a quadtree of height O(log 1

ε
), where each leaf cell stores a set of halfspaces

whose intersection approximates the polytope’s boundary within this cell. A query is
answered by performing a point location in the quadtree followed by a brute force in-
spection of the halfspaces in the node. The data structure is constructed by the following
recursive algorithm, called Split-Reduce, illustrated in Figure 2.2. It is given the polytope
P ⊆ [−1, 1]d, the approximation parameter ε, and the desired query time t. The initial
quadtree box is Q = [−1, 1]d.

Split-Reduce(Q):
1. Let P ′ be an absolute ε-approximation of Q ∩ P .
2. If the number of facets |P ′| ≤ t, then Q stores the hyperplanes bounding P ′.
3. Otherwise, split Q into 2d quadtree boxes and invoke Split-Reduce on each such

box.

Step 1 consists of obtaining a polytope P ′ that absolute ε-approximates Q∩P . Some
polytopes can be approximated with far fewer than the Θ(1/ε(d−1)/2) facets generated
by Dudley’s construction. For example, a simplex can be represented exactly with d+ 1
facets. The problem of generating a minimum-facet ε-approximation to a polytope can
be reduced to a set cover problem [76]. By applying the well known greedy set-cover
heuristic, it is possible to produce such an approximation in which the number of facets
exceeds the optimum by a factor of O(log 1

ε
). In particular, the set cover instance consists

of one set for each facet f of the polytope, and the corresponding set contains all facets
that are approximated by f ’s supporting hyperplane. Clarkson [48] presented a somewhat
more complicated algorithm that does better. He showed that if c is the smallest number
of facets required to approximate P , then it is possible to obtain an approximation with
O(c log c) facets in O(nc2 log n log c) randomized time, where n is the number of facets of
P .

11
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Figure 2.3: Dudley’s polytope approximation.

For simplicity, we assume that the algorithm used in Step 1 produces an absolute
approximation to Q ∩ P with a minimum number of facets. An alternative is to apply
Chan’s coreset construction [43] to P and then run Clarkson’s approximation algorithm
on the result. This yields a preprocessing time of O(n + 1/ε3(d−1)/2) but increases the
query time by a negligible factor of O(log 1

ε
).

For completeness, let us now describe Dudley’s algorithm. Given a bounded polytope
P , let the size of P , denoted size(P ), be the side length of the smallest axis aligned box
Q that contains P . Through an appropriate translation we may assume that the center
of Q is the origin. Dudley’s algorithm obtains an approximation P ′ as follows. Let B be
a ball of radius size(P )

√
d centered at the origin. (Note that P ⊂ B.) Place a set W

of Θ((size(P )/ε)(d−1)/2) points on the surface of B such that every point on the surface
of B is within distance O(

√
ε size(P )) of some point in W . For each point w ∈ W , let

w′ be its nearest point on the boundary of P . We call these points samples. For each
sample point w′, take the supporting halfspace passing through w′ that is orthogonal to
the vector from w′ to w. P ′ is the intersection of these halfspaces (see Figure 2.3).

A key element in the analysis of Dudley’s construction is that, for each point p on the
boundary of P , there is a sample point w′ in the above construction (subject to a suitable
adjustment of the constant factors) whose distance from p is at most

√
ε size(P ), and the

distance from p to the supporting hyperplane at w′ is at most ε. In summary, we may
view Dudley’s approximation as producing a set of Θ((size(P )/ε)(d−1)/2) halfspaces, where
each halfspace is responsible for approximating a region of P ’s boundary of diameter at
most

√
ε size(P ). We exploit the limited range of each Dudley halfspace in the following

lemma.

Lemma 2.1. Given a polytope P and ε > 0, Dudley’s method produces a collection of
O((size(P )/ε)(d−1)/2) halfspaces whose intersection ε-approximates P . Furthermore, given
a square grid of side length O(

√
ε size(P )), we may associate each halfspace with O(1)

grid cells, such that this halfspace is used for approximating the boundary of P within
only these cells.

Recall that our algorithm takes four inputs: polytope P , box Q, query time t, and
approximation error ε. For simplicity, we refer to the algorithm as Split-Reduce(Q), since

12



the parameters P , t, ε remain unchanged throughout the recursive calls. The output of
our algorithm is a quadtree whose leaf cells induce a subdivision of Q. Each leaf cell
L stores a set of tL ≤ t halfspaces whose intersection approximates P ∩ L, where tL
is the minimum number of halfspaces required to approximate P ∩ L. The storage of
this quadtree is defined as the total number of stored halfspaces over all the leaf cells.
Before establishing the space-time tradeoff, we show that the algorithm produces a data
structure with query time t = Θ(1/ε(d−1)/4) and the same storage as Dudley’s algorithm,
O(1/ε(d−1)/2) (see Figure 2.4)(b).

Theorem 2.2. The output of Split-Reduce(Q) for

t ≥
(

size(Q)

ε

)(d−1)/4

≥ 1

is a quadtree with storage O((size(Q)/ε)(d−1)/2).

Proof. Let T denote the quadtree produced by the algorithm. For each leaf cell L of T , let
tL be the number of halfspaces stored in L. We will show that

∑
L tL ≤ (size(Q)/ε)(d−1)/2,

which establishes the desired storage bound.
Toward this end, we first prove a lower bound on the size of any leaf cell L. We assert

that there exists a constant c1 such that every leaf cell L has size size(L) ≥
√
ε size(Q)/c1.

The assertion follows from Lemma 2.1. In particular, the standard Dudley technique
applied to a cell of size

√
ε size(Q)/c1 produces at most cD(size(Q)/c1ε)

(d−1)/4 halfspaces,
where cD is the constant arising from Dudley’s method. By choosing c1 to be a sufficiently
large constant, the number of halfspaces is at most t, and the termination condition of
our algorithm implies that such a cell is not further subdivided.

Let PD be the polytope obtained by applying Dudley’s algorithm to P ∩ Q. Com-
bining our assertion with Lemma 2.1 (where P ∩ Q plays the role of P in the lemma),
each bounding halfspace of PD is used in approximating O(1) leaf cells. We assign each
halfspace of PD to these leaf cells. The correctness of Dudley’s algorithm implies that the
halfspaces assigned to any cell L provides an approximation of P ∩L. Thus, tL is no more
than the number of Dudley halfspaces assigned to L. Since the number of halfspaces of PD
is O((size(Q)/ε)(d−1)/2), it follows that

∑
L tL = O((size(Q)/ε)(d−1)/2), which completes

the proof.

Using much more sophisticated techniques we improve the upper bound in the previous
theorem to the following space-time tradeoff. We omit the details, but the key element
is a better understanding of the relationship between the curvature of the portion of a
convex body inside a quadtree cell and the complexity to approximate that portion. We
use “ lg” to denote base-2 logarithm.

Theorem 2.3. Given a polytope P in Rd, an approximation parameter 0 < ε ≤ 1, and
a real constant α ≥ 4, there is a data structure for ε-approximate polytope membership
queries that achieves

Query time: O
(

(log 1
ε
)/ε

d−1
α

)

Storage: O
(

1/ε(d−1)(1− 2blgαc−2
α )

)
.

The constant factors in the space and the query time depend only on d and α (not on P
or ε).
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Figure 2.4: Query time as a function of the storage space for approximate polytope
membership.

The above space bound is a simplification, and the exact bound is given in the paper.
Both bounds are piecewise linear in 1/α (with breakpoints at powers of two), but the
exact bounds are continuous as a function of α. The resulting space-time trade-off is
illustrated in Figure 2.4(c). (The plot reflects the more accurate bounds.)

We do not know whether the upper bounds presented in Theorem 2.3 are tight for our
algorithm. In [11,17], we establish the following lower bound on the trade-off achieved by
this algorithm. The lower bound is illustrated in Figure 2.4(d).

Theorem 2.4. In any fixed dimension d ≥ 2 and for any constant α ≥ 4, there exists
a polytope such that for all sufficiently small positive ε, the data structure generated by
split-reduce to achieve query time O

(
1/ε(d−1)/α

)
has space

Ω

(
1/ε

(d−1)
(

1− 2
√

2α−3
α

)
−1

)
.

Our approach is similar to the lower bound proof of [21]. (Note that this is a lower
bound on the performance of Split-Reduce, not on the problem complexity.) It is based
on analyzing the performance of the algorithm on a particular convex body, a generalized
hypercylinder that is curved in k + 1 dimensions and flat in d − 1 − k dimensions. We
select the value of k that produces the best lower bound on the storage as a function of
t, ε, and d.

As mentioned earlier, it is well known that Ω
(
1/ε(d−1)/2

)
facets are required to ε-

approximate a Euclidean ball of unit radius (see, e.g., [36]), and this holds for any polytope
that is sufficiently close to a ball in terms of Hausdorff distance. The following utility
lemma generalizes this observation to different diameters.
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Lemma 2.5. Let ε and ∆ be real parameters, where 0 < ε ≤ ∆/4. There exists a constant
cb and a polytope P in Rd of diameter at most ∆ such that any outer ε-approximation of
P requires at least cb(∆/ε)(d−1)/2 facets.

Intuitively, in order to produce a polytope that is hard to approximate, it should
have high curvature. If the curvature is high in all dimensions, however, the polytope will
have a small surface area, and this will make it easier to approximate. Our approach is
to consider polytopes based on generalized cylinders, which have constant curvature in
some dimensions but are flat in others. Our next lemma introduces such a cylindrical
polytope where the number of curved dimensions has been carefully chosen to maximize
the space needed by our algorithm for a given query time. Theorem 2.4 is an immediate
consequence.

Lemma 2.6. There exists a polytope P in Rd such that for all sufficiently small positive
ε (depending on d and α) and t = 1/ε(d−1)/α, the output of Split-Reduce(K,Q0) on P has
total space

Ω

(
1/ε

(d−1)
(

1− 2
√
2α−3
α

)
−1

)
.

Proof. To start, as a function of α, we wish to compute an integer dimension k in order
to apply Lemma 2.5. Define reals δ =

√
α/2/(d−1), κ = (d−1)

√
2/α and κ′ = κ(1 + δ).

We observe first that
κ′ − κ = δ(d− 1)

√
2/α = 1.

Let k = dκe, implying that κ ≤ k ≤ κ′. (Although we do not include the derivation here,
κ has been chosen to produce the best lower bound, but since it is not necessarily an
integer, k is obtained by rounding to a nearby integer.) Since α ≥ 4 and d ≥ 2, we have
1 ≤ k ≤ d− 1.

Let cb denote the constant of Lemma 2.5, and let ∆ = ε((2d + 1)t/cb)
2/k. By our

assumptions about d and α, we have t = 1/εΘ(1) and ∆ = ε · tΘ(1). It follows that for all
sufficiently small ε, ∆/4 ≥ ε. Let h denote the linear subspace spanned by the first k+ 1
coordinate axes. We apply Lemma 2.5 in Rk+1 for this value of ∆. The resulting polytope
P (lying in h) has the property that the number of facets of any ε-approximation is at
least

cb

(
∆

ε

) k/2

= cb



ε
(

(2d+1)t
cb

) 2/k

ε




k/2

= (2d + 1)t.

We can bound P ’s diameter by observing that for all sufficiently small ε

diam(P ) ≤ ∆ = ε

(
(2d + 1)t

cb

) 2/k

≤ ε

(
2d + 1

cb · ε(d−1)/α

) 2/κ

= ε

(
2d + 1

cb · ε(d−1)/α

) √2α/(d−1)

.

(Here we made use of the fact that for all sufficiently small ε, the quantity raised to power
of 2/k is greater than 1.) Letting c′b = ((2d + 1)/cb)

√
2α/(d−1), we obtain

diam(P ) ≤ c′bε

(
1

ε(d−1)/α

) √2α/(d−1)

= c′bε
1−
√

2/α.
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Since α ≥ 4, for all sufficiently small ε, we have diam(P ) ≤ 1/
√
d. Therefore, P can be

enclosed within Q(k+1)
0 .

Returning to Rd, consider an infinite polyhedral hypercylinder whose “axis” is the
(d − 1 − k)-dimensional orthogonal complement of h, and whose “cross-section” (i.e.,
intersection with any (k + 1)-dimensional hyperplane parallel to h) is P . Define the
polytope C to be the truncated cylinder obtained by intersecting the infinite hypercylinder
with hypercube Q(d)

0 (see Figure 2.5(a)). Let T denote the output of Split-Reduce(K,Q(d)
0 )

for C, ε, and t. We will show that T ’s total space satisfies the bound given in the lemma’s
statement. To do this, let Σ denote any set of points placed on C’s axis such that the
distance between each pair of points is at least 2∆

√
d. (In the degenerate case where

k = d − 1 the axis is 0-dimensional and Σ degenerates to a single point.) By a simple
packing argument, there exists such a set having Ω(1/∆d−1−k) points.

∆

≥ 2∆
√
d

(b)

∆

h

C

(a)

Pq
q

1√
d

Figure 2.5: Lemma 2.6 for d = 3 and k = 2.

For any q ∈ Σ, let Pq denote the cross-section of C passing through q (see Fig-
ure 2.5(b)). Consider the set of leaf cells of T that intersect Pq. By applying Lemma 2.5
to the (k+ 1)-dimensional hyperplane on which P lies, it follows that these cells together
must contain at least (2d + 1)t halfspaces. We count the contributions of these cells by
classifying them into two types. We say that a leaf cell of T is large if its side length is
at least ∆, and otherwise it is small. By a simple packing argument, the number of large
leaf cells intersecting Pq is at most 2d. Since each leaf cell contains at most t halfspaces,
the large leaf cells can together contain at most 2dt halfspaces.

Therefore, the small leaf cells intersecting Pq together contain at least (2d+1)t−2dt = t
halfspaces. Because the points of Σ are separated from each other by distance at least
2∆
√
d, which is strictly larger than the diameter of any small leaf cell, each small leaf

cell can intersect Pq for at most one q ∈ Σ. Therefore, the total space contribution of all
the small leaf cells for all points of Σ is at least t · |Σ|. Let c′′b = (cb/(2

d + 1))2(d−1−k)/k.
T ’s total space can be asymptotically bounded from below as

t

∆d−1−k =
t

(
ε
(

(2d+1)t
cb

)2/k
)d−1−k =

c′′b · t
(ε · t2/k)d−1−k =

c′′b · t1−2(d−1−k)/k

εd−1−k .
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Figure 2.6: (a) Cap concepts. (b) Covering the boundary of a convex body by caps at
different levels.

Clearly, c′′b = Θ(1). Recall that t = 1/ε(d−1)/α. Then, T ’s total space is asymptotically
bounded from below as

(
1

ε

)(d−1)−k+ d−1
α (1− 2(d−1−k)

k )
=

(
1

ε

)(d−1)−k+ d−1
α (3− 2(d−1)

k )
(2.1)

Let E(α) denote this exponent. In order to complete the proof, we provide a lower bound
on E(α). We use the fact that κ ≤ k ≤ κ′, apply the definitions of κ, κ′, and δ, and
straightforward manipulations to obtain

E(α) ≥ (d− 1)− κ′ + d− 1

α

(
3− 2(d− 1)

κ

)
= (d− 1)

(
1− 2

√
2α− 3

α

)
− 1.

Substituting this value for the exponent in Eq. (2.1) completes the proof.

2.2 Hierarchy of Macbeath Regions
In contrast to the previous construction, which is based on grids and quadtrees, our next
construction employs a classical structure from the theory of convexity, called Macbeath
regions [70]. Macbeath regions have found numerous uses in the theory of convex sets
and the geometry of numbers (see Bárány [26] for an excellent survey). They have also
been applied to several problems in the field of computational geometry. However, most
previous results were either in the form of lower bounds [20,25,34] or focused on existential
results [12,15,56,77]. Our work [14,16] presents the first explicit construction of Macbeath
regions in algorithms and data structures.

Before we define Macbeath regions and present our actual construction, it is useful to
consider a related construction that however does not give an efficient data structure. A
cap C is defined to be the nonempty intersection of the convex body P with a halfspace
H (see Figure 2.6(a)). Let h denote the hyperplane bounding H. We define the base of C
to be h ∩ P . The apex of C is any point in the cap such that the supporting hyperplane
of P at this point is parallel to h. The width of C is the distance between h and this
supporting hyperplane.

Caps may be used to define a hierarchical approximation of the boundary of the convex
body of unit diameter. At level zero, we have a constant number of caps of constant width
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w0 that cover the boundary. At each level i we divide the previous width by two, covering
the boundary with caps of width wi = w0/2

i (see Figure 2.6(b)). We stop after O(log 1
ε
)

levels when the width of the caps is roughly ε. It follows from the works of Dudley [54]
and Bronshteyn and Ivanov [35] that O(1/w

(d−1)/2
i ) caps of width wi are enough to cover

the boundary. Therefore, the number of caps summed over all levels form a geometric
progression with a total of O(1/ε(d−1)/2) caps. To define the hierarchical relation, the
children of each cap are the caps at the following level that intersect it.

Given such hierarchy of caps, we answer an approximate polytope membership query
for a query point q as follows. Let the origin O be a centrally located point inside the
convex body. We navigate through the hierarchy following the ray emanating from O
toward q, starting at level zero. At each level we keep as an invariant a cap C that
intersects the ray. To determine the invariant for the following level, it suffices to examine
the children of C.

For this data structure to be potentially efficient, the number of children of any given
cap must be small. Unfortunately, this is not the case. To see the issue, imagine a three-
dimensional cone. Many caps of width ε are necessary to cover the rounded part of the
cone (the number is O(1/ε(d−2)/2) for a d-dimensional cone). The problem is that all
these caps may contain the apex of the cone. Therefore the number of caps of width ε
intersecting a given ray may be almost as large as the total number of caps.

The source of the problem is that caps do not provide good packing properties. For
example, a very large number of caps may all intersect each other even if the volume of
the intersection between any two caps is small, as seen in the cone. Notice that other
geometric objects such as quadtree cells or congruent balls provide good packing proper-
ties. These objects however have roughly the same width in all directions, and therefore
cannot adapt well to the different directional curvatures of the convex body. Next, we in-
troduce Macbeath regions, which are not fat and provide the ability to adapt to different
curvatures (like caps), but simultaneously provide good packing properties (like quadtree
boxes).

Let P be an arbitrary convex body. Given a point x ∈ P and real parameter λ ≥ 0,
the Macbeath region Mλ(x) (also called an M-region) is defined as:

Mλ(x) = x+ λ((P − x) ∩ (x− P )).

It is easy to see that M1(x) is the intersection of P and the reflection of P around x (see
Figure 2.7(a)), and so M1(x) is centrally symmetric about x. Mλ(x) is a scaled copy of
M1(x) by the factor λ about x. We refer to x as the center ofMλ(x) and to λ as its scaling
factor. As a convenience, we define M(x) = M1(x) and M ′(x) = M1/5(x). We refer to
the latter as the shrunken Macbeath region. In fact M(x) is a good approximation of
the minimum volume cap containing point x. However, the shrunken Macbeath regions
provide good packing properties.

We now present a lemma that illustrates the good packing properties of Macbeath
regions. The lemma shows that if two shrunken Macbeath regions have a nonempty
intersection, then a constant factor expansion of one contains the other [34, 59]. We give
a proof as an example of the techniques used.

Lemma 2.7. Let P be a convex body, and let λ ≤ 1/5 be any positive real. If x, y ∈ P
such that Mλ(x) ∩Mλ(y) 6= ∅, then Mλ(y) ⊆M4λ(x).
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Figure 2.7: (a) Macbeath regions. (b) Two levels of the hierarchy of ellipsoids based on
Macbeath regions.

Proof. Let z be a point in the intersection of Mλ(x) and Mλ(y). Then we can write z as:

z = x+ λ(x− p1) = y + λ(p2 − y),

where p1, p2 ∈ P . Equating the two expressions for z above, we obtain

y =
(1 + λ)x− λp1 − λp2

1− λ .

Consider any point w ∈Mλ(y). We have

w = y + λ(y − p3) = (1 + λ)y − λp3,

where p3 ∈ P . Substituting the expression obtained above for y, we have

w =
(1 + λ)((1 + λ)x− λp1 − λp2)

1− λ − λp3,

which simplifies to

w = x+
λ(3 + λ)

1− λ (x− p),

where
p =

1 + λ

3 + λ
p1 +

1 + λ

3 + λ
p2 +

1− λ
3 + λ

p3.

As p is a convex combination of p1, p2 and p3, p ∈ P . Thus, we have shown that

Mλ(y) ⊆ x+
λ(3 + λ)

1− λ (x− P ). (2.2)

In an analogous manner, we next show that

Mλ(y) ⊆ x+
λ(3 + λ)

1− λ (P − x). (2.3)

Again, let z be any point in the intersection of Mλ(x) and Mλ(y). We can write z as:

z = x+ λ(k′1 − x) = y + λ(y − k′2),
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where k′1, k′2 ∈ P . Equating the two expressions for z above, we obtain

y =
(1− λ)x+ λk′1 + λk′2

1 + λ
.

Consider any point w ∈Mλ(y). We have

w = y + λ(k′3 − y) = (1− λ)y + λk′3,

where k′3 ∈ P . Substituting the expression obtained above for y, we have

w =
(1− λ)((1− λ)x+ λk′1 + λk′2)

1 + λ
+ λk′3,

which simplifies to

w = x+
λ(3− λ)

1 + λ
(p′ − x),

where
p′ =

1− λ
3− λk

′
1 +

1− λ
3− λk

′
2 +

1 + λ

3− λk
′
3.

As p′ is a convex combination of k′1, k′2 and k′3, p′ ∈ P . Letting p′′ denote the point on
segment xp′ such that

λ(3− λ)

1 + λ
(p′ − x) =

λ(3 + λ)

1− λ (p′′ − x),

we can write
w = x+

λ(3 + λ)

1− λ (p′′ − x),

where p′′ ∈ P . Thus,
Mλ(y) ⊆ x+

λ(3 + λ)

1− λ (P − x),

which establishes Eq. (2.3). By combining this with Eq. (2.2), we obtain Mλ(y) ⊆
M(x, λ(3 + λ)/(1 − λ)). Since λ ≤ 1/5, it is easy to see that (3 + λ)/(1 − λ) ≤ 4.
Thus Mλ(y) ⊆M(x, 4λ), completing the proof.

As mentioned before, the fact that we can cover the boundary of a convex body by
O(1/ε(d−1)/2) caps of width ε follows from classic works. Such a bound is essential to
obtain a data structure with low storage space. However, only recently did we prove an
analogous bound using Macbeath regions [15]. Since Macbeath regions Mλ(x) for λ < 1
do not reach the boundary of the convex body, we need to define a region close to the
boundary that we cover. For any δ > 0, define the δ-erosion of P , denoted P (δ), to be
the closed convex body formed by removing from P all points lying within distance δ of
∂P . We showed the following.

Lemma 2.8. Let P be a convex body of unit diameter. Let λ > 0 be a sufficiently small
constant that depends only on d and ε > 0 be a sufficiently small parameter. Let X denote
a maximal set of points lying on the boundary of the eroded body P (ε) such that the
associated Macbeath regions Mλ(x) for x ∈ X are pairwise disjoint. Then the collection
of Macbeath regions {M4λ(x) : x ∈ X} covers ∂P (ε) and |X| = O(1/ε(d−1)/2).
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Figure 2.8: Sketch of the proof of Lemma 2.8.

The relation between a maximal packing of Macbeath regions and a covering of
Macbeath regions follows from Lemma 2.7. The detailed proof that the number of Macbeath
regions in a packing is |X| = O(1/ε(d−1)/2) is presented in [15]. Next, I’ll sketch the key
ideas of the proof.

Let X be the set of centers of the disjoint Macbeath regions from Lemma 2.8. The
proof begins with a pruning step that only reduces the size of X by a constant factor.
We process the Macbeath regions Mλ(x) for x ∈ X ordered by increasing volume. For
each region Mλ(x) considered, we remove from X all Macbeath regions of larger volume
that intersect M cλ(x), where c is a sufficiently large constant. It follows from packing
properties that the number of regions removed is only a constant fraction, and therefore
does not change the asymptotic value of |X|.

Next, we surround the convex body P by a ball of constant diameter, which we
call the Dudley ball. We then perform and orthogonal projection of each point x ∈ X
onto the Dudley ball (orthogonal to the minimum volume cap containing x), as shown
in Figure 2.8. Finally, we argue that the distance between any two projected points is
Ω(
√
ε). Since the total area of the Dudley ball is constant, the bound follows.
Another issue to obtain an efficient data structure is that Macbeath regions of a

polytope are polytopes, but may have a large number of vertices. In order to efficiently
use Macbeath regions in a data structure, we need to approximate the Macbeath region
by a convex body of constant complexity. To this purpose, we use John’s theorem [67]:

Lemma 2.9. Let P ⊂ Rd be a centrally symmetric convex body centered at the origin.
There exists an ellipsoid E ⊇ P ( John ellipsoid) such that P ⊇ E/

√
d, where E/

√
d

denotes the scaling of E by a factor of 1/
√
d.

By standard results, we can construct the John ellipsoid of a polytope in time that
is linear in the number of its defining halfspaces [47]. For a Macbeath region Mλ(x), we
denote its circumscribing John ellipsoid by Eλ(x), which we call a Macbeath ellipsoid.
Applying John’s theorem, we have Mλ(x) ⊆ Eλ(x) ⊆Mλ

√
d(x).

In [16] (attached), we show that Macbeath ellipsoids can be used to produce a hier-
archy whose levels approximate the boundary of a convex body to different degrees of
precision. This hierarchy has several good properties. First, the total number of ellipsoids
is O(1/ε(d−1)/2), matching the information theoretic lower bound of an ε-approximation
of a convex body. Second, the number of levels is logarithmic and each node has O(1)
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children. Finally, by performing a straightforward navigation in the hierarchy we can
answer approximate polytope membership queries in O(log 1

ε
) time. Next, we informally

describe this hierarchy. For a more precise definition, which all constant explicitly given,
please refer to [16].

Let P denote a polytope of unit diameter in Rd. The hierarchy hasO(log 1
ε
) levels. Each

level i corresponds to a covering of eroded body P (δi) by a set of O(1/δ
(d−1)/2
i ) Macbeath

ellipsoids, where δi = Θ(1/2i). Each ellipsoid has O(1) children, which correspond to the
ellipsoids of the following level that approximate the same portion of the boundary (see
Figure 2.7(b)). The hierarchy starts with δ0 = Θ(1) and stops after O(log 1

δ
) levels when

δi = Θ(ε), for a desired approximation ε.
To answer an ε-approximate polytope membership query for a given query point q,

we consider the ray Oq. The query algorithm descends the DAG by starting at the root
and visiting any node at level zero that intersects the ray. Letting u denote the current
node, we next visit any child of u whose associated ellipsoid intersects the ray. (Such a
child must exist.) We repeat the procedure until we reach the leaf level. Upon reaching
the leaf level we intersect Oq with the leaf ellipsoid (which is a good approximation to
the boundary of P near the ray Oq. Let p be an arbitrary point in the intersection. If p is
between O and q, we return that q is outside of P . Otherwise, we return that q is inside
P .

In [16], we present a simple algorithm to construct a δ-approximation hierarchy in
O(n+ 1/δ3(d−1)/2) time. We assume that the input polytope P is presented as the inter-
section of n halfspaces. Next, we describe the algorithm.

We first show how to construct the set of ellipsoids covering the eroded body P (δ),
which form a level in the hierarchy. Translate each bounding halfspace of P toward the
origin by amount δ. It is easy to see that the polytope P (δ) is the intersection of the
translated halfspaces. This can be done in O(n) time.

Consider a hypercube of constant size enclosing P . Superimpose a Θ(δ)-grid on each
of the 2d facets of this hypercube. Intersect the segment joining the origin to each grid
point with ∂P (δ), and let X ′ ⊂ ∂P (δ) denote the resulting set of intersection points.
Note that |X ′| = O(1/δd−1). Using the fact that P (δ) is fat, a straightforward geometric
calculation shows that for any point on ∂P (δ), there is a point of X ′ within distance cδ
of it, where c is a suitable constant. (Adjusting the constant factor in the grid spacing,
we can ensure that c ≤ λ0

√
d, which is a fact that we will use later in the proof.) As each

point of X ′ can be determined in O(n) time, X ′ can be computed in O(n/δd−1) time.
For each x′ ∈ X ′, construct Mλ(x′). Let M′ denote the resulting set of Macbeath

regions. As a straightforward consequence of the definition of Macbeath regions, we can
compute each Macbeath region in O(n) time (i.e., in time proportional to the number of
halfspaces that define P ). Note that we represent each Macbeath region as the intersection
of n halfspaces. For each Macbeath region Mλ(x′) ∈ M′, determine the circumscribing
John ellipsoid. By standard results, we can construct the John ellipsoid of a polytope in
time that is linear in the number of its defining halfspaces [47]. Thus, this step also takes
time O(n|M′|) = O(n/δd−1).

Next, we will determine a maximal subset M ⊆ M′ such that the John ellipsoids
associated with the Macbeath regions ofM are disjoint. InitializeM = ∅. Examine the
Macbeath regions ofM′ one by one. Insert the Macbeath region intoM if its associated
John ellipsoid does not intersect the John ellipsoid of any Macbeath region ofM. Clearly,
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this method yields a maximal subsetM⊆M′ such that the associated John ellipsoids are
disjoint. To bound the time required for this step, observe that the Macbeath regions of
M are disjoint, and so by Lemma 2.8, |M| = O(1/δ(d−1)/2). Since it takes constant time to
check whether two ellipsoids intersect, it follows that the time required is O(|M′| · |M|) =
O(1/δ3(d−1)/2). The desired set of John ellipsoids covering P (δ) is the set of properly scaled
John ellipsoids of the Macbeath regions inM.

We build each level of the hierarchy independently. Since the running time for each
level forms an geometric progression, the total running time is O(1/ε3(d−1)/2). Given nodes
u and v from levels i and i+1, respectively, v is a child of u if there exists a ray emanating
from the origin that intersects both E4λ0

√
d(xu) and E4λ0

√
d(xv). Since an ellipsoid has

constant complexity and the number of ellipsoids at each level is at most O(1/ε(d−1)/2),
computing the child/parent relationship does not add to the total running time, and
therefore we build the whole hierarchy in O(1/ε3(d−1)/2) time.

However, the exponent of 3(d−1)/2 in the preprocessing time is higher than we would
like. In [14] (attached), we show that we can build an approximate polytope membership
data structure much faster. The key idea is to avoid building the whole hierarchy, but
instead build multiple partial hierarchies and connecting them. For the algorithm to
work in the desired running time, we need another result of independent interest, a faster
algorithm to compute an ε-kernel, which is briefly explained in Section 3.2. As a result,
we obtain the following theorem.

Theorem 2.10. Given a polytope P in Rd represented as the intersection of n halfspaces
and an approximation parameter ε > 0, there is a data structure that can answer ε-
approximate polytope membership queries with

Query time: O
(

log
1

ε

)

Storage: O
(

1/ε
d−1
2

)
.

Furthermore, the preprocessing time is

O

(
n log

1

ε
+

(
1

ε

)d−1
2

+α
)
,

where α > 0 is an arbitrarily small constant.

Note that this optimal data structure corresponds to a point in Figure 2.4(e).
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Chapter 3

Applications

In this chapter, we discuss several applications of the data structures presented in the
previous chapter. We start with the classic problem of approximate nearest neighbor
searching, showing how to reduce it to approximate polytope membership. Next, we
move from data structure problems to static problems, where the efficient preprocessing
of the approximate polytope membership data structure becomes a key element. The
first static problem we consider is the ε-kernel. This problem is particularly tied to the
approximate polytope membership data structure: we use kernel algorithms to efficiently
build approximate polytope membership data structures and we use the approximate
polytope membership data structure to build kernels. Next, we turn our attention to other
static problems that are connected to approximate nearest neighbors and approximate
polytope membership through previously known reductions.

3.1 Approximate Nearest Neighbor
Let S be a set of n points in Rd. Given any q ∈ Rd, an ε-approximate nearest neighbor
(ANN) of q is any point of S whose distance from q is at most (1 + ε) times the distance
to q’s closest point in S (Figure 3.1). The objective is to preprocess S in order to answer
such queries efficiently.

Approximate nearest neighbor searching in spaces of fixed dimension has been widely
studied. Data structures with O(n) storage and query times no better than O(log n +
1/εd−1) have been proposed by several authors [24, 31, 42, 55]. In subsequent papers, it

q
r

(1 + ε)r

points in S

approximate NNs

exact NN

Figure 3.1: Exact and approximate nearest neighbor of q.
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Figure 3.2: Query time as a function of the storage space for approximate nearest neighbor
searching.

was shown that query times could be reduced at the expense of greater storage [40,49,64,
80]. Har-Peled introduced the AVD (approximate Voronoi diagram) data structure and
showed that O(log n

ε
) query time could be achieved using roughly O(n/εd) space [64].

The product of the ε-dependencies in the storage and query time remain close to O(1/εd)
throughout the tradeoff, as represented in Figure 3.2(a).

Space-time trade-offs were established for the AVD in a series of papers [10,18,19,21].
At one end of the spectrum, it was shown that with O(n) storage, queries could be
answered in time O(log n + 1/ε(d−1)/2). At the other end, queries could be answered
in time O(log n

ε
) with space roughly O(n/εd). The product of the ε-dependency in the

storage and the square of the ε-dependency in the query time remain close to O(1/εd)
throughout the tradeoff (see Figure 3.2(b)).

In [11], we presented a reduction from Euclidean approximate nearest neighbor search-
ing to polytope membership, which we explain later on. We established significant im-
provements to the best trade-offs throughout the middle of the spectrum, but the extremes
were essentially unchanged [11,13]. See Figure 3.2(c). While the AVD is simple and prac-
tical, in [21] lower bounds were presented that imply that significant improvements at
the extreme ends of the spectrum are not possible in this model. Through the use of
our optimal data structure for polytope membership, we achieve the following improved
trade-off, represented in Figure 3.2(d). The product of the ε-dependencies in the storage
and query time remain close to O(1/εd/2) throughout the tradeoff.

Theorem 3.1. Given a set S of n points in Rd, an approximation parameter ε > 0,
and m such that log 1

ε
≤ m ≤ 1/(εd/2 log 1

ε
), there is a data structure that can answer
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Euclidean ε-approximate nearest neighbor queries with

Query time: O
(

log n+
log 1

ε

m · ε d2

)

Storage: O
(
nm

)
.

The preprocessing time is

O

(
n log n log

1

ε
+
nm

εα

)
,

where α > 0 is an arbitrarily small constant.

By setting m to its upper limit, the storage needed to answer ε-approximate nearest
neighbor queries for a set of n points in polylogarithmic time is reduced to O(n/εd/2).
This halves the exponent in the ε-dependency of the existing space bound of roughly
O(n/εd), which has stood for 15 years [64].

The connection between the polytope membership problem and ANN has been noted
before by Clarkson [49]. Unlike Clarkson’s, our results hold for point sets with arbitrary
aspect ratios. The reduction from approximate nearest neighbor searching to approximate
polytope membership is based on the approximate Voronoi diagram (AVD) construction
from [21]. The AVD employs a height balanced variant of a quadtree, a balanced box
decomposition (BBD) tree [22] to be precise. Each cell of a BBD tree corresponds to
the set theoretic difference of two quadtree cells, an outer box and an optional inner
box. Each leaf cell of the tree stores a set of representative points with the property that
for any query point q lying within this cell, at least one of these representatives is an
ε-nearest neighbor of q. A query is answered by locating the leaf cell that contains the
query point and then determining the nearest representative from this cell (by brute
force). The AVD’s space is dominated by the total number of representatives over all the
leaf cells. The query time is the height of the tree plus the number of representatives in
the leaf cell.

The following lemma is central to our reduction and follows easily from the proofs of
Lemmas 6.1 and 8.1 in [21]. Given a cell Q in a BBD tree, let size(Q) denote the side
length of Q and let BQ be the ball of radius 2

√
d size(Q) whose center coincides with the

center of Q’s outer box. The lemma is illustrated in Figure 3.3(a).

Lemma 3.2. Let 0 < ε ≤ 1/2 be a real parameter and S be a set of n points in Rd. It is
possible to construct a BBD tree T with O(n log 1

ε
) nodes, where each leaf cell Q stores a

subset RQ ⊂ S satisfying the following properties:

(i) RQ is an ε-representative set for Q (that is, for any point q in Q, one of the points
in RQ is an approximate nearest neighbor of q).

(ii) At most one point of RQ is contained in the ball BQ, and the remaining points of
RQ are contained in the annulus cBQ \BQ for some constant c.

(iii) The total number of representatives over all the leaf cells is O(n log 1
ε
).

Moreover, it is possible to compute the tree T and the sets RQ for all the leaf cells
in total time O(n log n log 1

ε
) and the cell that contains a query point can be located in

O(log n+ log log 1
ε
) time.
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Figure 3.3: Approximate nearest neighbor searching: (a) Lemma 3.2 (black points are
members of RQ), (b) the lifting transformation. (Note that the figure is not drawn to
scale, and the paraboloid in (b) has been translated to aid legibility.)

In order to connect Lemma 3.2 with approximate polytope membership queries, it is
useful to define a special case of approximate nearest neighbor searching. The input for
an approximate nearest neighbor searching data structure is a set S of data points and
an approximation parameter ε. Given a constant σ > 0, σ-well-separated approximate
nearest neighbor searching is defined as follows. Let QS and Qq be two hypercubes of side
length r and at distance at least σr from each other. In the σ-well-separated version we
have the data points S inside QS and the query points inside Qq. Data structures for the
well-separated version are much more efficient than for the unrestricted version because
we can remove the dependency on the number of points n altogether.

Lemma 3.3. Let 0 < ε ≤ 1/2 be a real parameter, σ > 0 be a constant, and S be a
set of n points in Rd. Given a data structure for approximate polytope membership in d-
dimensional space with query time td(ε), storage sd(ε), and preprocessing time O(n log 1

ε
+

bd(ε)) it is possible to preprocess S into a σ-well-separated ANN data structure with

Query time: O
(
td+1(ε) · log

1

ε

)

Storage: O
(
sd+1(ε)

)
.

The preprocessing time is

O

(
n log

1

ε
+ bd+1(ε)

)
.

The reduction uses the well known lifting transformation [7, 57]. Let (x1, . . . , xd+1)
denote the coordinates of Rd+1, and let us think of (d + 1)st coordinate axis as being
directed vertically upwards. Let Ψ denote the paraboloid xd+1 =

∑d
i=1 x

2
i . Given a point

p ∈ Rd, let p↑ denote the vertical projection of p onto Ψ (see Figure 3.3(b)), and let
h(p) denote the hyperplane tangent to Ψ at p↑. That is, the points of h(p) satisfy xd+1 =∑d

i=1 2pixi − ‖p‖2. Given q ∈ Rd, let q[p] denote the point on h(p) hit by a vertical ray
shot downwards from q↑. A straightforward consequence of the definition of Ψ is that the
squared distance between q and p in Rd is equal to the length of this vertical segment,
that is, ‖qp‖2 = ‖q↑q[p]‖.
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This suggests the following approach to computing the closest representative point
through vertical ray shooting. Consider the (unbounded) convex polyhedron that results
by taking the upper envelope of the hyperplanes h(p) associated with the lifted represen-
tatives. Given the query point q ∈ Rd, a ray shot vertically downward from q↑ hits some
facet of this polyhedron. It follows from the above remarks, that the representative asso-
ciated with this hyperplane is the closest to q. We can simulate ray shooting by applying
polytope membership queries in concert with binary search. Of course, some care will be
needed to map this problem into our context, which assumes a bounded polytope and
approximation.

Combining the reduction from Lemma 3.3 with Theorem 2.10 we have:

Lemma 3.4. Given a set S of n points in Rd, an approximation parameter ε > 0, and
a constant σ > 0, there is a data structure that can answer σ-well-separated Euclidean
ε-approximate nearest neighbor queries with

Query time: O
(

log2 1

ε

)

Storage: O

((
1

ε

)d
2

)
.

The preprocessing time is

O

(
n log

1

ε
+

(
1

ε

)d
2

+α
)
,

where α > 0 is an arbitrarily small constant.

Combining Lemma 3.2 with Lemma 3.3, we obtain the following theorem.

Theorem 3.5. Let 0 < ε ≤ 1/2 be a real parameter and S be a set of n points in Rd.
Given a data structure for approximate polytope membership in d-dimensional space with
query time at most td(ε) and storage sd(ε), and preprocessing time O(n log 1

ε
+ bd(ε)) it

is possible to preprocess S into an ANN data structure with

Query time: O
(

log n+ td+1(ε) · log
1

ε

)

Storage: O
(
n log

1

ε
+ n

sd+1(ε)

td+1(ε)

)

Preprocessing: O
(
n log n log

1

ε
+ n

bd+1(ε)

td+1(ε)

)
.

Proof. Construct a BBD-tree and the sets RQ as in Lemma 3.2. For the nodes with
|RQ| ≤ td+1(ε) log 1

ε
, simply store the set RQ and answer the corresponding queries by

brute force. For the nodes with |RQ| > td+1(ε) log 1
ε
, use the construction from Lemma 3.4.

The cell containing the query point can be located in O(log n + log log 1
ε
) time. The

bound for the total storage follows from the fact that the total number of representatives∑ |RQ| = O(n log 1
ε
) and the number of nodes with more than td+1(ε) log 1

ε
representatives

is O(n/td+1(ε)).

Combining Theorem 3.5 with Theorem 2.10, we obtain Theorem 3.1.
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Figure 3.4: Illustration of an ε-kernel.

3.2 Kernel
Given a set S of n points in Rd and an approximation parameter ε > 0, an ε-coreset is an
(ideally small) subset of S that approximates some measure over S (see [5] for a survey).
Given a nonzero vector v ∈ Rd, the directional width of S in direction v, widthv(S) is
the minimum distance between two hyperplanes that enclose S and are orthogonal to
v. A coreset for the directional width (also known as an ε-kernel and as a coreset for
the extent measure) is a subset Q ⊆ S such that widthv(Q) ≥ (1 − ε) widthv(S), for
all v ∈ Rd (see Figure 3.4). Intuitively, the convex hull of an ε-kernel provides a good
approximation to the convex hull of the entire set of points, and this fact explains their
utility in approximating many extent measures efficiently by solving the problems on
a much smaller subset. For example, kernels have been used to obtain approximation
algorithms for several problems such as diameter, minimum width, convex hull volume,
minimum enclosing cylinder, minimum enclosing annulus, and minimum-width cylindrical
shell [4, 5].

The concept of ε-kernels was introduced by Agarwal et al. [4]. The existence of ε-
kernels with O(1/ε(d−1)/2) points is implied by the works of Dudley [54] and Bronshteyn
and Ivanov [35], and this is known to be optimal in the worst case. Agarwal et al. [4]
demonstrated how to compute such a kernel in O(n+ 1/ε3(d−1)/2) time, which reduces to
O(n) when n = Ω(1/ε3(d−1)/2). While less succinct ε-kernels with O(1/εd−1) points can
be constructed in O(n) time for all n [4, 30], no linear-time algorithm is known to build
an ε-kernel of optimal size. Hereafter, we use the term ε-kernel to refer exclusively to an
ε-kernel of size O(1/ε(d−1)/2).

Chan [43] showed that an ε-kernel can be constructed in O((n + 1/εd−2) log 1
ε
) time,

which is nearly linear when n = Ω(1/εd−2). He posed the open problem of obtaining a
faster algorithm. A decade later, Arya and Chan [9] showed how to build an ε-kernel in
roughly O(n +

√
n/εd/2) time using discrete Voronoi diagrams. In this paper, we attain

the following near-optimal construction time.

Theorem 3.6. Given a set S of n points in Rd and an approximation parameter ε >
0, it is possible to construct an ε-kernel of S with O(1/ε(d−1)/2) points in O(n log 1

ε
+

1/ε(d−1)/2+α) time, where α is an arbitrarily small positive constant.
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Figure 3.5: Running time of multiple ε-kernel algorithms as a function of the input size.
The O∗(·) notation hides ε-dependencies of at most 1/εc for some constant c that does
not depend on d.

Because the worst-case output size is O(1/ε(d−1)/2), we may assume that n is at least
this large, for otherwise we can simply take S itself to be the kernel. Since 1/εα dominates
log 1

ε
, the above running time can be expressed as O(n/εα), which is nearly linear given

that α can be made arbitrarily small. The history of the running times as a function of
the input size can be visualized in Figure 3.5

Concurrently and independently, Timothy Chan has reported complexity bounds that
are very similar to our results [45]. His ε-kernel construction takes roughly O(n

√
1/ε +

1/ε(d−1)/2+3/2) time. Remarkably, the computational techniques are very different, based
on Chebyshev polynomials.

Our algorithm to compute an ε-kernel in time O(n log 1
ε

+1/ε(d−1)/2+α) (Theorem 3.6)
is conceptually quite simple. Since the fastest algorithm known to build the whole hi-
erarchy of Macbeath regions takes O(n + 1/ε3(d−1)/2) time, we cannot afford to build
the whole hierarchy. Instead, we use an approximation parameter δ = ε1/3 to build a
δ-approximation hierarchy in O(n + 1/δ3(d−1)/2) = O(n + 1/ε(d−1)/2) time. Navigating
through this coarser hierarchy, we partition the n points among the leaf Macbeath ellip-
soids in O(n log 1

ε
) time, discarding points that are too far from the boundary. We then

compute an (ε/δ)-kernel for the set of points in each leaf ellipsoid and return the union
of the kernels computed.

Given an algorithm to compute an ε-kernel in O(n log 1
ε

+1/εt(d−1)) time, the previous
procedure produces an ε-kernel in O(n log 1

ε
+ 1/εt

′(d−1)) time where t′ = (4t + 1)/6.
Bootstrapping the construction a constant number of times, the value of t goes down
from 1 to a value that is arbitrarily close to 1/2. This discrepancy accounts for the
O(1/εα) factors in our running times.
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Figure 3.6: Diameter and approximate diameter.

3.3 Diameter
An important application of ε-kernels is to approximate the diameter of a point set. Given
n data points, the diameter is defined to be the maximum distance between any two data
points. An ε-approximation of the diameter is a pair of points whose distance is at least
(1−ε) times the exact diameter (see Figure 3.6). There are multiple algorithms to approx-
imate the diameter [4,6,9,29,43]. The fastest running times are O((n+ 1/εd−2) log 1

ε
) [43]

and roughly O(n+
√
n/εd/2) [9]. The algorithm from [43] essentially computes an ε-kernel

Q and then determines the maximum value of widthv(Q) among a set of k = O(1/ε(d−1)/2)
directions v by brute force [4]. Discrete Voronoi diagrams [9] permit this computation in
roughly O(n +

√
n/εd/2) time. Therefore, combining the kernel construction of Theo-

rem 3.6 with discrete Voronoi diagrams [9], we reduce n to O(1/ε(d−1)/2) and obtain an
algorithm to ε-approximate the diameter in roughly O(n + 1/ε3d/4) time. However, we
show that it is possible to obtain a much faster algorithm, as presented in the following
theorem.

Theorem 3.7. Given a set S of n points in Rd and an approximation parameter ε > 0, it
is possible to compute an ε-approximation to the diameter of S in O(n log 1

ε
+1/ε(d−1)/2+α)

time.

Applying approximate polytope membership in the dual space, we obtain a data struc-
ture for the following ε-approximate directional width problem, which is closely related
to ε-kernels. Given a set S of n points in a constant dimension d and an approximation
parameter ε > 0, the goal is to preprocess S to efficiently ε-approximate widthv(S), for
a nonzero query vector v. We prove the following result.

Lemma 3.8. Given a set S of n points in Rd and an approximation parameter ε > 0,
there is a data structure that can answer ε-approximate directional width queries with

Query time: O
(

log2 1

ε

)

Storage: O
(

1/ε
d−1
2

)

The preprocessing time is

O

(
n log

1

ε
+

(
1

ε

)d−1
2

+α
)
,
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where α > 0 is an arbitrarily small constant.

Proof. Given a polytope P (defined as the intersection of n halfspaces) that contains the
origin O, we define a ray-shooting query (from the origin) as follows. Let v be a query
direction and let r denote the ray emanating from O in direction v. The result of the
query q(P, v) is the length of r ∩ P . In the ε-approximate version, any answer between
q(P, v) and (1 + ε)q(P, v) is acceptable.

If we place the origin O in the center of the John ellipsoid of P , we have q(P,−v) =
Θ(q(P, v)) for all v. Thus, a constant approximation of q(P, v) can be obtained by replac-
ing P by its circumscribing John ellipsoid. We can then refine the approximation using
binary search and approximate polytope membership queries. (To see this, consider the
point p ∈ ∂P that is hit by the ray, and let h be any supporting hyperplane at p. Consider
the slab containing P that is bounded by this hyperplane and the parallel hyperplane
on the opposite side of P . By properties of the John ellipsoid, the origin lies within a
central region of the slab. It follows from basic geometry that if we expand the slab by ε
times its width, the ratio between ray distances to the expanded slab boundary and the
original slab boundary is 1 + O(ε). An ε-APM query with respect to P along this ray
will achieve an approximation error that is no greater.) By a suitable adjustment to the
constant factor, we can obtain an ε-approximation to q(P, v) after O(log 1

ε
) membership

queries.
The polar body P ∗ (defined as the convex hull of n points) of P has the property that

widthv(P
∗) = 1/q(P, v) + 1/q(P,−v). Therefore, we can ε-approximate the width of a

set of points P ∗ using O(log 1
ε
) approximate polytope membership queries on P and the

lemma follows.

Agarwal, Matoušek, and Suri [6] showed that the diameter of a point set S can be
ε-approximated by computing the maximum width of S among O(1/ε(d−1)/2) directions.
Therefore, Theorem 3.7 follows immediately from Lemma 3.8.

3.4 Bichromatic Closest Pair
In the bichromatic closest pair (BCP) problem, we are given n points from two sets, des-
ignated red and blue, and we want to find the closest red-blue pair. In the ε-approximate
version, the goal is to find a red-blue pair of points whose distance is at most (1+ε) times
the exact BCP distance. Approximations to the BCP problem were introduced in [69],
and the most efficient randomized approximation algorithm runs in roughly O(n/εd/3)
expected time [9]. The proof of the following result uses a reduction to well-separated ap-
proximate nearest neighbor searching that is based on [9, Theorem 3.2]. Since we invoke
the algorithm from [69] which hashes the input points according to their coordinates in
constant time, the model of computation needs to support integer division and random-
ization (e.g. unit-cost word RAM).

Theorem 3.9. Given n red and blue points in Rd and an approximation parameter ε > 0,
there is a randomized algorithm that computes an ε-approximation to the bichromatic
closest pair in O(n/εd/4+α) expected time.

Proof. Let b denote the exact BCP distance. We obtain a constant approximation b ≤
a < 2b of the BCP distance in O(n) expected time by running the randomized algorithm
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Figure 3.7: Exact and approximate bichromatic closest pair.

from [69]. Then, we build a grid with cells of diameter a/4 and partition the red points
accordingly. Note that since a/4 < b/2, the BCP pair cannot be in the same grid cell,
nor in two adjacent cells. The strategy of the algorithm is to partition the red points
among the grid cells and to perform a constant number of well-separated approximate
nearest neighbor queries for each blue point, returning the closest red-blue pair found.
More precisely, for each blue point q, we perform an approximate nearest neighbor query
among the grid cells QS that intersect the set theoretic difference of two balls of radii a
and a/2 centered around q. These are the only grid cells that may contain the closest red
point and, by a simple packing argument, the number of grid cells QS is constant. Since
the grid cell Qq that contains q cannot be adjacent to QS, it follows that the separation
σ is at least 1.

To answer the queries efficiently, we separate the grid cells onto two types. If the
number of red points in the cell is greater than 1/εd/4, we say the cell is heavy, and
otherwise we say the cell is light. Clearly, the number of heavy cells is O(n ·εd/4). We build
well-separated approximate nearest-neighbor data structures for the heavy cells. Using
Lemma 3.4, the total preprocessing time is O(n/εd/4+α). For each light cell, we simply
store the red points it contains and answer nearest neighbor queries by brute force in
O(1/εd/4) time. Therefore, the total time spent answering queries is O(n/εd/4).

3.5 Euclidean Trees
Given a set S of n points in Rd, a Euclidean minimum spanning tree is the spanning tree
with vertex set S that minimizes the sum of the edge lengths, while a Euclidean min-
imum bottleneck tree minimizes the maximum edge length. In the approximate version
we respectively approximate the sum and the maximum of the edge lengths. A minimum
spanning tree is a minimum bottleneck tree (although the converse does not hold). How-
ever, an approximation to the minimum spanning tree is not necessarily an approximation
to the minimum bottleneck tree (see Figure 3.8). A recent approximation algorithm to
the Euclidean minimum spanning tree takes roughly O(n log n+n/ε2) time, regardless of
the (constant) dimension [23]. On the other hand, the fastest algorithm to approximate
the minimum bottleneck tree takes roughly O((n log n)/εd/3) expected time [9]. The algo-
rithm uses BCP to simultaneously attain an approximation to the minimum bottleneck
and the minimum spanning trees.

An approximation to the Euclidean minimum spanning tree and minimum bottleneck
tree can be computed by solving multiple BCP instances such that the sum of the number
of points in all instances is O(n log n) [9, Theorem 4.1]. Applying this reduction together
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Figure 3.8: Let ε = 1
2
. (a) Exact Euclidean minimum spanning (and bottleneck) tree.

(b) An ε-approximation of the minimum spanning tree that is not an ε-approximation
of the minimum bottleneck tree. (c) An ε-approximation of the minimum bottleneck tree
that is not an ε-approximation of the minimum spanning tree.

with Theorem 3.9, we prove the following theorem.

Theorem 3.10. Given n points in Rd and an approximation parameter ε > 0, there is
a randomized algorithm that computes a tree T that is an ε-approximation to both the
Euclidean minimum bottleneck and the Euclidean minimum spanning trees in expected
time O((n log n)/εd/4+α).
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Chapter 4

Conclusion

As seen in this dissertation, approximate polytope membership is a central problem in
geometric approximation, both for its simple elegant definition and for its wide range of
applications. Furthermore, Macbeath regions have a large algorithmic potential, which we
are still discovering and I hope they will find many more applications in computational
geometry.

The approximate membership formulation allowed us to obtain significant improve-
ments to the complexity of several well studied problems. Ongoing work continues to
confirm the utility of approximate polytope membership, with some applications that
were not discussed in this dissertation. Hopefully many other applications will be discov-
ered in the future. In Section 4.1, I describe ongoing work that was not finished in time
to be part of this dissertation.

I decided to keep this dissertation centered on algorithmic problems, but during our
research we obtained multiple discrete geometry results about the complexity of ap-
proximating polytopes. These results were not part of our original goals, but a fortunate
product of the several techniques we developed. I briefly discuss these works in Section 4.2.

Finally I present open problems in Section 4.3.

4.1 Ongoing Work
Approximation problems involving a single convex body in d-dimensional space have re-
ceived a great deal of attention in the computational geometry community [4,14–17,43,45].
In contrast, works involving multiple convex bodies are generally limited to dimensions
d ≤ 3 and/or do not consider approximation [2, 28, 60, 62, 84]. Next, we consider two
problems involving multiple convex bodies: to detect if two polytopes intersect and to
compute their Minkowski sum. We also present the impact of these results to the problem
of approximating the width of a single convex body.

Polytope Intersection. Barba and Langerman [28] recently obtained a major result
for exact polytope intersection. They showed how to preprocess convex polytopes in Rd

so that given two such polytopes that have been subject to affine transformations, it
can be determined whether they intersect each other in logaritmic time. However, the
preprocessing time and storage grow as the combinatorial complexity of the polytope
raised to the power bd/2c. Since the combinatorial complexity of a polytope with n
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vertices can be as high as Θ(nbd/2c), the storage upper bound is roughly O(nd
2/4). This

high complexity motivates the study of approximations to the problem.
Let K ⊂ Rd be a convex polytope. Given a nonzero vector v ∈ Rd, the directional

width of K in direction v, widthv(K) is the minimum distance between two hyperplanes
that enclose K and are orthogonal to v. An ε-approximation of K is a polytope Kε ⊂ K
such that widthv(Kε) ≥ (1 − ε) widthv(K), for all v ∈ Rd. An ε-kernel of K is a an
ε-approximation of K whose vertices are a subset of the vertices of K and the number of
vertices is O(1/ε(d−1)/2), which is sufficient and sometimes necessary.

In the approximate version of polytope intersection, we are given a parameter ε > 0
and independently preprocess two polytopes A,B ⊂ Rd into data structures such that
we can approximately answer if A ∩ B = ∅, where A and B have been subject to affine
transformations. The answer to an approximate polytope intersection query is defined as
follows. If for all valid ε-approximations Aε, Bε of A,B respectively we have Aε∩Bε 6= ∅,
then we must answer yes. On the other hand, if for all valid ε-approximations Aε, Bε we
have Aε ∩ Bε = ∅, then we must answer no. Otherwise, either answer is acceptable. We
prove the following theorem.

Theorem 4.1. Given a parameter ε > 0 and two polytopes A,B ⊂ Rd, we can inde-
pendently preprocess each polytope into a data structure in order to answer approximate
polytope intersection queries with query time O(polylog 1

ε
), storage O(1/ε(d−1)/2), and pre-

processing time O(n log 1
ε
+1/ε(d−1)/2+α), where α is an arbitrarily small positive constant.

The data structure is nearly optimal since we need Ω(1/ε(d−1)/2) bits to store an
ε-approximation of a polytope in the worst case [16].

Minkowski Sum. Given two convex bodies A,B ⊂ Rd, the Minkowski sum A ⊕ B is
defined as {p + q : p ∈ A, q ∈ B} (see Figure 4.1(a) for an example). Minkowski sums
are widely studied due to their applications in motion planning [63], computer aided
design [84], computational biology [78], satellite layout [32], and image processing [68].
Furthermore, there is a large theoretical interest in Minkowski sums in both discrete
geometry [3,60,66] and complexity of algorithms [1,82]. Since the time required to exactly
compute the Minkowski sum of two convex polytopes with n vertices for d ≥ 3 is Ω(n2),
different communities studied algorithms to compute approximations to the Minkowski
sum in three dimensions [2, 62,84].

In this paper, we show how to approximate the Minkowski sum of two convex poly-
topes in near-optimal time.

Theorem 4.2. Given two convex polytopes A,B ⊂ Rd (represented by either n vertices or
n bounding hyperplanes) and an approximation parameter ε > 0, it is possible to construct
ε-approximation of A⊕B with O(1/ε(d−1)/2) vertices or alternatively O(1/ε(d−1)/2) facets
in O(n log 1

ε
+ 1/ε(d−1)/2+α) time, where α is an arbitrarily small positive constant.

Width. The width of a set of n points is the minimum over all directional widths,
while the diameter is the maximum over all directional widths. After several subsequent
improvements [4, 6, 9, 29, 43], near-optimal algorithms to ε-approximate the diameter in
roughly O(n + 1/εd/2) time have been independently discovered by Chan [45] and the
authors [14]. Surprisingly, these new works offered no improvement to the algorithms
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Figure 4.1: (a) Minkowski sum of two convex polygons. (b) Relationship between width
and Minkowski sum.

that approximate the width, which remained a major open problem [45]. The fastest
known algorithms date from over a decade ago and have a running time of roughly
O(n+ 1/εd−1) [41, 43].

Agarwal et al. [2] showed that the width of a convex body K is equal to the minimum
distance from the origin to the boundary of the convex bodyK⊕(−K) (see Figure 4.1(b)).
Using Theorem 4.2, we can approximate the width by computing an ε-kernel of K⊕(−K)
represented by bounding hyperplanes and then determining the closest point to the origin
among all bounding hyperplanes. The following theorem presents this result.

Theorem 4.3. Given a set S of n points in Rd and an approximation parameter ε > 0,
it is possible to compute an ε-approximation to the width of S in O(n log 1

ε
+1/ε(d−1)/2+α)

time, where α is an arbitrarily small positive constant.

On a different line of research, we consider approximate nearest neighbor searching in
non-Euclidean metrics. The current reduction from approximate nearest neighbor search-
ing to approximate polytope membership is based on a lifting transformation. This lifting
transformation linearizes the Euclidean metric while increasing the dimension by only one
unit. Such a transformation is not possible for non-Euclidean metrics, and therefore we
need to rely on other techniques.

We noticed that in order to use our polytope membership data structure, we need
convexity, but except for the preprocessing algorithm, no assumption of the convex body
actually being a polytope is necessary. Therefore, we are free to use a transformation that
produces a convex body with curved faces. In this ongoing work we consider the problems
that can be solved by this key insight: convexify instead of linearize. When dealing with
approximate nearest neighbor searching, smooth metrics seem to allow data structures
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with lower complexity than metrics with corners (such as L1 and L∞). We believe that
we should even be able to assign different metrics to different data points.

4.2 Polytope Approximation
Approximating convex bodies by polytopes is a fundamental problem, which has been
extensively studied in the literature. (See Bronstein [36] for a recent survey.) At issue is
the minimum number of vertices (alternatively, the minimum number of facets) needed
in an approximating polytope for a given error ε > 0. Consider a convex body K in
Euclidean d-dimensional space. A polytope P is said to ε-approximate K if the Hausdorff
distance [36] between K and P is at most ε. Throughout, we will restrict attention to
the Hausdorff metric, and we assume that the dimension d is a constant.

Our interest is in establishing bounds on the number of facets needed to approximate
general convex bodies. Approximation bounds are of two common types. In both cases,
it is shown that there exists ε0 > 0 such that the bounds hold for all ε ≤ ε0. In the
first type, which we call nonuniform bounds, the value of ε0 depends on K (for example,
on K’s maximum curvature). Such bounds are often stated as holding “in the limit”
as ε approaches zero, or equivalently as the complexity of the approximating polytope
approaches infinity. Examples include bounds by Gruber [61], Clarkson [50], and others
[33,74,81,83].

In the second type, which we call uniform bounds, the value of ε0 is independent of
K. For example, these include the results of Dudley [54] and Bronshteyn and Ivanov [35].
These bounds hold without any smoothness assumptions. Dudley showed that, for ε ≤ 1,
any convex body K can be ε-approximated by a polytope P with O((diam(K)/ε)(d−1)/2)
facets. Bronshteyn and Ivanov showed the same bound holds for the number of vertices.
Constants hidden in the O-notation depend only on d.

The approximation bounds of both Dudley and Bronshteyn and Ivanov are tight up
to constant factors (specifically when K is a Euclidean ball). These bounds may be sig-
nificantly suboptimal if K is skinny, however. Let area(K) denote the (d−1)-dimensional
Hausdorff measure of ∂K. We show that, under the assumption that the width of the
body in any direction is at least ε, there exists an ε-approximating polytope whose num-
ber of facets is O(

√
area(K)/ε(d−1)/2). For a given diameter, the surface area of a convex

body is maximized for a Euclidean ball, implying that area(K) = O(diam(K)d−1). Thus,
this bound is tight in the worst case.

Theorem 4.4. Consider real d-space, Rd. There exists a positive ε0 and constant cd such
that for any convex body K ⊂ Rd and any ε, 0 < ε ≤ ε0, if the width of K in any direction
is at least ε, then there exists an ε-approximating polytope P whose number of facets is
at most

cd
√

area(K)/ε(d−1)/2.

Note that the width assumption seems to be a technical necessity. For example,
consider a (d − 2)-dimensional unit ball B embedded within Rd, and let B′ denote its
Minkowski sum with a d-dimensional ball of radius δ � ε. By the optimality of Dudley’s
bound for Euclidean balls, Ω(1/ε(d−3)/2)) facets are needed to approximate B and hence
to approximate B′. But, the surface area of B′ can be made arbitrarily small as a function
of δ.
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The width assumption is not a fundamental impediment, however. If the body is
of width less than ε in some direction, then by projecting the body onto a hyperplane
orthogonal to this direction, it is possible to reduce the problem to a convex approximation
problem in one lower dimension. This can be repeated until the body’s width is sufficiently
large in all remaining dimensions, and the stated bound can be applied in this lower
dimensional subspace.

The Upper-Bound Theorem [75] implies that a polytope with n vertices (resp., facets)
has total combinatorial complexity O(nbd/2c). By combinatorial complexity we mean the
total number of faces of all dimensions of the polytope. It will simplify matters to assume
that K has been uniformly scaled to unit diameter. Applying the upper bound theorem
to the results of either Dudley or Bronshteyn and Ivanov directly yields a bound of
O(1/ε(d2−d)/4) on the combinatorial complexity of an ε-approximating polytope. Better
uniform bounds without d2 in the exponent are known, however. Consider a uniform grid
Ψ of points with spacing Θ(ε), and let P denote the convex hull of Ψ∩K. It is easy to see
that P is an ε-approximating polytope for K. The combinatorial complexity of any lattice
polytope1 is known to be O(V (d−1)/(d+1)), where V is the volume of the polytope [8, 27].
This implies that P has combinatorial complexity O(1/εd(d−1)/(d+1)) ≈ O(1/εd−2). While
this is significantly better than the bound provided by the Upper-Bound Theorem, it is
still much larger than the lower bound of Ω(1/ε(d−1)/2).

We show that this gap can be dramatically reduced. In particular, we establish an
upper bound on the combinatorial complexity of convex approximation that is optimal
up to a polylogarithmic factor in 1/ε.

Theorem 4.5. Let K ⊂ Rd be a convex body of unit diameter, where d is a fixed constant.
For all sufficiently small positive ε (independent of K) there exists an ε-approximating
convex polytope P to K of combinatorial complexity O(1/ε̂ (d−1)/2), where ε̂ = ε/ log 1

ε
.

This is within a factor of O(log(d−1)/2 1
ε
) of the aforementioned lower bound. Our con-

struction of the approximating polytope uses a stratified placement of Macbeath regions,
in which Macbeath regions of larger volume are kept closer to the boundary and Macbeath
regions of smaller volume are moved towards the center of the convex body. To prove the
bounds, we also employ a deterministic version of the witness-collector technique, devel-
oped recently by Devillers et al. [52], in the context of our stratified construction.

4.3 Open Problems
Macbeath Regions

• Lemma 2.7 gives an upper bound ofO(1/ε(d−1)/2) to the number of disjoint Macbeath
regions of width ε inside a fat convex body of unit diameter. These Macbeath regions
may however have very different volumes, ranging from Θ(εd) to Θ(ε). Because the
regions are disjoint and at distance ε from the boundary, the total volume cannot
exceed ε. Therefore, for v ≥ ε(d+1)/2, we have that the number of regions of vol-
ume v is O(ε/v). We believe that the number of Macbeath regions of small volume
should also be small since they are generated by portions of high curvature and a

1A lattice polytope is the convex hull of any set of points with integer coordinates.
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convex body cannot have high curvature everywhere. Is it true that the number of
Macbeath regions of volume v < ε(d+1)/2 is O(v/ε)?

• The proof of Lemma 2.7 uses a pruning step. Is this pruning step really necessary,
or can we show that the projections onto the Dudley ball of the center points of
any two disjoint Macbeath regions will have distance Ω(

√
ε)?

Polytope Membership

• The best upper bound for the query time of the data structure produced by the
split-reduce algorithm with storage O(1/ε(d−1)/2) is roughly O(1/ε(d−1)/8), while
the best lower bound is roughly Ω(1/ε(d−1)/18). Can the analysis of the split-reduce
algorithm be improved or a better lower bound be obtained?

• The data structure based on Macbeath regions for polytope membership has optimal
storage space of O(1/ε(d−1)/2). However, some polytopes may require much less
storage. In particular, can we bound the storage as a function of the number of facets
or the combinatorial complexity of the input polytope? This sensitive bound could
potentially be used to obtain improved bounds for approximate nearest neighbor
searching, since the reduction produces several polytopes with few facets.

Approximate Nearest Neighbor Searching

• Previous lower bounds for approximate nearest neighbor searching were based on
a model of computation that only allowed fat decompositions of space (the AVD
Model). These lower bounds have been beaten by the use of Macbeath regions. Can
we prove lower bounds in a more general model of computation?

• A black-box construction can be used to reduce approximate k-nearest neighbor for
constant k to approximate nearest neighbor. However, can we obtain better results
for the k-nearest neighbor problem for non-constant values of k? Also, can we deal
with the k-nearest neighbor problem directly, even for constant k?

Kernel

• The algorithm to compute an ε-kernel takes O(n log 1
ε

+ 1/ε(d−1)/2+α) time for any
α > 0. Can we get rid of the α term or the log 1

ε
factor?

Diameter Approximation

• Is it possible to approximate the diameter faster than O(n+ 1/ε(d−1)/2) time or can
we prove some lower bound?
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Abstract. In the polytope membership problem, a convex polytope K in Rd is given, and
the objective is to preprocess K into a data structure so that, given any query point q ∈ Rd, it is
possible to determine efficiently whether q ∈ K. We consider this problem in an approximate setting.
Given an approximation parameter ε, the query can be answered either way if the distance from q to
K’s boundary is at most ε times K’s diameter. We assume that the dimension d is fixed, and K is
presented as the intersection of n halfspaces. Previous solutions to approximate polytope membership
were based on straightforward applications of classic polytope approximation techniques by Dudley
[Approx. Theory, 10 (1974), pp. 227–236] and Bentley, Faust, and Preparata [Commun. ACM, 25
(1982), pp. 64–68]. The former is optimal in the worst case with respect to space, and the latter is
optimal with respect to query time. We present four main results. First, we show how to combine
the two above techniques to obtain a simple space-time trade-off. Second, we present an algorithm
that dramatically improves this trade-off. In particular, for any constant α ≥ 4, this data structure
achieves query time roughly O(1/ε(d−1)/α) and space roughly O(1/ε(d−1)(1−Ω(logα)/α)). We do not
know whether this space bound is tight, but our third result shows that there is a convex body such
that our algorithm achieves a space of at least Ω(1/ε(d−1)(1−O(

√
α)/α). Our fourth result shows that

it is possible to reduce approximate Euclidean nearest neighbor searching to approximate polytope
membership queries. Combined with the above results, this provides significant improvements to the
best known space-time trade-offs for approximate nearest neighbor searching in Rd. For example,
we show that it is possible to achieve a query time of roughly O(logn+ 1/εd/4) with space roughly
O(n/εd/4), thus reducing by half the exponent in the space bound.

Key words. polytope membership, nearest neighbor searching, geometric retrieval, space-time
trade-offs, approximation algorithms, convex approximation, Mahler volume
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1. Introduction. Convex polytopes are key structures in many areas of
mathematics and computation. In this paper, we consider a fundamental search
problem related to convex polytopes. Let K denote a convex body in Rd, that is,
a closed, convex set of bounded diameter that has a nonempty interior. We assume
that K is presented as the intersection of n closed halfspaces. (Our results generally
hold for any representation that satisfies the access primitives given at the start of
section 3.) The polytope membership problem is that of preprocessing K so that it is
possible to determine efficiently whether a given query point q ∈ Rd lies within K.
Throughout, we assume that the dimension d is a fixed constant that is at least 2.

It follows from standard results in projective duality that polytope membership
is equivalent to answering halfspace emptiness queries for a set of n points in Rd. In
dimension d ≤ 3, it is possible to build a data structure of linear size that can answer
such queries in logarithmic time [30]. In higher dimensions, however, all known exact

∗Received by the editors February 11, 2016; accepted for publication (in revised form) June 2,
2017; published electronically January 2, 2018.

http://www.siam.org/journals/sicomp/47-1/M106109.html
Funding: The first author was supported by the Research Grants Council of Hong Kong, China,

under projects 610108 and 16200014. The second author was supported by grants from CNPq and
FAPERJ. The third author was supported by NSF grant CCF-1618866.
†Department of Computer Science and Engineering, Hong Kong University of Science and Tech-

nology, Clear Water Bay, Kowloon, Hong Kong (arya@cse.ust.hk).
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Fig. 1. Approximate polytope membership: (a) problem formulation, (b) outer ε-approximation.

data structures with roughly linear space have a query time of Ω̃(n1−1/bd/2c)1 [43],
which is unacceptably high for many applications. Polytope membership is a special
case of polytope intersection queries [25, 31, 13]. Barba and Langerman [13] showed
that for any fixed d, it is possible to preprocess polytopes in Rd so that given two such
polytopes that have been translated and rotated, it can be determined whether they
intersect each other in time that is logarithmic in their total combinatorial complexity.
However, the preprocessing time and space grow as the combinatorial complexity of
the polytope raised to the power bd/2c.

The lack of efficient exact solutions motivates the question of whether polytope
membership queries can be answered approximately. Let ε be a positive real pa-
rameter, and let diam(K) denote K’s diameter. Given a query point q ∈ Rd, an
ε-approximate polytope membership query returns a positive result if q ∈ K and a neg-
ative result if the distance from q to its closest point in K is greater than ε ·diam(K),
and it may return either result otherwise (see Figure 1(a)). Polytope membership
queries, both exact and approximate, arise in many application areas, such as linear-
programming and ray-shooting queries [20, 24, 46, 44, 42], nearest neighbor searching
and the computation of extreme points [21, 28], collision detection [36], and machine
learning [19].

Existing solutions to approximate polytope membership queries have been based
on straightforward applications of classic polytope approximation techniques. We
say that a polytope P is an outer ε-approximation of K if K ⊆ P , and the Haus-
dorff distance between P and K is at most ε · diam(K) (see Figure 1(b)). An inner
ε-approximation is defined similarly but with P ⊆ K. Dudley [32] showed that
there exists an outer ε-approximating polytope for any bounded convex body in Rd
formed by the intersection of O(1/ε(d−1)/2) halfspaces, and Bronshteyn and Ivanov
[17] proved an analogous bound on the number of vertices needed to obtain an inner
ε-approximation. Both bounds are known to be asymptotically tight in the worst case
(see, e.g., [18]). These results have been applied to a number of problems, for example,
the construction of coresets [2]. By checking that a given query point lies within each
of the halfspaces of Dudley’s approximation, ε-approximate polytope membership
queries can be answered with space and query time of O(1/ε(d−1)/2).

1Throughout, we use Õ(·) and Ω̃(·) as variants of O(·) and Ω(·), respectively, that ignore loga-
rithmic factors. We use “lg” to denote base-2 logarithm.
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The principal contribution of this paper is to show that it is possible to achieve
nontrivial space-time trade-offs for approximate polytope membership. In order to
motivate our methods, in section 2 we present a simple space-time trade-off (stated
in the following theorem), which is based on a straightforward combination of the
approximations of Dudley [32] and Bentley, Faust, and Preparata [15]. Throughout,
we will treat n and ε as asymptotic quantities, while the dimension d is a constant.

Theorem 1.1 (simple trade-off). Given a convex polytope K in Rd, a positive
approximation parameter ε, and a real parameter α ≥ 2, there is a data structure for
ε-approximate polytope membership queries that achieves

Query time: O
(

1/ε
d−1
α

)
Space: O

(
1/ε(d−1)(1− 1

α )
)
.

The constant factors in the space and query time depend only on d (not on K, α, or ε).

We will strengthen this trade-off significantly in sections 3 and 4. We will show
that it is possible to build a data structure with O(1/ε(d−1)/2) space that allows
polytope membership queries to be answered in roughly O(1/ε(d−1)/8) time, thus
reducing the exponent in the query time of Theorem 1.1 (for α = 2) by 1/4. Further,
we will show that by iterating a suitable generalization of this construction, we can
obtain the following trade-offs.

Theorem 1.2. Given a convex polytope K in Rd, an approximation parameter
0 < ε ≤ 1, and a real constant α ≥ 4, there is a data structure for ε-approximate
polytope membership queries that achieves

Query time: O

((
log

1

ε

)
/ε

d−1
α

)
Space: O

(
1/ε(d−1)(1− 2blgαc−2

α )
)
.

The constant factors in the space and query time depend only on d and α (not on
K or ε).

The above space bound is a simplification, and the exact bound is given in
Lemma 6.4. Both bounds are piecewise linear in 1/α (with breakpoints at powers
of two), but the bounds of Lemma 6.4 are continuous as a function of α. The re-
sulting space-time trade-off is illustrated in Figure 2(a). (The plot reflects the more
accurate bounds.)

The above theorem is intentionally presented in a purely existential form. This
is because our construction algorithm assumes the existence of a procedure that com-
putes an ε-approximating polytope whose number of bounding hyperplanes is at most
a constant factor larger than optimal. Unfortunately, we know of no efficient solution
to this problem. In Lemma 7.6 we will show that if the input polytope is expressed
as the intersection of n halfspaces, it is possible to build such a structure in time
O(n + 1/εO(1)), such that the space and query times of the above theorem increase
by an additional factor of O(log 1

ε ).
Note that in contrast to many complexity bounds in the area of convex approxi-

mation, which hold only in the limit as ε approaches zero (see, e.g., [37, 40]), Theorems
1.1 and 1.2 hold for any positive ε ≤ 1. The data structure of Theorem 1.2 is quite
simple. It is based on a quadtree subdivision of space in which each cell is repeatedly
subdivided until the combinatorial complexity of the approximating polytope within
the cell is small enough to achieve the desired query time.

We do not know whether the upper bounds presented in Theorem 1.2 are tight for
our algorithm. In section 8, we establish the following lower bound on the trade-off
achieved by this algorithm.
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Fig. 2. The multiplicative factors in the exponent of the 1/ε terms for (a) polytope membership
queries and (b) approximate nearest neighbor (ANN) queries. Each point (x, y) represents a term
of 1/εx(d±O(1)) for storage and 1/εy(d±O(1)) for query time, where the O(1) term does not depend
on d.

Theorem 1.3. In any fixed dimension d ≥ 2 and for any constant α ≥ 4, there
exists a polytope such that for all sufficiently small positive ε, the data structure de-
scribed in Theorem 1.2 when generated to achieve query time O(1/ε(d−1)/α) has space

Ω

(
1/ε

(d−1)
(

1− 2
√

2α−3
α

)
−1
)
.

Although α is not an asymptotic quantity, for the sake of comparing the upper
and lower bounds, let us imagine that it is. For roughly the same query time, the α
dependencies appearing in the exponents of the upper bounds on space are (1− 1

α ) for

Theorem 1.1 and (1− Ω(logα)
α ) for Theorem 1.2, and the lower bound of Theorem 1.3

is roughly (1 − O(
√
α)

α ). The trade-offs provided in these theorems are illustrated in
Figure 2(a).

The second major contribution of this paper is to demonstrate that our trade-offs
for approximate polytope membership queries imply significant improvements to the
best known space-time trade-offs for approximate nearest neighbor searching. We are
given a set X of n points in Rd. Given any q ∈ Rd, an ε-approximate nearest neighbor
of q is any point of X whose distance from q is at most (1 + ε) times the distance
to q’s closest point in X. The objective is to preprocess X in order to answer such
queries efficiently. Data structures for approximate nearest neighbor searching (in
fixed dimensions) have been proposed by several authors [22, 33, 38, 28, 47]. The best
space-time trade-offs [10] have query times roughly O(1/εd/α) with storage roughly
O(n/εd(1−2/α)) for α ≥ 2 (see the dashed line in Figure 2(b)).

These results are based on a data structure called an approximate Voronoi diagram
(AVD). In general, a data structure for approximate nearest neighbor searching is said
to be in the AVD model if it has the general form of decomposition of space (generally
a covering) by hyperrectangles of bounded aspect ratio, each of which is associated
with a set of representative points. Given any hyperrectangle that contains the query
point, at least one of these representatives is an ε-approximate nearest neighbor of
the query point [10]. The AVD model is of interest because it is possible to prove
lower bounds on the performance of such a data structure. In particular, the lower
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bounds proved in [10] are shown in the dotted curve in Figure 2(b). By violating the
AVD model, small additional improvements were obtained in [6].

Our improvements to approximate nearest neighbor searching are given in the
following theorem.

Theorem 1.4. Let 0 < ε ≤ 1 be a real parameter, α ≥ 1 be a real constant,
and X be a set of n points in Rd. There is a data structure in the AVD model for
approximate nearest neighbor searching that achieves

Query time: O

(
log n+ (1/εd/2α) · log2 1

ε

)
,

Space: O

(
n ·max

(
log

1

ε
, 1/εd(

1
2− 1

2α )
))

for 1 ≤ α < 2, and

O
(
n/εd(1− blgαcα − 1

2α )
)

for α ≥ 2.

The constant factors in the space and query time depend only on d and α (not on ε).

The above space bound is a simplification of the more accurate bound given
in Lemma 9.5. (Also see the remarks following the proof of this lemma for further
minor improvements achievable by forgoing the AVD model.) As before, both bounds
are piecewise linear in 1/α (with breakpoints at powers of two), but the bounds of
Lemma 9.5 are continuous as a function of α. The resulting space-time trade-off is
illustrated in Figure 2(b). (The plot reflects the more accurate bounds of Lemma 9.5.)

As an example of the strength of the improvement that this offers, observe that
in order for the existing AVD-based results to yield a query time of Õ(1/εd/4) the re-
quired space would be roughly Ω(n/εd/2). The exponent in the space bound is nearly
twice that given by Theorem 1.4, which arises by setting α = 2. The connection be-
tween the polytope membership problem and approximate nearest neighbor searching
has been noted before by Clarkson [28]. Unlike Clarkson’s, our results hold for point
sets with arbitrary aspect ratios.

Our data structure is based on a simple quadtree-based decomposition of space.
Let t denote the desired query time. We begin by preconditioning K so that it is fat
and has at most unit diameter. We then employ a quadtree that hierarchically sub-
divides space into hypercube cells. The decomposition stops whenever we can declare
that a cell is either entirely inside or outside of K, or (if it intersects K’s boundary) it
is locally approximable by at most t halfspaces. This procedure, called SplitReduce, is
presented in section 3. Queries are answered by descending the quadtree to determine
the leaf cell containing the query point, and (if not inside or outside) testing whether
the query point lies within the approximating halfspaces.

Although the algorithm itself is very simple, the analysis of its space requirements
is quite involved. In section 4, we begin with a simple analysis, which shows that it
is possible to obtain a significant improvement over the Dudley-based approach (in
particular, reducing the exponent in the query time by half with no increase in space).
While this simple analysis introduces a number of useful ideas, it is not tight nor does
it provide space-time trade-offs.

Our final analysis requires a deeper understanding of the local structure of the con-
vex body’s boundary. In section 5 we introduce local surface patches of K’s boundary,
called ε-dual caps. We relate the data structure’s space requirements to the existence
of a low cardinality hitting set of the dual caps. We present a two-pronged strategy
for generating such a hitting set, one focused on dual caps of large surface area (intu-
itively corresponding to boundary regions of low curvature) and the other focused on
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dual caps of small surface area (corresponding to boundary regions of high curvature).
We show that simple random sampling suffices to hit dual caps of high surface area,
and so the challenge is to hit the dual caps of low surface area. To do this, we show
that dual caps of low surface area generate Voronoi patches on a hypersphere enclos-
ing K of large surface area. We refer to this result as the area-product bound, which
is stated in Lemma 5.2. This admits a strategy based on sampling points randomly
on this hypersphere, and then projecting them back to their nearest neighbor on the
surface of K.

The area-product bound is proved with the aid of a classical concept from the
theory of convexity, called the Mahler volume [16, 48]. The Mahler volume of a convex
body is a dimensionless quantity that involves the product of the body’s volume and
the volume of its polar body. We demonstrate that dual caps and their Voronoi
patches exhibit a similar polar relationship. The proof of the area-product bound is
quite technical and is deferred to section 10.

Armed with the area-product bound, in section 6 we establish our final bound on
the space-time trade-offs of SplitReduce, which culminates in the proof of Theorem 1.2.
In section 7 we present details on how the data structure is built and discuss prepro-
cessing time. In section 8 we establish the lower bound result, which is stated in
Theorem 1.3.

Finally, in section 9 we show how these results can be applied to improve the
performance of approximate nearest neighbor searching in Euclidean space. It is well
known that (exact) nearest neighbor searching can be reduced to vertical ray shooting
to a polyhedron that results by lifting points in dimension d to tangent hyperplanes
for a paraboloid in dimension d + 1 [3, 34]. We show how to combine approximate
vertical ray shooting (based on approximate polytope membership) with AVDs to
establish Theorem 1.4.

2. Preliminaries. Throughout, we will use asymptotic notation to eliminate
constant factors. In particular, for any positive real x, let O(x) denote a quantity
that is at most cx for some constant c. Define Ω(x) and Θ(x) analogously. We will
sometimes introduce constants within a local context (e.g., within the statement of
single lemma). To simplify notation, we will often use the same symbol “c” to denote
such generic constants. Recall that we use “lg” to denote the base-2 logarithm. We
will use “log” when the base does not matter. Some of our search algorithms involve
integer grids, and for these we assume a model of computation that supports integer
division.

Let K denote a full-dimensional convex body in Rd, and let ∂K denote its bound-
ary. For concreteness, we assume that K is represented as the intersection of n closed
halfspaces. Our data structure can generally be applied to any representation that
supports access primitives (i)–(iii) given at the start of section 3.

2.1. Absolute and relative approximations. Earlier, we defined approxima-
tion relative to K’s diameter, but it will be convenient to define the approximation
error in absolute terms. Given a positive real r, define K ⊕ r to be a set of points
that lie within Euclidean distance r of K. We say that a polytope P is an absolute
ε-approximation of a convex body K if

K ⊆ P ⊆ K ⊕ ε.
When we wish to make the distinction clear, we refer to the definition in the introduc-
tion as a relative approximation. Henceforth, unless otherwise stated approximations
are in the absolute sense.
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In order to reduce the general approximation problem into a more convenient ab-
solute form, we will transform K into a “fattened” body of bounded diameter. Given
a parameter 0 < γ ≤ 1, we say that a convex body K is γ-fat if there exist concentric
Euclidean balls B and B′, such that B ⊆ K ⊆ B′, and radius(B)/radius(B′) ≥ γ. We
say that K is fat if it is γ-fat for a constant γ (possibly depending on d, but not on n
or ε). The following lemma shows thatK can be fattened without significantly altering

the approximation parameter. Let Q
(d)
0 denote the d-dimensional axis-aligned hyper-

cube of unit diameter centered at the origin. When d is clear, we refer to this as Q0.

Lemma 2.1. Given a convex body K in Rd and 0 < ε ≤ 1, there exists an affine
transformation T such that T (K) is (1/d)-fat and T (K) ⊆ Q0. If P is an absolute
(ε/d
√
d)-approximation of T (K), then T−1(P ) is a relative ε-approximation of K.

We omit the proof of this lemma for now, since it is subsumed by Lemma 7.1
below. Our approach will be to map K to T (K), set ε′ ← ε/d

√
d, and then apply

an absolute ε′-approximation algorithm to T (K) (or more accurately, to the result of
applying T to each of K’s defining halfspaces). Since ε′ is within a constant factor
of ε, the asymptotic complexity bounds that we will prove for the absolute case will
apply to the original (relative) approximation problem case as well.

2.2. Concepts from quadtrees. By the above reduction, it suffices to con-
sider the problem of computing an absolute ε-approximation to a fat convex body K
that lies within Q0. Our construction will be based on a quadtree decomposition of
Q0. More formally, we define a quadtree cell by the following well-known recursive
decomposition. Q0 is a quadtree cell, and given any quadtree cell Q, each of the 2d

hypercubes that result by bisecting each of Q’s sides by an axis-orthogonal hyper-
plane is also a quadtree cell. A cell Q′ that results from subdividing Q is a child of
Q. Clearly, the child’s diameter is half that of its parent. The subdivision process
defines a (2d)-ary tree whose nodes are quadtree cells and whose leaves are cells that
are not subdivided.

It will be useful to define a notion of approximation that is local to a quadtree
cell Q. An obvious definition would be to approximate K ∩Q. The problem with this
is that a point p ∈ Q that is close to K need not be close to K ∩Q (see Figure 3(a)).
To remedy this we say that a polytope P is an ε-approximation of K within Q if

K ∩Q ⊆ P ∩Q ⊆ (K ⊕ ε) ∩Q

(see Figure 3(b)). This definition implies that for any query point q ∈ Q, we can
correctly answer ε-approximate polytope membership queries with respect to K by
checking whether q ∈ P . We do not care what happens outside of Q, and indeed P
may even be unbounded.

Eδ(K,Q)

δ

Q

K

(c)(b)

Q

(a)

K

K ∩Q

Q

K

p

K ∩Q

P

≤ ε

p

Fig. 3. (a), (b) ε-approximation of K within Q, and (c) Eδ(K,Q).
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As we shall see later, computing an ε-approximation of K within a quadtree
cell Q will generally require that we consider ∂K in a region that extends slightly
beyond Q. We define Eδ(K,Q) to be the portion of ∂K that lies within distance δ of
Q (see Figure 3(c)). Because δ =

√
ε will be of particular interest, we use E(K,Q) as

shorthand for E√ε(K,Q).
In order to apply constructions on quadtree cells of various sizes, it will be conve-

nient to transform all such constructions into a common form. Given a quadtree cell
Q, we define standardization to be the application of an affine transformation that
uniformly scales and translates space so that Q is aligned with the standard quadtree
cell Q0. We transform K using this same transformation and apply the same scale
factor to ε. Although we assume that the input body is contained within Q0, after
standardization, the transformed image of K need not be contained within Q0.

2.3. Polarity and the Mahler volume. Some of our analysis will involve the
well-known concept of polarity. Let us recall some general facts (see, e.g., Eggle-
ston [35]). Given vectors u, v ∈ Rd, let 〈u, v〉 denote their inner product, and let
‖v‖ =

√
〈v,v〉 denote v’s Euclidean length. Given a convex body K ∈ Rd define its

polar to be the convex set

polar(K) = {u : 〈u, v〉 ≤ 1 for all v ∈ K}.

If K contains the origin, then polar(K) is bounded. Given v ∈ Rd, polar(v) is simply
the closed halfspace that contains the origin whose bounding hyperplane is orthogonal
to v and at distance 1/‖v‖ from the origin (on the same side of the origin as v). The
polar has the inclusion-reversing property that v lies within polar(u) if and only if
u lies within polar(v). We may equivalently define polar(K) as the intersection of
polar(v) for all v ∈ K.

Generally, given r > 0, define

polarr(K) = {u : 〈u, v〉 ≤ r2 for all v ∈ K}.

It is easy to see that for any v ∈ Rd, polarr(v) is the closed halfspace at distance
r2/‖v‖ (see Figure 4(a)). Thus, polarr(K) is a uniform scaling of polar(K) by a
factor of r2. In particular, if B is a Euclidean ball of radius x centered at the origin,
then polarr(B) is a concentric ball of radius r2/x.

An important concept related to polarity is the Mahler volume, which is defined
to be the product of the volumes of a convex body and its polar. There is a large
literature on the Mahler volume, mostly for centrally symmetric bodies. Later in the
paper we will make use of the following bound on the Mahler volume for arbitrary

(b)(a)

r
v

r2/‖v‖

polarr(v)
polarr(K)

K

Fig. 4. The generalized polar transform and polar body.
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convex bodies (see, e.g., Kuperberg [41]). Given a convex body K in Rd, let vol(K)
denote its volume or, more formally, its d-dimensional Hausdorff measure.

Lemma 2.2 (Mahler volume). There is a constant cm depending only on d such
that given a convex body K in Rd, vol(K) ·vol(polar(K)) ≥ cm. More generally, given
r > 0, vol(K) · vol(polarr(K)) ≥ cm r2d.

2.4. Simple approximation trade-off. Before presenting our results, it will
be illuminating to see how to obtain simple data structures for approximate poly-
tope membership by combining two existing approximation methods. Let us begin by
describing Dudley’s approximation. Assuming that K is contained within Q0, let S
denote the (d−1)-dimensional sphere of radius 3 centered at the origin, which we call
the Dudley hypersphere. (The value 3 is not critical; any sufficiently large constant
suffices.) For δ > 0, a set Σ of points on S is said to be δ-dense if every point of S
lies within distance δ of some point of Σ. Let Σ be a

√
ε-dense set of points on S

(see Figure 5(a)). By a simple packing argument there exists such a set of cardinality
Θ(1/ε(d−1)/2). For each point x ∈ Σ, let x0 be its nearest point on K’s boundary. For
each such point x0, consider the halfspace containing K that is defined by the support-
ing hyperplane passing through x0 that is orthogonal to the line segment xx0. Dudley
shows that the intersection of these halfspaces is an outer ε-approximation of K. We
can answer approximate membership queries by testing whether q lies within all these
halfspaces (by brute force). This approach takes O(1/ε(d−1)/2) query time and space.

An alternative solution is related to a grid-based approximation by Bentley, Faust,
and Preparata [15]. Again, we assume that K is contained within Q0. For the sake
of illustration, let us think of the dth coordinate axis as pointing upward. Partition
the upper facet of Q0 into a (d − 1)-dimensional square grid with cells of diame-
ter ε. A packing argument implies that the number of cells is O(1/εd−1). Extend
each of these cells downward to form a subdivision of Q0 into vertical columns (see
Figure 5(b)). Trim each column at the highest and lowest points at which it inter-
sectsK. Together, these trimmed columns define a collection of hyperrectangles whose
union contains K. The resulting data structure has O(1/εd−1) space. Given a query
point q, in O(1) time we can determine the vertical column containing q (assuming
a model of computation that supports integer division), and we then test whether q
lies within the trimmed column. In contrast to the method based on Dudley’s con-
struction, this method provides a better query time of O(1) but with higher space of
O(1/εd−1).

q

r

K

K

x
x0

S ≤ √ε

q

ε

K

(a) (b) (c)

Fig. 5. The ε-approximations of (a) Dudley and (b) Bentley et al., and (c) the simple trade-off.
(Not drawn to scale.)
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It is possible to combine these two solutions into a simple unified approach that
achieves a trade-off between space and query time. Given a parameter r, where
ε ≤ r ≤ 1, subdivide Q0 into a grid of hypercube cells each of diameter Θ(r). For
each cellQ that intersectsK’s boundary, apply Dudley’s approximation to this portion
of the polytope. By a straightforward packing argument, the number of grid cells
that intersect K’s boundary is O(1/rd−1) (see, for example, Lemma 3 of [11]). We
apply standardization to Q (thus mapping Q to Q0 and scaling ε to Ω(ε/r)) and
apply Dudley’s construction. By Dudley’s results, the number of halfspaces needed
to approximate K within Q is O((r/ε)(d−1)/2). To answer a query, in O(1) time we
determine which hypercube of the grid contains the query point (assuming a model
of computation that supports integer division). We then apply brute-force search to
determine whether the query point lies within all the associated halfspaces in time
O((r/ε)(d−1)/2). The query time is dominated by this latter term. The space is
dominated by the total number of halfspaces, which is O((1/rd−1) · (r/ε)(d−1)/2) =
O(1/(εr)(d−1)/2). If we express r in terms of a parameter α, where r = ε1−2/α, then
Theorem 1.1 follows as an immediate consequence. Note that the resulting trade-off
interpolates nicely between the two extremes for ε ≤ r ≤ 1.

3. The data structure and construction. In this section we show how to
improve the approach from the previous section by replacing the grid with a quadtree.
The data structure is constructed by the recursive procedure, called SplitReduce,
whose inputs consist of a convex body K and a quadtree cell Q. We are also given the
approximation parameter 0 < ε ≤ 1 and a parameter t ≥ 1 that controls the query
time. Although we assume that K is presented as the intersection of n halfspaces,
this procedure can be applied to any representation that supports the following access
primitives:

(i) Determine whether Q is disjoint from K.
(ii) Determine whether Q is contained within K ⊕ ε.
(iii) Determine whether there exists a set of at most t halfspaces whose intersection

ε-approximates K within Q, and if so generate such a set.
Recall that we assume that K has been transformed so it is (1/d)-fat and lies

within Q0 (the hypercube of unit diameter centered at the origin). The data structure
is built by the call SplitReduce(K,Q0). In general, SplitReduce(K,Q) checks whether
any of the above access primitives returns a positive result, and if so it terminates the
decomposition and Q is declared a leaf cell. Otherwise, it makes a recursive call on
the children of Q (see Figure 6(a)). On termination, each leaf cell is labeled as either
“inside” or “outside” or is associated with a set of at most t approximating halfspaces
(see Figure 6(b)).

SplitReduce(K,Q).
1. If Q ∩K = ∅, label Q as “outside.”
2. If Q ⊆ K ⊕ ε, label Q as “inside.”
3. If there exists a set at most t halfspaces whose intersection provides an
ε-approximation to K within Q, associate Q with such a set P (Q) of mini-
mum size.

4. Otherwise, split Q into 2d quadtree cells and recursively invoke SplitReduce
on each.

For the sake of our space-time trade-offs, we will usually assume that t is reason-
ably large, say, t = Ω(log 1

ε ). Under our assumption that t ≥ 1, steps 1 and 2 are not
needed, since it is possible to ε-approximate any cell satisfying these conditions with a
single halfspace. This assumption on the value of t is mainly a convenience to simplify



APPROXIMATE POLYTOPE MEMBERSHIP QUERIES 11

leaf

inside
leaf

leaf

recur

recur

K

outside

(a) (b)

Fig. 6. (a) Cases arising in SplitReduce for t = 2 and (b) the final subdivision.

the formulas of our mathematical analysis. Observe that even if t = 0, the procedure
will terminate and provide a correct answer once the cell diameter falls below ε.

It is easy to see that the recursion must terminate as soon as diam(Q) ≤ ε (since,
irrespective of whether it intersects ∂K, any such cell can be labeled either as “inside”
or “outside”). Of course, it may terminate much sooner. Since Q0 is of unit diameter,
it follows that the height of the quadtree is O(log 1

ε ). The total space used by the
data structure is the sum of the space needed to store the quadtree and the space
needed to store the approximating halfspaces for the cells that intersect K’s boundary.
Our next lemma shows that if the query time is sufficiently large, the latter quantity
dominates the space asymptotically. For each leaf cell Q generated by step 3, define
t(Q) = |P (Q)|, and define t(Q) = 1 for all the other leaf cells.

Lemma 3.1. Given a convex body K ⊆ Q0 in Rd. If t is Ω(log 1
ε ), then the total

space of the data structure produced by SplitReduce(K,Q0) on K for query time t is
asymptotically dominated by the sum of t(Q) over all the leaf cells Q that intersect
K’s boundary.

Proof. Let T denote the quadtree produced by running SplitReduce on K. As
mentioned above, T is of height O(log 1

ε ). By our hypothesis that t is Ω(log 1
ε ), there

exists a constant c such that height(T ) ≤ ct. Let L denote the set of leaves of T that
intersect the boundary of K, and let M denote the internal nodes of T that have the
property that all their children are leaves. (These are the lowest internal nodes of the
tree.) Let t(L) denote the sum of t(Q) over all Q ∈ L.

The fact that each node u ∈M was subdivided by SplitReduce implies that more
than t halfspaces are needed to approximate K within u’s cell. Therefore, the children
of u that intersect K’s boundary together require at least t halfspaces. In addition to
P (Q), each quadtree leaf Q can (implicitly) contribute its 2d bounding hyperplanes
to the approximation. Therefore, t(L) + 2d|L| hyperplanes suffice to approximate K
in all the cells of M , implying that t(L) + 2d|L| ≥ t · |M |. Since t(Q) ≥ 1, we have
t(L) ≥ |L|, and thus (1 + 2d)t(L) ≥ t · |M |.

Each internal node of T either is in M or is an ancestor of a node in M . Thus,
the total number of internal nodes of T is at most |M | ·height(T ). Since each internal
node of a quadtree has 2d children, the total number of nodes in the tree, excluding
the root, is at most

2d · |M | · height(T ) ≤ 2d · |M | · (ct) ≤ 2dc(1 + 2d)t(L) = O(t(L)).

Each internal node of T and each leaf node that does not intersect K’s boundary con-
tributes only a constant amount to the total space. Therefore, the space contribution
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of the nodes other than those of L is at most a constant factor larger than the total
number of nodes of T , which we have shown is O(t(L)). Therefore, the total space is
O(t(L)), as desired.

A query is answered by performing a point location in the quadtree to determine
the leaf cell containing the query point. If the leaf cell is not labeled as being “inside”
or “outside,” we test whether the query point lies within all the associated halfspaces,
and if so, we declare the point to be inside K. Otherwise it is declared to be outside.
Clearly, the query time is O(log 1

ε + t).
The algorithm is correct provided that the set of halfspaces P (Q) computed in

step 3 defines any ε-approximation of K within Q, but our analysis of the data struc-
ture’s space requirements below (see the proof of Lemma 4.3) relies on the assumption
that the size of P (Q) is within a constant factor of the minimum number of halfspaces
of any ε-approximating polytope within Q. Unfortunately, we know of no constant-
factor approximation to the problem of computing such a polytope. Thus, strictly
speaking, the bounds stated in Theorem 1.2 are purely existential. In section 7 we will
show that through a straightforward modification of the greedy set-cover heuristic, it
is possible to compute an approximation in which the number of defining halfspaces
exceeds the optimum (for slightly smaller approximation parameter) by a factor of at
most ρ = O(log 1

ε ). From the following result it follows that this increases our space
and query time bounds by O(log 1

ε ).

Lemma 3.2. Given any ρ ≥ 1 and any constant 0 < β ≤ 1, if the number of half-
spaces of P (Q) computed in step 3 of SplitReduce is within a factor ρ of the minimum
number of facets of any (βε)-approximating polytope within Q, then Theorems 1.2
and 1.4 hold but with the asymptotic space and query time bounds larger by a fac-
tor of ρ.

Proof. Let us refer to the hypothesized version of SplitReduce whose step 3 is
suboptimal as SplitReduce′. Consider an execution of SplitReduce′ using ρt as the
desired query time and ε as the approximation parameter, and let us compare this
to an execution of SplitReduce using t and βε, respectively. Since β is a constant,
the asymptotic dependencies on ε are unaffected, and therefore the space and query
times stated in Theorems 1.2 and 1.4 apply without modification to the execution of
SplitReduce. In this execution, if the subdivision declares some quadtree cell Q to
be a leaf, then t halfspaces suffice to (βε)-approximate K within Q, and so by our
hypothesis in the corresponding execution of SplitReduce′, step 3 returns at most ρt
halfspaces, implying this execution also declares Q to be a leaf. Therefore, the tree
generated by SplitReduce′ is a subtree of the tree generated by SplitReduce, but each
leaf node may contain up to a factor of ρ more halfspaces. Thus, the asymptotic space
and query time bounds for SplitReduce′ are larger than those of SplitReduce by this
same factor.

4. Simple upper bound. In this section, we present a simple upper bound
of O(1/ε(d−1)/2) on the storage of the data structure obtained by the SplitReduce
algorithm for any given query time t ≥ 1/ε(d−1)/4. The tools developed in this section
will be useful for the more comprehensive upper bounds, which will be presented in
subsequent sections.

Throughout this section we do not necessarily assume that K has been scaled to
lie within Q0 and may generally be much larger. Recall that S denotes a hypersphere
of radius 3 centered at the origin. Let X denote a surface patch of K that lies within
S. Let Vor(X) denote the set of points exterior to K whose closest point on ∂K lies
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Fig. 7. Lemma 4.2.

within X. We refer to the surface patch Vor(X) ∩ S (the points of S whose closest
point on ∂K lies within X) as the Voronoi patch of X. Voronoi patches are related to
Dudley’s construction. In particular, a sample point x ∈ S from Dudley’s construction
generates a supporting halfspace at a point of X if and only if x ∈ Vor(X) ∩ S. The
following two lemmas are straightforward adaptations of Dudley’s analysis [32]. The
first is just a restatement of Dudley’s result.

Lemma 4.1. Given a convex body K in Rd that lies within Q0 and 0 < ε ≤ 1,
there exists an ε-approximating polytope P bounded by at most c/ε(d−1)/2 facets, where
c is a constant depending only on d.

The second lemma is a technical result that is implicit in Dudley’s analysis. Given
two points x, y ∈ Rd, let xy denote the segment between them, and let ‖xy‖ denote
the Euclidean length of this segment.

Lemma 4.2. Let K be a convex body, let 0 < ε ≤ 1, and let z and x be two points
of S such that ‖zx‖ ≤ √ε/4. Let z0 and x0 be the points on ∂K that are closest to z
and x, respectively. If z0 is within unit distance of the origin, then

(i) ‖z0x0‖ ≤
√
ε/4 and

(ii) the supporting hyperplane at x0 orthogonal to the segment xx0 intersects seg-
ment zz0 at distance less than ε from z0 (see Figure 7).

The following lemma is an extension of Dudley’s results, which allows us to bound
the complexity of an ε-approximation of K within a quadtree cell Q. Recall from
section 2.2 that E(K,Q) denotes the portion of ∂K that lies within distance

√
ε of Q.

Lemma 4.3. Let K be a convex body, Q ⊆ Q0 be a quadtree cell that intersects
∂K, and 0 < ε ≤ 1/2. Let Σ denote a set of (

√
ε/4)-dense points on the Dudley

sphere S. Then t(Q) ≤ |Σ ∩Vor(E(K,Q))| (see Figure 8(a)).

Proof. We construct an approximating polytope P by the following local variant
of Dudley’s construction. For each point x ∈ Σ ∩Vor(E(K,Q)), let x0 be its nearest
point on the boundary of K. (Note that x0 ∈ E(K,Q).) For each point x0, take the
supporting halfspace to K passing through x0 that is orthogonal to the segment xx0.
Let P be the (possibly unbounded) intersection of these halfspaces.

First, we show that Σ ∩ Vor(E(K,Q)) is nonempty. Consider any point z0 on
∂K ∩ Q. Let z denote any point of S ∩ Vor(E(K,Q)) whose closest point on ∂K is
z0. By definition of Σ, there is a point x ∈ Σ whose distance from z is at most

√
ε/4.

Letting x0 denote x’s closest point on ∂K, by Lemma 4.2(i), ‖z0x0‖ ≤
√
ε/4 <

√
ε.

Thus, x0 lies within E(K,Q), which implies that x ∈ Σ ∩ Vor(E(K,Q)). It follows
that P is bounded by at least one halfspace.

We now show that P is an (outer) ε-approximation of K within Q. Since P is
defined by supporting hyperplanes, K is contained within P . Consider any q ∈ Q that
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Fig. 8. Lemma 4.3. (Not drawn to scale.)

is at distance greater than ε from K. It suffices to show that q /∈ P , that is, there
exists a bounding hyperplane for P that separates q from K. Let q0 denote the point
of K∩Q that is closest to q (see Figure 8(b)). Note that q0 is constrained to lie within
Q, and hence this may not be the closest point to q on ∂K. By continuity, there must
be a point on the segment qq0 that is at distance exactly ε from ∂K, which we denote
by qε. Since Q is convex, this segment is contained in Q, and, hence, so is qε.

Let z′0 be the point on ∂K that is closest to qε. (Note that z′0 need not lie within
Q.) Because Q0 is centered at the origin, z′0’s distance from the origin is at most
diam(Q0)/2 + ‖qεz′0‖ ≤ 1/2 + ε ≤ 1. Let z′ denote the point of intersection with the
Dudley hypersphere S of the ray emanating from z′0 and passing through qε. Let x′

be a point of Σ that lies within distance
√
ε/4 of z′, and let x′0 be its closest point on

∂K. By Lemma 4.2(i) ‖x′0z′0‖ ≤
√
ε/4, and by (ii) the supporting hyperplane h at x′0

orthogonal to the segment x′x′0 intersects segment z′z′0 at distance less than ε from
z′0. Thus, h separates qε from K, and therefore it separates q from K.

To complete the proof that q /∈ P , it suffices to show that h is indeed included in
our construction of P . By the triangle inequality and our assumption that ε ≤ 1/2,
the distance from x′0 to Q is at most

‖x′0z′0‖+ ‖z′0qε‖ ≤
√
ε

4
+ ε ≤ √ε.

It follows that x′0 ∈ E(K,Q), and so h is included in the construction of P . By our
hypothesis that the set P (Q) constructed in step 3 of SplitReduce is the minimum-
sized set of halfspaces needed to ε-approximate K within Q, we have t(Q) = |P (Q)| ≤
|P | = |Σ ∩ Vor(E(K,Q))|. (Note that this works even if Q is an “inside” cell that
intersects K’s boundary. In such a case t(Q) = 1 by definition, and as argued above,
Σ ∩Vor(E(K,Q)) is nonempty.) This completes the proof.

Next, we prove a useful technical lemma, which bounds the total complexity of
a set of leaves whose cells are of a given minimum size. Recalling the definition of Σ
from the previous lemma, we may assume that |Σ| = Θ(1/ε(d−1)/2).

Lemma 4.4. Let K be a convex body in Rd, let 0 < ε ≤ 1/2, and let L denote a
set of disjoint quadtree cells contained within Q0 such that each intersects ∂K and is
of diameter Ω(

√
ε). Then

∑
Q∈L t(Q) = O(1/ε(d−1)/2).

Proof. By applying Lemma 4.3 to each Q ∈ L we have
∑

Q∈L
t(Q) ≤

∑

Q∈L
|Σ ∩Vor(E(K,Q))|.
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Since |Σ| = O(1/ε(d−1)/2), to complete the proof it suffices to show that each x ∈ Σ
lies within Vor(E(K,Q)) for at most constant number of Q ∈ L. To see this, let
x0 be the point on ∂K that is closest to x. Since each cell Q ∈ L has size at least
Ω(
√
ε), by disjointness and a packing argument it follows that at most a constant

number (depending on dimension) of such cells can lie within distance
√
ε of x0,

which establishes the claim.

Combining the above results, we obtain the main result of this section.

Lemma 4.5. Let K be a convex body in Rd and 0 < ε ≤ 1/2. The output of
SplitReduce(K,Q0) for t ≥ 1/ε(d−1)/4 has total space O(1/ε(d−1)/2).

Proof. Let c2 be the constant of Lemma 4.1, and define c1 = (1/c2)2/(d−1). We
may assume that ε ≤ c21, for otherwise ε = Ω(1) and clearly SplitReduce will not
generate more than a constant number of cells.

Let T denote the quadtree produced by the algorithm, and let L denote the set of
leaf cells of T that intersect the boundary of K. Recall from Lemma 3.1 that the data
structure’s total space is asymptotically bounded by the sum of t(Q) for all Q ∈ L.
Thus, it suffices to prove that

∑

Q∈L
t(Q) = O(1/ε(d−1)/2).

Toward this end, we first prove a lower bound on the size of any leaf cell Q.
We assert that the cell Q associated with any internal node has diameter at least
δ = c1

√
ε. It will then follow that each leaf cell has diameter at least δ/2. Suppose

to the contrary that diam(Q) < δ. Recall the standardization transformation from
section 2.2, which maps Q to Q0 and scales ε to at least ε/δ =

√
ε/c1. Let us denote

this value by ε′. Since ε ≤ c21, we have ε′ ≤ 1. By applying Lemma 4.1 to the
transformed body (with ε′ playing the role of ε), it follows that the polytope K ∩Q
can be ε-approximated by a polytope P defined by the intersection of at most

c2
(ε′)(d−1)/2

= c2

(
c1√
ε

)(d−1)/2

≤ 1

ε(d−1)/4

halfspaces. Since K ∩ Q ⊆ P , it is easy to see that P is an ε-approximation of K
within Q. Since t ≥ 1/ε(d−1)/4, the termination condition of our algorithm implies
that such a cell is not further subdivided, contradicting our hypothesis that this is
an internal node. Therefore, the cells of L satisfy the conditions of Lemma 4.4. The
desired bound follows by applying this lemma.

It is useful to contrast this with the Dudley-based approach described in
section 2.4. For t = 1/ε(d−1)/4, we obtain the same O(1/ε(d−1)/2) space in each case,
but the exponent in the query time of SplitReduce is only half that of the Dudley-
based approach. Later, in Lemma 6.3, we will present a more refined analysis showing
that it is possible to reduce this further, achieving a query time of only Õ(1/ε(d−1)/8).

It will be useful in later sections to generalize the above lemma to quadtree cells
of arbitrary size. By a direct application of standardization, we obtain the following.

Lemma 4.6. Let K be a convex body in Rd, let Q be a quadtree cell contained
within Q0, and let 0 < ε ≤ diam(Q)/2. The output of the call SplitReduce(K,Q) for
t ≥ (diam(Q)/ε)(d−1)/4 has total space O((diam(Q)/ε)(d−1)/2).

5. Dual caps and approximation. The bounds proved in the previous section
apply to query times t ≥ 1/ε(d−1)/4. In section 6 we will show how to obtain good
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Fig. 9. (a) Dual caps, (b) restricted dual caps, and (c) the Voronoi patch of a dual cap.

space bounds for smaller query times. This will involve analyzing the local geometry
about small boundary patches of the convex body. In this section, we introduce the
principal geometric underpinnings that will be needed for this more refined analysis.
In particular, we discuss the concepts of dual caps and restricted dual caps and their
role in polytope approximation.

Although we do not assume that K is smooth, it will simplify the presentation to
imagine that each boundary point has a unique supporting hyperplane and a unique
normal vector. To achieve this, we employ an augmented representation of the bound-
ary points of K. In particular, each boundary point p ∈ ∂K will be expressed as a
pair (p, h), where h is a supporting hyperplane at p. We will often refer to h as h(p).
When h is clear from context or unimportant, we avoid explicit reference to it.

We first observe that computing an outer ε-approximation of a convex body K
by halfspaces can be reduced to a hitting-set problem. Consider any point pε that is
external to K at distance ε from its boundary, and let (p, h) denote the augmented
boundary point consisting of the closest point p ∈ ∂K to pε and the supporting
hyperplane through p that is orthogonal to the segment ppε (see Figure 9(a)). We
define the ε-dual cap of p, denoted D(p), to be the set of augmented boundary points
(q, h′) such that the supporting hyperplane h′ through q intersects the closed line
segment ppε. (Equivalently, these are the points of ∂K that are visible to pε.)

Any outer ε-approximation of K by halfspaces must contain at least one halfspace
that separates p from pε, and this can be achieved by including h′ for any pair (q, h′)
within D(p). A set of augmented points Σ ⊆ ∂K is said to be an ε-hitting set for
K if for every p ∈ ∂K, Σ ∩D(p) 6= ∅. It follows directly that the intersection of the
supporting halfspaces for any ε-hitting set is an outer ε-approximation of K. This
observation will be formalized within our quadtree-based context in our next lemma.
Before stating the lemma, we need to introduce one additional concept. In order to
approximate K within a given quadtree cell Q, we are interested only in the geometry
of K’s boundary that lies close to Q. For this reason, it will be desirable to limit
the diameter of dual caps. Given δ > 0, let Bδ(p) denote the closed Euclidean ball
of radius δ centered at p. Define the δ-restricted dual cap, denoted Dδ(p), to be the
intersection of D(p) with Bδ(p) (see Figure 9(b)).

Lemma 5.1. Let K be a convex body, let Q ⊆ Q0 be a quadtree cell that intersects
∂K, and 0 < ε ≤ 1/2. Let Σ be any set of augmented points on E(K,Q) that
hits the set of all

√
ε-restricted ε-dual caps whose defining point is in E(K,Q) (see

Figure 10(a)). Then there is a polytope P defined as the intersection of |Σ| halfspaces
that ε-approximates K within Q.

Proof. Let P be the polytope defined by the intersection of the supporting
halfspaces associated with each augmented point of Σ (see Figure 10(b)). Clearly,



APPROXIMATE POLYTOPE MEMBERSHIP QUERIES 17

√
ε

Q

K

Q

K

(a) (c)

q

q0 = z0
x0

qε

E(K,Q)

Q

P

(b)

Σ

h0

Fig. 10. Lemma 5.1.

K ⊆ P . Consider any point q ∈ Q that is at distance greater than ε from K ∩Q. It
suffices to show that q /∈ P , that is, there exists a bounding hyperplane for P that
separates q from K.

We apply a similar argument to the one that we used in the proof of Lemma 4.3.
Consider any q ∈ Q that is at distance greater than ε from K (see Figure 10(c)). It
suffices to show that there exists a bounding hyperplane for P that separates q from
K. Let q0 denote the point of K ∩Q that is closest to q. By continuity, there must be
a point on the segment qq0 that is at distance exactly ε from ∂K, which we denote
by qε. Since Q is convex, this segment must be contained in Q, and, hence, so is qε.

Let z0 be the point on ∂K that is closest to qε. (In our figure z0 = q0, but
generally z0 need not lie within Q.) Since ε ≤ 1, we have ‖qεz0‖ = ε ≤ √ε. It follows
that z0 ∈ E(K,Q). Therefore, there exists an augmented point (x0, h0) ∈ Σ that
hits the

√
ε-restricted ε-dual cap defined by z0 (whose apex is at qε). The supporting

hyperplane h0 separates qε (and therefore q) from K, as desired.

Our analysis of the space bounds of SplitReduce is based on the combined sizes
of the ε-hitting sets for K within each quadtree cell Q. Dudley’s construction can be
viewed as one method of computing ε-hitting sets. Unfortunately, Dudley’s construc-
tion does not lead to the best bounds because it tends to oversample in regions of
very low or very high curvature. Our analysis will be based on a more refined, area-
based approach to bounding the sizes of hitting sets. The key geometric observation
is that the product of the areas of any ε-dual cap and its associated Voronoi patch
on the Dudley sphere S must be large. Intuitively, if the surface area of an ε-dual
cap is small, then the total curvature of the patch must be high, and so the associ-
ated Voronoi patch must have relatively large area (see Figure 9(c)). More precisely,
we show that (under certain conditions) the product of the areas of an ε-dual cap
and its Voronoi patch is Ω(εd−1). This result is stated formally in Lemma 5.2 be-
low. Given a (d− 1)-dimensional manifold, let area(Y ) denote its (d− 1)-dimensional
Hausdorff measure. Given a convex body X in Rd, we use area(X) as a shorthand for
area(∂X).

Lemma 5.2 (area-product bound). Let K be a convex body in Rd, and let 0 <
ε ≤ 1/8. Consider a pair (p, h(p)), where p ∈ ∂K and h(p) is a supporting hyperplane
passing through p. Let D denote the

√
ε-restricted ε-dual cap whose defining point

is p. If K is fat and of diameter at least 2ε, there exists a constant ca (depending
only on d) such that if p lies within a unit ball centered at the origin, then area(D) ·
area(Vor(D) ∩ S) > ca · εd−1.

The proof of the lemma is quite technical and will be deferred to section 10.
The geometric basis of the proof involves the Mahler volume, which was introduced
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in section 2.3. The bound stated in the lemma holds if K is γ-fat for any γ in the
interval (0, 1] under the assumption that γ does not depend on ε. In particular, the
proof will reveal that ca = Ω(γd−1).

We will exploit this observation to demonstrate the existence of smaller ε-hitting
sets than those given by Dudley’s construction. We will hit the restricted ε-dual caps
that have large surface area by sampling points randomly on the boundary of K, and
we will hit those with small surface area by sampling points randomly on the Dudley
hypersphere and then selecting their nearest neighbors on ∂K. In order to prove
that such a random sampling strategy works to stab all the dual caps, we need to
establish bounds on the VC-dimension of an appropriate range space based on dual
caps. This is not surprising given that dual caps and restricted dual caps are defined
by a constant number of parameters. The result is stated in the following lemma. The
proof involves a straightforward application of basic geometric principles. (Details can
be found in [8].)

Lemma 5.3. Let K be a convex body in Rd that lies within Q0, and let ε and δ
be positive real parameters. The following range spaces (Xi, Ri) have constant VC-
dimension (where the constant depends only on d):

1. X1 = ∂K and R1 is the set of ε-dual caps.
2. X2 = S and R2 is the set of Voronoi patches of the ε-dual caps.
3. X3 = ∂K and R3 is the set of δ-restricted ε-dual caps.
4. X4 = S and R4 is the set of Voronoi patches of the δ-restricted ε-dual caps.

In the next section we will exploit this result to establish the existence of small
ε-nets for these range spaces. Note that the range spaces defined in this lemma are
defined over ∂K, a domain of infinite cardinality. However, for our purposes, it suffices
to consider dual caps and restricted dual caps whose defining points are drawn from
any sufficiently dense set of points on ∂K (depending on ε), and therefore the domains
of the range spaces can be treated as finite sets.

6. Final upper bound. In this section, we use the tools developed in sections
4 and 5 to obtain better upper bounds for approximate polytope membership. In
particular, we present a proof of Theorem 1.2. We will first show how to apply the
area-based techniques described in the previous section to improve the simple upper
bound from Lemma 4.5 at the low-space end of the trade-off spectrum. (This will
be presented in Lemma 6.3.) We will then apply this improvement repeatedly in
an inductive manner to establish trade-offs throughout the spectrum. For technical
reasons, many of the lemmas of this section assume constant upper bounds on the
value of ε. There is no loss of generality in doing so, since it is easy to show that if
ε is bounded below by any fixed constant, the asymptotic space and query times of
SplitReduce are both O(1).

Throughout this section, recall that Eδ(K,Q) is the portion of ∂K that is within
distance δ of Q, and E(K,Q) = E√ε(K,Q). Also, define E+(K,Q) = E2

√
ε(K,Q).

We will assume that diam(K) ≥ 2ε, for otherwise it is trivial to compute an ε-
approximation of constant size. Our first result establishes an area-based bound on
the number of halfspaces needed to approximate K within a quadtree cell Q.

Lemma 6.1. Let K be a fat convex body in Rd, let 0 < ε ≤ 1/8, and let Q ⊆ Q0

be a quadtree cell that intersects ∂K. Letting ca denote the constant of Lemma 5.2,
define

r =

(
area(E+(K,Q)) · area (Vor(E+(K,Q)) ∩ S)

ca · εd−1

)1/2

.
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There is a polytope P defined as the intersection of O(r log r) halfspaces that is an
ε-approximation of K within Q.

Proof. Letting AK = area(E+(K,Q)) and AS = area (Vor(E+(K,Q)) ∩ S), we
can express the value of r more succinctly as (AKAS/ca ε

d−1)1/2. First, we assert that
r = Ω(1). To see this, we consider two cases. First, if K lies entirely within distance
2
√
ε of Q, then Vor(E+(K,Q))∩S = S, which implies that AS = Ω(1). Since K is fat

and by our assumption that diam(K) ≥ 2ε, it follows that AK = Ω(εd−1). Therefore,
r = Ω(1). On the other hand, if some part of K lies at distance greater than 2

√
ε

from Q, E+(K,Q) is a boundary patch of K of diameter Ω(
√
ε). Since both K and

Q are fat, it follows that AK = Ω(ε(d−1)/2). By convexity, as we go from a boundary
patch on K to its Voronoi cell on S, distances cannot decrease. Therefore AS ≥ AK ,
and again we have r = Ω(1). Through a minor adjustment to constant factor ca in
r’s definition, we may assume that log r ≥ 1.

By Lemma 5.1, in order to show the existence of an ε-approximating polytope P
for K within Q, it suffices to show that it is possible to hit all

√
ε-restricted ε-dual

caps whose defining point lies in E(K,Q) (not to be confused with E+(K,Q)) using
O(r log r) points. To do this, we distinguish between two types of such restricted
dual caps. A restricted dual cap D is of type 1 if area(D) ≥ (ca ε

d−1AK/AS)1/2, and
otherwise it is of type 2.

By assertions 3 and 4 of Lemma 5.3, we know that
√
ε-restricted ε-dual caps and

their Voronoi patches both have constant VC-dimension. The VC-dimension is no
larger if we restrict the domain of the range space. Therefore, by standard machinery
(see, e.g., [4]) we can build a (1/r)-net for any restriction of these range spaces of size
O(r log r) each by random sampling.

For type-1 dual caps, consider the restriction (E+(K,Q), R3) of the range space
given in Lemma 5.3.3. Let Σ1 denote a (1/r)-net. Consider any type-1 dual cap D.
Since D’s defining point lies within E(K,Q) and it is

√
ε-restricted, it lies entirely

within E+(K,Q). Thus, we have

area(D ∩ E+(K,Q))

area(E+(K,Q))
=

area(D)

area(E+(K,Q))
≥
(
ca · εd−1AK/AS

)1/2

AK

=

(
ca · εd−1

AKAS

)1/2

=
1

r
.

Therefore D contains at least one point of Σ1. It follows that Σ1 hits all type-1 dual
caps.

For type-2 dual caps, let us consider the restriction (Vor(E+(K,Q))∩S,R4) of the
range space of Lemma 5.3.4. Let Σ2 denote a (1/r)-net. Because ε ≤ 1/8 and Q ⊆ Q0,
E(K,Q) lies within a ball centered at the origin of radius diam(Q0)/2 +

√
ε ≤ 1.

Given any type-2 dual cap D whose defining (augmented) point lies in E(K,Q), we
may apply Lemma 5.2 to obtain

area(Vor(D) ∩ S) ≥ ca · εd−1

area(D)
≥ ca · εd−1

(
ca · εd−1AK/AS

)1/2 =

(
ca · εd−1AS

AK

)1/2

.

As before, since D’s defining point lies within E(K,Q), D ⊆ E+(K,Q). From this
we have
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area(Vor(D ∩ E+(K,Q)) ∩ S)

area(Vor(E+(K,Q)) ∩ S)
=

area(Vor(D) ∩ S)

area(Vor(E+(K,Q)) ∩ S)

≥
(
ca · εd−1AS/AK

)1/2

AS
=

(
ca · εd−1

AKAS

)1/2

=
1

r
.

Therefore Vor(D) ∩ S contains at least one point of Σ2, implying that Σ2 hits the
Voronoi patches of all type-2 dual caps. For each point of Σ2, we select its nearest
neighbor on ∂K, obtaining a set Σ′2 ⊂ E+(K,Q). It follows directly that the set
Σ′2 hits all type-2 dual caps. Therefore, the union Σ1 ∪ Σ′2 forms the desired set of
size O(r log r) that hits all

√
ε-restricted ε-dual caps whose defining point lies within

E(K,Q).

In order to establish our storage bounds, we analyze the behavior of the algo-
rithm at a particular level of the decomposition. Given the query-time parameter
t, recall that we stop the subdivision process in SplitReduce(K,Q) if the number of
hyperplanes needed to approximate K within Q falls below t. Also recall that t(Q)
denotes the number of approximating halfspaces associated with Q. Let us consider
the state of the subdivision process when the cell sizes reach roughly

√
ε. Cells that

have stopped subdividing by this point are “good,” since we can bound the total space
requirements for all such cells by appealing to Lemma 4.4. For the remaining “bad”
cells, we will bound their space requirements on a cell-by-cell basis by using the simple
upper bound from Lemma 4.6. For our approach to work well, it is crucial to obtain a
good bound on the number of such bad cells. We exploit the area bound of Lemma 6.1
for this purpose. Whenever SplitReduce subdivides a cell of size O(

√
ε), we can infer

that more than t hyperplanes are required to approximate K within this cell. Since
the portion of ∂K lying within this cell is small, the area of its Voronoi patch on the
Dudley sphere must be large. A packing argument applied on the Dudley sphere will
be used to limit the number of these bad cells.

In order to formalize the notion of good and bad cells, let T denote the quadtree
produced by SplitReduce(K,Q0), and let T ′ denote the subtree of T induced by cells
of diameter at least

√
ε/2. For the remainder of this section, let L1 denote the (good)

leaf cells of T ′ that are not subdivided further by the algorithm, and let L2 be the
remaining (bad) leaf cells of T ′. The cells of L1 and L2 are all of diameter Ω(

√
ε). Each

cell in L1 can be approximated using at most t halfspaces, and those in L2 require
more. In our next lemma, we bound the total number of approximating halfspaces
over all the good leaf cells and the total number of bad leaf cells.

Lemma 6.2. Let K be a fat convex body in Rd, and let 0 < ε ≤ 1/8. Let T denote
the quadtree produced by SplitReduce(K,Q0) for t ≥ 1, and let L1 and L2 be as defined
above. Then

(i)
∑
Q∈L1

t(Q) = O(1/ε(d−1)/2),

(ii) |L2| = O((1 + log t)/t)2(1/ε)(d−1)/2).

Proof. Because the cells of L1 are disjoint and each is of diameter Ω(
√
ε), as-

sertion (i) follows as a direct consequence of Lemma 4.4. Thus, it remains to prove
assertion (ii). Let Q be any cell of L2. Since any child of a cell of L2 is of diameter
smaller than

√
ε/2 and Q’s diameter is twice this, we have

√
ε/2 ≤ diam(Q) <

√
ε.

Recall that E+(K,Q) = E2
√
ε(K,Q). Also, let AK(Q) and AS(Q) denote the values

of AK and AS , respectively, from the proof of Lemma 6.1, when applied to Q.



APPROXIMATE POLYTOPE MEMBERSHIP QUERIES 21

Because diam(Q) ≤ √ε and E+(K,Q) involves a boundary patch of K that
intersects Q and includes an additional expansion by distance 2

√
ε, it follows that this

boundary patch has diameter O(
√
ε). Therefore, AK(Q) = O(ε(d−1)/2). By applying

Lemma 6.1 (and recalling the constant ca from Lemma 5.2), we have t(Q) = O(r log r),
where

r =

(
area(E+(K,Q)) · area (Vor(E+(K,Q)) ∩ S)

ca · εd−1

)1/2

=

(
AK(Q)AS(Q)

ca · εd−1

)1/2

= O

(√
AS(Q)

ε(d−1)/2

)
.

In Lemma 6.1 we showed that (after a suitable adjustment to ca) we have log r ≥
1. Since Q is subdivided further, we know that t(Q) > t, which implies that t =
O(r log r). Because t ≥ 1, by simple manipulations we have t/(1 + log t) = O(r). By
combining this with the upper bound on r from above, we obtain AS(Q) = Ω((t/(1 +
log t))2ε(d−1)/2), which yields the lower bound

∑

Q∈L2

AS(Q) = |L2| · Ω
((

t

1 + log t

)2

ε
d−1
2

)
.

As shown in the proof of Lemma 4.4, given any set of disjoint quadtree cells of
diameter Ω(

√
ε) a point of S can be in Vor(E+(K,Q)) for at most a constant number

of these cells. Since the quadtree cells of L2 satisfy these conditions,
∑

Q∈L2

AS(Q) =
∑

Q∈L2

area(Vor(E+(K,Q)) ∩ S) = O(area(S)).

Combining this with our lower bound, we have

|L2| = O

(
area(S) ·

(
1 + log t

t

)2

·
(

1

ε

)d−1
2

)
.

Since S is a hypersphere of constant radius, its area is bounded, and assertion (ii)
follows immediately.

Recall that we showed in Lemma 4.5 that it is possible to answer approximate
membership queries in 1/ε(d−1)/4 time using space O(1/ε(d−1)/2). By using the above
lemma, we show next that we can improve this to achieving query time roughly
O(1/ε(d−1)/8) for the same space.

Lemma 6.3. Let K be a fat convex body in Rd, and let 0 < ε ≤ 1/16. For
t ≥ (lg 1

ε )/ε(d−1)/8, the output of SplitReduce(K,Q0) has total space O(1/ε(d−1)/2).

Proof. Let T denote the quadtree produced by the algorithm. By Lemma 3.1, the
data structure’s total space is dominated by the space needed to store the hyperplanes
in the leaf cells. Thus, it suffices to show that the sum of t(Q) over all leaf cells Q
of T is O(1/ε(d−1)/2). Let T ′, L1, and L2 be as defined just prior to Lemma 6.2. By
Lemma 6.2(i), the total contribution of t(Q) for all cells in L1 is O(1/ε(d−1)/2). So,
it suffices to bound the contribution due to L2.

Let Q be any cell of L2. Recall from the proof of Lemma 6.2 that
√
ε/2 ≤

diam(Q) ≤ √ε. Since t ≥ 1/ε(d−1)/8, it follows that t ≥ (diam(Q)/ε)(d−1)/4. Be-
cause ε ≤ 1/16, we have ε ≤ √ε/4 ≤ diam(Q)/2. By Lemma 4.6, the output of
SplitReduce(K,Q) has total space at most
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O

((
diam(Q)

ε

)d−1
2

)
= O

((
1

ε

)d−1
4

)
.

By Lemma 6.2(ii), |L2| = O(((1 + log t)/t)2(1/ε)(d−1)/2). Since t ≥ (lg 1
ε )/ε(d−1)/8,

we have |L2| = O(1/ε(d−1)/4). Summing up the space contributions of all Q ∈ L2,
the total space for these cells is

|L2| ·O
(
1/ε(d−1)/4

)
= O

(
1/
(
ε(d−1)/4 · ε(d−1)/4

))
= O

(
1/ε(d−1)/2

)
,

as desired.

In order to extend the space-time trade-off to other query times, we will apply
the previous result as the basis case in an induction argument. The induction will be
controlled by a parameter α, which we assume to be a constant. The proof is rather
technical, but it involves a straightforward application of the earlier results of this
section.

Lemma 6.4. Let K be a fat convex body in Rd, and let 0 < ε ≤ 1/16. Let α ≥ 4
be a real-valued constant. For t ≥ (lg 1

ε )/ε(d−1)/α, the output of SplitReduce(K,Q0)
has total space

O

(
1/ε

(d−1)
(

1−2
(
blgαc−2

α + 1

2blgαc

)))
.

Proof. Define k = blgαc, which implies that k ≥ 2, and 2k ≤ α < 2k+1. Expressed
as a function of k, the desired space bound can be expressed as

ck ·
(

1/ε(d−1)(1−2( k−2
α + 1

2k
))
)

(1)

for a constant ck (depending on k but not on ε).
We begin exactly as in the proof of the previous lemma. Let T denote the quadtree

produced by the algorithm, and by Lemma 3.1, it suffices to bound the sum of t(Q)
over all leaf cells of T . Given T ′, L1, and L2 defined prior to Lemma 6.2, the space
contribution due to the cells of L1 is O(1/ε(d−1)/2). To see that this satisfies our space
bound, observe that since k ≥ 2 and α ≥ 2k, we have

1

4
≥ k − 1

2k
=

k − 2

2k
+

1

2k
≥ k − 2

α
+

1

2k
.

Therefore, the total contribution of t(Q) for all cells in L1 is

O
(
1/ε(d−1)/2

)
= O

(
1/ε(d−1)(1−2( 1

4 ))
)
≤ O

(
1/ε(d−1)(1−2( k−2

α + 1

2k
))
)
,(2)

which matches the desired bound given in (1).
It remains to bound the contribution to the space of the cells of L2. We do

this by induction on k. For the basis case k = 2, we have 4 ≤ α < 8. Therefore
t > (lg 1

ε )/ε(d−1)/8. By applying Lemma 6.3, the total space of the data structure

(which includes the contribution of L2) is O(1/ε(d−1)/2). It follows from (2) (for the
case k = 2) that this satisfies our storage bound.

For the induction step, we assume that the lemma holds for k−1 (that is, 2k−1 ≤
α/2 < 2k), and our objective is to prove it for k. It will be convenient to express
the induction hypothesis in a form that holds for an arbitrary quadtree cell Q ⊆ Q0.
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By applying standardization to Q (thus mapping Q to Q0 and scaling ε to ε/diam(Q)),
the induction hypothesis states that for

0 < ε ≤ diam(Q)

16
and t ≥

(
lg

diam(Q)

ε

)
·
(

diam(Q)

ε

)d−1
α/2

,(3)

there is a constant ck−1 such that the output of SplitReduce(K,Q) has total space at
most

ck−1 · (diam(Q)/ε)(d−1)(1−2( k−3
α/2

+ 1

2k−1 )).(4)

Let Q be any cell of L2. In the proof of Lemma 6.2 we showed that
√
ε/2 ≤

diam(Q) <
√
ε. By the bound on t from the statement of this lemma, we have

t ≥
(

lg
1

ε

)(
1

ε

)d−1
α

≥
(

lg
1√
ε

)(
1√
ε

)2(d−1)
α

≥
(

lg
diam(Q)

ε

)(
diam(Q)

ε

)d−1
α/2

,

implying that t satisfies (3). If ε is at most diam(Q)/16, we may apply the induction
hypothesis, yielding the space bound given in (4). Since diam(Q) <

√
ε, this can be

simplified to

ck−1 · (1/
√
ε)(d−1)(1−2( k−3

α/2
+ 1

2k−1 )) = ck−1 · 1/ε(d−1)( 1
2−

2(k−3)
α − 1

2k−1 ).(5)

By combining Lemma 6.2(ii) with the lower bound on t given in the statement of
this lemma, the number of cells in L2 satisfies

|L2| = O

((
lg t

t

)2(
1

ε

)d−1
2

)
= O

(
ε

2(d−1)
α

(
1

ε

)d−1
2

)
= O

((
1

ε

)(d−1)( 1
2− 2

α )
)
.

(6)

The total contribution to the space by the cells of L2 is the product of the space
requirements for each cell of L2, given in (5), and the number of such cells, given in
(6). There exists a constant ck (depending on k but not on ε) such that the total
space is at most

ck ·
(

1/ε(d−1)(( 1
2−

2(k−3)
α − 1

2k−1 )+( 1
2− 2

α ))
)

= ck ·
(

1/ε(d−1)(1−2( k−2
α + 1

2k
))
)
.

On the other hand, if ε exceeds diam(Q)/16, then since diam(Q) ≥ √ε/2 it follows
that ε is Ω(1), and we can adjust to ck to satisfy this bound. In either case, we achieve
the bound in (1).

Observe that the exponent in the space bound in the preceding lemma is a piece-
wise linear function in 1/α, whose breakpoints coincide with powers of two. It is easily
verified that the exponent is a continuous function of α. (In particular, observe that
limδ→0 f(2k−δ) = f(2k), where f(α) = 1/2blgαc + (blgαc − 2)/α.)

We can now present the proof of Theorem 1.2. Recall that K is a convex polytope
in Rd. By Lemma 2.1, we can precondition K so that it is (1/d)-fat and is contained
within Q0, thus allowing us to approximate K absolutely. Also, if 1/16 < ε ≤ 1,
we set ε = 1/16. (Both of these changes result in a constant factor decrease to ε,
which will not affect the asymptotic bounds.) We then set t = (lg 1

ε )/ε(d−1)/α and
invoke SplitReduce(K,Q0). Let T denote the resulting data structure. Given the
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preconditioning of K and the alteration of ε, we may apply Lemma 6.4 to show that
the total space for T is

O

(
1/ε

(d−1)
(

1−2
(
blgαc−2

α + 1

2blgαc

)))
.

Using the fact that 1/2blgαc ≥ 1/α, this is

O
(

1/ε(d−1)(1−2( blgαc−2
α + 1

α ))
)

= O
(

1/ε(d−1)(1− 2blgαc−2
α )

)
,

which matches the space bound of Theorem 1.2.
Recall that a query is answered by locating the leaf node of T that contains the

query point, followed by an inspection of the (at most) t halfspaces stored in this
leaf node. By our remarks following the presentation of SplitReduce, T is of height
O(log 1

ε ), which implies that the query time is dominated by the value of t. This
completes the proof of Theorem 1.2.

7. Preprocessing. Our principal focus so far has been on establishing the exis-
tence of trade-offs between space and query time, without considering how to construct
the data structure. In this section we discuss preprocessing issues. We first discuss the
preconditioning of K as described in Lemma 2.1 and then discuss the implementation
of the access primitives (i)–(iii) needed for SplitReduce as presented at the start of
section 3. We assume that the input convex body K is presented as the intersection
of a set H of n halfspaces in Rd. Throughout, let Q denote an arbitrary quadtree cell.

Let t denote the query-time parameter in SplitReduce. As observed in section
3, under our assumption that t ≥ 1, steps 1 and 2 are not needed, since we can
rely entirely on step 3, and therefore access primitives (i) and (ii) are not needed.2

The remainder of this section will be focused on preconditioning (section 7.1) and
the implementation of access primitive (iii), which locally approximates K within Q
(section 7.2).

7.1. Preconditioning. Recall that we assume that K is a (full-dimensional)
convex polytope in Rd that is presented as the intersection of a set of n closed half-
spaces. Also recall that Q0 is the axis-aligned hypercube of unit diameter that is
centered at the origin. Our objective is to precondition K by computing an affine
transformation that both fattens K and maps it to lie within Q0. Q0 has a side
length of 1/

√
d, and therefore it contains a ball of radius 1/2

√
d centered at the ori-

gin. Let B0 denote this ball, and let r0 denote its radius. For 0 < γ ≤ 1, let γB0

denote the concentric ball of radius γ r0 = γ/2
√
d. We say that a polytope is in

γ-canonical position if it is nested between γB0 and B0 (see Figure 11). Clearly, a
polytope that is in canonical position is contained within Q0 and is γ-fat. The follow-
ing lemma shows that K can be efficiently mapped into this form, and furthermore
an absolute approximation to the transformed body can be easily mapped to a rela-
tive approximation of K. (Lemma 2.1 follows as an immediate consequence of this.)
Such fattening operations are commonplace in geometric approximation algorithms
(see, e.g., [1, 23, 39, 14]), and we employ the standard approach based on minimum
enclosing volumes, the John ellipsoid in particular.

2If we wished to we could implement access primitive (i) in linear time by linear programming.
Also, by testing the membership of each of Q’s vertices in K, we could implement a stronger version
of access primitive (ii), namely, that of determining whether Q ⊆ K (as opposed to K ⊕ ε).
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γr0 = γ/2
√
d

r0 = 1/2
√
d

Q0 B0
γB0

Fig. 11. A polytope in γ-canonical position.

Lemma 7.1. Let K be a convex polytope in Rd defined as the intersection of a set
H of n halfspaces, and let 0 < ε ≤ 1. There is an algorithm that, given H and ε,
in O(n) time computes an affine transformation T that maps K into (1/d)-canonical
position, such that if P is an absolute ε/(d

√
d)-approximation of T (K), then T−1(P )

is a relative ε-approximation of K.

Proof. Chazelle and Matoušek [26] show that in any fixed dimension, there exists
an O(n) time algorithm that, given a convex polytope K presented as the intersection
of n halfspaces, computes an ellipsoid E of maximum volume contained within K,
also known as the John ellipsoid [12]. (At the expense of an increase in the constant
factors, we can apply the simpler construction by Barequet and Har-Peled [14].) It
is well known from John’s theorem (see, e.g., [12]) that K is contained within a
uniform scaling of E by a factor of d. It follows from basic linear algebra that the
transformation T that maps E to a Euclidean ball 1

dB0 achieves the desired result.
(Details can be found in [8].)

In order to make subsequent processing more efficient, we adapt a standard coreset
construction to reduce the number of halfspaces to a function depending only on ε
and d. The process will involve some further scaling, which will slightly modify the
parameters.

Lemma 7.2. Let K be a convex polytope in Rd defined as the intersection of a set
H of n halfspaces, and let 0 < ε ≤ 1. There is an algorithm that, given H and ε, in
O(n + 1/εd−1) time computes an affine transformation T ′ and a subset H′ ⊆ H of
size O(1/ε(d−1)/2) such that

(i) applying T ′ to the intersection of H′ results in a convex polytope K ′ that is
in (1/2d)-canonical position;

(ii) furthermore, if P is an absolute ε/(4d
√
d)-approximation of K ′, then T ′−1

(P )
is a relative ε-approximation of K.

Proof. Given H, we begin by computing the transformation T of Lemma 7.1 in
O(n) time. Let T (K) denote the resulting polytope, which is in (1/d)-canonical posi-
tion (see Figure 12(a)). Given a set S of points Rd, the extent measure associates each
unit vector u ∈ Rd with the minimum distance between two hyperplanes orthogonal
to u that contain S between them. More formally, define wu(S) = maxp,q∈S〈p− q, u〉
(recalling that 〈·, ·〉 denotes inner product). A subset S′ ⊆ S is said to be an ε-coreset
for the extent measure if for all unit vectors u, wu(S′) ≥ (1 − ε)wu(S). Agarwal,
Har-Peled, and Varadarajan [1] showed that, given a set of n points in Rd, it is pos-
sible to construct an ε-coreset for the extent measure of size O(1/ε(d−1)/2). Chan
presented an algorithm to compute such a coreset in O(n+ (1/ε)d−1) time [23].

In order to apply the coreset construction, we first employ the polar dual trans-
formation (recall section 2.3) to T (K), resulting in an n-element point set S of size n
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Fig. 12. Proof of Lemma 7.2. (Not drawn to scale.)

such that conv(S) = polar(T (K)) (see Figure 12(b)). It is easy to verify that conv(S)
is nested between an inner ball of radius 2

√
d and an outer ball of radius 2d

√
d. Let

ε′ = ε/4d2. We then apply Chan’s algorithm to compute an ε′-coreset S′ ⊆ S in time
O(n + (1/ε′)d−1) = O(n + (1/ε)d−1) (see Figure 12(c)). Let H′ be the subset of H
that results by taking the polar duals of the points of S′, and let K ′ be the convex
body that results from intersecting these halfspaces (see Figure 12(d)).

Clearly, T (K) ⊆ K ′ and |H′| = O(1/ε(d−1)/2). It follows from a straightforward
geometric argument that the Hausdorff distance between T (K) and K ′ is at most
ε/2d
√
d. (For details, see [8]). Therefore, if P is any absolute (ε/2d

√
d)-approximation

to K ′, then by the triangle inequality (applied to the Hausdorff distance) P is an
absolute (ε/2d

√
d) + (ε/2d

√
d) = ε/d

√
d approximation to T (K). By Lemma 7.1, P

is a relative ε-approximation of K. We are almost done, but the canonical-position
condition fails, because K ′ need not lie within B0 of radius r0 = 1/2

√
d (even though

T (K) does). Since the Hausdorff distance between K ′ and T (K) is at most ε/2d
√
d ≤

1/2
√
d = r0, K ′ lies within 2B0. The simple fix is to apply a uniform scaling of space

by a factor of 1/2 combined with a suitable constant-factor adjustment of ε. The
desired conclusion follows as a direct consequence of canonical position.

7.2. Efficient local approximations. Next, we consider the implementation
of access primitive (iii), which given a convex body K in γ-canonical position, a
quadtree cell Q, and query-time t determines whether there exist t halfspaces whose
intersection ε-approximates K within Q. The space and query times stated in Theo-
rem 1.2 are based on the assumption that the number of bounding halfspaces of this
local approximating polytope is within a constant factor of optimal. However, we
know of no efficient algorithm that can achieve this. In this section we show how to
efficiently implement step 3 of SplitReduce approximately in the sense that the num-
ber of halfspaces in the approximation exceeds the optimum (for a slightly smaller
approximation parameter) by a factor of O(log 1

ε ). As shown in Lemma 3.2, this will
lead to an increase in the space and query times stated in Theorem 1.2 by a factor of
only O(log 1

ε ).
A natural approach would be to adapt Clarkson’s algorithm for polytope approxi-

mation [27]. There are a few messy technical issues involved with such an adaptation.
(For example, Clarkson’s algorithm applies to the convex hull of a set of points, rather
than the intersection of halfspaces.) Since we do not require the strong approxima-
tion bounds provided by Clarkson’s algorithm, we will instead present a simple direct
solution based on a reduction to the set-cover problem. Our approach is to construct
a set system where the point set consists of a dense set of points of spacing Θ(ε) that
covers the portion of Q that is external to K ⊕ c′ ε for a suitable constant c′ < 1.
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We associate each bounding halfspace of K with the set of grid points that lie outside
of this halfspace. We will show that the halfspaces associated with a minimum set
cover for this system produce the desired local approximation. We use the greedy set
cover heuristic to construct this cover.

Recall that K ⊕ r denotes the set of points that lie within Euclidean distance r
of K. In order to avoid the complexities of determining whether a point lies outside of
K ⊕ c′ε, it will suffice for our purposes to perform the simpler test of whether a point
lies outside a scaled copy of K. The following lemma follows from a straightforward
geometric argument (see [8] for details).

Lemma 7.3. For 0 < γ ≤ 1 and 0 < ε ≤ 1, let K be a polytope in Rd that is in
γ-canonical position, and let K+ = (1 + 2

√
dε)K. Then

K ⊕ γε ⊆ K+ ⊆ K ⊕ ε.

While access primitive (iii) does not place any restrictions on the halfspaces used
when computing an ε-approximation to K within Q, when the query point q lies
outside of K, it may be useful to add further restrictions. In particular, when the
query point lies outside of K, it is desirable to obtain a witness to nonmembership
in the form of a bounding halfspace of K that does not contain q. (This will be
exploited in section 9 in the reduction of approximate nearest neighbor searching
to approximate polytope membership. The witness hyperplane is used to identify
the approximate nearest neighbor.) To achieve this, we would like to use bounding
halfspaces from the original polytope in our approximation. By a simple application
of Carathéodory’s theorem, we can show that we sacrifice only a constant factor by
adding this restriction. The following is a straightforward generalization of Lemma 3.1
from Mitchell and Suri [45]. (See [8] for details.)

Lemma 7.4. Let K be a convex polytope in Rd defined as the intersection of a set
H of halfspaces, and let Q ⊆ Q0 be a quadtree cell. If there exists an ε-approximation
of K within Q bounded by m halfspaces, then there exists a subset of H of size at most
dm that ε-approximates K within Q.

We are now in a position to present our set-cover-based local approximation. This
is a bicriteria approximation since it is suboptimal with respect to both the number
of bounding halfspaces and the approximation parameter.

Lemma 7.5. For 0 < γ ≤ 1 and 0 < ε ≤ 1, let K be a polytope in Rd in γ-
canonical position that is given as the intersection of a set H of n halfspaces. Let
Q ⊆ Q0 be a quadtree cell. In O(n/εd) time, it is possible to compute a subset
H′ ⊆ H such that

(i) the intersection of the halfspaces of H′ is an ε-approximation of K within Q,
(ii) if m denotes the minimum number of halfspaces needed to (γε/2)-approximate

K within Q, then |H′| is O(m log 1
ε ).

Proof. First, we may assume without loss of generality that ε ≤ 2/
√
d. Otherwise,

setting ε = 2/
√
d will certainly satisfy (i) and will only affect the constant factors in

the asymptotic bounds of claim (ii) and the construction time. Define β =
√
dε/2.

By the above assumption, we have

(1 + β)2 =

(
1 +
√
dε+

dε2

4

)
≤ 1 +

3

2

√
dε.
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Fig. 13. Proof of Lemma 7.5.

Let K+ = (1 +β)K and let K++ = (1 +β)K+ = (1 +β)2K. By applying Lemma 7.3
but with ε taking on the values ε/4 and 3ε/4, respectively, we have

K ⊕ γε

4
⊆ K+ ⊆ K++ ⊆ K ⊕ 3ε

4
(7)

(see Figure 13(a)). Let δ = γε/4 and let G denote the vertices of a hypercube grid
of diameter δ. Let R be the set of grid points that lie within Q but outside of K++,
that is, R = G ∩ (Q \K++). Since Q ⊆ Q0, the resulting set is of size O(1/εd), and
hence it can be computed in time O(1/εd) · |H| = O(n/εd), by testing each grid point
against each halfspace of H. Because γ ≤ 1, we have δ ≤ ε/4.

Next, we define a set system to model the approximation process. For each
h ∈ H we define a subset R(h) ⊆ R as follows. First, let h+ = (1 + β)h denote the
corresponding bounding halfspace of the scaled body K+ (see Figure 13(b)). Define
R(h) to be the subset of points of R that lie outside of h+. Consider a set system
consisting of the points of R and the sets R(h) for all h ∈ H. Since every point of
R lies outside of K++, and hence outside of K+, together these sets cover R. The
resulting collection of sets has total cardinality O(n/εd).

Consider any set cover C of the resulting set system. Let P (C) denote the polyhe-
dron that results by intersecting the halfspaces h whose associated set R(h) is included
in this cover. (Note that the sets R(h) are based on the halfspaces bounding the scaled
body K+, while P (C) is based on the halfspaces bounding the original body K.) We
assert that P (C) ε-approximates K within Q. It suffices to show that for any point
q ∈ Q \ (K ⊕ ε), q is not in P (C). First, observe that for such a point q, all the
vertices of the grid cell in which it lies are within distance δ of q. Therefore, by the
triangle inequality, each such vertex is at distance at least ε−δ ≥ 3ε/4 from K. Since
by (7), K++ ⊆ K ⊕ 3ε/4, these vertices are all exterior to K++, which implies that
they are all members of R. Let q′ be any of these vertices. Since C is a cover, there
exists a halfspace h ∈ H such that R(h) is in the cover and contains this point. This
implies that q′ lies outside the associated halfspace h+ (see Figure 13(c)). Because K
is in γ-canonical position, the minimum distance between h’s bounding hyperplane
and the origin is at least γ/2

√
d. Therefore the distance between any point in h to

any point exterior to h+ is at least

γ

2
√
d

((1 + β)− 1) =
γ

2
√
d
·
√
dε

2
=

γε

4
= δ.

It follows by the triangle inequality that q is exterior to h, and therefore it lies outside
of P (C), as desired.
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Let C ′ denote a set cover that results by running the greedy heuristic [29] on the
aforementioned set system. By standard results on the greedy heuristic, the size of
the resulting cover exceeds that of an optimal cover by a factor of at most ln |R| =
O(log 1

ε ). C ′ can be computed in time that is proportional to the total cardinality
of the sets of the set system, which is O(n/εd). Let H′ denote the associated set of
halfspaces, and let P (C ′) denote the intersection of these halfspaces. By the above
remarks, P (C ′) is an ε-approximation to K within Q, which establishes claim (i).

To establish (ii), consider a (γε/4)-approximation of K within Q that is bounded
by the minimum number m of halfspaces. By Lemma 7.4 there exists such an ap-
proximation that uses only the bounding halfspaces of K, such that the number of
halfspaces is larger by a factor of at most d. Let P+ denote this approximation, and
let H+ ⊆ H denote its bounding halfspaces. By (7), we have P+ ⊆ K ⊕ γε/4 ⊆ K+.
Let P++ = (1 + β)P+. Clearly, P++ ⊆ (1 + β)K+ = K++. Therefore, every point
of R lies outside of P++. It follows that the sets R(h) associated with the halfspaces
h that bound P+ form a set cover of R within our system. Letting C++ denote this
cover, we have |C ′| ≤ O(log 1

ε ) · |C++| ≤ O(log 1
ε ) · dm = O(m log 1

ε ), as desired.

We can now present the main result of this section, which summarizes the pre-
processing time.

Lemma 7.6. Given a full-dimensional convex polytope K in Rd defined as the
intersection of a set of n halfspaces, approximation parameter 0 < ε ≤ 1, and query
time parameter t ≥ 1, there is an algorithm that runs in time O(n+ 1/εcp d) for some
constant cp (which does not depend on d) that constructs a data structure satisfying
Theorem 1.2 but with an additional factor of O(log 1

ε ) in both the space and query
times.

Proof. Given K’s bounding halfspaces, we apply Lemma 7.2. In O(n + 1/εd−1)
time we obtain a polytope K ′, such that K ′ is in γ-canonical position for γ = 1/2d. K ′

is bounded by a subset H′ of halfspaces of size n′ = O(1/ε(d−1)/2), and the problem
of computing a relative ε-approximation of K reduces to the problem of computing
an absolute ε′-approximation of K ′, where ε′ = ε/4d

√
d.

Ideally, we would like to invoke SplitReduce on K ′ using ε′ as the approximation
parameter and t as the query time parameter. Since we do not know how to determine
minimum-sized convex approximations efficiently, we will need to relax our expecta-
tions. For any quadtree cell Q generated by SplitReduce, we apply Lemma 7.5 on
the set H′ of halfspaces. By claim (i) of this lemma, after O(n′/(ε′)d) = O(1/ε3d/2)
time, a subset H′′ ⊆ H′ can be computed that is an ε′-approximation of K ′ within
Q. Irrespective of the choice of the query time, the maximum number of quadtree
cells generated by SplitReduce is O(1/εd), and therefore (after preconditioning) the
overall running time of SplitReduce is O(1/ε5d/2). Combined with the O(n + 1/εd)
time for preconditioning, the algorithm’s overall running time is O(n+1/εcp d), where
cp = 5/2.

Let ε′′ = γε′/2 = γε/8d
√
d. By Lemma 7.5(ii) the number of halfspaces in H′′

is within a factor of ρ = O(log 1
ε′ ) = O(log 1

ε ) of the size of the minimum-sized ε′′-
approximation of K ′ within Q. Since ε′′ = βε′ for a constant β, Lemma 3.2 implies
that the conclusions of Theorem 1.2 hold but with an additional factor of ρ = O(log 1

ε )
in both the space and query times.

8. Lower bound. In this section, we establish lower bounds on the space-time
trade-offs obtained by SplitReduce for polytope membership. In particular, we will
prove Theorem 1.3. Our approach is similar to the lower bound proof of [10]. (Note
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that this is a lower bound on the performance of SplitReduce, not on the problem
complexity. It applies to the stronger existential version of the algorithm.) It is
based on analyzing the performance of the algorithm on a particular convex body,
a generalized hypercylinder that is curved in k + 1 dimensions and flat in d − 1 − k
dimensions. We select the value of k that produces the best lower bound on the
storage as a function of t, ε, and d. Throughout, we use the term ε-approximation in
the absolute sense, as defined in section 2.1.

As mentioned earlier, it is well known that Ω(1/ε(d−1)/2) facets are required to
ε-approximate a Euclidean ball of unit radius (see, e.g., [18]), and this holds for
any polytope that is sufficiently close to a ball in terms of Hausdorff distance. The
following utility lemma generalizes this observation to different diameters. The proof
is a straightforward exercise in geometry. (Details can be found in [8].)

Lemma 8.1. Let ε and ∆ be real parameters, where 0 < ε ≤ ∆/4. There exists
a constant cb and a polytope P in Rd of diameter at most ∆ such that any outer
ε-approximation of P requires at least cb(∆/ε)

(d−1)/2 facets.

Intuitively, in order to produce a polytope that is hard to approximate, it should
have high curvature. If the curvature is high in all dimensions, however, the polytope
will have a small surface area, and this will make it easier to approximate. Our
approach is to consider polytopes based on generalized cylinders, which have constant
curvature in some dimensions but are flat in others. Our next lemma introduces such a
cylindrical polytope where the number of curved dimensions has been carefully chosen
to maximize the space needed by our algorithm for a given query time. Theorem 1.3
is an immediate consequence.

Lemma 8.2. There exists a polytope P in Rd such that for all sufficiently small
positive ε (depending on d and α) and t = 1/ε(d−1)/α, the output of SplitReduce(K,Q0)
on P has total space

Ω

(
1/ε

(d−1)
(

1− 2
√

2α−3
α

)
−1
)
.

Proof. To start, as a function of α, we wish to compute an integer dimension k
in order to apply Lemma 8.1. Define reals δ =

√
α/2/(d− 1), κ = (d− 1)

√
2/α, and

κ′ = κ(1 + δ). We observe first that

κ′ − κ = δ(d− 1)
√

2/α = 1.

Let k = dκe, implying that κ ≤ k ≤ κ′. (Although we do not include the derivation
here, κ has been chosen to produce the best lower bound, but since it is not necessarily
an integer, k is obtained by rounding to a nearby integer.) Since α ≥ 4 and d ≥ 2, we
have 1 ≤ k ≤ d− 1.

Let cb denote the constant of Lemma 8.1, and let ∆ = ε((2d + 1)t/cb)
2/k. By our

assumptions about d and α, we have t = 1/εΘ(1) and ∆ = ε · tΘ(1). It follows that
for all sufficiently small ε, ∆/4 ≥ ε. Let h denote the linear subspace spanned by the
first k + 1 coordinate axes. We apply Lemma 8.1 in Rk+1 for this value of ∆. The
resulting polytope P (lying in h) has the property that the number of facets of any
ε-approximation is at least

cb

(
∆

ε

)k/2
= cb



ε
(

(2d+1)t
cb

)2/k

ε




k/2

= (2d + 1)t.
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Fig. 14. Lemma 8.2 for d = 3 and k = 2.

We can bound P ’s diameter by observing that for all sufficiently small ε

diam(P ) ≤ ∆ = ε

(
(2d + 1)t

cb

)2/k
≤ ε

(
2d + 1

cb · ε(d−1)/α

)2/κ

= ε

(
2d + 1

cb · ε(d−1)/α

)√2α/(d−1)

.

(Here we made use of the fact that for all sufficiently small ε, the quantity raised to

power of 2/k is greater than 1.) Letting c′b = ((2d + 1)/cb)
√

2α/(d−1), we obtain

diam(P ) ≤ c′bε

(
1

ε(d−1)/α

)√2α/(d−1)

= c′bε
1−
√

2/α.

Since α ≥ 4, for all sufficiently small ε, we have diam(P ) ≤ 1/
√
d. Therefore, P can

be enclosed within Q
(k+1)
0 .

Returning to Rd, consider an infinite polyhedral hypercylinder whose “axis” is
the (d − 1 − k)-dimensional orthogonal complement of h and whose “cross section”
(i.e., intersection with any (k+ 1)-dimensional hyperplane parallel to h) is P . Define
the polytope C to be the truncated cylinder obtained by intersecting the infinite

hypercylinder with hypercube Q
(d)
0 (see Figure 14(a)). Let T denote the output of

SplitReduce(K,Q
(d)
0 ) for C, ε, and t. We will show that T ’s total space satisfies the

bound given in the lemma’s statement. To do this, let Σ denote any set of points
placed on C’s axis such that the distance between each pair of points is at least
2∆
√
d. (In the degenerate case where k = d − 1 the axis is 0-dimensional and Σ

degenerates to a single point.) By a simple packing argument, there exists such a set
having Ω(1/∆d−1−k) points.

For any q ∈ Σ, let Pq denote the cross-section of C passing through q (see
Figure 14(b)). Consider the set of leaf cells of T that intersect Pq. By applying
Lemma 8.1 to the (k + 1)-dimensional hyperplane on which P lies, it follows that
these cells together must contain at least (2d + 1)t halfspaces. We count the contri-
butions of these cells by classifying them into two types. We say that a leaf cell of T
is large if its side length is at least ∆, and otherwise it is small. By a simple packing
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argument, the number of large leaf cells intersecting Pq is at most 2d. Since each leaf
cell contains at most t halfspaces, the large leaf cells can together contain at most 2dt
halfspaces.

Therefore, the small leaf cells intersecting Pq together contain at least (2d +
1)t − 2dt = t halfspaces. Because the points of Σ are separated from each other by
distance at least 2∆

√
d, which is strictly larger than the diameter of any small leaf

cell, each small leaf cell can intersect Pq for at most one q ∈ Σ. Therefore, the total
space contribution of all the small leaf cells for all points of Σ is at least t · |Σ|. Let
c′′b = (cb/(2

d + 1))2(d−1−k)/k. T ’s total space can be asymptotically bounded from
below as

t

∆d−1−k =
t

(
ε
(

(2d+1)t
cb

)2/k
)d−1−k =

c′′b · t(
ε · t2/k

)d−1−k =
c′′b · t1−2(d−1−k)/k

εd−1−k .

Clearly, c′′b = Θ(1). Recall that t = 1/ε(d−1)/α. Then, T ’s total space is asymptotically
bounded from below as

(
1

ε

)(d−1)−k+ d−1
α (1− 2(d−1−k)

k )
=

(
1

ε

)(d−1)−k+ d−1
α (3− 2(d−1)

k )
.(8)

Let E(α) denote this exponent. In order to complete the proof, we provide a lower
bound on E(α). We use the fact that κ ≤ k ≤ κ′, apply the definitions of κ, κ′, and
δ, and apply straightforward manipulations to obtain

E(α) ≥ (d− 1)− κ′ + d− 1

α

(
3− 2(d− 1)

κ

)
= (d− 1)

(
1− 2

√
2α− 3

α

)
− 1.

Substituting this value for the exponent in (8) completes the proof.

9. Approximate nearest neighbor searching. In this section, we present
a reduction from approximate nearest neighbor searching to approximate polytope
membership, which will allow us to prove Theorem 1.4. Our reduction will involve the
following additional assumptions regarding the implementation of SplitReduce. First
(as in section 7), we assume that K is presented as the intersection of n halfspaces.
Second, we assume that a leaf node is labeled as “inside” only if it lies entirely within
K (as opposed to lying within K ⊕ ε as described in SplitReduce). Third, we assume
that leaf cells that store halfspaces use only bounding halfspaces of K.

Clearly, these assumptions do not affect the data structure’s correctness. We
assert that they do not affect the data structure’s asymptotic query time or space
bounds. Regarding the second assumption, observe that for any cell Q that lies within
K⊕ε, K can be ε-approximated within Q using a single halfspace (any halfspace that
contains Q suffices). Regarding the third assumption, recall that Lemma 7.4 shows
that we may assume that the approximating halfspaces for each node are drawn from
the input halfspaces at the expense of a constant factor increase in the query time.

The reduction from approximate nearest neighbor searching to approximate poly-
tope membership is based on the AVD construction from [10]. The AVD employs a
height balanced variant of a quadtree, a balanced box decomposition (BBD) tree [11]
to be precise. Each cell of a BBD tree corresponds to the set theoretic difference of
two quadtree cells, an outer box and an optional inner box. Each leaf cell of the tree
stores a set of representative points with the property that for any query point q lying
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Fig. 15. Approximate nearest neighbor searching: (a) Lemma 9.1 (black points are members of
RQ), (b) the lifting transformation. (Note that the figure is not drawn to scale, and the paraboloid
in (b) has been translated to aid legibility.)

within this cell, at least one of these representatives is an ε-nearest neighbor of q. A
query is answered by locating the leaf cell that contains the query point and then de-
termining the nearest representative from this cell (by brute force). The AVD’s space
is dominated by the total number of representatives over all the leaf cells. The query
time is the height of the tree plus the number of representatives in the leaf cell. A data
structure for nearest neighbor searching is said to be in the AVD model if it has this
general form, that is, a covering of the query region by hyperrectangles of bounded
aspect ratio, each of which is associated with a set of representative points [10]. Lower
bounds on the performance of any data structure in the AVD model were given in [10].

The reader need not be familiar with the details of the AVD data structure.
The next lemma encapsulates the important technical information needed for our
reduction. It follows easily from the proofs of Lemmas 6.1 and 8.1 in [10]. Given
a cell Q in a BBD tree, let BQ denote the ball of radius 2 · diam(Q) whose center
coincides with the center of Q’s outer box (see Figure 15(a)). Given a Euclidean ball
B of radius r and positive c, let cB denote the ball concentric with B of radius cr.

Lemma 9.1. Let 0 < ε ≤ 1/2 be a real parameter and X be a set of n points in
Rd. It is possible to construct a BBD tree T with O(n · log 1

ε ) nodes, where each leaf
cell Q stores a subset RQ ⊂ X satisfying the following properties:

(i) For any point q in Q, one of the points in RQ is an ε-approximate nearest
neighbor of q.

(ii) At most one point of RQ is contained in the ball BQ, and the remaining points
of RQ are contained in cqBQ \ BQ for some constant cq (which depends on
the dimension).

(iii) The total number of representative points over all the leaf cells of T is O(n ·
log 1

ε ).
Moreover, it is possible to compute the tree T and the sets RQ for all the leaf cells

in total time O(n · log n · log 1
ε ), and the cell that contains a query point can be located

in time O(log n+ log log 1
ε ).

In the AVD data structure of [10] the closest representative point to a query point
is determined by brute-force enumeration of the elements of RQ. We consider whether
it is possible search them more efficiently by reduction to polytope approximation.
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The following lemma explains how to connect Lemma 9.1 with approximate polytope
membership queries. Our construction uses the well-known lifting transformation [3,
34]. Let (x1, . . . , xd+1) denote the coordinates of Rd+1, and let us think of the (d+1)st
coordinate axis as being directed vertically upward. Let Ψ denote the paraboloid
xd+1 =

∑d
i=1 x

2
i . Given a point p ∈ Rd, let p↑ denote the vertical projection of p onto

Ψ (see Figure 15(b)), and let h(p) denote the hyperplane tangent to Ψ at p↑. That

is, the points of h(p) satisfy xd+1 =
∑d
i=1 2pixi − ‖p‖2. Given q ∈ Rd, let q[p] denote

the point on h(p) hit by a vertical ray shot downward from q↑. A straightforward
consequence of the definition of Ψ is that the squared distance between q and p in Rd
is equal to the length of this vertical segment, that is, ‖qp‖2 = ‖q↑q[p]‖.

This suggests the following approach to computing the closest representative point
through vertical ray shooting. Consider the (unbounded) convex polyhedron that
results by taking the upper envelope of the hyperplanes h(p) associated with the
lifted representatives. Given the query point q ∈ Rd, a ray shot vertically downward
from q↑ hits some facet of this polyhedron. It follows from the above remarks that the
representative associated with this hyperplane is the closest to q. We can simulate ray
shooting by applying polytope membership queries in concert with binary search. Of
course, some care will be needed to map this problem into our context, which assumes
a bounded polytope and approximation.

Lemma 9.2. Let 0 < ε ≤ 1/2 be a real parameter and consider a quadtree cell Q
and a set of representative points RQ as in Lemma 9.1. Given a data structure for
ε-approximate polytope membership in d-dimensional space with query time td(ε) and
space sd(ε), it is possible to preprocess RQ into an approximate nearest neighbor data
structure for query points in Q with query time O(td+1(ε)·log 1

ε ) and space O(sd+1(ε)).

Proof. Since at most one point of RQ is contained in BQ, the corresponding point
may be inspected separately without increasing the complexity bounds. Therefore,
we may assume that all points of RQ are contained in cqBQ \BQ.

Although we assume that the errors in polytope membership are absolute (because
of standardization), errors in approximate nearest neighbor searching are relative.
That is, a point r is an ε-approximate nearest neighbor of q if ‖qr‖ ≤ (1 + ε)‖qp‖,
where p is q’s true nearest neighbor. Because errors are relative, we may assume

that space has been translated and uniformly scaled so that Q is mapped to Q
(d)
0 , the

hypercube of unit diameter centered at the origin in Rd. As a result, BQ is mapped to
a ball of radius 2. It follows that the distance from any point of Q to any point of RQ
is greater than 1. Therefore, an absolute error of ε implies a relative error of at most ε.

In order to reduce nearest neighbor searching among the points of RQ to polytope
membership, let EQ denote the upper envelope, that is, the intersection of the upper
halfspaces, of the hyperplanes h(p), for all p ∈ RQ (the shaded region in Figure 15(b)).
As mentioned above, the facet of EQ hit by shooting a ray vertically downward from
q↑ corresponds to the closest point of RQ to q.

Since the upper envelope is unbounded, we first compute a bounded convex poly-
tope on which to perform approximate membership queries. Because the query points
lie in Q, we are only interested in the portion of EQ that projects vertically onto Q.
Given that the distance of any point p ∈ RQ to the origin is at most 2cq = O(1), it fol-
lows that the portion of EQ of interest fits within an axis-aligned (d+ 1)-dimensional
hypercube of constant diameter that is centered at the origin. Let Q′ denote such a
hypercube, let KQ = EQ∩Q′, and let ε′ = ε/6cq. We invoke SplitReduce to construct
an ε′-approximate membership data structure for KQ. (More formally, we first scale
Q′ into standard form, and we scale ε′ by the same factor. We then apply SplitReduce
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Fig. 16. Proof of Lemma 9.2. (Not drawn to scale.)

with the scaled value of ε′. SinceQ′ is of constant diameter, the scale factor will also be
a constant, and therefore only the constant factors in the analysis will be affected. We
then apply an inverse scaling to obtain the desired ε′-approximating polytope for KQ.)

We simulate the ray shooting process by a binary search to locate the contact
point approximately. Consider the vertical segment formed by intersecting Q′ with
the vertical line passing through q↑. The upper endpoint of this segment is clearly
inside KQ and its lower endpoint is outside. We repeatedly split the segment at its
midpoint, perform an approximate polytope membership query, and retain the subseg-
ment whose upper endpoint is (approximately) inside KQ and whose lower endpoint
is (approximately) outside. We terminate the search when the length of the segment
falls below ε′. Since Q′ is of constant diameter, the search terminates after O(log 1

ε )
membership queries. Let us denote the endpoints of this final segment as q+ (upper)
and q− (lower).

Recall our assumption that cells are labeled by SplitReduce as “inside” or “out-
side” only if they lie entirely inside or outside KQ, respectively. It follows that as
we traverse the cells that intersect the segment q+q− from top to bottom, we cannot
transition directly from an “inside” cell to an “outside” cell. Therefore, at least one
of these cells must contain a set of representative hyperplanes. Let h(r) denote the
hyperplane having the topmost intersection with the vertical ray. We return r as the
approximate nearest neighbor (see Figure 16). It is easy to see that this algorithm
satisfies the desired time and space bounds.

All that remains is to establish correctness, by showing that r is indeed an
ε-approximate nearest neighbor of q. In order to do this, let p be q’s true nearest
neighbor in RQ. Due to the nature of the binary search, q+ lies within distance ε′ of
KQ. (Note that it might lie within KQ.) Thus, the distance from q+ to the upper
halfspace bounded by h(p) is at most ε′. By the triangle inequality, the distance from
q− to this halfspace is at most ε′ + ε′ = 2ε′. Since p is q’s true nearest neighbor, q[p]

lies on ∂KQ, and so the hyperplane h(p) separates q− from KQ. This implies that
the distance from q− to h(p) is also not greater than 2ε′.

We claim that the vertical distance from q− to q[p] is at most ε. To see why, recall
that p lies within a ball of radius 2cq centered at the origin. This implies that h(p) can-
not be too steep, that is, the angle formed between h(p)’s normal vector and the verti-
cal axis can be bounded away from π/2 by a constant. By basic linear algebra, it can
be shown that the ratio of the vertical and orthogonal distances of any point to h(p) is
bounded above by

√
4c2q+1<3cq. Therefore, we have ‖q[p]q

−‖ ≤ 3cq (2ε′) = ε, as desired.
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Because r is the witness produced by the algorithm, h(r) separates q− from
KQ, which implies that q[r] lies above q−. Thus, we have ‖q[p]q[r]‖ ≤ ‖q[p]q

−‖ ≤ ε.
Therefore,

‖qr‖2 = ‖q↑q[r]‖ = ‖q↑q[p]‖+ ‖q[p]q[r]‖ ≤ ‖q↑q[p]‖+ ε.

By the lifting transformation, we have ‖q↑q[p]‖ = ‖qp‖2, and combining this with the
fact that ‖qp‖ ≥ 1, we have

‖qr‖2 ≤ ‖qp‖2 + ε ≤ ‖qp‖2 + ‖qp‖2ε = ‖qp‖2(1 + ε) ≤ (‖qp‖(1 + ε))
2
.

Therefore, r is an ε-approximate nearest neighbor of p, which completes the
proof.

The above lemma shows how to apply approximate polytope membership to ef-
ficiently answer approximate nearest neighbor queries within each cell of the AVD.
To obtain a complete data structure for approximate nearest neighbor searching we
apply this to every leaf cell of the AVD.

Lemma 9.3. Let 0 < ε ≤ 1/2 be a real parameter and X be a set of n points in
Rd. Given a data structure for approximate polytope membership in d-dimensional
space with query time at most td(ε) and storage sd(ε), it is possible to preprocess
X into an approximate nearest neighbor searching data structure with query time
O(log n+ td+1(ε) · log 1

ε ) and space

O

(
n log

1

ε
+ n

sd+1(ε)

td+1(ε)

)
.

Proof. Following Lemma 9.1, construct a BBD-tree T , and for each leaf cell Q
of T , construct the set of representative points RQ. For each leaf cell such that
|RQ| ≤ td+1(ε) · lg 1

ε , simply store the set RQ and answer the corresponding queries
by brute force. For the nodes with |RQ| > td+1(ε) · lg 1

ε , use the construction from
Lemma 9.2.

To answer an approximate nearest neighbor query we search the AVD of Lemma 9.1
to find the leaf cell containing the query point and then apply Lemma 9.2. Thus, the
query time is

O

(
log n+ log log

1

ε
+ td+1(ε) · log

1

ε

)
= O

(
log n+ td+1(ε) · log

1

ε

)
.

To bound the total space, observe from Lemma 9.1(iii) that the total number of
representative points is O(n log 1

ε ). Thus, by a simple counting argument, the number
of leaf cells with more than td+1(ε) · lg 1

ε representatives is O(n/td+1(ε)). Therefore,
the total space of the data structure is O(n log 1

ε + n(sd+1(ε)/td+1(ε))).

Because of its reliance on binary search, the generic reduction given in Lemmas 9.2
and 9.3 is not formally in the AVD model. Recall that the AVD model is important
because lower bounds have been established in this model [10], and thus these lower
bounds do not apply here. However, by sacrificing generality and a factor of O(log 1

ε )
in the space bound, we can exploit the properties of SplitReduce to obtain a data
structure that is in the AVD model.

Lemma 9.4. Let 0 < ε ≤ 1/2 be a real parameter and X be a set of n points
in Rd. Given a split-reduce data structure for approximate polytope membership in
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Fig. 17. Producing an approximate nearest neighbor data structure in the AVD model.

d-dimensional space with query time at most td(ε) and storage sd(ε), it is possible to
preprocess X into an approximate nearest neighbor data structure in the AVD model
with query time O(log n+ td+1(ε) · log 1

ε ) and space

O

(
n

(
1 +

sd+1(ε)

td+1(ε)

)
log

1

ε

)
.

Proof. As in Lemma 9.3, construct a BBD-tree T , and for each leaf cell Q
of T , construct the set of representative points RQ. We may assume that |RQ| >
td+1(ε) · lg 1

ε , since otherwise we just use the points of RQ as the representatives.
In order to handle query points lying within Q, we apply Lemma 9.2, where queries
are answered using the tree produced by SplitReduce. Let TQ denote the resulting
tree. We exploit the fact that the SplitReduce data structure associates a collection
of hyperplanes with each leaf cell of TQ, and by the nature of our reduction, each of
these hyperplanes corresponds to a lifted point of RQ. These lifted points will play
the role of nearest neighbor representatives. Intuitively, our approach is to “undo”
the lifting transformation by projecting the leaf cells of TQ vertically from Rd+1 down
to Rd and then building a d-dimensional AVD structure based on this projection.

The projection of the cells of TQ onto Rd naturally defines a quadtree subdivi-
sion of Rd, which we denote by T ′Q (see Figure 17(a)). For each leaf cell Q′ of T ′Q,

let CQ′ denote the infinite vertical cylinder in Rd+1 whose cross section is Q′ (see
Figure 17(b)). Because Q′ is a leaf, any leaf cell of TQ that intersects this cylinder
projects onto a hypercube that contains Q′.

Recall the lifted polytope KQ of Lemma 9.2. For each leaf cell of TQ that contains
a point whose vertical distance from ∂KQ is at most ε, we create a representative point
corresponding to each of the hyperplanes that SplitReduce associates with this leaf
cell. We denote the resulting collection of representatives by RQ′ . These are the
only hyperplanes that are relevant to the binary search of Lemma 9.2, and therefore
one of them will provide the final witness in the binary search (the point r in the
proof of Lemma 9.2). This implies that RQ′ constitutes a valid representative set for
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ε-approximate nearest neighbor searching for any query point that lies in Q′. Thus,
the resulting data structure is a valid AVD structure.

In order to bound the query time we recall some of the observations made in the
proof of Lemma 9.2. Since KQ is contained within a hypercube of constant diameter
centered at the origin, the absolute slopes of the hyperplanes of the approximating
polytope are bounded above by some constant. Recall that the leaf cells of TQ that
contribute a point to RQ′ have side lengths at least as large as that of Q′. By the
same reasoning used in Lemma 3 of [11], the number of such quadtree leaf cells
that can intersect ∂KQ is bounded by a constant, which we denote by c`. (This
constant depends on the dimension d and the largest possible slope.) Therefore, the
total number of cells contributing a representative to RQ′ is at most c`. Since each
cell contributes at most td+1(ε) representatives, the total number of representatives
associated with any leaf cell of T ′Q is at most c` · td+1(ε) = O(td+1(ε)).

The bound on the total space is complicated by the fact that a large cell that
intersects ∂KQ may overlap the columns of many small leaf cells, and hence a large
cell’s representatives may be replicated many times. Let M denote the set of internal
nodes of TQ all of whose children are leaves. We encountered this set earlier in the
proof of Lemma 3.1. As we saw in that earlier lemma, because each node of M
was split by SplitReduce, it follows that each such cell requires more than td+1(ε)
halfspaces to approximate K(Q), and thus, the children of M together require at
least as many representatives. Therefore we have |M | · td+1(ε) ≤ sd+1(ε). Reasoning
as we did in Lemma 3.1, every internal node of TQ either is in M or is an ancestor
of a node in M . Thus, the number of internal nodes is at most |M | · height(TQ).
Since every internal node has 2d children, the total number of nodes in TQ is at most
2d · |M | · height(TQ). Clearly, the number of leaf cells of T ′Q can be no larger. As
we saw in the previous paragraph, each leaf cell of T ′Q is associated with at most

c` · td+1(ε) representatives. Since the tree is of height O(log 1
ε ), the total number of

representatives over all these cells is at most

(2d · |M | · height(TQ))(c` · td+1(ε)) = c` · 2d · height(TQ) · (|M | · td+1(ε))

≤
(
c` · 2d · log

1

ε

)
· sd+1(ε)

= O

(
sd+1(ε) · log

1

ε

)
.

By Lemma 9.1(iii), the total number of representatives in TQ is O(n log 1
ε ). By a

counting argument, the number of leaf cells with more than td+1(ε) · log 1
ε represen-

tatives is O(n/td+1(ε)). Therefore, the total space is

O

(
n log

1

ε
+

n

td+1(ε)
· sd+1(ε) · log

1

ε

)
= O

(
n

(
1 +

sd+1(ε)

td+1(ε)

)
log

1

ε

)

as desired.

By combining this with Theorem 1.2 (applying the more accurate space bounds
from Lemma 6.4) we obtain the main result of this section.

Lemma 9.5. Let 0 < ε ≤ 1 be a real parameter, α ≥ 1 be a real constant, and X
be a set of n points in Rd. There is a data structure in the AVD model for approximate
nearest neighbor searching that achieves
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Query time: O

(
log n+ (1/εd/2α) · log2 1

ε

)
,

Space: O

(
n ·max

(
log

1

ε
, 1/εd(

1
2− 1

2α )
))

for 1 ≤ α < 2, and

O

(
n/ε

d
(

1− blgαcα − 1

2blgαc
+ 1

2α

))
for α ≥ 2.

The constant factors in the space and query time depend only on d and α (not on
ε). At the expense of increasing the query time and space by a factor of O(log 1

ε ) it
is possible to construct the data structure in time O(n(log n+ 1/εcd) log 1

ε ) for some
constant c (that does not depend on d or α).

Proof. Given X and ε, we first observe that if 1/16 < ε ≤ 1, we may set ε = 1/16,
since this will only affect the constant factors in the asymptotic bounds. We consider
two cases based on the value of α.

If 1 ≤ α < 2, we will apply Theorem 1.2 with the values of d and α of the theorem
set to d′ = d + 1 and α′ = 4, respectively. The theorem states that there is a data
structure that achieves query time

O

((
log

1

ε

)
/ε

d′−1
α′

)
= O

(
(1/εd/4) · log

1

ε

)
= O

(
(1/εd/2α) · log

1

ε

)
(9)

and space

O

(
1/ε

(d′−1)

(
1− 2blgα′c−2

α′

))
= O

(
1/εd/2

)
.(10)

Letting td+1(ε) and sd+1(ε) denote the quantities of (9) and (10), respectively, we
apply Lemma 9.4 to obtain a data structure in the AVD model with query time
O(log n+ (1/εd/2α) · log2 1

ε ) and space

O

(
n

(
1 +

1/εd/2

(1/εd/2α) · log 1
ε

)
log

1

ε

)
= O

(
n ·max

(
log

1

ε
, 1/εd(

1
2− 1

2α )
))

,

as desired.
Otherwise, if α ≥ 2, we apply Theorem 1.2 (but using the more accurate space

bounds from Lemma 6.4) in dimension d′ = d + 1 and with trade-off parameter
α′ = 2α. (Observe that α′ ≥ 4, as required by Theorem 1.2 and Lemma 6.4.)
This yields an approximate polytope membership data structure with query time
td+1(ε) = O((1/εd/2α) · log 1

ε ) and space

sd+1(ε) = O

(
1/ε

d
(

1−2
(
blg(2α)c−2

2α + 1

2blg(2α)c

)))
= O

(
1/ε

d
(

1− blgαc−1
α − 1

2blgαc

))
.

By Lemma 9.4 this implies the existence of a data structure in the AVD model with
the desired query time of O(log n+ (1/εd/2α) · log2 1

ε ) and space

O


n


1 +

1/ε
d
(

1− blgαc−1
α − 1

2blgαc

)

(log 1
ε )/εd/2α


 log

1

ε


 .
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Since α ≥ 2, we may ignore the “1+” term in the inner parenthetical factor. After
some simplification we obtain the desired space bound of

O

(
n/ε

d
(

1− blgαcα − 1

2blgαc
+ 1

2α

))
.

The preprocessing involves first computing the AVD, which by Lemma 9.1 takes
O(n · log n · log 1

ε ) time. For each of the O(n log 1
ε ) leaf cells Q of the AVD, we

apply SplitReduce in dimension d + 1 to its associated set RQ of representatives.
By Lemma 7.6 this takes O(nQ + 1/εcp(d+1)) time, where nQ = |RQ|, and cp is a
constant that does not depend on d. Summing over all the leaf cells of the AVD and
recalling that the total number of representatives is O(n · log 1

ε ), it follows that the
total preprocessing time is on the order of

n · log n · log
1

ε
+
∑

Q

(
nQ + 1/εcp(d+1)

)
= n · log n · log

1

ε
+ n · log

1

ε
·
(

1

ε

)cp(d+1)

= n

(
log n+

(
1

ε

)cd)
log

1

ε
,

where c = cp(d + 1)/d, as desired. Because of the reliance on approximate set cover
in the processing of Lemma 7.6, the query time and space are larger by a factor of
O(log 1

ε ).

Note that the above proof uses the AVD-based reduction given in Lemma 9.4. If
instead we had used Lemma 9.3, we would obtain a slight improvement in the space,
by a factor of Θ(log 1

ε ), at the loss of having a data structure in the AVD model. By

the simple observation that 1/2blgαc ≥ 1/α, the above space bound for the α ≥ 2 case

simplifies to O(n/εd(1− blgαcα − 1
2α )), and this establishes Theorem 1.4.

10. Proof of the area-product bound. In this section, we present lower
bounds for the product of the area of (restricted) ε-dual caps and the associated
Voronoi patches, and in particular, we present a proof of Lemma 5.2, which appeared
at the end of section 5.

We begin by recalling some notation. We are given a convex body K in Rd and a
pair (p, h(p)), where p ∈ ∂K and h(p) is a supporting hyperplane passing through p,
such that p lies within a unit ball centered at the origin. Also recall that pε denotes
the point lying at distance ε from p in the direction of the outward normal orthogonal
to h(p) at p. S denotes the Dudley hypersphere, which is centered at the origin and
is of radius 3. For y ≥ 1, let H(y)(p) be any hyperplane that is parallel to h(p) and
translated away from K by distance y. (This is illustrated in Figure 18. Note that
the figures of this section are not drawn to scale.) To simplify our descriptions, we
consider the directed line segment from p to pε to be “vertically downward,” so that
the hyperplanes h(p) and H(y)(p) are “horizontal” with h(p) above H(y)(p).

Recall that the ε-dual cap defined by p, denoted D(p), is the portion of ∂K
that is visible from pε (see Figure 19(a)). Also, recall that Vor(D(p)) consists of the
points that are exterior to K whose closest point on ∂K lies within D(p). Define
the base of D(p), denoted Γ(p), to be the intersection of h(p) with the convex hull of
K ∪ {pε}.

For δ > 0, recall that the δ-restricted ε-dual cap defined by p, denoted Dδ(p), is
D(p) ∩ Bδ(p), where Bδ(p) is the Euclidean ball of radius δ centered at p
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Fig. 18. Definitions of h(p), H(y)(p), and S.
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Fig. 19. Dual caps, bases, and Voronoi regions for the (a) unrestricted and (b) restricted cases.

(see Figure 19(b)). As before, Vor(Dδ(p)) is the set of points that are exterior to
K whose closest point on ∂K lies within Dδ(p). Also, the δ-restricted base, denoted
Γδ(p) is Γ(p) ∩Bδ(p).

Our objective in this section is to establish bounds on the product of the area
of a

√
ε-restricted ε-dual cap and its Voronoi patch on the Dudley hypersphere. It

will be easier to start with hyperplane patches on H(y)(p) and then generalize to
spherical patches on S. The main result of this section is given in the following
lemma. Part (ii) is equivalent to Lemma 5.2, which is our main objective. Part (i) is
a useful intermediate result.

Lemma 10.1. Let K be a convex body in Rd, and let 0 < ε ≤ 1/8 and δ =
√
ε.

There are constants ca and c′a (depending only on d) such that for any point p ∈ ∂K,
(i) given any y ≥ 1, area(Dδ(p)) · area(Vor(Dδ(p)) ∩H(y)(p)) ≥ c′a · εd−1;

(ii) if K is fat and has diameter at least 2ε, and p lies within a unit ball centered
at the origin, then area(Dδ(p)) · area(Vor(Dδ(p)) ∩ S) ≥ ca · εd−1.

This lemma holds generally for any δ ≥ √ε, but it suffices for our purposes to
consider the restricted case of δ =

√
ε. Note that the additional assumptions on

fatness and diameter of part (ii) are necessary for establishing a lower bound. If K is
not fat or not of sufficiently large diameter, then area(Dδ(p)) can be arbitrarily small.
Since the Dudley hypersphere is bounded, it would not be possible to establish any
lower bound on the product of their areas.
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The remainder of this section is devoted to proving this lemma. Because p will
be fixed throughout, in order to simplify the notation, we will drop references to p.
For example, we will use h, H(y), Dδ, Γδ, and Bδ in place of h(p), H(y)(p), Dδ(p),
Γδ(p), and Bδ(p), respectively.

Since it will be useful to relate sets on h with sets on H(y), we observe that each
of these hyperplanes can be consistently identified with Rd−1 by endowing them with
parallel coordinate frames, one centered at p (for h) and one centered at p’s orthogonal
projection onto H(y). Thus, a point on h and its vertical projection onto H(y) have
the same coordinates.

We start by proving Lemma 10.1(i). Since the value of y will be fixed throughout
this part of the proof, we refer to H(y) simply as H. Let p′′ denote the origin of H’s
coordinate system (the vertical projection of p onto H). (See Figure 18.) In order
to exploit Lemma 2.2 on the Mahler volume, rather than considering Vor(Dδ) ∩ H
directly, we will find it convenient to instead analyze the polar dual of the base Γδ.
Using the aforementioned coordinate frame, we can think of Γδ as a body in Rd−1.
For r =

√
ε/8, consider the generalized polar of the dual base, polarr(Γδ), which we

can think of as a convex subset of H. Because Γδ contains the origin of h (namely, p),
it follows directly that polarr(Γδ) is bounded and convex and also contains the origin
of H (namely, p′′). In order to obtain a lower bound on area(Vor(Dδ) ∩H), we will
first show that polarr(Γδ) is a subset of Vor(Dδ) ∩H and then derive a lower bound
on area(polarr(Γδ)). The first assertion is established by the following lemma.

Lemma 10.2. Given the preconditions of Lemma 10.1 and r =
√
ε/8, we have

polarr(Γδ) ⊆ Vor(Dδ) ∩H.

The proof is rather technical and involves a reduction to the problem in two-
dimensional space. Before giving the proof, it will help to provide some intuition
regarding the relationship between Vor(Dδ) ∩H and the polar of Γδ.

For the sake of simplicity, let us consider just the two-dimensional setting. Let
t denote a point of tangency on ∂K with respect to pε (see Figure 20), and let v be
the intersection of the line segment pεt with h. Shoot a ray from t perpendicular to
∂K until it intersects H. Let q denote this intersection point. Since K is convex,
all the points on the segment p′′q have their nearest neighbor on the portion of ∂K
between p and t, that is, they all lie within Vor(D). Observe that if we translate this
perpendicular line so that it emanates from pε instead of t, it will hit H at a point
q′ that is closer to p′′. Therefore, the segment p′′q′ also lies within Vor(D). Let `
denote the distance between pε and p′′. By similar triangles, it is easy to see that the
length of p′′q′ is ` · ε/‖pv‖. Since v ∈ Γ, q′ lies within polarr′(Γ), where r′ =

√
` · ε.

pε

t
K

p

` · ε
‖v‖

p′′

`

h

H

ε v

qq′

Fig. 20. The relationship between Vor(Dδ) ∩H and the polar of Γδ.
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Fig. 21. The reduction to the plane Φ.

Because y ≥ 1 and ε ≤ 1/8, we have r′ = Ω(
√
ε). This observation generalizes readily

to higher dimensions, and it follows that polarr′(Γ) ⊆ Vor(D)∩H. We will show how
to generalize this intuition to higher dimensions and the δ-restricted setting.

For any z ∈ H let w denote its nearest neighbor on ∂K. In order to prove
Lemma 10.2, it suffices to show that if w /∈ Dδ (implying that z /∈ Vor(Dδ)∩H), then
z /∈ polarr(Γδ). By our assumption that H lies below K it follows that w lies on the
“lower surface” of ∂K (meaning that a vertical ray directed downward from w does
not intersect the interior of K). Since w is not in the restricted cap, we know that
either w /∈ D or w /∈ Bδ.

It will simplify the analysis to reduce the problem to a two-dimensional setting.
Consider the plane Φ that contains the points p, pε, and w. (Note that these points
are not collinear.) Let t be the point of tangency on ∂K ∩ Φ with respect to pε that
lies on the same side as w (see Figure 21(a)). Let v be the intersection of the line
segment pεt with h. We may identify Φ with R2 by imposing a coordinate system
on Φ where the origin is at p, the y-axis is directed upward away from pε, and the
x-axis is parallel to the vector from p to v. Given a point u ∈ Φ, let ux and uy
denote its coordinates relative to this coordinate system. Further, if u ∈ ∂K ∩ Φ, let
uθ denote the slope of the (unique) supporting line on Φ passing through u. Note
that z need not lie on Φ. Let z′ be the orthogonal projection of z onto Φ. Observe
that tθ = ε/‖pv‖, and therefore ‖pv‖ = ε/tθ. By our choice of coordinate system and
assumptions about orientations, the coordinates of w, t and the slopes wθ and tθ are
all nonnegative quantities.

The point v lies on the base Γ of p’s unrestricted dual cap. By employing our
coordinate system on h, we can identify v with a vector in Rd−1 (emanating from p).
If ‖pv‖ ≤ δ, then v contributes a bounding halfspace to polarr(Γδ). This halfspace is
bounded by a hyperplane that is orthogonal to v and lies at distance r2/‖pv‖ from
the origin. Let us think of this halfspace, which we denote by hv, as lying on H (see
Figure 21(a)). Recalling that r =

√
ε/8, the distance of hv’s bounding hyperplane to

the origin p′′ is (ε/8)/‖pv‖ = tθ/8. On the other hand, if ‖pv‖ > δ, then v lies outside
the restricted base. In this case v’s subvector of length δ lies on the boundary of the
restricted base and contributes to polarr(Γδ) a halfspace whose bounding hyperplane
is at distance (ε/8)/δ from the origin. Recalling that δ =

√
ε, this is equal to δ/8.

Thus, in either case, polarr(Γδ) is bounded by a halfspace whose defining hyperplane
is orthogonal to v and lies at distance max(δ, tθ)/8 from the origin. This hyperplane
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intersects the horizontal line H ∩ Φ at some point v′ that lies to the right of p′′ at
distance v′x = max(δ, tθ)/8 (see Figure 21(b)).

Because the hyperplane passing through v′ is orthogonal to v, in order to show
that z /∈ polarr(Γδ), it suffices to show that z′ does not lie within hv, which is
equivalent to showing that z′x > v′x. We have thus reduced the problem to a two-
dimensional setting.

Recall that w is the closest point to z on ∂K. We assert that w is also the closest
point to z′ on ∂K∩Φ. The reason is that the squared distance from z to any point on
∂K ∩Φ can be expressed as the sum of the squared distance from z′ to this point and
the squared distance from z to z′. Since the latter quantity is the same for all points
on Φ, the closest point to z is also the closest point to z′. From basic properties of
convexity, it follows that the line wz′ is orthogonal to the support line passing through
w on ∂K ∩ Φ. Therefore, the slope of wz′ (in Φ’s coordinate system) is −1/wθ, and
in particular we have (z′x−wx)/(z′y −wy) = −wθ. Since h and H are separated by at
least unit distance (with h above H), we have wy − z′y ≥ 1, and so z′x ≥ wx + wθ.

Thus, to complete the proof of Lemma 10.2, it suffices to show that if w /∈ Dδ,
then v′x < wx + wθ. We first establish two useful technical results. These results will
be applied in a context where w lies within the unrestricted dual cap but outside the
restricted dual cap, that is, when wx ≤ tx but w /∈ Bδ. The first result shows that if
tθ is sufficiently small, the slope of the line pw is at most unity. The second shows
that if tθ is sufficiently large, the slope of pw is not much smaller than the slope of t’s
supporting line.

Lemma 10.3. Given the preconditions of Lemma 10.1 and the aforementioned
two-dimensional reduction, and given w and t as introduced above, where wx ≤ tx
and w /∈ Bδ,

(i) if tθ ≤ δ
√

8, then wy/wx ≤ 1, and
(ii) if tθ > δ

√
8, then wy/wx ≥ tθ/2.

The proof is a straightforward geometric exercise and has been omitted. (See [8]
for the full proof.)

We are now in position to complete the proof of Lemma 10.2. Recall that our
objective is to show that if w /∈ Dδ, then v′x < wx +wθ, where v′x = max(δ, tθ)/8. We
consider two cases, depending on tθ. First, if tθ ≤ δ

√
8, then v′x ≤ max(δ, δ

√
8)/8 =

δ/
√

8. Since the line pεt has slope tθ and ty ≥ 0, we have tx = (ty + ε)/tθ ≥ ε/tθ ≥
δ/
√

8. We consider two subcases. If wx > tx, then we have wx+wθ > tx ≥ δ/
√

8 ≥ v′x,
as desired. On the other hand, if wx ≤ tx, then w is inside the unrestricted cap D.
Since by our hypothesis, w is not in the restricted cap, it must be that w /∈ Bδ, that is,
w2
x +w2

y > δ2. By Lemma 10.3(i), we have wx ≥ wy. Therefore, 2w2
x ≥ w2

x +w2
y > δ2,

which implies that wx > δ/
√

2. Therefore, wx + wθ ≥ wx > δ/
√

2 > v′x, as desired.
For the second case, assume that tθ > δ

√
8. In this case v′x = tθ/8. As before, we

consider two subcases. If wx > tx, then by convexity wθ ≥ tθ, and so wx +wθ ≥ tθ >
v′x, as desired. On the other hand, if wx ≤ tx, then since w lies within the unrestricted
cap, we may infer that w /∈ Bδ. By Lemma 10.3(ii), we have wy/wx ≥ tθ/2. Because
the support line at w passes below the origin, we also have wθ ≥ wy/wx. Therefore
wx + wθ ≥ wy/wx ≥ tθ/2 > v′x. This completes the proof of Lemma 10.2.

Because it is easier to deal with flat objects than curved ones, before returning
to the proof of Lemma 10.1(i), we show that the area of the restricted dual cap is, up
to a constant factor, bounded below by the area of its base. This result is straightfor-
ward for unrestricted caps, since it is easy to show that the base is contained within
the orthogonal projection of the dual cap onto h. However, restriction complicates
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the analysis. The proof involves a rather technical but straightforward geometric
argument. We have omitted it, but it is given in full in [8].

Lemma 10.4. Given the preconditions of Lemma 10.1, it follows that area(Dδ) ≥
area(Γδ)/2

d−1.

We are now ready to prove Lemma 10.1(i). Recall that r =
√
ε/8. As ob-

served earlier, polarr(Γδ) is a scaled copy of polar(Γδ) by a factor of r2, and therefore
(since these are (d − 1)-dimensional bodies) we have area(polarr(Γδ)) = r2(d−1) ·
area(polar(Γδ)). By applying Lemma 10.2, we have

area(Vor(Dδ) ∩H) ≥ area(polarr(Γδ)) = r2(d−1) · area(polar(Γδ)).

By Lemma 10.4, area(Dδ) ≥ area(Γδ)/2
d−1, and therefore

area(Dδ) · area(Vor(Dδ) ∩H) ≥ area(Γδ)

2d−1
· r2(d−1) · area(polar(Γδ))

≥
(
r2

2

)d−1

area(Γδ) · area(polar(Γδ)).

We now apply the Mahler-volume bound. By Lemma 2.2 (in Rd−1), there exists a con-
stant cm (depending only on d) such that area(Γδ) · area(polar(Γδ)) ≥ cm. Therefore,

area(Dδ) · area(Vor(Dδ) ∩H) ≥ cm

(
r2

2

)d−1

= cm

( ε
16

)d−1

.

Selecting any c′a ≤ cm/16d−1 establishes Lemma 10.1(i).
Next, let us establish Lemma 10.1(ii). Recall that we assume that K is fat and of

diameter at least 2ε. In particular, let us assume that K is γ-fat, where γ is a constant
independent of n and ε that lies in the interval (0, 1]. (As a result of Lemma 2.1, we
may assume that γ is 1/d when applying this result.)

It is natural to try to generalize the approach used in part (i). First, we would
show that

area(Vor(Dδ) ∩ S) = Ω
(
r2(d−1) · area(polar(Γδ))

)
and area(Dδ) = Ω(area(Γδ)),

and then we would apply the Mahler-volume bound to yield a lower bound on the
product area(Γδ) · area(polar(Γδ)). A problem arises, however, if K is not smooth.
In particular, if some portion of the boundary of K in p’s vicinity is nearly vertical,
then the boundary of Γδ can be arbitrarily close to the origin (namely, p), implying
that polar(Γδ) cannot be bounded, and hence its area can be arbitrarily large. This
was not an issue in part (i), because H is also unbounded. But since S is bounded,
area(Vor(Dδ) ∩ S) cannot be arbitrarily large. We will remedy this by smoothing K
by taking its Minkowski sum with a small Euclidean ball of radius O(ε). We shall see
(in the proof of Lemma 10.7) that this allows us to constrain the area of polar(Γδ).
This smoothing operation requires us to adapt many of the prior results of this section
to this new context.

To construct the smoothed body, for the remainder of this section define ε′ =
ε/2, and let K ′ = K ⊕ ε′ (see Figure 22(a)). Recall that h denotes the supporting
hyperplane at p and pε is the point at distance ε from p in the direction orthogonal to
h. As before, for the sake of illustration, let us assume that pε is vertically below p.
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Fig. 22. The smoothed body K′.

Let p′ be the midpoint of the segment ppε. Clearly, p′ ∈ ∂K ′, and the parallel
hyperplane h′ passing through p′ is a supporting hyperplane for K ′.

Let us also define the dual base in this smoothed context. Define Γ′ to be the
intersection of h′ and conv(K ′ ∪ {pε}). Let δ′ =

√
ε′ = δ/

√
2, and define the re-

stricted base Γ′δ to be the intersection of Γ′ and a ball of radius δ′ centered at p′ (see
Figure 22(b)). Our analysis will be based on K ′ and Γ′δ, as opposed to K and Γδ. Our
first objective will be to show that the area of Γ′δ is not significantly larger than that
of Γδ. As before, we endow h and h′ with parallel coordinate frames whose origins
are located at p and p′, respectively. Then we can think of Γδ and Γ′δ as convex sets
in Rd−1. The following lemma relates these two bodies.

Lemma 10.5. Given a convex body K that is γ-fat and of diameter at least 2ε and
given Γδ and Γ′δ as defined above, there exists a constant c (depending on γ and the
dimension d) such that area(Γ′δ) ≤ c · area(Γδ).

This result is not surprising, given that K is fat and ‖pp′‖ is within a constant
factor of ‖ppε‖. The proof involves straightforward geometric reasoning, but (as
always) restriction complicates the analysis. It is presented in full in [8].

Recall that Vor(Dδ)∩S consists of the set of points on the sphere S whose closest
point on ∂K lies within the restricted dual cap Dδ. Let D′δ denote the corresponding
restricted dual cap for K ′, that is, the set of points of ∂K ′ that are visible from pε
and lie within the ball Bδ′(p

′). Our analysis will be based on establishing a lower
bound on the area of Vor(D′δ) ∩ S. The following lemma shows that this will provide
a lower bound on the area of Vor(Dδ) ∩ S.

Lemma 10.6. Given the preconditions of Lemma 10.1(ii), area(Vor(D′δ) ∩ S) ≤
area(Vor(Dδ) ∩ S).

Proof. We sketch the proof here, but complete details can be found in [8]. We
prove the stronger result that Vor(D′δ) ∩ S ⊆ Vor(Dδ) ∩ S. First observe that (by
our restriction on ε and the definition of δ) both Dδ and D′δ lie within the Dudley
hypersphere S. Consider any point q′′ ∈ Vor(D′δ) ∩ S. It suffices to show that
q′′ ∈ Vor(Dδ) ∩ S. Let q and q′ be the closest points on ∂K and ∂K ′, respectively,
to q′′. It follows from basic properties of the Minkowski sum that these three points
are collinear and there are supporting hyperplanes at q and q′ that are orthogonal to
this line. Since q′′ ∈ Vor(D′δ) ∩ S, we have q′ ∈ D′δ, which implies that q′ is visible
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from pε. By the existence of parallel supporting hyperplanes, q is also visible from
pε. Therefore, q lies in p’s unrestricted dual cap D. By basic properties of convexity,
‖pq‖ ≤ ‖p′q′‖, which implies that q lies within p’s restricted dual cap, and therefore
q′′ ∈ Vor(Dδ) ∩ S, as desired.

Before completing the proof of Lemma 10.1(ii), we exploit the smoothness of K ′

to establish a relationship between the areas of Vor(D′δ) ∩ S and polarr′(Γ
′
δ), where

the polar radius r′ is suitably modified for the smoothed context. This is given in the
next lemma.

Lemma 10.7. Given the preconditions of Lemma 10.1(ii) and r′ =
√
ε′/8, we have

area(Vor(D′δ) ∩ S) ≥ area(polarr′(Γ
′
δ)).

Proof. The proof involves a rather technical geometric analysis. We present a
sketch here, but complete details can be found in [8]. First, we use the fact that since
p is in K, there is a ball of radius ε′ = ε/2 centered at p that lies within K ′. It follows
that Γ′δ contains a (d−1)-dimensional Euclidean ball (centered at p′) of radius ε′/

√
3.

Let H ′ denote the hyperplane that is at unit distance below p′. Let p′′ denote
the vertical projection of p′ onto H ′. By the definition of the polar transformation,
polarr′(Γ

′
δ) (when viewed as a subset of H ′) is contained within a (d− 1)-dimensional

unit ball centered at p′′. Let C denote the semi-infinite generalized cylinder whose
horizontal cross section is polarr′(Γ

′
δ), whose upper surface lies on H ′, and which

extends vertically downward. Lemma 10.2 (applied now to K ′, ε′, polarr′(Γ
′
δ) and

Vor(D′δ)∩H ′) implies that polarr′(Γ
′
δ) ⊆ Vor(D′δ)∩H ′. Since this applies not only to

H ′ but to any hyperplane lying below H ′, it follows that C ⊆ Vor(D′δ). The remainder
of the proof involves showing that S is large enough that the orthogonal projection of
S ∩C onto H ′ is equal to polarr′(Γ

′
δ). Since S ∩C ⊆ Vor(D′δ)∩S, and since the area

of the orthogonal projection of a set cannot be larger than the area of the original
set, we have

area(Vor(D′δ) ∩ S) ≥ area(S ∩ C) ≥ area(polarr′(Γ
′
δ)),

as desired.

We are now ready to prove Lemma 10.1(ii). Recall that r′ =
√
ε′/8. By Lem-

mas 10.6 and 10.7, we have

area(Vor(Dδ) ∩ S) ≥ area(Vor(D′δ) ∩ S) ≥ area(polarr′(Γ
′
δ)).

As observed earlier, polarr′(Γ
′
δ) is a scaled copy of polar(Γ′δ) by a factor of (r′)2 =

ε′/8 = ε/16, and therefore (since these are (d− 1)-dimensional bodies) we have

area(Vor(Dδ) ∩ S) ≥
( ε

16

)d−1

· area(polar(Γ′δ)).

By Lemma 10.4, area(Dδ) ≥ area(Γδ)/2
d−1. Also, by Lemma 10.5 there is a constant

c′′ (depending on the fatness parameter γ and d) such that area(Γ′δ) ≤ c′′ · area(Γδ).
Therefore, we have

area(Dδ) ≥
area(Γδ)

2d−1
≥ area(Γ′δ)

c′′ · 2d−1
.

Combining these, we obtain

area(Dδ) · area(Vor(Dδ) ∩ S) ≥ area(Γ′δ)
c′′ · 2d−1

·
( ε

16

)d−1

· area(polar(Γ′δ))

=
1

c′′

( ε
32

)d−1

area(Γ′δ) · area(polar(Γ′δ)).
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By applying Lemma 2.2 (in Rd−1) to Γ′δ, there exists a constant cm (depending on d)
such that

area(Γ′δ) · area(polar(Γ′δ)) ≥ cm.

Therefore, we have

area(Dδ) · area(Vor(Dδ) ∩ S) ≥ cm
c′′

( ε
32

)d−1

.

Selecting any ca ≤ (cm/c
′′)(1/32)d−1 establishes Lemma 10.1(ii). This concludes our

proof of the area bounds.

11. Concluding remarks. In this paper we have presented an efficient data
structure for determining approximately whether a given query point lies within a
convex body. Our solution is based on a simple and natural quadtree-based algo-
rithm, called SplitReduce. Our principal technical contribution has been an analysis
of the space-time trade-offs for this algorithm. These are the first nontrivial space-
time trade-offs for this problem. We do not know whether this analysis is tight, but
we presented a lower bound example that demonstrates the limits of possible im-
provements. We also demonstrated the value of approximate polytope membership
by showing that our data structure can be combined with an AVD data structure to
produce significant improvements to the space-time trade-offs of approximate nearest
neighbor searching in Euclidean space.

Our analysis of the trade-offs involved a combination of a number of novel tech-
niques, which may be of broader interest. One notable example is the application
of the Mahler volume as a means of analyzing the local structure of a convex body
through consideration of both its primal and dual representations. This resulted in an
efficient two-pronged sampling strategy for computing hitting sets of low cardinality
for ε-dual caps. The Mahler volume has also been applied in [7] to derive an optimal
area-sensitive bound on the number of facets needed to approximate a convex body.

This work provokes a number of questions for further research. The first in-
volves extending approximate polytope membership queries to other approximate
query problems involving convex bodies. For example, in section 9 we showed how to
reduce approximate nearest neighbor searching in dimension d to vertical ray shoot-
ing queries in dimension d+ 1. However, the polytope involved had a very restricted
structure. It would be interesting to know whether there is a data structure exhibit-
ing similar trade-offs for answering approximate ray-shooting queries for general con-
vex bodies. Another example is answering approximate linear-programming queries,
where a convex body is preprocessed, and the problem is to determine an extreme
point of the body approximately in a given query direction. A further generalization
of this would be to extend the work of Barba and Langerman [13] to an approximate
setting. It particular, is it possible to preprocess convex bodies so that given two such
bodies that have been translated and rotated, it can be decided efficiently whether
they intersect each other approximately?

Our result on approximate nearest neighbor searching relies on the lifting trans-
formation to reduce the problem to approximate polytope membership. As a con-
sequence, this approach is applicable only to Euclidean distances. This raises the
question of whether there exists a more direct route to approximate nearest neighbor
searching that achieves similar space-time improvements and yet avoids reliance on
lifting. For example, Arya and Chan [5] have presented improvements to approximate
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nearest neighbor searching that do not involve lifting. This raises the hope that gen-
eralizations to other norms may be possible. While their focus was different from ours
(for example, space-time trade-offs are not considered), their results are inferior to
our best bounds. These better bounds arise explicitly from concepts like the Mahler
volume, which are applicable only in the context of convex approximation, and hence
they rely crucially on lifting. A major challenge is whether it is possible to bypass this
intermediate step in order to obtain analogous improvements for approximate nearest
neighbor searching.

Note added in proof. After the original submission of this paper, the authors
discovered a new approach to polytope membership that achieves query time O(log 1

ε )

with storage of only O(1/ε(d−1)/2) [9]. As a consequence, it is possible to answer ε-
approximate nearest neighbor queries for a set of n points in O(log n

ε ) time with

storage of only O(n/εd/2). While these new results surpass the results of this paper
theoretically, the data structure presented there involves significantly larger constant
factors and lacks the simplicity and practicality of the approach described here.
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Abstract

In the polytope membership problem, a convex polytope K in Rd is given, and the objective is
to preprocess K into a data structure so that, given a query point q ∈ Rd, it is possible to determine
efficiently whether q ∈ K. We consider this problem in an approximate setting and assume that
d is a constant. Given an approximation parameter ε > 0, the query can be answered either way
if the distance from q to K’s boundary is at most ε times K’s diameter. Previous solutions to the
problem were on the form of a space-time trade-off, where logarithmic query time demands O(1/εd−1)
storage, whereas storage O(1/ε(d−1)/2) admits roughly O(1/ε(d−1)/8) query time. In this paper, we
present a data structure that achieves logarithmic query time with storage of only O(1/ε(d−1)/2),
which matches the worst-case lower bound on the complexity of any ε-approximating polytope. Our
data structure is based on a new technique, a hierarchy of ellipsoids defined as approximations to
Macbeath regions.

As an application, we obtain major improvements to approximate Euclidean nearest neighbor
searching. Notably, the storage needed to answer ε-approximate nearest neighbor queries for a set
of n points in O(log n

ε
) time is reduced to O(n/εd/2). This halves the exponent in the ε-dependency

of the existing space bound of roughly O(n/εd), which has stood for 15 years (Har-Peled, 2001).

1 Introduction

Convex polytopes are key structures in many areas of mathematics and computation. In this paper,
we consider a fundamental search problem related to these objects. Let K denote a convex polytope
in Rd, that is, the bounded intersection of n halfspaces. The polytope membership problem is that of
preprocessing K so that it is possible to determine efficiently whether a given query point q ∈ Rd lies
within K. Throughout, we assume that the dimension d is a fixed constant and that K is full dimensional.

It follows from standard results in projective duality that polytope membership is equivalent to
answering halfspace emptiness queries for a set of n points in Rd. In dimension d ≤ 3, it is possible
to build a data structure of linear size that can answer such queries in logarithmic time [29, 30]. In
higher dimensions, however, the fastest exact data structures with near-linear space have a query time
of roughly O

(
n1−1/bd/2c

)
[41], which is unacceptably high for many applications.

Polytope membership is a special case of polytope intersection queries [16, 27, 30]. Recently, Barba
and Langerman [16] showed that for any fixed d, it is possible to preprocess polytopes in Rd so that given

∗Research supported by the Research Grants Council of Hong Kong, China under project number 610012.
†Research supported by NSF grant CCF–1618866.
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two such polytopes that have been translated and rotated, it can be determined whether they intersect
each other in time that is logarithmic in their total combinatorial complexity. The preprocessing time
and space are quite high, growing as the combinatorial complexity of the polytope (which can be as high
as Θ(nbd/2c)) raised to the power bd/2c.

The lack of efficient exact solutions has motivated consideration of approximate solutions. Let ε
be a positive real parameter, and let diam(K) denote K’s diameter. Given a query point q ∈ Rd, an
ε-approximate polytope membership query returns a positive result if q ∈ K, a negative result if the
distance from q to its closest point in K is greater than ε · diam(K), and it may return either result
otherwise. Polytope membership queries, both exact and approximate, arise in many application areas,
such as linear-programming and ray-shooting queries [22, 26, 40, 42, 43], nearest neighbor searching and
the computation of extreme points [23,28], collision detection [35], and machine learning [21].

Dudley [31] showed that, for any convex body K in Rd, it is possible to construct an ε-approximating
polytope P with O(1/ε(d−1)/2) facets. This bound is asymptotically tight in the worst case, even when
K is a Euclidean ball. This construction implies a (trivial) data structure for approximate polytope
membership problem with space and query time O(1/ε(d−1)/2). Another simple solution arises from the
approximation proposed by Bentley et al. [17]. A d-dimensional grid with cells of size Θ(ε · diam(K)) is
created and for every column along the xd-axis, the two extreme xd values where the column intersects
K are stored. Given a query point q, it is easy to determine if q ∈ P in constant time (assuming a model
of computation that supports the floor function). The storage required by the approach is O(1/εd−1).

In [4], the authors presented a simple and practical data structure for the approximate polytope
membership problem, called SplitReduce. Given a parameter t, space is subdivided hierarchically using
a quadtree until each cell either (1) lies entirely inside K, (2) entirely outside K, or (3) intersects K’s
boundary and is locally approximable by at most t halfspaces. In the latter case, the leaf node associated
with such a cell stores such a set of hyperplanes. To answer a query, the quadtree is descended until
arriving at the leaf node whose cell contains the query point. If this node is not labeled as inside or
outside, the query is answered by testing whether the query point lies within all the halfspaces stored
in the leaf node. In [4] it is shown that the quadtree height is O(log 1

ε ), and therefore the overall query
time is O(log 1

ε + t).

A more refined analysis is presented in [6], showing that the minimum storage of O(1/ε(d−1)/2) is
attained for query time t = Θ

(
(log 1

ε )/ε(d−1)/8
)
. Furthermore, a space-time trade-off is presented that

involves a piecewise linear function. Obtaining a tight analysis remains an open problem. A lower-
bound proof shows that the storage requirement increases when the query time t drops down to roughly
O(1/ε(d−1)/18) [4]. Furthermore, the data structure provides no improvement over the storage in [17]
when the query time is polylogarithmic.

While the SplitReduce data structure is both simple and practical, the question of whether it is
possible to achieve query time O(log 1

ε ) with minimum storage O(1/ε(d−1)/2) has remained open. In
this paper, we give an affirmative answer to this question. We abandon the quadtree-based approach
of [4] and [6] in favor of a data structure involving a hierarchy of ellipsoids. These ellipsoids are selected
through a sampling process that is inspired by a classical structure from the theory of convexity, called
Macbeath regions [39]. Here is our main result.

Theorem 1.1 Given a convex polytope K in Rd and an approximation parameter 0 < ε ≤ 1, there is a
data structure that can answer ε-approximate polytope membership queries with

Query time: O

(
log

1

ε

)
and Space: O

(
1

ε(d−1)/2

)
.

Our focus is on the existence of this data structure. Preprocessing will be discussed in future work,
but assuming that K is represented as the intersection of h halfspaces, the construction described in
Section 3.1 can be implemented in time O(n + poly(1/ε)), with polynomial exponents depending on d.
The principal contribution of this paper is to show that through the use of a more “shape-sensitive”
approach, it is possible to achieve dramatic improvements over the space requirements of the data
structure.

As evidence of the importance of this result, we show that it can be applied to produce significant
improvements in the efficiency of approximate nearest-neighbor searching in Euclidean space. Approxi-
mate nearest neighbor searching in spaces of fixed dimension has been widely studied. Data structures
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with O(n) storage and query times no better than O(log n + 1/εd−1) have been proposed by several
authors [13, 18, 25, 32]. In subsequent papers, it was shown that query times could be reduced at the
expense of greater storage [24,28,37,44]. Har-Peled introduced the AVD (approximate Voronoi diagram)

data structure and showed that O(log n
ε ) query time could be achieved using Õ(n/εd) space [37]. (The

notation Õ(·) conceals logarithmic factors.)
Space-time trade-offs were established for the AVD in a series of papers [3,8,9,11]. At one end of the

spectrum, it was shown that with O(n) storage, queries could be answered in time O(log n+ 1/ε(d−1)/2).

At the other end, queries could be answered in time O(log n
ε ) with space Õ(n/εd). In [4], the authors

presented a reduction from Euclidean approximate nearest neighbor searching to polytope membership.
They established significant improvements to the best trade-offs throughout the middle of the spectrum,
but the extremes were essentially unchanged [4,6]. While the AVD is simple and practical, in [11] lower
bounds were presented that imply that significant improvements at the extreme ends of the spectrum
are not possible in this model. Through the use of our new data structure for polytope membership, we
achieve the following improved trade-off.

Theorem 1.2 Given a set X of n points in Rd, an approximation parameter 0 < ε ≤ 1, and m such that
log 1

ε ≤ m ≤ 1/(εd/2 log 1
ε ), there is a data structure that can answer Euclidean ε-approximate nearest

neighbor queries with

Query time: O

(
log n+

1

m · εd/2
)

and

Space: O(nm) .

By setting m to its upper limit it is possible to achieve logarithmic query time while roughly halving
the exponent in the ε-dependency of the previous best bound, as expressed in the following corollary.

Corollary 1.1 Given a set X of n points in Rd and an approximation parameter 0 < ε ≤ 1, there is a
data structure that can answer Euclidean ε-approximate nearest neighbor queries with

Query time: O
(

log
n

ε

)
and Space: O

( n

εd/2

)
.

The rest of the paper is organized as follows. In the next section we present definitions and preliminary
results. In Section 3 we present the data structure and analyze its performance. Section 4 discusses the
application to approximate nearest-neighbor searching.

2 Geometric Preliminaries

Throughout, we assume that K is presented as the intersection of halfspaces. Note however that our
results are largely insensitive to the exact representation or the combinatorial complexity of K. (The
exceptions are our remarks on the construction of the data structure and choice of hyperplane witnesses
to non-membership). For this reason, we will often refer to K simply as a convex body.

It will be convenient to define the approximation error in absolute terms. Given a query point q ∈ Rd,
an absolute ε-approximate polytope membership query returns a positive result if q ∈ K, a negative result
if the distance from q to its closest point in K is greater than ε, and it may return either result otherwise.
We may assume throughout that d ≥ 4, since polytope membership queries (which may be applied to
the Dudley approximation) can be answered exactly in logarithmic time for d ≤ 3 [30].

2.1 Canonical Position and Ray Shooting.

Let ∂K denote the boundary of K. Let O denote the origin of Rd, and for x ∈ Rd and r ≥ 0, let
Br(x) denote the Euclidean ball of radius r centered at x. Given a parameter 0 < γ ≤ 1, we say that a
convex body K is γ-fat if there exist concentric Euclidean balls B and B′, such that B ⊆ K ⊆ B′, and
radius(B)/radius(B′) ≥ γ. We say that K is fat if it is γ-fat for a constant γ (possibly depending on d,
but not on ε).

Let B0 denote a ball of radius r0 = 1/2 centered at the origin. For 0 < γ ≤ 1, let γB0 denote
the concentric ball of radius γr0 = γ/2. We say that a convex body K is in γ-canonical form if its

3
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Figure 1: (a) γ-canonical form, (b) ε-approximate ray-shooting query, (c) witness.

boundary is nested between γB0 and B0 (see Figure 1(a)). A body in γ-canonical form is γ-fat, and
diam(K) ∈ [γ, 1]. We will refer to point O as the center of K.

The next lemma shows that, up to constant factors, the problem of answering relative ε-approximate
polytope membership queries can be reduced to the problem of answering absolute (ε/d)-approximate
queries with respect to a convex body in (1/d)-canonical form. The proof follows from a combination of
John’s Theorem [38] and Lemma 3.1 of Agarwal et al. [1]. (Also, see Lemma 2.1 of the arXiv version
of [7].)

Lemma 2.1 Let K ⊂ Rd be a convex body. There exists a non-singular affine transformation T such
that T (K) is in (1/d)-canonical form. Further, if q is a point at distance greater than ε · diam(K) from
K, then T (q) is at distance greater than ε/d from T (K).

In light of this result, we may assume henceforth that K is presented in γ-canonical form, for any
constant γ (depending on dimension), and that ε has been appropriately scaled. (This scaling will affect
the constant factors hidden in our asymptotic bounds.) Henceforth, we focus on the problem of answering
absolute ε-approximate polytope membership queries with respect to K.

Our query algorithm solves a slightly more general problem, which will be exploited later in Section 4.
Given a convex body in γ-canonical form and any point q ∈ Rd \ {O}, consider the (infinite) ray with
origin at O and passing through q, which we denote as Oq. An ε-approximate ray shooting query returns
a point p that lies on this ray and is not internal to K but lies within distance ε of K1 (see Figure 1(b)).
Given the answer to such a ray-shooting query, we can answer approximate membership queries for a
query point q by applying the query to the ray Oq and testing whether q lies on the portion of the ray
between O and p. If so, then (by convexity and the fact that O is interior to K) q lies within distance ε
of K. If not, q does not lie within K. In Section 3 we will show the following.

Lemma 2.2 Given an arbitrary constant γ, a convex polytope K in Rd that is in γ-canonical form,
and an approximation parameter 0 < ε ≤ 1, there is a data structure that can answer ε-approximate
ray-shooting queries in O(log 1

ε ) time and O(1/ε(d−1)/2) space.

Theorem 1.1 follows directly from Lemmas 2.1 and 2.2. Our ray-shooting algorithm satisfies the
additional property that, when K is given as the intersection of halfspaces, the reported point p lies on
the bounding hyperplane h of one of these halfspaces (see Figure 1(c)). The query returns not only p but
h as well. As such, if q is reported to lie outside of K, then h serves as a witness to q’s non-membership.
This fact will be exploited in Section 4.

1In light of Lemma 2.1, approximate ray-shooting queries also can be defined for an arbitrary convex body. The ray’s
origin is chosen to be the center of the John ellipsoid and the distance to the point p is relative to K’s diameter. In general
the ray’s central point may be located at any point in K’s interior with the property that K’s boundary is sandwiched
between two uniformly scaled copies of an ellipsoid, both centered at this point. As in Lemma 2.1, the value of ε needs to
be adjusted based on the scale factor.
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2.2 Caps and Macbeath Regions.

Much of the material in this section has been presented in [7]. We include it here for the sake of
completeness.

Given a convex body K, a cap C is defined to be the nonempty intersection of the convex body K
with a halfspace (see Figure 2(a)). Let h denote the hyperplane bounding this halfspace. We define the
base of C to be h ∩ K. The apex of C is any point in the cap such that the supporting hyperplane
of K at this point is parallel to h. The width of C, denoted width(C), is the distance between h and
this supporting hyperplane. Given any cap C of width w and a real ρ ≥ 0, we define its ρ-expansion,
denoted Cρ, to be the cap of K cut by a hyperplane parallel to and at distance ρw from this supporting
hyperplane. (Note that Cρ = K, if ρw exceeds the width of K along the defining direction.) An easy
consequence of convexity is that, for ρ ≥ 1, Cρ is a subset of the region obtained by scaling C by a factor
of ρ about its apex. This implies the following lemma.

Lemma 2.3 Let K ⊂ Rd be a convex body and ρ ≥ 1. For any cap C of K, vol(Cρ) ≤ ρd · vol(C).

C
w

h C2

bas
e

wid
th

w

(b)(a)

apex
K

x

M(x)

M ′(x)

2x−K

Figure 2: (a) Cap concepts and (b) Macbeath regions.

Given a point x ∈ K and real parameter λ ≥ 0, the Macbeath region Mλ(x) (also called an M-region)
is defined as:

Mλ(x) = x+ λ((K − x) ∩ (x−K)).

It is easy to see that M1(x) is the intersection of K and the reflection of K around x (see Figure 2(b)),
and so M1(x) is centrally symmetric about x. Mλ(x) is a scaled copy of M1(x) by the factor λ about
x. We refer to x as the center of Mλ(x) and to λ as its scaling factor. As a convenience, we define
M(x) = M1(x) and M ′(x) = M1/5(x). We refer to the latter as the shrunken Macbeath region.

Macbeath regions have found numerous uses in the theory of convex sets and the geometry of numbers
(see Bárány [15] for an excellent survey). They have also been applied to a growing number of results in
the field of computational geometry, particularly to construct lower bounds for range searching [10,14,19]
and to bound the complexity of an ε-approximating polytope [5, 7].

Given any point x ∈ K, we define a minimal cap C(x) to be the cap with minimum volume that
contains x. Clearly, the base of the minimal cap must pass through x. In fact, a standard variational
argument implies x is the centroid of the base (otherwise, we could decrease the cap volume by an
infinitesimal rotation of the base about x [36]). If the minimal cap is not unique, the notation C(x) will
refer to any one of these caps fixed arbitrarily. Define v(x) = vol(C(x)) and width(x) = width(C(x)). It
will be convenient to use Cρ(x) to refer to the ρ-expansion of C(x), that is, Cρ(x) = (C(x))ρ.

We now present two lemmas that encapsulate key properties of Macbeath regions, which will be
useful in the development of our data structure. The first lemma shows that if two shrunken Macbeath
regions have a nonempty intersection, then a constant factor expansion of one contains the other [19,36].
Since the statement we need is slightly different from that proved in earlier papers, we give a proof in
the appendix.

Lemma 2.4 Let K be a convex body, and let λ ≤ 1/5 be any real. If x, y ∈ K such that Mλ(x)∩Mλ(y) 6=
∅, then Mλ(y) ⊆M4λ(x).
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The next lemma shows that the minimal cap associated with a point is contained within a suitable
constant factor expansion of the associated Macbeath region. It is a straightforward adaptation of a
lemma proved by Ewald, Larman and Rogers [36] (see proof of Lemma 4 in [36]).

Lemma 2.5 Let K ⊂ Rd be a convex body in γ-canonical form, and let ∆0 = 1
2 (γ2/(4d))d be a constant.

If x is a point in K that lies within distance ∆0 of ∂K, then C(x) ⊆M3d(x).

The following lemma is an immediate consequence of the definition of Macbeath region.

Lemma 2.6 Let K be a convex body and λ > 0. If x is a point in a cap C of K, then Mλ(x)∩K ⊆ C1+λ.
Furthermore, if λ ≤ 1, then Mλ(x) ⊆ C1+λ.

The next lemma is useful in situations when we know that a shrunken Macbeath region partially
overlaps a cap of K. It allows us to conclude that a constant factor expansion of the cap will fully
contain the Macbeath region. The proof appears in [7].

Lemma 2.7 Let K be a convex body. Let C be a cap of K and x be a point in K such that C∩M ′(x) 6= ∅.
Then M ′(x) ⊆ C2.

2.3 Relating Distances and Widths.

In this section we present a number of geometric results demonstrating the relationship between three
notions of the distance from a point lying within a convex body to body’s boundary. Throughout, let
K be a convex body in γ-canonical form where γ is a constant and let x ∈ K. Recall that width(x) is
the width of x’s minimum cap. Define δ(x) to be the minimum distance from x to any point on ∂K.
For the sake of ray-shooting queries, we define a ray-based notion of distance as well. Given x ∈ K,
consider the intersection point p of ∂K and the ray emanating from O and passing through x. Define
x’s ray-distance, denoted ray(x), to be ‖xp‖ (see Figure 3).

K

x
C(x)

δ(x)

ray(x)

O

M(x)

width(x)

p

Figure 3: Relating δ(x), width(x), and ray(x).

First we relate ray(x) and δ(x). The lower bound on ray(x) is trivial and the upper bound follows
by a straightforward adaptation of Lemma 4.2 of [7].

Lemma 2.8 Let K be a convex body in γ-canonical form. For any point x ∈ K, δ(x) ≤ ray(x) ≤ δ(x)/γ.

Next, let us relate width(x) and δ(x). Clearly, width(x) ≥ δ(x). In Lemma 2.10, we show that
close to the boundary, width(x) cannot exceed δ(x) by more than a constant factor. Its proof is based
standard properties of Macbeath regions and the following lemma.

Lemma 2.9 Let K be a convex body in γ-canonical form. Let C1 and C2 be two caps of K such that
C1 ⊆ C2. Then width(C1) ≤ 2 · width(C2)/γ.

Proof . We consider two cases depending on whether the origin O is inside C1 or not. First, if O ∈ C1,
then O ∈ C2. Since K contains the ball Bγ/2(O), it follows that width(C2) ≥ γ/2. Since K is contained
within the ball B1/2(O), we have width(C1) ≤ 1. Thus, width(C1) ≤ 2 · width(C2)/γ.

Otherwise, we have O /∈ C1. Consider the segment joining O to t, where t is the apex of C1. Let x
denote the point of intersection of this segment with the base of C1. Clearly, width(C1) ≤ ray(x). By
Lemma 2.8, ray(x) ≤ δ(x)/γ. Thus, width(C1) ≤ δ(x)/γ. Also, since x ∈ C2, we have δ(x) ≤ width(C2).
Thus, width(C1) ≤ width(C2)/γ, completing the proof. ut
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Lemma 2.10 Let K ⊂ Rd be a convex body in γ-canonical form, and let ∆0 be the constant of
Lemma 2.5. If x is a point in K such that δ(x) ≤ ∆0, then width(x) ≤ (2/γ)(3d+ 1)δ(x).

Proof . Let t denote the point on ∂K that is closest to x. Consider the supporting hyperplane of K at
t that is orthogonal to segment xt. Consider the halfspace bounded by this hyperplane which does not
contain K in its interior. Translate this halfspace such that the bounding hyperplane passes through x.
Let C denote the cap formed by intersecting this halfspace with K. Note that the width of cap C is δ(x).
By Lemma 2.6, M3d(x)∩K ⊆ C3d+1. Since δ(x) ≤ ∆0, it follows from Lemma 2.5 that C(x) ⊆M3d(x).
By definition, C(x) ⊆ K, so we have

C(x) ⊆ M3d(x) ∩K ⊆ C3d+1.

By Lemma 2.9, it follows that

width(x) = width(C(x))

≤ 2

γ
width(C3d+1) =

2

γ
(3d+ 1)δ(x),

as desired. ut

The following lemma, illustrated in Figure 4, will be useful to analyze the ray shooting performed by
our data structure.

width(C) ≤ ∆0

ty′

y r′

O

C
h

ht

Figure 4: Statement of Lemma 2.11.

Lemma 2.11 Let K be a convex body in γ-canonical form, and let ∆0 be the constant of Lemma 2.5.
Let C be a cap of width at most ∆0 defined by a hyperplane h, and let y be any point in C. Let t be C’s
apex, and let ht be the hyperplane parallel to h that passes through t. Letting y′ denote the intersection
of line Oy and ht, we have ‖yy′‖ ≤ 2 · width(C)/γ.

Proof . Given that y ∈ C, ‖yy′‖ is maximized when y lies on C ∩ h, and so let us assume this. Since K
is in γ-canonical form, it is nested between two balls of radii r = γ/2 and R = 1/2 centered at O. Let
r′ denote the perpendicular distance from O to ht. Clearly, ht is a supporting hyperplane of K, and so
r′ ≥ r. By definition of ∆0 and since γ ≤ 1, we have ∆0 ≤ γ/4 = r/2. Let R′ = ‖Oy‖. Since y ∈ K,
R′ ≤ R. Letting w = width(C), by similar triangles we have R′/(r′ − w) = ‖yy′‖/w. Therefore,

‖yy′‖ =
R′

r′ − ww ≤
R′

r′ −∆0
w ≤ R′

r − (r/2)
w

≤ R

r/2
w =

2 · width(C)

γ
,

as desired. ut

Finally, we establish a monotonicity relationship between δ(x) and ray(x) that holds close to the
boundary. For any δ > 0, define the δ-erosion of K, denoted K(δ), to be the closed convex body formed
by removing from K all points lying within distance δ of ∂K. We can define K(δ) equivalently as follows.
Let H denote the set of supporting halfspaces of K, so that K =

⋂
H∈HH. Letting H(δ) denote the set

of halfspaces obtained by translating each halfspace of H towards O by δ, we have K(δ) =
⋂
H∈H(δ)H.

Recalling that Bγ/2(O) ⊆ K, the next lemma follows from elementary geometry.
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Lemma 2.12 Let K be a convex body in γ-canonical form. The following hold:

(a) if δ < γ/2, then O ∈ K(δ).

(b) Consider any ray emanating from O. Let x and y denote the points of intersection of this ray with
the boundaries of K(γ/2) and K, respectively. As point p moves along this ray from x to y, δ(p)
decreases strictly monotonically.

2.4 Further Properties of Macbeath Regions.

Finally, we identify some useful novel properties of Macbeath regions. The first lemma is a useful utility.
Lemma 2.14 shows that all the points in a shrunken Macbeath region have similar distances from the
boundary of K, and Lemma 2.15 shows that the minimal caps associated with these points have similar
volumes.

Lemma 2.13 Let K be a convex body. If x ∈ K and x′ ∈M ′(x), then x ∈M1/4(x′).

Proof . Recalling that M ′(x) = M1/5(x), it follows that there exist points p1, p2 ∈ K such that x′ =
x+ 1

5 (p1−x) and x′ = x+ 1
5 (x−p2). After simple algebraic manipulations, the first equation is equivalent

to

x = x′ +
1

4
(x′ − p1). (1)

Letting p3 = 2
3p2 + 1

3x
′, the second equation is equivalent to

x = x′ +
1

4

(
2

3
p2 +

1

3
x′ − x′

)
= x′ +

1

4
(p3 − x′) . (2)

As p3 is a convex combination of p2 and x′, we have p3 ∈ K. Eq. (1) shows that x ∈ x′ + (1/4)(x′ −K),
and Eq. (2) shows that x ∈ x′ + (1/4)(K − x′). Thus x ∈M1/4(x′). ut

Lemma 2.14 Let K be a convex body. If x ∈ K and x′ ∈M ′(x), then 4δ(x)/5 ≤ δ(x′) ≤ 4δ(x)/3.

Proof . To prove the lower bound on δ(x′), let z denote the point of ∂K that is closest to x′, and let h
be a supporting hyperplane passing through z (see Figure 5). Let ` denote the (perpendicular) distance
from x to h, and let h′ be the translate of h by distance 4`/5 towards x. Because M(x) lies entirely
within the halfspace bounded by h that contains the origin, it follows that M ′(x) lies entirely within the
corresponding halfspace bounded by h′. This implies that δ(x′) ≥ 4`/5. Clearly, δ(x) ≤ `, and hence
δ(x′) ≥ 4`/5 ≥ 4δ(x)/5.

xM ′(x)

z

`

4`/5

x′
h

h′

Figure 5: Proof of Lemma 2.14.

To prove the upper bound on δ(x′) observe that, by Lemma 2.13, x ∈ M1/4(x′). A symmetrical
argument to the above shows that δ(x) ≥ 3δ(x′)/4, as desired. ut

Recall that C(x) is the cap of minimum volume that contains x and v(x) = vol(C(x)).

Lemma 2.15 Let K ⊂ Rd be a convex body. If x ∈ K and x′ ∈M ′(x), then 2dv(x) ≥ v(x′) ≥ v(x)/2d.
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Proof . By Lemma 2.6, M ′(x) ⊆ C6/5(x). Therefore, x′ ∈ C6/5(x), implying that the minimum volume
cap containing x′ has volume at most vol(C6/5(x)). By Lemma 2.3, vol(C6/5(x)) ≤ (6/5)dvol(C(x)).
Thus

v(x′) ≤ vol(C6/5(x)) ≤
(

6

5

)d
v(x) ≤ 2dv(x),

which proves the first inequality. To prove the second inequality observe that, by Lemma 2.13, x ∈
M1/4(x′). Arguing as in the proof of the first inequality, we obtain v(x) ≤ 2dv(x′), as desired. ut

3 The Data Structure

Recall that we are given a convex polytope K ⊂ Rd in γ-canonical form, where γ is a constant, and
our objective is to construct a data structure that can answer ε-approximate ray-shooting queries. Our
approach is to compute a series of nested rings within K, each of which surrounds the origin. Each
ring is the union of a collection of appropriately scaled Macbeath regions such that any ray shot from
the origin hits at least one Macbeath region from each ring (see Figure 6). The rings extend outwards
towards the boundary of K. To simplify query processing, we will replace each Macbeath region with
a containing ellipsoid whose volume is larger by at most a constant factor. With each successive level
these “Macbeath ellipsoids” define successively better approximations to ∂K, with the last ring forming
an ε-approximation to ∂K.

Figure 6: Illustration of two levels of the data structure.

These rings naturally define a layered DAG structure whose nodes correspond to Macbeath ellipsoids.
A Macbeath ellipsoid at level i is the child of a Macbeath ellipsoid at level i − 1 if there is a ray from
the origin that intersects both of them. (It will in fact hit the ellipsoid at level i − 1 before the one at
level i.) We will show that each ellipsoid has a constant number of children, and that the overall depth
of this DAG is O(log 1

ε ).
To define the structure more formally, let ∆0 be the constant of Lemma 2.5, and for i ≥ 0 define ∆i =

∆0/2
i. The levels are indexed from 0 to `, where ` is the smallest integer such that ∆` ≤ γ2ε/(8(3d+1)).

Since γ is a constant, ` = O(log 1
ε ). Recall that K(δ) denotes the body that results by eroding K by

distance δ, and let λ0 = 1/(20
√
d) be a constant. By Lemma 2.12(a), K(∆0) contains the origin O

and K(∆i) ⊂ K(∆i+1). The nodes at level i of our data structure correspond to a maximal set of
disjoint Macbeath regions Mλ0(x) whose centers x lie on the boundary of the eroded body K(∆i). For
any node u, let xu denote the center of the associated Macbeath region Mλ0(xu). Define the associated
Macbeath ellipsoid, denoted E(xu), to be the circumscribing John ellipsoid of M4λ0(xu). (Since Mλ0(xu)
is centrally symmetric about xu, E(xu) will be centered about this point.) We will show that the union
of the Macbeath ellipsoids at level i cover ∂K(∆i), implying that any ray emanating from the origin
must intersect at least one ellipsoid of each level.

As mentioned above, given nodes u and v from levels i and i+1, respectively, v is a child of u if there
exists a ray emanating from the origin that intersects both E(xu) and E(xv). We can root the DAG
by creating a special node whose children are all the nodes of level zero. In order to produce a witness
for approximate ray-shooting queries, we associate each leaf node with a constant number of supporting
hyperplanes of K that locally approximate the boundary of K near the leaf’s Macbeath ellipsoid. (This
will be discussed in detail in Section 3.1).
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Given a ray Oq, the query algorithm descends the DAG by starting at the root and visiting any node
at level zero that intersects the ray. Letting u denote the current node, we next visit any child of u
whose associated ellipsoid intersects the ray. (Such a child must exist.) Upon reaching the leaf level we
intersect Oq with all of its associated supporting hyperplanes and return the intersection point p that is
closest to O as the answer to the query (along with the identity of the hyperplane containing p).

In the subsections below, we present a formal analysis of the structure and its properties. In Sec-
tion 3.1 we sketch its construction. In Section 3.2 we show that each node has O(1) children. In
Section 3.3, we show that the total storage required is O(1/ε(d−1)/2). Finally, in Section 3.4 we show
that the query algorithm is correct and has query time O(log 1

ε ).

3.1 Construction.

Since our focus is on the existential properties of the data structure, we will discuss its construction
only at a high level. We are given the convex body K and approximation parameter ε. Due to the
approximate nature of the queries, most of the steps can be implemented approximately subject to a
suitable adjustment of the constant factors.

The construction begins by converting K into canonical form as described in Lemma 2.1. Next, for
0 ≤ i ≤ `, the eroded bodies K(∆i) are computed. Recalling the constant λ0 earlier, for each body
K(∆i) we greedily compute a maximal set of points Xi on its boundary such that the Macbeath regions
Mλ0(x) for x ∈ Xi are pairwise disjoint. For each point x ∈ Xi, we construct the associated Macbeath
region M4λ0(x) and the associated Macbeath ellipsoid E(x). We also create a node for this point at level
i of the DAG. Finally, for each pair of nodes at consecutive levels of the DAG, we determine whether
there exists a ray emanating from the origin that intersects both of their associated Macbeath ellipsoids.
If so, we create a parent-child link between them. We create a special root node, which we connect to
all the nodes of level zero. This defines the layered DAG structure.

Next, let us consider the assignment of supporting hyperplanes to the leaves of the data structure.
Let u be a leaf node, and let E(xu) denote the associated Macbeath ellipsoid with center point xu
(see Figure 7). Let C(xu) denote the corresponding minimum volume cap. Let t be the apex of this
cap, and let ht denote the hyperplane (which is a supporting hyperplane of K) passing through t and
parallel to the base of the cap. In Lemma 3.7, we will show that ht can serve as the desired witness,
but in some applications it is desirable that the witness be chosen from K’s bounding hyperplanes. By
Carathéodory’s theorem [34], there is a set of at most d of K’s bounding halfspaces whose intersection
defines an unbounded simplex that contains K, and this simplex is contained within the halfspace
bounded by ht containing K (shaded in blue in Figure 7). The leaf node u stores this set of hyperplanes,
which we denote by Hu.

C(xu)

ht
t

xu

∈ Hu

K

E(xu)

Figure 7: A leaf node in the data structure.

3.2 Bounding the Out-degree.

In this section we show that each node has O(1) children. Intuitively, this involves showing that the set
of rays emanating from the origin that pass through a Macbeath ellipsoid for a point on the boundary
of K(∆i) can intersect at most a constant number of Macbeath ellipsoids for points on the boundary
K(∆i+1). This is because the points x defining the nodes of each level have disjoint Macbeath regions
Mλ0(x), which permits us to employ a packing argument.

For any point x ∈ K, recall that v(x) denotes the volume of the minimal cap C(x). Our first lemma
considers how v(x) changes as the point x moves towards the boundary of K along a ray emanating from
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O. The lemma shows that if the distance to the boundary, δ(x), decreases by at most a constant factor,
then v(x) decreases by no more than some constant factor.

Lemma 3.1 Let K ⊂ Rd be a convex body in γ-canonical form. Let y be a point on the ray Ox, such
that ray(y) ≤ ray(x). If δ(y) ≥ δ(x)/α for any α ≥ 1, then v(y) ≥ (γ/α)d v(x).

Proof . If C(y) contains O then, by convexity, it would follow that x ∈ C(y). This would imply that
v(y) = vol(C(y)) ≥ v(x), which would prove the lemma. We may assume therefore that C(y) does not
contain O.

O

x

y
C(y)

C ′(x)wx

wy

hy

hx

ht

tp

p′

Figure 8: Proof of Lemma 3.1.

Let hy denote the hyperplane passing through the base of C(y), and let t denote the apex of C(y).
Let ht and hx denote the hyperplanes parallel to hy passing through t and x, respectively. Note that ht
is a supporting hyperplane of K. Let C ′(x) denote the (not necessarily minimal) cap with apex t, whose
base lies on hx. Let wy and wx denote the widths of the caps C(y) and C ′(x), respectively. Clearly,
C ′(x) is a (wx/wy)-expansion of the cap C(y), and so by Lemma 2.3, vol(C ′(x)) ≤ (wx/wy)d · vol(C(y)).
Thus

v(x) ≤ vol(C ′(x)) ≤
(
wx
wy

)d
v(y). (3)

Next we show that wy is not much smaller than wx. Let p and p′ denote the points of intersection of
the ray Ox with ∂K and ht, respectively. Using elementary geometry and the facts that ray(y) ≥ δ(y)
and ray(x) ≤ δ(x)/γ (Lemma 2.8), we obtain

wx
wy

=
‖xp′‖
‖yp′‖ =

ray(x) + ‖pp′‖
ray(y) + ‖pp′‖

≤ ray(x)

ray(y)
≤ δ(x)/γ

δ(y)
≤ α

γ
.

Substituting this bound in Equation 3, we obtain v(x) ≤ (α/γ)d v(y), which completes the proof. ut

The following lemma relates the Macbeath regions associated with a node and any of its children.

Lemma 3.2 Let K ⊂ Rd be a convex body in γ-canonical form for some constant γ, and let ∆0 be the
constant of Lemma 2.5. Let x be a point within distance at most ∆0 of the boundary of K. Consider the
generalized cone formed by rays emanating from the center O of K and intersecting M ′(x). Consider
any Macbeath region M ′(y) that overlaps this cone where δ(y) = δ(x)/2. Then

(a) M ′(y) ⊆ C4(x), and

(b) There exists a constant c (depending on d and γ) such that vol(M(y)) ≥ v(x)/c.

Proof . We claim that M ′(y) overlaps C2(x). By Lemma 2.7, this will imply that M ′(y) ⊆ C4(x) and so
will establish (a). To see the claim, consider any ray that emanates from O and intersects both M ′(x) and
M ′(y). Let x′ and y′ be any two points on this ray that are contained in M ′(x) and M ′(y), respectively
(see Figure 9). Applying Lemma 2.14 to points x and x′, we obtain δ(x′) ≥ 4δ(x)/5. Applying the same
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O

x

y

C4(x)

y′

x′
M ′(y)

M ′(x)

Figure 9: Proof of Lemma 3.2.

lemma to points y and y′, we obtain δ(y′) ≤ 4δ(y)/3. Recalling that δ(y) = δ(x)/2 and putting this all
together, we obtain

δ(y′) ≤ 4

3
· δ(y) =

4

3
· δ(x)

2
≤ 4

3
· 1

2
· 5

4
· δ(x′) < δ(x′).

Applying Lemma 2.14 to points x and x′, we have δ(x′) ≤ 4δ(x)/3 ≤ 4∆0/3. Substituting the value
of ∆0, it is easy to verify that δ(x′) < γ/2. Since δ(y′) < δ(x′), we can now apply Lemma 2.12(b) to
conclude that ray(y′) < ray(x′). In other words, y′ occurs after x′ along the ray emanating from O.
Also, by Lemma 2.6, we have M ′(x) ⊆ C6/5(x) ⊆ C2(x). Therefore, x′ ∈ C2(x), and so y′ ∈ C2(x).
Thus, we have shown that M ′(y) intersects C2(x), which proves (a).

Next we prove (b). Applying Lemma 2.14 to points y and y′, we obtain δ(y′) ≥ 4δ(y)/5. Recalling
that δ(x′) ≤ 4δ(x)/3, we have

δ(y′) ≥ 4

5
· δ(y) =

4

5
· δ(x)

2

≥ 4

5
· 1

2
· 3

4
· δ(x′) ≥ 1

4
· δ(x′).

Applying Lemma 3.1 to x′ and y′, we obtain v(y′) ≥ (γ/4)dv(x′).
Applying Lemma 2.15 to x and x′, we have v(x′) ≥ v(x)/2d. Analogously, we have v(y) ≥ v(y′)/2d.

Also, since δ(y) = δ(x)/2 ≤ ∆0/2 ≤ ∆0, the precondition of Lemma 2.5 is satisfied for point y. Applying
Lemma 2.5, it follows that C(y) ⊆M3d(y). Thus

vol(M(y)) ≥ vol(C(y))

(3d)d
=

v(y)

(3d)d
.

Putting it all together, we obtain

vol(M(y)) ≥ v(y)

(3d)d
≥ 1

(3d)d
· 1

2d
· v(y′)

≥ 1

(3d)d
· 1

2d
·
(γ

4

)d
v(x′)

≥ 1

(3d)d
· 1

2d
·
(γ

4

)d
· 1

2d
· v(x)

≥
( γ

48d

)d
· v(x).

This yields vol(M(y)) ≥ v(x)/c for any constant c ≥ (48d/γ)d, which proves (b). ut

The previous lemma implies the following.

Lemma 3.3 Let K ⊂ Rd be a convex body, and let ∆0 be the constant of Lemma 2.5. Also, let λ ≤ 1/5 be
any constant. Let x ∈ K such that δ(x) ≤ ∆0. Consider the generalized cone formed by rays emanating
from the center O of K and intersecting M ′(x). Let Y denote any set of points y such that δ(y) = δ(x)/2
and the set of Macbeath regions Mλ(y) are disjoint. Let Y ′ ⊆ Y denote the set of points y such that
M ′(y) overlaps the aforementioned cone. Then |Y ′| = O(1).
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Proof . Let y denote any point of Y ′. Applying Lemma 3.2, it follows that (a) M ′(y) ⊆ C4(x), and
(b) vol(M(y)) ≥ v(x)/c, for a suitable constant c. Since λ ≤ 1/5, it follows that Mλ(y) is contained in
C4(x). By Lemma 2.3, the volume of C4(x) is at most 4dv(x) = O(v(x)) and the volume of Mλ(y) is
λd · vol(M(y)) ≥ λd · v(x)/c = Ω(v(x)). Since the Macbeath regions Mλ(y) for y ∈ Y ′ are disjoint, by a
straightforward packing argument, it follows that |Y ′| = O(1). ut

We are now ready to show that the number of children of any non-root node u in our data structure
is O(1). (We will analyze the number of children of the root node later. See the remarks following
Lemma 3.5.) Consider any node u at level i ≥ 0. Recall that E(xu) denotes the associated Macbeath
ellipsoid, which encloses M4λ0(xu). The children of u are those nodes v at level i+1 whose ellipsoid E(xv)
intersects the generalized cone formed by rays emanating from the origin that intersect E(xu). The child
condition is expressed in terms of Macbeath ellipsoids (for the sake of efficient query processing), but
the above lemma is stated in terms of Macbeath regions.

Since xu ∈ ∂K(∆i), we have δ(xu) = ∆i ≤ ∆0. Macbeath regions are centrally symmetric, and the
constant in John’s Theorem [38] is

√
d for centrally symmetric bodies. Recalling that λ0 = 1/(20

√
d) we

have
M4λ0(xu) ⊆ E(xu) ⊆ M4λ0

√
d(xu) = M ′(xu). (4)

Thus, the generalized cone of rays that intersect M ′(xu) includes all the rays used to define the children
of xu. The points xv that form level i + 1 of the structure lie on ∂K(∆i+1) and thus satisfy δ(xv) =
δ(xu)/2. Since by our construction they have disjoint Macbeath regions Mλ0(xv), they constitute a set
Y as described in the preconditions of Lemma 3.3. Each child v of u corresponds to a point xv such
that the ellipsoid E(xv) intersects the generalized cone. Reasoning as we did above for xu, we have
E(xv) ⊆ M ′(xv). Therefore, the points xv associated with the children of u constitute a subset of the
set Y ′ given in the lemma. Therefore, the number of children of xu is O(1), as desired.

3.3 Storage Space.

In this section, we show that the total number of nodes in the data structure is O(1/ε(d−1)/2). Since
each node has O(1) children, it will follow that the total storage is also O(1/ε(d−1)/2).

Recall the constants ∆0 and λ0 = 1/(20
√
d) defined earlier. The number of nodes at level i is bounded

above by the cardinality of a maximal set of disjoint Macbeath regions Mλ0(x), such that the centers x
lie on the boundary of K(∆i), where ∆i = ∆0/2

i. Our analysis will make use of the following lemma,
which is a straightforward adaptation of Lemma 3.2, which is proved in the arXiv version of [7].

Lemma 3.4 Let K ⊂ Rd be a convex body in γ-canonical form. Let 0 < λ ≤ 1/5 be any fixed constant
and let ∆ ≤ γ/12 be a real parameter. Let C be a set of caps, whose widths lie between ∆ and 2∆, such
that the Macbeath regions Mλ(x) centered at the centroids x of the bases of these caps are disjoint. Then
|C| = O(1/∆(d−1)/2).

We apply this to bound the number of Macbeath regions that define the nodes of each layer.

Lemma 3.5 Let K ⊂ Rd be a convex body in γ-canonical form for some constant γ. Let ∆0 be the
constant of Lemma 2.5 and 0 < λ ≤ 1/5 be any fixed constant. Let ∆ ≤ ∆0 be a real parameter. Let
M be a set of disjoint Macbeath regions, each of which has scaling factor λ and whose centers lie on the
boundary of K(∆). Then |M| = O(1/∆(d−1)/2).

Proof . Let X denote the set of center points ofM. By Lemma 2.10, for any x ∈ X, width(x) is between
∆ and (2/γ)(3d+ 1)∆. We can partition X (and by extensionM) into O(1) groups such that the points
in any group have same width to within a factor of two. Let X ′ denote one of these groups, and let
its associated widths be between w and 2w. Since ∆ ≤ ∆0, we have w ≤ (2/γ)(3d + 1)∆0. Under our
assumption that d ≥ 3, it is easy to verify that the latter quantity does not exceed γ/12. Thus, the set
of caps C(x) for the points of this group satisfy the precondition of Lemma 3.4. Applying this lemma
yields |X ′| = O(1/w(d−1)/2). Summing over all the groups, it follows that the total size of X (and hence
the number of regions in M) is O(1/∆(d−1)/2). ut

By Lemma 3.5, the number of nodes at level i is O(1/∆
(d−1)/2
i ) = O((2i/∆0)(d−1)/2). Recall that ∆0

depends only on d and γ, and both d and γ are constants. It follows that the number of nodes at level
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zero is O(1). (This bounds the out-degree of the root node, as alluded to in Section 3.2.) Also, observe
that the number of nodes grows geometrically with each level. Therefore, the total number of nodes is
dominated by the number of leaves. The leaves are located at level `, where ∆` is Ω(ε). Therefore, the
number of leaves, and hence the total number of nodes, is O(1/ε(d−1)/2).

3.4 Query Processing.

Finally, let us present the query algorithm for answering ε-approximate ray-shooting queries. Let Oq
denote the query ray. As mentioned earlier, the query algorithm descends the layered DAG structure,
visiting a node u at each level such that the associated Macbeath ellipsoid E(xu) intersects the query ray,
until arriving at the leaf level. In order to show that this is well defined, it is necessary to demonstrate
that such a node exists at each level of the data structure. Since all the eroded bodies K(∆i) contain
the origin, it suffices to show that the union of the Macbeath ellipsoids associated with the nodes of level
i cover the boundary of K(∆i). This is established by the following lemma.

Lemma 3.6 For any ∆ ≤ ∆0, let X denote a maximal set of points lying on the boundary of the eroded
body K(∆) such that the associated Macbeath regions Mλ0(x) are pairwise disjoint. Then the collection
of Macbeath ellipsoids {E(x) | x ∈ X} covers ∂K(∆).

Proof . Consider any point x′ ∈ ∂K(∆). Because X is maximal, there must exist x ∈ X such that
Mλ0(x) has a nonempty intersection with Mλ0(x′). By Lemma 2.4, Mλ0(x′) ⊆M4λ0(x). Recalling that
M4λ0(x) ⊆ E(x), it follows that x′ ∈ E(x). ut

Since ∆i ≤ ∆0 for each level i of the data structure, it follows from the above lemma that the query
procedure will succeed in finding a suitable child for each node visited until it reaches the leaf level. Since
each node has a constant number of children, it takes O(`) = O(log 1

ε ) time to perform this descent.
Recall from Section 3.1 that each leaf node u stores a set Hu of at most d supporting hyperplanes

of K whose intersection defines an unbounded simplex that contains K (see Figure 10(a)). The query
algorithm computes the intersection of the query ray with each of these hyperplanes and returns the
closest intersection point p to the origin. The following lemma establishes the correctness of the query
processing.

t

∈ Hu

p

K

ht
≤ εγ/4

xuy

C2(xu)

(a) (b)

ty′

p

K

xu

Figure 10: Query processing for a leaf node.

Lemma 3.7 Given a query ray Oq, the point p returned by the query procedure is a valid answer to the
ε-approximate ray-shooting query, and it lies on a supporting hyperplane of K.

Proof . Observe that p lies at the intersection of the query ray and a supporting hyperplane of K. Clearly,
p is not internal to K, so all that remains is to show that p lies within distance ε of K. Recall that a
leaf node u satisfies δ(xu) ≤ γ2ε/(8(3d + 1)), and therefore by Lemma 2.10, width(xu) ≤ γε/4. Since
the search procedure arrived at node u, the ray Oq intersects E(xu). By Eq. (4) and Lemma 2.6,

E(xu) ⊆ M ′(xu) ⊆ C6/5(xu) ⊆ C2(xu).

Let t denote the apex of C2(xu), and let ht denote the hyperplane passing through t that is parallel to
the base of this cap (see Figure 10(b)). By construction, the intersection of the halfspaces Hu associated
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with u lies within the halfspace bounded by ht that contains K. Let y be any point in E(xu) ∩Oq, and
let y′ denote the intersection of the ray Oq and ht. By Lemma 2.11, ‖y′y‖ ≤ 2 · width(C2(xu))/γ =
4 · width(xu)/γ ≤ ε. Therefore y′ lies within distance ε of K, implying that p does as well. ut

Summarizing the results of this section, we have shown that, given a convex polytope K in γ-canonical
form, where γ is a constant, and given ε > 0, there exists a data structure that uses O(1/ε(d−1)/2) space
and answers ε-approximate ray-shooting queries in time O(log 1

ε ). This establishes Lemma 2.2, and
Theorem 1.1 follows immediately. The following lemma justifies our assertion that these bounds are
asymptotically optimal.

Lemma 3.8 For all sufficiently small ε > 0, any data structure for answering ε-approximate polytope
membership queries in Rd requires Ω(1/ε(d−1)/2) bits of storage, and if the data structure operates in the
decision tree model, the query time is Ω(log 1

ε ) in the worst case.

Proof . Consider a Euclidean ball of unit diameter in Rd, and let p be any point on the boundary of this
ball. For any 0 < ε < 1

2 , it follows from a simple application of the Pythagorean Theorem that a cap
of width ε whose apex is at p has diameter at most c

√
ε, for some constant c depending only on d. By

a simple packing argument there exists a set P of points of size Ω((1/
√
ε)d−1) = Ω(1/ε(d−1)/2) on the

boundary of the ball such that the ε-width caps centered at these points are pairwise disjoint. For any
two distinct subsets P ′ and P ′′ of P , consider a point p that lies in one subset, say P ′, but not in the
other. It is easy to see that for the query point p, the answer to the ε-approximate membership query
at q is “yes” for P ′ and “no” for P ′′. Therefore, the two data structures for these subsets must differ.
It follows that there are 2|P | distinct data structures needed to represent the various subsets of P . By
an information-theoretic argument, such a data structure requires Ω(1/ε(d−1)/2) bits in the worst case.
Assuming that queries are answered in the decision-tree model, such a structure requires depth Ω(log 1

ε ).
ut

4 Approximate Nearest-Neighbor Searching

In this section we present a reduction from approximate Euclidean nearest-neighbor searching to approx-
imate polytope membership, or more accurately, to approximate ray-shooting. The reduction is based
on the approximate Voronoi diagram (AVD) construction from [11]. The AVD for an n-element point
set X employs a height-balanced variant of a quadtree, a balanced box decomposition (BBD) tree [12]
to be precise. Each leaf cell Q of the tree stores a set R ⊆ X of representative points, which have the
property that for any query point q ∈ Q, at least one of these representatives is an ε-nearest neighbor
of q. We will employ a version of this data structure where the total number of representatives over all
the nodes is O(n log 1

ε ).
In the data structure of [11] a query is answered by locating the leaf cell that contains the query point

in O(log n) time, and then selecting the nearest representative from this cell to the query (by simple
brute force). Later in [4] it was shown that queries can be answered more efficiently by replacing the
brute-force search with an approach based on using approximate polytope membership queries. (This
will be discussed below.) These membership queries were applied within the context of a binary search
in order to simulate approximate ray shooting. In light of Lemma 2.2, we can forgo the binary search,
which saves a factor of O(log 1

ε ) in the query time.
The approximate ray shooting queries used in [4] were of a different nature than those presented

here. First, the rays are vertical (parallel to one of the coordinate axes). Second, the hyperplanes near
the portion of the polytope’s boundary where the ray might hit are not too sharply sloped with respect
to the query ray. (More formally, for any ε-approximating convex polytope P of K, the angle between
the vertical ray and the normal vector of the hyperplane of P hit by this ray is bounded away from π/2
by a constant.) We refer to this as vertical slope-restricted approximate ray shooting. The first part of
the following result is proved in [4], and the slope-restricted variant follows directly by eliminating the
binary search.
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Lemma 4.1 Let 0 < ε ≤ 1/2 be a real parameter and X be a set of n points in Rd. Given a data
structure for approximate polytope membership in d-dimensional space with query time at most td(ε) and
storage sd(ε), it is possible to preprocess X into an ε-approximate nearest neighbor data structure with

Query time: O
(
log n+ td+1(ε) · log 1

ε

)
and

Space: O

(
n log

1

ε
+ n

sd+1(ε)

td+1(ε)

)
.

If vertical slope-restricted approximate ray shooting queries are supported, then the query time is O(log n+
td+1(ε)).

Observe that the space bound varies inversely with the query-time bound. While the query time
presented here is O(log 1/ε), we can artificially generate higher query times by employing brute-force
search. Indeed, this lemma exploits the fact that when brute-force search is used on subsets of size at
most td+1(ε), the data structure need only be constructed for subsets of size at least td+1(ε), of which
there are at most O(n/td+1(ε)).

4.1 Lifting Transformation.

In order to adapt Lemma 4.1 to our context, we will need to understand a bit more about how it works.
It is based on a well-known transformation that maps a point in Rd to Rd+1 by projecting it vertically
onto a paraboloid. More formally, we can embed a point p = (x1, . . . , xd) in Rd into Rd+1 by adding
an additional (d+ 1)st coordinate whose value is zero. Let us visualize the (d+ 1)st coordinate axis as

being directed vertically upwards. Let Ψ denote the paraboloid xd+1 =
∑d
i=1 x

2
i . Given a point p ∈ Rd,

the lifting transformation projects p ∈ Rd vertically to a point p↑ lying on Ψ. Define h(p) to be the
hyperplane tangent to Ψ at p↑, that is,

h(p) =

{
(x1, . . . , xd+1)

∣∣∣∣ xd+1 =

d∑

i=1

2pixi − ‖p‖2
}
.

For any q ∈ Rd, let qp denote the point of intersection between h(p) and a vertical ray shot upwards
from q. Letting ‖pq‖ denote the Euclidean distance between points p and q, it is easily verified that
‖qpq↑‖ = ‖pq‖2. (See [4] for details.)

h(p)

(a) (b)

E(R)Ψ

p q

p↑

q↑

qp

E(R) ∩ F

f+

Ψ

F

+1

−1
f−

Figure 11: (a) The lifting transformation and (b) the restriction E(R) ∩ F .

Given a finite point set R in Rd, let E(R) denote the upper envelope of the hyperplanes h(p) for
each p ∈ R (shaded in Figure 11(a)). A vertical line through any point q ∈ Rd intersects a facet of
E(R). (If the line intersects the boundary between multiple facets, we select one facet arbitrarily.) It
follows directly that the nearest neighbor in R of any query point q is the point p ∈ R whose associated
hyperplane h(p) is hit by the vertical line segment passing through q. That is, nearest neighbor queries
in Rd can be reduced to vertical ray-shooting queries against E(R) in Rd+1 [2, 33].
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While this applies to exact nearest neighbors, it is shown in [4] that the ε-approximate closest repre-
sentative in R can be determined by simulating vertical ray shooting against a suitable approximation to
E(R). In particular, after a normalizing transformation, it can be assumed that the cell Q is centered at
the origin, and both Q and the points of R all lie within some constant distance of the origin. The choice
of this constant is arbitrary (depending possibly on d but not on ε), and it only affects the constant
factors in the query time. We will assume henceforth that this constant is chosen to be 1/2.

E(R) is unbounded, and it will be necessary to define a bounded polytope that contains the relevant
portion of E(R). Because the distance between any point q ∈ Rd and its closest representative in R is
at most one, it follows that for the sake of answering nearest neighbor queries, the relevant portion of
E(R) lies within the region bounded by two horizontal hyperplanes −1 ≤ xd+1 ≤ +1. For reasons that
will be apparent later, it will be convenient to define this bounded region to be a frustum. Let f− be
the d-dimensional hypercube on the hyperplane xd+1 = −1 satisfying −1/2 ≤ xi ≤ 1/2, for 1 ≤ i ≤ d,
and let f+ be the d-dimensional hypercube on the hyperplane xd+1 = +1 satisfying −5/6 ≤ xi ≤ 5/6,
for 1 ≤ i ≤ d (see Figure 11(b)). Let F denote the frustum defined by the convex hull of f− and f+.
Clearly, the relevant portion of E(R) lies within F , and so we may restrict attention to the polytope
E(R) ∩ F .

In [4] it is shown that after normalization, answering vertical ray-shooting queries approximately
with respect to E(R) is sufficient to answer approximate nearest neighbor queries with respect to R.
The following lemma restates this result in a manner that is suitable for our context. The proof follows
directly from the analysis of [4], but with the constant factors adjusted accordingly.

Lemma 4.2 Given an AVD cell Q and representative set R that have been normalized as specified above,
there exists a positive constant c (depending possibly on d but not on ε) such that following holds. Let
R′ be any subset of R such that the Hausdorff distance between E(R′)∩F and E(R)∩F is at most ε/c.
Then for any q ∈ Q, if p′ ∈ R′ is the defining point of the facet of E(R′) that is hit by a vertical line
through q, then p′ is an ε-approximate nearest neighbor of q within R.

4.2 From Vertical to Central Ray Shooting.

The principal impediment to applying this result to the polytope membership data structure described
in Section 3 is that the ray-shooting used in Lemma 4.2 is vertical, and here it is targeted towards a
point at the center of the polytope. In the remainder of this section we will show how to adapt vertical
ray shooting to central ray shooting. Our approach involves defining a projective transformation that
maps vertical lines to lines passing through a given point.

Before giving the transformation, let us recall some basic facts from projective geometry and homoge-
neous coordinates. A point p = (x1, . . . , xd+1) ∈ Rd+1 can be represented using homogeneous coordinates
as a (d+2)-vector [x0, x1, . . . , xd+1], where x0 = 1. (We use square brackets for homogeneous coordinates
and parentheses for Cartesian coordinates.) Two nonzero homogeneous vectors represent the same point
in space if they are equal up to a nonzero scale factor. The point at infinity in the direction given by
the nonzero vector (x1, . . . , xd+1) is represented by the homogeneous coordinates [0, x1, . . . , xd+1]. Any
projective transformation can be defined by applying a linear transformation to the homogeneous coor-
dinates followed by a normalization step in which all the coordinates are divided by the x0 coordinate
(assuming that it is nonzero).

Given a point p = [x0, x1, . . . , xd+1], consider the projective transformation

T (p) = [4x0 + xd+1, 4x1, . . . , 4xd, 2xd+1]

≡
(

4x1
4 + xd+1

, . . . ,
4xd

4 + xd+1
,

2xd+1

4 + xd+1

)
.

Let S denote a hypersphere of unit radius that is centered one unit above the origin. Let p0 =
(0, . . . , 0, 2) denote the topmost point of S. The following lemma states the important properties of T
for our purposes.

Lemma 4.3 The projective transformation T satisfies the following:

(1) T maps horizontal hyperplanes to horizontal hyperplanes and it fixes the hyperplane xd+1 = 0, that
is, for any p ∈ Rd, T (p) = p.
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(2) T maps the point at vertical infinity (having homogeneous coordinates [0, . . . , 0, 1]) to p0 (having
the homogeneous coordinates [1, 0, . . . , 0, 2]). Therefore, the vertical line through any point p ∈ Rd
is mapped to the line pp0 (see Figure 12(a)).

(3) If xd+1 > −4, then T preserves the signs of the coordinates of the transformed point.

(4) T maps F to an axis-aligned hyperrectangle whose vertical projection is a hypercube of side length
4/3 centered at the origin and whose vertical extent is −2/3 ≤ xd+1 ≤ 2/5 (see Figure 12(b)).

(5) T maps the paraboloid Ψ to the punctured sphere S \ {p0}. Therefore, for any p ∈ Rd, T (p↑) is
the intersection of the line pp0 and S \ {p0}. Because projective transformations preserve flatness,
T (h(p)) is the hyperplane tangent to S at this point.

(6) The inverse of T is

T−1(p) =
1

8
[2x0 − xd+1, 2x1, . . . , 2xd, 4xd+1]

≡
(

2x1
2− xd+1

, . . . ,
2xd

2− xd+1
,

4xd+1

2− xd+1

)
.

(a) (b)

p = T (p)

T (p↑)

S

p0

T (h(p))

−2
3

p

S

2
3

2
5

−2
3

T (E(R) ∩ F )

4
3

Figure 12: The projective transformation and Lemma 4.3.

Proof . Assertions (1)–(3) and (6) are straightforward to verify. Assertion (4) can be verified by trans-
forming the corner points of F , (±1/2, . . . ,±1/2,−1) and (±5/6, . . . ,±5/6, 1). To see assertion (5),
observe that the points of S can be described as the zero set of the function

ϕ(x1, . . . , xd+1) =
d∑

i=1

x2i + (xd+1 − 1)2 − 1.

Let p = [1, x1, . . . , xd+1] ≡ (x1, . . . , xd+1) denote the coordinates of any point on Ψ. Letting σ =
∑d
i=1 x

2
i ,

we have xd+1 = σ. Applying T yields

T (p) = [4 + σ, 4x1, . . . , 4xd, 2σ]

≡
(

4x1
4 + σ

, . . . ,
4xd

4 + σ
,

2σ

4 + σ

)
.

It is straightforward to verify that ϕ(T (p)) = 0 and limσ→∞ T (p) = p0. ut

Assertion (4) is the reason for defining F in the manner that we did. Projective transformations
preserve flatness, and hence T (E(R) ∩ F ) is a polytope. It follows that for any q ∈ Q, we can compute
its exact nearest neighbor in R by determining the lower facet of T (E(R)∩F ) that is hit by the line←→qp0.
(There is an obvious connection with the relationship observed by Brown [20] between the stereographic
projection and the Voronoi diagram.)
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4.3 Preserving Distances.

In order to show that this transformation can be used for approximate nearest neighbor searching, we
show that T does not significantly distort the distances between points of interest. In particular, we
show that if two points of T (F ) are close then their preimages are also close.

Lemma 4.4 There exists a constant c′ such that for any two points p, q ∈ T (F ) such that ‖pq‖ ≤ 1/4,
‖T−1(p)T−1(q)‖ ≤ c′‖pq‖.

Proof . Let ‖v‖∞ denote the L∞ length of a vector v. Consider any two points p, q ∈ T (F ) such that

‖pq‖ ≤ 1/4. We can express q as p+ ~δ, where ‖~δ‖∞ ≤ 1/4. Let δ∞ = ‖~δ‖∞. We will show that the L∞
distance between T−1(p) and T−1(p+ ~δ) is at most c′′ δ∞ for some constant c′′. It will follow that T−1

increases Euclidean distances for the points of interest by a factor of at most c′ = c′′(d+ 1).

In order to establish the above assertion, let p = (x1, . . . , xd+1) and let ~δ = (δ1, . . . , δd+1). We begin

with the following easy inequalities. Given 1 ≤ i ≤ d+ 1, by our bounds on p and ~δ we have

(i) |xi + δi| < 1

(ii) 2− xd+1 > 1

(iii) 2− xd+1 − δd+1 > 1.

(5)

(The worst case for the first inequality arises when xi = 2/3 and δi = 1/4, and the worst case for the
second and third inequalities occur when xd+1 = 2/3 and δd+1 = 1/4.) We will also make use of the
identity a/(b− c) = a/b+ ac/b(b− c), assuming b and b− c are both nonzero.

Consider the transformed point T−1(q) = T−1(p + ~δ). By applying Lemma 4.3(6) and the above
identity, for 1 ≤ i ≤ d, we find that the ith coordinate is mapped to

2(xi + δi)

2− (xd+1 + δd+1)
=

2(xi + δi)

(2− xd+1)− δd+1

=
2(xi + δi)

2− xd+1
+

2(xi + δi)δd+1

(2− xd+1)(2− xd+1 − δd+1)

=
2xi

2− xd+1
+

2δi
2− xd+1

+
2(xi + δi)δd+1

(2− xd+1)(2− xd+1 − δd+1)
.

After some expansion, this is equal to

2xi
2− xd+1

+
2δi

2− xd+1
+

2(xi + δi)δd+1

(2− xd+1)(2− xd+1 − δd+1)
.

The first term is the ith coordinate of T−1(p). By Eq. (5), the second term has absolute value at most

2δ∞. The third term has absolute value at most 2δ∞. Therefore the ith coordinate of T−1(p+~δ) is within
distance 4δ∞ of the corresponding coordinate of T−1(p). By applying a similar analysis to the (d+ 1)st

coordinate of T−1(p + ~δ), it follows that this coordinate is within distance 8δ∞ of the corresponding
coordinate of T−1(p). Therefore, by setting c′′ = 8, it follows that the L∞ distance between T−1(p) and

T−1(p+ ~δ) is at most c′′δ∞. ut

By combining Lemmas 4.2 and 4.4, it follows that in order to answer ε-approximate nearest neighbor
queries in Rd for an AVD leaf cell Q and a set R of representatives, it suffices to first apply the normalizing
transformation to Q, construct an approximate ray-shooting data structure for T (E(R)∩F ) that answers
queries to within an absolute error of ε′ = ε/cc′, where c and c′ are the constant factors of these
respective lemmas. It follows from Lemma 4.4 that the result is an absolute (ε/c)-approximation to the
corresponding vertical ray shooting query in T−1(T (E(R) ∩ F )) = E(R) ∩ F . From Lemma 4.2 such an
approximation suffices to answer ε-approximate nearest neighbor queries.

In order to apply the results of Section 3, we require that the polytope in question be in γ-canonical
form for a suitable constant γ and that rays be directed towards the origin. To do this, we modify
T (E(R) ∩ F ). Recall that it is contained within an axis-aligned hyperrectangle whose topmost facet is
at xd+1 = 2/5. We move this topmost facet up to xd+1 = 8/3 (see Figure 13). The point p0 lies within
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the interior of the modified polytope. Further a ball of radius 2/3 centered at p0 is contained entirely
within this polytope, and the polytope is completely contained within a ball of radius less than 3 + d.
By translating this modified polytope so that p0 coincides with the origin, the result is in γ-canonical
form for γ > 2/3(3 + d).

p

−2
3

p0

2
5

2

1

4
3

p

8
3

−2
3

p0

2
5

2

1

2
3

4
3

T (E(R) ∩ F )

< 3 + d

Figure 13: The modified polytope.

Now, the data structure described in Section 3 can be applied to the modified polytope. The witness
hyperplane (as described in Section 3.1) that is hit by the ray provides the identity of the desired
nearest-neighbor representative, that is, the approximate nearest neighbor of the query point.

Given a parameter m such that

log
1

ε
≤ m ≤ 1

εd/2 log 1
ε

,

we set td+1(ε) = 1/(m ·εd/2) and sd+1(ε) = 1/εd/2. Note that for m in this range we have td+1(ε) ≥ log 1
ε

and so our data structure can achieve this query time for ε-approximate ray-shooting queries. By the
results of this section, these bounds apply to vertical slope-restricted approximate ray shooting queries
as well. By applying Lemma 4.1 we obtain a data structure for approximate Euclidean nearest-neighbor
searching with query time O(log n+ 1/(m · εd/2)) and space O(n log 1

ε +nm) = O(nm). This establishes
Theorem 1.2.
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[19] H. Brönnimann, B. Chazelle, and J. Pach. How hard is halfspace range searching. Discrete Comput.
Geom., 10:143–155, 1993.

[20] K. Q. Brown. Voronoi diagrams from convex hulls. Inform. Process. Lett., 9:223–228, 1979.

[21] C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Min. Knowl.
Discov., 2(2):121–167, 1998.

[22] T. M. Chan. Fixed-dimensional linear programming queries made easy. In Proc. 12th Annu. Sympos.
Comput. Geom., pages 284–290, 1996.

[23] T. M. Chan. Output-sensitive results on convex hulls, extreme points, and related problems. Discrete
Comput. Geom., 16:369–387, 1996.

[24] T. M. Chan. Approximate nearest neighbor queries revisited. Discrete Comput. Geom., 20:359–373,
1998.

[25] T. M. Chan. Closest-point problems simplified on the RAM. In Proc. 13th Annu. ACM-SIAM
Sympos. Discrete Algorithms, pages 472–473, 2002.

[26] T. M. Chan. Optimal partition trees. In Proc. 26th Annu. Sympos. Comput. Geom., pages 1–10,
2010.

[27] B. Chazelle and D. P. Dobkin. Intersection of convex objects in two and three dimensions. J. Assoc.
Comput. Mach., 34:1–27, 1987.

21



[28] K. L. Clarkson. An algorithm for approximate closest-point queries. In Proc. Tenth Annu. Sympos.
Comput. Geom., pages 160–164, 1994.

[29] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry: Algorithms
and Applications. Springer, 3rd edition, 2010.

[30] D. P. Dobkin and D. G. Kirkpatrick. Fast detection of polyhedral intersection. Theo. Comp. Sci.,
27:241–253, 1983.

[31] R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. J. Approx.
Theory, 10(3):227–236, 1974.

[32] C. A. Duncan, M. T. Goodrich, and S. Kobourov. Balanced aspect ratio trees: Combining the
advantages of k-d trees and octrees. J. Algorithms, 38:303–333, 2001.

[33] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, 1987.

[34] H. G. Eggleston. Convexity. Cambridge University Press, 1958.

[35] J. Erickson, L. J. Guibas, J. Stolfi, and L. Zhang. Separation-sensitive collision detection for convex
objects. In Proc. Tenth Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 327–336, 1999.

[36] G. Ewald, D. G. Larman, and C. A. Rogers. The directions of the line segments and of the r-
dimensional balls on the boundary of a convex body in Euclidean space. Mathematika, 17:1–20,
1970.

[37] S. Har-Peled. A replacement for Voronoi diagrams of near linear size. In Proc. 42nd Annu. IEEE
Sympos. Found. Comput. Sci., pages 94–103, 2001.

[38] F. John. Extremum problems with inequalities as subsidiary conditions. In Studies and Essays
Presented to R. Courant on his 60th Birthday, pages 187–204. Interscience Publishers, Inc., New
York, 1948.

[39] A. M. Macbeath. A theorem on non-homogeneous lattices. Ann. of Math., 56:269–293, 1952.
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A Appendix

For the sake of completeness, we give a proof of Lemma 2.4.

Lemma 2.4 Let K be a convex body, and let λ ≤ 1/5 be any real. If x, y ∈ K such that Mλ(x)∩Mλ(y) 6=
∅, then Mλ(y) ⊆M4λ(x).

Proof . Let z be a point in the intersection of Mλ(x) and Mλ(y). Then we can write z as:

z = x+ λ(x− p1) = y + λ(p2 − y),

where p1, p2 ∈ K. Equating the two expressions for z above, we obtain

y =
(1 + λ)x− λp1 − λp2

1− λ .
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Consider any point w ∈Mλ(y). We have

w = y + λ(y − p3) = (1 + λ)y − λp3,

where p3 ∈ K. Substituting the expression obtained above for y, we have

w =
(1 + λ)((1 + λ)x− λp1 − λp2)

1− λ − λp3,

which simplifies to

w = x+
λ(3 + λ)

1− λ (x− p),

where

p =
1 + λ

3 + λ
p1 +

1 + λ

3 + λ
p2 +

1− λ
3 + λ

p3.

As p is a convex combination of p1, p2 and p3, p ∈ K. Thus, we have shown that

Mλ(y) ⊆ x+
λ(3 + λ)

1− λ (x−K). (6)

In an analogous manner, we next show that

Mλ(y) ⊆ x+
λ(3 + λ)

1− λ (K − x). (7)

Again, let z be any point in the intersection of Mλ(x) and Mλ(y). We can write z as:

z = x+ λ(k′1 − x) = y + λ(y − k′2),

where k′1, k
′
2 ∈ K. Equating the two expressions for z above, we obtain

y =
(1− λ)x+ λk′1 + λk′2

1 + λ
.

Consider any point w ∈Mλ(y). We have

w = y + λ(k′3 − y) = (1− λ)y + λk′3,

where k′3 ∈ K. Substituting the expression obtained above for y, we have

w =
(1− λ)((1− λ)x+ λk′1 + λk′2)

1 + λ
+ λk′3,

which simplifies to

w = x+
λ(3− λ)

1 + λ
(p′ − x),

where

p′ =
1− λ
3− λk

′
1 +

1− λ
3− λk

′
2 +

1 + λ

3− λk
′
3.

As p′ is a convex combination of k′1, k
′
2 and k′3, p′ ∈ K. Letting p′′ denote the point on segment xp′ such

that
λ(3− λ)

1 + λ
(p′ − x) =

λ(3 + λ)

1− λ (p′′ − x),

we can write

w = x+
λ(3 + λ)

1− λ (p′′ − x),

where p′′ ∈ K. Thus,

Mλ(y) ⊆ x+
λ(3 + λ)

1− λ (K − x),

which establishes Eq. (7). By combining this with Eq. (6), we obtain Mλ(y) ⊆M(x, λ(3 + λ)/(1− λ)).
Since λ ≤ 1/5, it is easy to see that (3 +λ)/(1−λ) ≤ 4. Thus Mλ(y) ⊆M(x, 4λ), completing the proof.
ut
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Abstract

The computation of (i) ε-kernels, (ii) approximate diameter, and (iii) approximate bichromatic
closest pair are fundamental problems in geometric approximation. In this paper, we describe
new algorithms that offer significant improvements to their running times. In each case the input
is a set of n points in Rd for a constant dimension d ≥ 3 and an approximation parameter ε > 0.
We reduce the respective running times
(i) from O((n+ 1/εd−2) log 1

ε
) to O(n log 1

ε
+ 1/ε(d−1)/2+α),

(ii) from O((n+ 1/εd−2) log 1
ε
) to O(n log 1

ε
+ 1/ε(d−1)/2+α), and

(iii) from O(n/εd/3) to O(n/εd/4+α),
for an arbitrarily small constant α > 0. Result (i) is nearly optimal since the size of the output
ε-kernel is Θ(1/ε(d−1)/2) in the worst case.

These results are all based on an efficient decomposition of a convex body using a hierarchy
of Macbeath regions, and contrast to previous solutions that decompose space using quadtrees
and grids. By further application of these techniques, we also show that it is possible to obtain
near-optimal preprocessing time for the most efficient data structures to approximately answer
queries for (iv) nearest-neighbor searching, (v) directional width, and (vi) polytope membership.

1 Introduction

In this paper we present new faster algorithms to several fundamental geometric approximation prob-
lems involving point sets in d-dimensional space. In particular, we present approximation algorithms
for ε-kernels, diameter, bichromatic closest pair, and the minimum bottleneck spanning tree. Our
results arise from a recently developed shape-sensitive approach to approximating convex bodies,
which is based on the classical concept of Macbeath regions. This approach has been applied to
computing area-sensitive bounds for polytope approximation [6], polytope approximations with low
combinatorial complexity [7], answering approximate polytope-membership queries [8], and approxi-
mate nearest-neighbor searching [8]. The results of [8] demonstrated the existence of data structures
for these query problems but did not discuss preprocessing in detail. We complete the story by
presenting efficient algorithms for building data structures for three related queries: approximate
polytope membership, approximate directional width, and approximate nearest-neighbors.

∗Research supported by the Research Grants Council of Hong Kong, China under project number 16200014.
†Research supported by NSF grant CCF–1618866.
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Throughout, we assume that the dimension d is a constant. Our running times will often involve
expressions of the form 1/εα. In such cases, α > 0 is constant that can be made arbitrarily small.
The approximation parameter ε is treated as an asymptotic variable that approaches 0. We assume
throughout that ε < 1, which guarantees that log 1

ε > 0.
In Section 1.1, we present our results for ε-kernels, diameter, bichromatic closest pair, and min-

imum bottleneck tree. In Section 1.2, we present our results for the data structure problems. In
Section 1.3, we give an overview of the techniques used.

Concurrently and independently, Timothy Chan has reported complexity bounds that are very
similar to our results [20]. Remarkably, the computational techniques seem to be very different, based
on Chebyshev polynomials.

1.1 Static Results

Kernel. Given a set S of n points in Rd and an approximation parameter ε > 0, an ε-coreset
is an (ideally small) subset of S that approximates some measure over S (see [2] for a survey).
Given a nonzero vector v ∈ Rd, the directional width of S in direction v, widthv(S) is the minimum
distance between two hyperplanes that enclose S and are orthogonal to v. A coreset for the directional
width (also known as an ε-kernel and as a coreset for the extent measure) is a subset Q ⊆ S such
that widthv(Q) ≥ (1 − ε) widthv(S), for all v ∈ Rd. Kernels are among the most fundamental
constructions in geometric approximation, playing a role similar to that of convex hulls in exact
computations. Kernels have been used to obtain approximation algorithms to several problems such
as diameter, minimum width, convex hull volume, minimum enclosing cylinder, minimum enclosing
annulus, and minimum-width cylindrical shell [1, 2].

The concept of ε-kernels was introduced by Agarwal et al. [1]. The existence of ε-kernels with
O(1/ε(d−1)/2) points is implied in the works of Dudley [22] and Bronshteyn and Ivanov [18], and
this is known to be optimal in the worst case. Agarwal et al. [1] demonstrated how to compute
such a kernel in O(n + 1/ε3(d−1)/2) time, which reduces to O(n) when n = Ω(1/ε3(d−1)/2). While
less succinct ε-kernels with O(1/εd−1) points can be constructed in time O(n) time for all n [1, 16],
no linear-time algorithm is known to build an ε-kernel of optimal size. Hereafter, we use the term
ε-kernel to refer exclusively to an ε-kernel of size O(1/ε(d−1)/2).

Chan [19] showed that an ε-kernel can be constructed in O((n + 1/εd−2) log 1
ε ) time, which is

nearly linear when n = Ω(1/εd−2). He posed the open problem of obtaining a faster algorithm. A
decade later, Arya and Chan [4] showed how to build an ε-kernel in roughly O(n +

√
n/εd/2) time

using discrete Voronoi diagrams. In this paper, we attain the following near-optimal construction
time.

Theorem 1.1. Given a set S of n points in Rd and an approximation parameter ε > 0, it is possible
to construct an ε-kernel of S with O(1/ε(d−1)/2) points in O(n log 1

ε + 1/ε(d−1)/2+α) time, where α is
an arbitrarily small positive constant.

We note that when n = o(1/ε(d−1)/2), the input S is already an ε-kernel and therefore an O(n)
time algorithm is trivial. Because the worst-case output size is O(1/ε(d−1)/2), we may assume that n
is at least this large, for otherwise we can simply take S itself to be the kernel. Since 1/εα dominates
log 1

ε , the above running time can be expressed as O(n/εα), which is nearly linear given that α can
be made arbitrarily small.

Diameter. An important application of ε-kernels is to approximate the diameter of a point set.
Given n data points, the diameter is defined to be the maximum distance between any two data
points. An ε-approximation of the diameter is a pair of points whose distance is at least (1− ε) times
the exact diameter. There are multiple algorithms to approximate the diameter [1, 3, 4, 15, 19]. The
fastest running times are O((n+ 1/εd−2) log 1

ε ) [19] and roughly O(n+
√
n/εd/2) [4]. The algorithm

from [19] essentially computes an ε-kernel Q and then determines the maximum value of widthv(Q)
among a set of k = O(1/ε(d−1)/2) directions v by brute force [1]. Discrete Voronoi diagrams [4] permit
this computation in roughly O(n +

√
n/εd/2) time. Therefore, combining the kernel construction of

Theorem 1.1 with discrete Voronoi diagrams [4], we reduce n to O(1/ε(d−1)/2) and obtain an algorithm
to ε-approximate the diameter in roughly O(n+ 1/ε3d/4) time. However, we show that it is possible
to obtain a much faster algorithm, as presented in the following theorem.
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Theorem 1.2. Given a set S of n points in Rd and an approximation parameter ε > 0, it is possible
to compute an ε-approximation to the diameter of S in O(n log 1

ε + 1/ε(d−1)/2+α) time.

Bichromatic Closest Pair. In the bichromatic closest pair (BCP) problem, we are given n
points from two sets, designated red and blue, and we want to find the closest red-blue pair. In the
ε-approximate version, the goal is to find a red-blue pair of points whose distance is at most (1 + ε)
times the exact BCP distance. Approximations to the BCP problem were introduced in [26], and the
most efficient randomized approximation algorithm runs in roughly O(n/εd/3) expected time [4]. We
present the following result.

Theorem 1.3. Given n red and blue points in Rd and an approximation parameter ε > 0, there
is a randomized algorithm that computes an ε-approximation to the bichromatic closest pair in
O(n/εd/4+α) expected time.

Euclidean Trees. Given a set S of n points in Rd, a Euclidean minimum spanning tree is the
spanning tree with vertex set S that minimizes the sum of the edge lengths, while a Euclidean mini-
mum bottleneck tree minimizes the maximum edge length. In the approximate version we respectively
approximate the sum and the maximum of the edge lengths. A minimum spanning tree is a minimum
bottleneck tree (although the converse does not hold). However, an approximation to the minimum
spanning tree is not necessarily an approximation to the minimum bottleneck tree. A recent approx-
imation algorithm to the Euclidean minimum spanning tree takes roughly O(n log n + n/ε2) time,
regardless of the (constant) dimension [11]. On the other hand, the fastest algorithm to approxi-
mate the minimum bottleneck tree takes roughly O((n log n)/εd/3) expected time [4].The algorithm
uses BCP to simultaneously attain an approximation to the minimum bottleneck and the minimum
spanning trees. We prove the following theorem.

Theorem 1.4. Given n points in Rd and an approximation parameter ε > 0, there is a randomized
algorithm that computes a tree T that is an ε-approximation to both the Euclidean minimum bottleneck
and the Euclidean minimum spanning trees in O((n log n)/εd/4+α) expected time.

1.2 Data Structure Results

Polytope membership. Let P denote a convex polytope in Rd, represented as the bounded
intersection of n halfspaces. The polytope membership problem consists of preprocessing P so that
it is possible to determine efficiently whether a given query point q ∈ Rd lies within P . In the ε-
approximate version, we consider an expanded convex body K ⊃ P . A natural way to define this
expansion would be to consider the set of points that lie within distance ε·diam(P ) of P , thus defining
a body whose Hausdorff distance from P is ε ·diam(P ). However, this definition has the shortcoming
that it is not sensitive to the directional width of P . Instead, we define K as follows. For any nonzero
vector v ∈ Rd, consider the two supporting hyperplanes for P that are normal to v. Translate each
of these hyperplanes outward by a distance of ε · widthv(P ), and consider the closed slab-like region
lying between them. Define K to be the intersection of this (infinite) set of slabs. This is clearly a
stronger approximation than the Hausdorff-based definition. An ε-approximate polytope membership
query (ε-APM query) returns a positive result if the query point q is inside P , a negative result if q
is outside K, and may return either result otherwise.1

We recently proposed an optimal data structure to answer approximate polytope membership
queries, but efficient preprocessing remained an open problem [8]. In this paper, we present a similar
data structure that not only attains optimal storage and query time, but can also be preprocessed in
near-optimal time.

Theorem 1.5. Given a convex polytope P in Rd represented as the intersection of n halfspaces and
an approximation parameter ε > 0, there is a data structure that can answer ε-approximate polytope
membership queries with

Query time: O

(
log

1

ε

)
Space: O

(
1/ε

d−1
2

)
Preprocessing: O

(
n log

1

ε
+

(
1

ε

)d−1
2 +α

)
.

1Our earlier works on ε-APM queries [5, 8] use the weaker Hausdorff form to define the problem, but the solutions
presented there actually achieve the stronger direction-sensitive form.
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Directional width. Applying the previous data structure in the dual space, we obtain a data
structure for the following ε-approximate directional width problem, which is closely related to ε-
kernels. Given a set S of n points in a constant dimension d and an approximation parameter ε > 0,
the goal is to preprocess S to efficiently ε-approximate widthv(S), for a nonzero query vector v. We
present the following result.

Theorem 1.6. Given a set S of n points in Rd and an approximation parameter ε > 0, there is a
data structure that can answer ε-approximate directional width queries with

Query time: O

(
log2 1

ε

)
Space: O

(
1/ε

d−1
2

)
Preprocessing: O

(
n log

1

ε
+

(
1

ε

)d−1
2 +α

)
.

Nearest Neighbor. Let S be a set of n points in Rd. Given any q ∈ Rd, an ε-approximate
nearest neighbor (ANN) of q is any point of S whose distance from q is at most (1+ε) times the distance
to q’s closest point in S. The objective is to preprocess S in order to answer such queries efficiently.
Data structures for approximate nearest neighbor searching (in fixed dimensions) have been proposed
by several authors, offering space-time tradeoffs (see [8] for an overview of the tradeoffs). Applying
the reduction from approximate nearest neighbor to approximate polytope membership established
in [5] together with Theorem 1.5, we obtain the following result, which matches the best bound [8]
up to an O(log 1

ε ) factor in the query time, but offers faster preprocessing time.

Theorem 1.7. Given a set S of n points in Rd, an approximation parameter ε > 0, and m such
that log 1

ε ≤ m ≤ 1/(εd/2 log 1
ε ), there is a data structure that can answer Euclidean ε-approximate

nearest neighbor queries with

Query time: O

(
log n+

log 1
ε

m · ε d2

)
Space: O

(
nm
)
Preprocessing: O

(
n log n log

1

ε
+
nm

εα

)
.

1.3 Techniques

In contrast to previous kernel constructions, which are based on grids and the execution of Bronshteyn
and Ivanov’s algorithm, our construction employs a classical structure from the theory of convexity,
called Macbeath regions [27]. Macbeath regions have found numerous uses in the theory of convex
sets and the geometry of numbers (see Bárány [14] for an excellent survey). They have also been
applied to several problems in the field of computational geometry. However, most previous results
were either in the form of lower bounds [9, 12,17] or focused on existential results [6, 7, 23,30].

In [8] the authors introduced a data structure based on a hierarchy of ellipsoids based on Macbeath
regions to answer approximate polytope membership queries, but the efficient computation of the
hierarchy was not considered. In this paper, we show how to efficiently construct the Macbeath
regions that form the basis of this hierarchy.

Let P denote a convex polytope in Rd. Each level i in the hierarchy corresponds to a δi-

approximation of the boundary of P by a set of O(1/δ
(d−1)/2
i ) ellipsoids, where δi = Θ(1/2i). Each

ellipsoid is sandwiched between two Macbeath regions and has O(1) children, which correspond to
the ellipsoids of the following level that approximate the same portion of the boundary (see Figure 1).
The hierarchy starts with δ0 = Θ(1) and stops after O(log 1

δ ) levels when δi = δ, for a desired ap-

proximation δ. We present a simple algorithm to construct the hierarchy in O(n+ 1/δ3(d−1)/2) time.
The polytope P can be presented as either the intersection of n halfspaces or the convex hull of n
points. We present the relevant background in Section 3.

Our algorithm to compute an ε-kernel in time O(n log 1
ε + 1/ε(d−1)/2+α) (Theorem 1.1) is con-

ceptually quite simple. Since the time to build the ε-approximation hierarchy for the convex hull is
prohibitively high, we use an approximation parameter δ = ε1/3 to build a δ-approximation hierarchy
in O(n + 1/ε(d−1)/2) time. By navigating through this hierarchy, we partition the n points among
the leaf Macbeath ellipsoids in O(n log 1

ε ) time, discarding points that are too far from the boundary.
We then compute an (ε/δ)-kernel for the set of points in each leaf ellipsoid and return the union of
the kernels computed.
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Figure 1: Two levels of the hierarchy of ellipsoids based on Macbeath regions.

Given an algorithm to compute an ε-kernel in O(n log 1
ε + 1/εt(d−1)) time, the previous procedure

produces an ε-kernel in O(n log 1
ε + 1/εt

′(d−1)) time where t′ = (4t + 1)/6. Bootstrapping the con-
struction a constant number of times, the value of t goes down from 1 to a value that is arbitrarily
close to 1/2. This discrepancy accounts for the O(1/εα) factors in our running times. In Section 4,
we present the complete algorithm and its analysis, proving Theorem 1.1.

In Section 5, we use our kernel construction in the dual space to efficiently build a polytope
membership data structure, proving Theorem 1.5. The key idea is to compute multiple kernels in
order to avoid examining the whole polytope when building each Macbeath region. Again, we use
bootstrapping to obtain a near-optimal preprocessing time. The remaining theorems follow from
Theorems 1.1 and 1.5, together with several known reductions (Section 6).

2 Geometric Preliminaries

Consider a convex body K in d-dimensional space Rd. Let ∂K denote the boundary of K. Let O
denote the origin of Rd. Given a parameter 0 < γ ≤ 1, we say that K is γ-fat if there exist concentric
Euclidean balls B and B′, such that B ⊆ K ⊆ B′, and radius(B)/radius(B′) ≥ γ. We say that K is
fat if it is γ-fat for a constant γ (possibly depending on d, but not on ε).

Unless otherwise specified, the notion of ε-approximation between convex bodies will be based on
the direction-sensitive definition given in Section 1.2. We say that a convex body K ′ is an absolute ε-
approximation to another convex body K if they are within Hausdorff error ε of each other. Further,
we say that K ′ is an inner (resp., outer) approximation if K ′ ⊆ K (resp., K ′ ⊇ K).

Let B0 denote a ball of radius r0 = 1/2 centered at the origin. For 0 < γ ≤ 1, let γB0 denote
the concentric ball of radius γr0 = γ/2. We say that a convex body K is in γ-canonical form if it is
nested between γB0 and B0. A body in γ-canonical form is γ-fat and has diameter Θ(1). We will
refer to point O as the center of P .

For any point x ∈ K, define δ(x) to be minimum distance from x to any point on ∂K. For the
sake of ray-shooting queries, it is useful to define a ray-based notion of distance as well. Given x ∈ K,
define the ray-distance of x to the boundary, denoted ray(x), as follows. Consider the intersection
point p of ∂K and the ray emanating from O and passing through x. We define ray(x) = ‖xp‖. The
following utility lemma will be helpful in relating distances to the boundary.

Lemma 2.1. Given a convex body K in γ-canonical form:

(a)For any point x ∈ P , δ(x) ≤ ray(x) ≤ δ(x)/γ.

(b)Let h be a supporting hyperplane of K. Let p be any point inside K at distance at most w from
h, where w ≤ γ/4. Let p′ denote the intersection of the ray Op and h. Then ‖pp′‖ ≤ 2w/γ.

(c)Let p be any point on the boundary of K, and let h be a supporting hyperplane at p. Let h′

denote the hyperplane obtained by translating h in the direction of the outward normal by w.
Let p′ denote the intersection of the ray Op with h′. Then ‖pp′‖ ≤ w/γ.

We omit the straightforward proof. The lower bound on ray(x) for part (a) is trivial, and the
upper bound follows by a straightforward adaption of Lemma 4.2 of [7]. Part (b) is an adaptation of
Lemma 2.11 of [8], and part (c) is similar.
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For any centrally symmetric convex body A, define Aλ to be the body obtained by scaling A by
a factor of λ about its center. The following lemma appears in Barany [13].

Lemma 2.2. Let λ ≥ 1. Let A and B be centrally symmetric convex bodies such that A ⊆ B. Then
Aλ ⊆ Bλ.

2.1 Caps and Macbeath Regions

Much of the material in this section has been presented in [7, 8]. We include it here for the sake
of completeness. Given a convex body K, a cap C is defined to be the nonempty intersection of
K with a halfspace (see Figure 2(a)). Let h denote the hyperplane bounding this halfspace. We
define the base of C to be h ∩K. The apex of C is any point in the cap such that the supporting
hyperplane of K at this point is parallel to h. The width of C, denoted width(C), is the distance
between h and this supporting hyperplane. Given any cap C of width w and a real λ ≥ 0, we define
its λ-expansion, denoted Cλ, to be the cap of K cut by a hyperplane parallel to and at distance
λw from this supporting hyperplane. (Note that Cλ = K, if λw exceeds the width of K along the
defining direction.)

C
w

h C2

bas
e

wid
th

w

(b)(a)

apex

K

x

M(x)

M ′(x)

2x−K

Figure 2: (a) Cap concepts and (b) Macbeath regions.

Given a point x ∈ K and real parameter λ ≥ 0, the Macbeath region Mλ(x) (also called an
M-region) is defined as:

Mλ(x) = x+ λ((K − x) ∩ (x−K)).

It is easy to see that M1(x) is the intersection of K and the reflection of K around x (see Figure 2(b)).
Clearly, M1(x) is centrally symmetric about x, and Mλ(x) is a scaled copy of M1(x) by the factor
λ about x. We refer to x as the center of Mλ(x) and to λ as its scaling factor. As a convenience,
we define M(x) = M1(x) and M ′(x) = M1/5(x). We refer to the latter as the shrunken Macbeath
region.

We now present a few lemmas that encapsulate key properties of Macbeath regions. The first
lemma shows that if two shrunken Macbeath regions have a nonempty intersection, then a constant
factor expansion of one contains the other [8, 17,24].

Lemma 2.3. Let K be a convex body, and let λ ≤ 1/5 be any real. If x, y ∈ K such that Mλ(x) ∩
Mλ(y) 6= ∅, then Mλ(y) ⊆M4λ(x).

The next lemma is useful in situations when we know that a shrunken Macbeath region partially
overlaps a cap of K. It allows us to conclude that a constant factor expansion of the cap will fully
contain the Macbeath region. The proof appears in [7].

Lemma 2.4. Let K be a convex body. Let C be a cap of K and x be a point in K such that
C ∩M ′(x) 6= ∅. Then M ′(x) ⊆ C2.

The following lemma shows that all points in a shrunken Macbeath region have similar distances
from the boundary of K. The proof appears in [8].

Lemma 2.5. Let K be a convex body. If x ∈ K and x′ ∈M ′(x), then 4δ(x)/5 ≤ δ(x′) ≤ 4δ(x)/3.

For any δ > 0, define the δ-erosion of a convex body K, denoted K(δ), to be the closed convex
body formed by removing from K all points lying within distance δ of ∂K. The next lemma bounds
the number of disjoint Macbeath regions that can be centered on the boundary of K(δ). The proof
appears in [8].
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Lemma 2.6. Consider a convex body K ⊂ Rd in γ-canonical form for some constant γ. Define
∆0 = 1

2 (γ2/(4d))d. For any fixed constant 0 < λ ≤ 1/5 and real parameter δ ≤ ∆0, let M be a
set of disjoint λ-scaled Macbeath regions whose centers lie on the boundary of K(δ). Then |M| =
O(1/δ(d−1)/2).

2.2 Shadows of Macbeath regions

Shrunken Macbeath regions reside within the interior of the convex body, but it is useful to identify
the portion of the body’s boundary that this Macbeath region will be responsible for approximating.
For this purpose, we introduce the shadow of a Macbeath region. Given a convex body K that
contains the origin O and a region R ⊆ K, we define the shadow of R (with respect to K), denoted
shadow(R), to be the set of points x ∈ K such that the line segment Ox intersects R.

We also define a set of normal directions for R, denoted normals(R). Consider the set of all
hyperplanes that support K at some point in the shadow of R. Define normals(R) to be the set of
outward unit normals to these supporting hyperplanes. Typically, the region R in our constructions
will be a (scaled) Macbeath region or an associated John ellipsoid (as defined in Section 3), close to
the boundary of K. The following lemma captures a salient feature of these shadows, namely, that
the shadow of a Macbeath region M ′(x) can be enclosed in an ellipsoid whose width in all normal
directions is O(δ(x)).

Lemma 2.7. Let K ⊂ Rd be a convex body in γ-canonical form for some constant γ. Let x be
a point at distance δ from the boundary of K, where δ ≤ ∆0. Let M = M ′(x), S = shadow(M),

N = normals(M), and M̂ = M4/γ(x). Then:

(a)S ⊆ M̂ .

(b)widthv(S) ≤ c1δ for all v ∈ N . Here c1 is the constant 8/(3γ).

(c)widthv(M̂) ≤ c2δ for all v ∈ N . Here c2 is the constant 160/(3γ2).

Proof. We first prove (a). Consider any point p ∈ ∂K ∩S. Let y denote the first point of intersection
of the ray Op with the Macbeath region M . To prove (a), it suffices to show that the segment yp is

contained in M̂ which, by convexity, is equivalent to showing that both points y and p are contained in
M̂ . Since y ∈M , we have y ∈ M̂ . To prove that p ∈ M̂ , observe that a straightforward consequence
of the definition of Macbeath regions is that M(y) must contain a ball of radius δ(y) centered at y.
Further, by Lemma 2.1(a), ‖yp‖ = ray(y) ≤ δ(y)/γ. It follows that p ∈ M1/γ(y). Also, since y ∈
M ′(x), it follows trivially that M ′(y) overlaps with M ′(x). Thus, by Lemma 2.3, M ′(y) ⊆M4/5(x).

Applying Lemma 2.2 to M ′(y) and M4/5(x) with λ = 5/γ, we obtain M1/γ(y) ⊆ M4/γ(x) = M̂ .

Thus p ∈ M̂ , which proves (a).
To prove (b), let p be any point of ∂K∩S and let y denote any point in the intersection of the ray

Op with M ′(x). Let h denote any hyperplane supporting K at p. Let v denote the outward normal
to h. We translate hyperplane h to pass through y and let C denote the cap of K cut by the resulting
hyperplane. Clearly width(C) ≤ ‖py‖. By Lemma 2.1(a), ‖py‖ = ray(y) ≤ δ(y)/γ. Since y ∈M ′(x),
by Lemma 2.5, δ(y) ≤ 4δ(x)/3 = 4δ/3. Thus width(C) ≤ δ(y)/γ ≤ 4δ/(3γ). Also, by Lemma 2.4,
since M ′(x) overlaps C, M ′(x) ⊆ C2. It follows from convexity that S ⊆ C2 and thus

widthv(S) ≤ width(C2) ≤ 2 width(C) ≤ 8δ/(3γ),

which proves (b).
To prove (c), recall that M ′(x) ⊆ S, which implies that widthv(M

′(x)) ≤ 8δ/(3γ). Thus

widthv(M̂) = (20/γ)widthv(M
′(x)) ≤ 160δ/(3γ2).

2.3 Representation Conversions

Convex sets are naturally described in two ways, as the convex hull of a discrete set of points and as
the intersection of a discrete set of halfspaces. Some computational tasks are more easily performed
using one operation or the other. For this reason, it will be useful to be able to convert between
one representation and the other. Also, when approximate representations suffice, it will be useful
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to prune a large set down to a smaller size. In this section we will present a few technical utilities to
perform these conversions.

Given an n-element point set in Rd, Chan showed that it is possible to construct an ε-kernel of
size O(1/ε(d−1)/2) in time O(n+ 1/εd−1) [19]. The following lemma shows that, by applying Chan’s
construction, is is possible to efficiently approximate the convex hull of n points as the intersection
of halfspaces.

Lemma 2.8. Let γ < 1 be a positive constant, and ε > 0 be a real parameter. Let P be a polytope in
γ-canonical form represented as the convex hull of n points. In O(n + 1/εd−1) time it is possible to
compute a polytope P ′ represented as the intersection of O(1/ε(d−1)/2) halfspaces such that P ′ is an
inner absolute ε-approximation of P .

Proof. Throughout the proof, to avoid tracking the numerous constant factors, we use the notation
O(ε) to denote a quantity that is a suitable scaling of ε by a constant factor. Let S be the input set of
n points such that P = conv(S). Since P is in γ-canonical form, we have S ⊆ B0, where B0 denotes
the ball of radius r0 = 1/2 centered at the origin. By applying Chan’s kernel construction [19], in
time O(n + 1/εd−1) we can compute a point set S′′ of size O(1/ε(d−1)/2) such that conv(S′′) is an
absolute O(ε)-approximation of conv(S).

We then apply the polar transformation to the points of S′′ yielding a set of O(1/ε(d−1)/2) half-
spaces in the dual space. It follows from standard properties of the polar transformation that the
polytope P̂ defined by the intersection of these halfspaces is fat and has constant diameter (see, e.g.,
Lemma 7.2 of the journal version of [5]). This can be performed in time O(1/ε(d−1)/2).

Next, take a sufficiently large hypercube centered at the origin that contains P̂ and there is
constant separation between the boundary of this hypercube and P̂ . (Side length O(1/γ) suffices.)
We superimpose a grid of side length Θ(

√
ε) on each of the 2d facets of this hypercube. Letting G

denote the resulting set of grid points on the boundary of the hypercube, we have |G| = O(1/ε(d−1)/2).
Through the use of quadratic programming we compute the nearest neighbor of each point of G on
the boundary of P̂ . For each grid point this can be done in time linear in the number of halfspaces
that define P̂ [28,29]. Thus, the total time for computing all the nearest neighbors is O(|S′′| · |G|) =

O(1/εd−1). Letting Ŝ denote the set of nearest neighbors so obtained, we have |Ŝ| = O(1/ε(d−1)/2).

By standard results, conv(Ŝ) is an absolute O(ε)-approximation of P̂ [18, 22].

We again apply the polar transformation, mapping the set Ŝ back to the primal space to obtain
a set H of O(1/ε(d−1)/2) halfspaces. Let P ′′ be the polytope formed by intersecting these halfspaces.

Recalling that conv(Ŝ) is an absolute O(ε)-approximation of P̂ , it follows from standard results that
P ′′ is an absolute O(ε)-approximation of conv(S′′). This step takes time O(1/ε(d−1)/2).

Since P ′′ is an absolute O(ε)-approximation of conv(S′′), and conv(S′′) is an absolute O(ε)-
approximation of P , it follows that (subject to a suitable choice of constant factors) P ′′ is an absolute
O(ε)-approximation of P . Define P ′ to be the polytope obtained by first translating the bounding
halfspaces of P ′′ (i.e., the halfspaces of H) towards the origin by an amount Θ(ε) and then intersecting
the resulting halfspaces. Clearly, P ′ is then an absolute inner O(ε)-approximation of P , as desired.

The overall running time is dominated by the time needed to compute the kernel, and the time
needed to compute the nearest neighbors for the points of G.

The following lemma is useful when representing polytopes by the intersection of halfspaces.

Lemma 2.9. Let γ < 1 be a positive constant, and ε > 0 be a real parameter. Let P be a polytope in
γ-canonical form represented as the intersection of n halfspaces. In O(n+ 1/εd−1) time it is possible
to compute a polytope P ′ represented as the intersection of O(1/ε(d−1)/2) halfspaces such that P ′ is
an outer absolute ε-approximation of P .

Proof. Let H denote the set of n halfspaces defining P . We apply the polar transformation to the
halfspaces of H obtaining a set S of n points in the dual space. It follows from standard properties of
the polar transformation that conv(S) is fat and has constant diameter (see, e.g., the journal version
of [5]). This step can be performed in O(n) time. By applying Chan’s kernel construction [19], in
time O(n+1/εd−1), we can compute a point set S′ of size O(1/ε(d−1)/2) such that conv(S′) is an inner
absolute O(ε)-approximation of conv(S). We again apply the polar transformation, mapping the set
S′ back to the primal space to obtain a set H ′ of O(1/ε(d−1)/2) halfspaces. Let P ′ be the polytope
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formed by intersecting these halfspaces. Since conv(S′) is an inner absolute O(ε)-approximation of
conv(S), it follows that (subject to a suitable choice of constant factors), P ′ is an absolute outer
O(ε)-approximation of P , as desired. The total time is dominated by the time to compute the
kernel.

Remark: Theorem 1.1 shows that an ε-kernel of sizeO(1/ε(d−1)/2) can be computed in timeO(n log 1
ε+

1/ε(d−1)/2+α). The construction time in Lemma 2.9 is asymptotically the same as the time needed
to construct an ε-kernel. Therefore, the construction time can be reduced to this quantity.

3 Hierarchy of Macbeath Ellipsoids

The data structure presented in [8] for the approximate polytope membership problem is based on
constructing a hierarchy of ellipsoids. In this section, we present a variant of this structure, which
will play an important role in our constructions.

For a Macbeath region Mλ(x), we denote its circumscribing John ellipsoid by Eλ(x), which we
call a Macbeath ellipsoid. Since Macbeath regions are centrally symmetric and the constant in John’s

Theorem [25] is
√
d for centrally symmetric bodies, we have Eλ(x) ⊆Mλ

√
d(x). Recall the constant

∆0 = 1
2 (γ2/4d)d defined in the statement of Lemma 2.6, and define λ0 = 1/(20d). Each level of our

structure is based on the following lemma. (We caution the reader that in the lemmas of this section,
the value of n used in the application of the lemma may differ from the original input size.)

Lemma 3.1. Let γ < 1 be a positive constant, and let 0 < δ ≤ ∆0 be a real parameter. Let P be
a polytope in γ-canonical form, represented as the intersection of n halfspaces. There exists a set
X ⊆ ∂P (δ) consisting of O(1/δ(d−1)/2) points such that the following properties hold:

(a)The set of Macbeath regions {Mλ0(x) : x ∈ X} are pairwise disjoint.

(b)The set of Macbeath ellipsoids {E4λ0

√
d(x) : x ∈ X} together cover ∂P (δ).

Furthermore, in O(n/δd−1 + 1/δ3(d−1)/2) time, we can construct the set of Macbeath ellipsoids

{E4λ0

√
d(x) : x ∈ X}.

Proof. We first show how to construct the required set of Macbeath ellipsoids. Translate each bound-
ing halfspace of P towards the origin by amount δ. It is easy to see that the polytope P (δ) is the
intersection of the translated halfspaces. This can be done in O(n) time.

Recalling that P ⊆ B0, where B0 is the ball of radius r0 = 1/2, consider the hypercube just
enclosing B0. Superimpose a Θ(δ)-grid on each of the 2d facets of this hypercube. Intersect the
segment joining the origin to each grid point with ∂P (δ), and let X ′ ⊂ ∂P (δ) denote the resulting set
of intersection points. Note that |X ′| = O(1/δd−1). Using the fact that P (δ) is fat, a straightforward
geometric calculation shows that for any point on ∂P (δ), there is a point of X ′ within distance cδ of
it, where c is a suitable constant. (Adjusting the constant factor in the grid spacing, we can ensure
that c ≤ λ0

√
d, which is a fact that we will use later in the proof.) As each point of X ′ can be

determined in O(n) time, X ′ can be computed in O(n/δd−1) time.
For each x′ ∈ X ′, construct Mλ0(x′). Let M′ denote the resulting set of Macbeath regions. As a

straightforward consequence of the definition of Macbeath regions, we can compute each Macbeath
region in O(n) time (i.e., in time proportional to the number of halfspaces that define P ). Note that
we represent each Macbeath region as the intersection of n halfspaces. For each Macbeath region
Mλ0(x′) ∈ M′, determine the circumscribing John ellipsoid Eλ0(x′). By standard results, we can
construct the John ellipsoid of a convex polytope in time that is linear in the number of its defining
halfspaces [21]. Thus, this step also takes time O(n|M′|) = O(n/δd−1).

Next, we will determine a maximal subsetM⊆M′ such that the John ellipsoids associated with
the Macbeath regions ofM are disjoint. InitializeM = ∅. Examine the Macbeath regions ofM′ one
by one. Insert the Macbeath region intoM if its associated John ellipsoid does not intersect the John
ellipsoid of any Macbeath region of M. Clearly, this method yields a maximal subset M⊆M′ such
that the associated John ellipsoids are disjoint. To bound the time required for this step, observe
that the Macbeath regions of M are disjoint, and so by Lemma 2.6, |M| = O(1/δ(d−1)/2). Since
it takes constant time to check whether two ellipsoids intersect, it follows that the time required is
O(|M′| · |M|) = O(1/δ3(d−1)/2).
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Finally, to obtain the desired ellipsoids let X denote the set of centers of the Macbeath regions
of M. For each x ∈ X, we scale the associated ellipsoid Eλ0(x) constructed above about its center

by a factor of 4
√
d to obtain the ellipsoid E4λ0

√
d(x). This step can be done in time O(|M|) =

O(1/δ(d−1)/2).
By combining the time of the above steps we obtain the desired overall construction time of

O(n/δd−1 + 1/δ3(d−1)/2). The bound on |X| follows from the bound on M. By our earlier remarks,
the set of Macbeath regions {Mλ0(x) : x ∈ X} are pairwise disjoint, which proves Property (a).

It remains to establish Property (b), that is, to show that the union of the ellipsoids {E4λ0

√
d(x) :

x ∈ X} covers ∂P (δ). Towards these end, consider any point p ∈ ∂P (δ). We will show that there is

an x ∈ X such that the ellipsoid E4λ0

√
d(x) contains p. Recall that there is a point x′ ∈ X ′ that is

within distance cδ of p, where c is a constant no more than λ0
√
d. A straightforward consequence of

the definition of Macbeath regions is that, for any point y ∈ P , the Macbeath region M(y) contains a

ball of radius δ(y) centered at y. It follows that Mλ0

√
d(x′) contains a ball of radius λ0

√
d δ centered

at x′. Hence, p ∈Mλ0

√
d(x′) ⊆M4λ0

√
d(x′) ⊆ E4λ0

√
d(x′). Thus, if x′ ∈ X, we are done.

We next consider the case when x′ /∈ X. In this case, it follows from our construction that there

is an x ∈ X such that Eλ0(x) intersects Eλ0(x′). Recall that Eλ0(x) ⊆ Mλ0

√
d(x) and Eλ0(x′) ⊆

Mλ0

√
d(x′). Thus Mλ0

√
d(x) intersects Mλ0

√
d(x′). Applying Lemma 2.3, it follows that Mλ0

√
d(x′) ⊆

M4λ0

√
d(x). Thus p ∈ M4λ0

√
d(x) ⊆ E4λ0

√
d(x). It follows that the ellipsoids E4λ0

√
d(x), for x ∈ X,

together cover ∂P (δ), which completes the proof of the lemma.

Based on the above lemma, we are now ready to describe our hierarchical data structure. Let P
be a polytope in γ-canonical form, where γ is a constant. Recall the constant ∆0 = 1

2 (γ2/(4d))d, and
for i ≥ 0 define ∆i = ∆0/2

i. The data structure consists of levels 0, 1, . . . , `, where ` is the smallest
integer such that ∆` ≤ δ. Since γ is a constant, ` = O(log 1

δ ). Since P is in γ-canonical form, the
origin O is at distance at least γ/2 from ∂P . Since ∆0 < γ/2, it follows that P (∆0) contains O
and P (∆i) ⊂ P (∆i+1) for 0 ≤ i ≤ ` − 1. For each level i, we apply Lemma 3.1, setting δ in the

lemma to ∆i. In O(n/∆d−1
i + 1/∆

3(d−1)/2
i ) time, we obtain a set of O(1/∆

(d−1)/2
i ) ellipsoids that

cover ∂P (∆i). Summing over all levels, the number of ellipsoids is O(1/δ(d−1)/2) and the time taken
is O(n/δd−1 + 1/δ3(d−1)/2).

Our data structure is a directed acyclic graph (DAG), where the nodes at level i correspond to
the ellipsoids computed for level i. The children of an ellipsoid E at level i are the ellipsoids E′ at
level i+ 1 such that there exists a ray from the origin that simultaneously intersects E and E′. Since
this is a constant time operation for any two given ellipsoids, it takes O(1/δd−1) time to find the
children of all the nodes in the DAG. It is convenient to root the DAG by creating a special node
whose children are all the nodes of level zero. An important property of the hierarchy is that each
node only has O(1) children. The proof of this property is similar to that given in [8]. We include
the proof for the sake of completeness. For the root, this follows from the fact that the number of

nodes of level zero is O(1/∆
(d−1)/2
0 ) and ∆0 is a constant. For non-root nodes, the proof is based on

the following lemma, which is proved in [8].

Lemma 3.2. Let K ⊂ Rd be a convex body in γ-canonical form for some constant γ, and let λ ≤ 1/5
be any constant. Let x ∈ K such that δ(x) ≤ ∆0. Consider the generalized cone formed by rays
emanating from the center O of K and intersecting M ′(x). Let Y denote any set of points y such
that δ(y) = δ(x)/2 and the set of Macbeath regions Mλ(y) are disjoint. Let Y ′ ⊆ Y denote the set of
points y such that M ′(y) overlaps the aforementioned cone. Then |Y ′| = O(1).

For any node w, we let xw denote the center of the associated ellipsoid. Consider any node u
at level i ≥ 0. Also, consider the generalized cone formed by rays emanating from the origin that

intersect the ellipsoid E4λ0

√
d(xu) associated with u. The children of u are those nodes v at level i+1

whose ellipsoid E4λ0

√
d(xv) intersects this generalized cone.

Since xu ∈ ∂P (∆i), we have δ(xu) = ∆i ≤ ∆0. Recall that E4λ0

√
d(xu) ⊆ M4λ0d(xu) = M ′(xu).

Thus, the generalized cone of rays that intersect M ′(xu) includes all the rays used to define the
children of u. The points xv that form level i + 1 of the structure lie on ∂P (∆i+1) and thus satisfy
δ(xv) = δ(xu)/2. By Property (a) of Lemma 3.1, the Macbeath regions Mλ0(xv) are pairwise
disjoint, thus they constitute a set Y as described in the preconditions of Lemma 3.2. Each child
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v of u corresponds to a point xv such that the ellipsoid E4λ0

√
d(xv) intersects the generalized cone.

Reasoning as we did above for xu, we have E4λ0

√
d(xv) ⊆M ′(xv). Therefore, the points xv associated

with the children of u constitute a subset of the set Y ′ given in the lemma. Therefore, the number
of children of u is O(1), as desired.

Given a query ray Oq, our data structure allows us to quickly find a leaf node such that the
associated ellipsoid intersects this ray. The query algorithm descends the DAG by starting at the
root and visiting any node at level zero that intersects the ray. Letting u denote the current node,
we next visit any child of u whose associated ellipsoid intersects the ray. We repeat this procedure
until a leaf node is reached. As the number of levels is O(log 1

δ ), this quantity bounds the time taken
by this procedure. We summarize the main result of this section.

Lemma 3.3. Let γ < 1 be a positive constant, and let 0 < δ ≤ ∆0 be a real parameter. Let P
be a polytope in γ-canonical form, represented as the intersection of n halfspaces. In O(n/δd−1 +
1/δ3(d−1)/2) time, we can construct the DAG structure described above. In particular, the DAG
satisfies the following properties:

(a)The total number of nodes (including leaves), and the total space used by the DAG are both
O(1/δ(d−1)/2).

(b)Each leaf is associated with an ellipsoid E4λ0

√
d(x), where x ∈ ∂P (δ). The union of the ellipsoids

associated with all the leaves covers ∂P (δ).

(c)Given a query ray Oq, in O(log 1
δ ) time, we can find a leaf node such that the associated ellipsoid

intersects this ray.

Given a convex body K and query point q, an absolute ε-APM query returns a positive result if q
lies within K, a negative result if q is at distance at least ε from K, and otherwise it may return either
result. After a small enhancement, this DAG can be used for answering absolute ε-APM queries for
a polyope P in γ-canonical form. We assume that P is represented as the intersection of a set H of n
halfspaces. We invoke the above lemma for δ = εγ/(2c1), where c1 is the constant of Lemma 2.7(b).
We then associate each leaf of the DAG with a halfspace as follows. Let x denote the center of the leaf
ellipsoid and let p denote the intersection of the ray Ox with ∂P . Let h ∈ H denote any supporting
halfspace of P (containing P ) at p. We store h with this leaf. By exhaustive search, we can determine
h in O(n) time, so the total time for this step is O(n/ε(d−1)/2). Asymptotically, this does not affect
the time it takes to construct the data structure. Given a query point q, we answer queries by first
determining a leaf whose ellipsoid intersects the ray Oq. By Lemma 3.3(c), this takes O(log 1

ε ) time.
We return a positive answer if and only if q is contained in the associated halfspace. We establish
the correctness of this method in the following lemma.

Lemma 3.4. Given a query point q, the query procedure returns a valid answer to the absolute
ε-APM query.

Proof. Consider the leaf whose ellipsoid intersects the ray Oq. Let E4λ0

√
d(x) denote the associated

ellipsoid and let h be the halfspace stored with this leaf. Recall that h is a supporting halfspace at
the point p where the ray Ox intersects ∂P . If q ∈ P then clearly q ∈ h and such a query point is
correctly declared as lying inside P . To complete the proof, we need to show that if q /∈ P and the
distance of q from ∂P is greater than ε, then q /∈ h. In this case, q would be correctly declared as
lying outside P .

Let y denote any point in the intersection of the ray Oq with the leaf ellipsoid. Let y′ denote the
intersection of the ray Oq with the hyperplane bounding h. To prove the claim, it suffices to show

that ‖yy′‖ ≤ ε. Recall that E4λ0

√
d(x) ⊆M4λ0d(x) = M ′(x). Let M = M ′(x), S = shadow(M), and

N = normals(M). Clearly y, p ∈ S and the normal vector v to the hyperplane bounding h belongs
to N . By Lemma 2.7, widthv(S) ≤ c1δ(x) = εγ/2. Note that the distance of y from the hyperplane
bounding h is at most widthv(S). Applying Lemma 2.1(b), we obtain ‖yy′‖ ≤ (2/γ)(εγ/2) = ε, as
desired.

We summarize the result below.
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Lemma 3.5. Let γ < 1 be a positive constant, and let ε > 0 be a real parameter. Let P be a polytope
in γ-canonical form, represented as the intersection of n halfspaces. In O(n/εd−1 +1/ε3(d−1)/2) time,
we can construct a data structure that uses O(1/ε(d−1)/2) space and answers absolute ε-APM queries
in O(log 1

ε ) time.

4 Kernel Construction

In this section we show how to build an ε-kernel efficiently, proving Theorem 1.1. The input to
an ε-kernel construction consists of the approximation parameter ε and a set S of n points. Our
algorithm is based on a bootstrapping strategy. We assume that we have access to an algorithm that
can construct an ε-kernel of O(1/ε(d−1)/2) size in time O(n log 1

ε + 1/ε(1/2+β)(d−1)), where β > 0 is
a parameter. Recall that the size of the kernel is asymptotically optimal in the worst case. We will
present a method for improving the running time of this algorithm. Recall that Chan [19] gave an
algorithm for constructing kernels of optimal size which runs in time O(n log 1

ε + 1/εd−1). We will
use this algorithm to initialize our bootstrapping scheme with β = 1/2.

Our method is based on executing the following steps. It uses a parameter δ = ε1/3.

1. We begin by “fattening” the input point set S. Formally, we compute an affine transformation
that maps S to S′, such that conv(S′) is in γ-canonical form for some constant γ. By standard
results (see, e.g., the journal version of [5]), this affine transformation and the set S′ can be
computed in O(n) time.

2. Use Lemma 2.8 to build a polytope P , represented as the intersection of O(1/δ(d−1)/2) halfs-
paces, such that P is an inner absolute δ-approximation of conv(S′). This step takes O(n +
1/δd−1) = O(n+ 1/ε(d−1)/3) time.

3. Construct the DAG structure of Lemma 3.3 for polytope P using the parameter δ. Replacing n
in the statement of the lemma by O(1/δ(d−1)/2), it follows that this step takes O(1/δ3(d−1)/2) =
O(1/ε(d−1)/2) time.

4. For each point p ∈ S′, in O(log 1
δ ) time, we find a leaf of the DAG such that the associated

ellipsoid E4λ0

√
d(x) intersects the ray Op. Recall that x ∈ ∂P (δ). In O(1) additional time,

we can determine whether p lies in the shadow of this ellipsoid (with respect to conv(S′)).
If so, we associate p with this ellipsoid, otherwise we discard it. By Lemma 3.3(c), it takes
O(log 1

δ ) time to process each point, thus the time taken for processing all the points of S′ is
O(n log 1

δ ) = O(n log 1
ε ).

5. For each leaf ellipsoid of the DAG, we build a (c3ε/δ)-kernel for the points of S′ that lie in its
shadow, where c3 is a suitably small constant that will be selected later. This kernel computation
is done using the aforementioned algorithm that computes ε-kernels of point sets of size n in
time O(n log 1

ε + 1/ε(1/2+β)(d−1)). The size of the O(ε/δ)-kernel computed for each shadow is

O((δ/ε)(d−1)/2) and the time required is O(ni log δ
ε + (δ/ε)(1/2+β)(d−1)), where ni denotes the

number of points of S′ in the shadow. Summed over all the shadows, it follows that the total
time required is

O

(
n log

δ

ε
+

(
1

δ

)d−1
2
(
δ

ε

)( 1
2+β)(d−1)

)
= O

(
n log

1

ε
+

(
1

ε

)( 1
2+

2β
3 )(d−1)

)
.

Here we have used the facts that each point of S′ is assigned to at most one shadow and the total
number of shadows, which is bounded by the number of leaves in the DAG, is O(1/δ(d−1)/2).

6. Let S′′ ⊆ S′ be the union of the kernels computed in the previous step. Since the number of
shadows is O(1/δ(d−1)/2) and the size of the kernel for each shadow is O((δ/ε)(d−1)/2), it follows
that |S′′| = O(1/ε(d−1)/2). We apply the inverse of the affine transformation computed in Step
1 to the points of S′′, and output the resulting set of points as the desired ε-kernel for S.

We have shown that the size of the output kernel is O(1/ε(d−1)/2), as desired. The running
time of Step 5 dominates the time complexity. The next lemma establishes the correctness of this
construction.
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Lemma 4.1. The construction yields an ε-kernel.

Proof. Throughout this proof, for a given convex body K, we use MK(x), EK(x), and δK(x) to
denote the quantities M(x), E(x), and δ(x) with respect to K. Let P ′ = conv(S′). By standard
results on fattening, it suffices to show that conv(S′′) is an absolute O(ε)-approximation of P ′. Let
v be an arbitrary direction. Consider the extreme point p of S′ in direction v. Clearly p ∈ ∂P ′.
Recall that P is an inner δ-approximation of P ′, and the ellipsoids associated with the leaves of the

DAG cover the boundary of P (δ). Thus, there must be an ellipsoid E = E4λ0

√
d

P (x), x ∈ ∂P (δ),
such that p is assigned to the shadow of E in Step 4. Note that this shadow and all shadows
throughout this proof are assumed to be with respect to the polytope P ′ (and not P ). We claim that
widthv(shadow(E)) ≤ 2c1δ, where c1 is the constant of Lemma 2.7(b). Assuming this claim for now,
let us complete the proof of the lemma. Recall that in Step 5, we built a (c3ε/δ)-kernel for all the
points of S′ that are assigned to the shadow of E, and S′′ includes all the points of this kernel. It
follows that the distance between the supporting hyperplanes of conv(S′) and conv(S′′) in direction
v is at most (c3ε/δ) · widthv(shadow(E)) ≤ (c3ε/δ) · (2c1δ) = 2c1c3ε. By choosing c3 sufficiently
small, we can ensure that this quantity is smaller than any desired constant times ε, which proves
the lemma.

It remains to show that widthv(shadow(E)) ≤ 2c1δ. Recall that

E = E4λ0

√
d

P (x) ⊆ M4λ0d
P (x) = M ′P (x).

Furthermore, since P ⊆ P ′, a straightforward consequence of the definition of Macbeath regions
is that M ′P (x) ⊆ M ′P ′(x). To simplify the notation, let M denote M ′P ′(x). Putting it together,
we obtain E ⊆ M . Thus shadow(E) ⊆ shadow(M), which implies that widthv(shadow(E)) ≤
widthv(shadow(M)). By Lemma 2.7(b),

widthv(shadow(M)) ≤ c1δP ′(x).

Using the triangle inequality and the fact that P is an inner δ-approximation of P ′, we obtain
δP ′(x) ≤ δP (x) + δ = 2δ. Thus widthv(shadow(E)) ≤ widthv(shadow(M)) ≤ 2c1δ, as desired.

We are now ready to prove Theorem 1.1.

Proof. Our proof is based on a constant number of applications of the algorithm from this section.
It suffices to show that there is an algorithm that can construct an ε-kernel of O(1/ε(d−1)/2) size in
time O(n log 1

ε + 1/ε(1/2+β
′)(d−1)), where β′ = α/(d− 1).

We initialize the bootstrapping process by Chan’s algorithm [19], which has β = 1/2. Observe
that the value of β is initially 1/2 and falls by a factor of 2/3 with each application of the algorithm.
It follows that after O(log 1

α ) applications, we will obtain an algorithm with the desired running time.
This completes the proof.

5 Approximate Polytope Membership

In this section we show how to obtain a data structure for approximate polytope membership, prov-
ing Theorem 1.5. Our best data structure for APM achieves query time O(log 1

ε ) with storage

O(1/ε(d−1)/2) and preprocessing time O(n log 1
ε + 1/ε(d−1)/2+α). As with kernels, our construction

here is again based on a bootstrapping strategy. To initialize the process, we will use a data struc-
ture that achieves the aforementioned query time with the same storage but with preprocessing time
O(n + 1/ε3(d−1)/2). The data structure is based on Lemma 3.5. Recall that the input is a polytope
represented as the intersection of n halfspaces.

We begin by “fattening” the input polytope. Formally, we use an affine transformation to map
the input polytope to a polytope P ′ that is in γ-canonical form. This step takes O(n) time [5]. By
standard results, it suffices to build a data structure for answering absolute O(ε)-APM queries with
respect to P ′ (see, e.g., Lemma 7.1 of the journal version of [5]).

Next, we apply Lemma 2.9 to construct an outer absolute O(ε)-approximation P of P ′, where P
is represented as the intersection of O(1/ε(d−1)/2) halfspaces. This step takes O(n + 1/εd−1) time.
Finally, we use Lemma 3.5 to construct a data structure for answering absolute O(ε)-APM queries
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with respect to P . Replacing n in the statement of the lemma by O(1/ε(d−1)/2), it follows that this
step takes O(1/ε3(d−1)/2)) time.

The total construction time is O(n+1/ε3(d−1)/2). To answer a query, we map the query point using
the same transformation used to fatten the polytope, and then use the data structure constructed
above to determine whether the resulting point lies in polytope P . Subject to an appropriate choice
of constant factors, the correctness of this method follows from the fact that P is an outer absolute
O(ε)-approximation of P ′.

We summarize this result in the following lemma.

Lemma 5.1. Let ε > 0 be a real parameter and let P be a polytope, represented as the intersection of
n halfspaces. In O(n + 1/ε3(d−1)/2) time, we can construct a data structure that uses O(1/ε(d−1)/2)
space and answers ε-APM queries in O(log 1

ε ) time.

We can now present the details of our bootstrapping approach. We assume that we have access
to a data structure that can answer ε-APM queries in O(log 1

ε ) time with O(1/ε(d−1)/2) storage and

O(n log 1
ε + 1/ε(1/2+β)(d−1)), where β > 0 is a parameter. We present a method for constructing a

new data structure which matches the given data structure in space and query time, but has a lower
preprocessing time. Our method uses a parameter δ = εβ/(1+β).

1. As in the construction given above, we first fatten the input polytope. Formally, we use an affine
transformation to map the input polytope to a polytope P ′ that is in γ-canonical form. This
step takes O(n) time. By standard results, it suffices to build a data structure for answering
absolute O(ε)-APM queries with respect to P ′.

2. Use Lemma 2.9 to construct an outer absolute O(ε)-approximation P of P ′, where P is rep-
resented as the intersection of O(1/ε(d−1)/2) halfspaces. By the remark following Lemma 2.9,
this step takes O(n log 1

ε + 1/ε(d−1)/2+α) time.

3. Construct the DAG of Lemma 3.3 for polytope P using the parameter δ. Replacing n in the
statement of the lemma byO(1/ε(d−1)/2), it follows that this step takes O((1/δ)d−1·(1/ε)(d−1)/2)
time.

4. For each leaf of the DAG, we construct an APM data structure as follows. Let E = E4λ0

√
d(x)

denote the ellipsoid associated with the leaf. Let R denote the minimum enclosing hyperrect-
angle of the ellipsoid E4/γ(x). We will see later that R contains the shadow of E (with respect
to P ), and its width in any direction in normals(E) is at most c2dδ = O(δ), where c2 is the
constant in Lemma 2.7(c). We use the aforementioned algorithm for constructing an APM data
structure for this region with approximation parameter c3ε/δ, where c3 is a sufficiently small
constant that we will select later. Note that each such region can be expressed as the intersec-
tion of ni = O(1/ε(d−1)/2) halfspaces, namely, all the halfspaces defining P together with the
2d halfspaces defined by the facets of R. The construction time of the APM data structure for
each leaf is

O

(
ni log

δ

ε
+

(
δ

ε

)( 1
2+β)(d−1)

)
= O

((
1

ε

) d−1
2

log
δ

ε
+

(
δ

ε

)( 1
2+β)(d−1)

)
,

and the space used is O((δ/ε)(d−1)/2). Since there are O(1/δ(d−1)/2) leaves, it follows that the
total space is O(1/ε(d−1)/2), and the total construction time is the product of O(1/δ(d−1)/2)
and the above construction time for each leaf.

Summing up the time over all the four steps, we get a total construction time on the order of

n log
1

ε
+

(
1

ε

) d−1
2 +α

+

(
1

δ

)d−1(
1

ε

) d−1
2

+

(
1

δ

) d−1
2

·
((

1

ε

) d−1
2

log
δ

ε
+

(
δ

ε

)( 1
2+β)(d−1)

)
.

Recalling that δ = εβ/(1+β) and assuming that the constant α is much smaller than β, it follows that
the construction time is

O

(
n log

1

ε
+

(
1

ε

)( 1
2+

β
1+β )(d−1)

)
.
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We answer queries as follows. Recall the affine transformation used to fatten the input polytope.
We apply this transformation on the input query point to obtain a point q. Recall that it suffices
to answer absolute O(ε)-APM queries for q with respect to P ′. As P is an outer absolute O(ε)-
approximation of P ′, it suffices to answer absolute O(ε)-APM queries for q with respect to P . To
answer this query, we identify a leaf of the DAG such that the associated ellipsoid E intersects the
ray Oq. This takes time O(log 1

δ ). Let y denote an intersection point of this ray with the ellipsoid E.
If q lies on the segment Oy, then q is declared as lying inside P . Otherwise we return the answer we
get for query q using the APM data structure we built for this leaf. It takes time O(log δ

ε ) to answer
this query. Including the time to locate the leaf, the total query time is O(log 1

ε ).
In Lemma 5.2, we show that queries are answered correctly.

Lemma 5.2. The query procedure returns a valid answer to the ε-APM query.

Proof. We borrow the terminology from the query procedure given above. As mentioned, it suffices
to show that our algorithm correctly answers absolute O(ε)-APM queries for q with respect to the

polytope P . Recall that we identify a leaf of the DAG whose associated ellipsoid E = E4λ0

√
d(x)

intersects the ray Oq. Recall that y is a point on the intersection of the ray Oq with E. Clearly, if q
lies on segment Oy, then q ∈ P and q is correctly declared as lying inside P .

It remains to show that queries are answered correctly when ‖Oq‖ > ‖Oy‖. In this case, we handle
the query using the APM data structure we built for the leaf. Recall that this structure is built for
the polytope formed by intersecting P with the smallest enclosing hyperrectangle R of the ellipsoid
E4/γ(x). We claim that (i) shadow(E) ⊆ R and (ii) widthv(R) ≤ c2dδ for all v ∈ normals(E), where
c2 is the constant in Lemma 2.7(c).

To see this claim, recall that Mλ(x) ⊆ Eλ(x) ⊆ Mλ
√
d(x) for any λ > 0. Using this fact, it

follows that M4/γ(x) ⊆ E4/γ(x) ⊆ M4
√
d/γ(x). By Lemma 2.7(a), shadow(E) ⊆ M4/γ(x). Thus

shadow(E) ⊆ E4/γ(x) ⊆ R, which proves (i). To prove (ii), note that R ⊆ E4
√
d/γ(x), since R is

the smallest enclosing hyperrectangle of E4/γ(x). Also E4
√
d/γ(x) ⊆M4d/γ(x). Thus R ⊆M4d/γ(x).

By Lemma 2.7(c), widthv(M
4/γ(x)) ≤ c2δ for all v ∈ normals(M ′(x)). Since R ⊆ M4d/γ(x) and

E ⊆M ′(x), it follows that widthv(R) ≤ c2dδ for all v ∈ normals(E).
We return to showing that queries are correctly answered when ‖Oq‖ > ‖Oy‖. We consider two

possibilities depending on whether q is inside or outside P . If q ∈ P then q ∈ shadow(E). By part
(i) of the above claim, shadow(E) ⊆ R. Thus q ∈ P ∩R. It follows that the APM structure built for
the leaf will declare this point as lying inside P ∩ R, and hence the overall algorithm will correctly
declare that q lies in P .

Finally, we consider the case when q /∈ P . To complete the proof, we need to show that if the
distance of q from the boundary of P is greater than ε, then q is declared as lying outside P . Let p
denote the point of intersection of the ray Oq with ∂P , let h denote a hyperplane supporting P at
p, and let v denote the outward normal to h. Recall by part (i) of the claim that shadow(E) ⊆ R. It
follows that h is a supporting hyperplane of P ∩R at p. By part (ii) of the claim, widthv(R) ≤ c2dδ.
It follows that widthv(P ∩R) ≤ c2dδ. Recall that the APM data structure for the leaf is built using
approximation parameter c3ε/δ for some constant c3. By definition of APM query (in the standard,
direction-sensitive sense), the absolute error allowed in direction v is at most (c3ε/δ)·widthv(P ∩R) ≤
(c3ε/δ)(c2dδ). By choosing c3 sufficiently small we can ensure that this error is at most εγ. To make
this more precise, let h′ denote the hyperplane parallel to h (outside P ), and at distance εγ from
it. Consider the halfspace bounded by h′ and containing P . By definition of APM query, if q is not
contained in this halfspace, then q would be declared as lying outside P ∩R, and the overall algorithm
would declare q as lying outside P . Let p′ denote the point of intersection of the ray Oq with h′.
By Lemma 2.1(c), ‖pp′‖ ≤ (εγ)/γ = ε. Thus, if the distance of q from ∂P is greater than ε, then q
cannot lie on segment pp′ and q is correctly declared as lying outside P . This completes the proof of
correctness.

We are now ready to prove Theorem 1.5

Proof. Our proof is based on a constant number of applications of the method presented in this
section. It suffices to show that there is a data structure with space and query time as in the theorem
and preprocessing time O(n log 1

ε + 1/ε(1/2+β
′)(d−1)), where β′ = α/(d− 1).
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We initialize the bootstrapping process by the data structure described in the beginning of this
section, which has β = 1. Recall that applying the method once changes the value of β to β/(1 + β).
It is easy to show that after i applications, the value of β will fall to 1/(i + 1). Thus, after O(1/α)
applications, we will obtain a data structure with the desired preprocessing time.

6 Reductions

In this section, we show how the remaining problems reduce to polytope membership. We start with
a useful variation of approximate nearest neighbor searching.

The input for an approximate nearest neighbor searching data structure is a set S of data points
and an approximation parameter ε. Given a constant σ > 0, σ-well-separated approximate nearest
neighbor searching is defined as follows. Let QS and Qq be two hypercubes of side length r and at
distance at least σr from each other. In the σ-well-separated version we have the data points S inside
QS and the query points inside Qq. Data structures for the well-separated version are much more
efficient than for the unrestricted version. The following reduction from well-separated approximate
nearest neighbor searching to approximate polytope membership is presented in [5, Lemma 9.2 of the
journal version].

Lemma 6.1. Let 0 < ε ≤ 1/2 be a real parameter, σ > 0 be a constant, and S be a set of n points in
Rd. Given a data structure for approximate polytope membership in d-dimensional space with query
time td(ε), storage sd(ε), and preprocessing time O(n log 1

ε + bd(ε)) it is possible to preprocess S into
a σ-well-separated ANN data structure with

Query time: O

(
td+1(ε) · log

1

ε

)
Space: O

(
sd+1(ε)

)
Preprocessing: O

(
n log

1

ε
+ bd+1(ε)

)
.

Combining the previous reduction with Theorem 1.5 we have:

Lemma 6.2. Given a set S of n points in Rd, an approximation parameter ε > 0, and a constant
σ > 0, there is a data structure that can answer σ-well-separated Euclidean ε-approximate nearest
neighbor queries with

Query time: O

(
log2 1

ε

)
Space: O

((
1

ε

)d
2

)
Preprocessing: O

(
n log

1

ε
+

(
1

ε

)d
2+α

)
.

Next, we prove Theorem 1.3 using a reduction to well-separated approximate nearest neighbor
searching that is based on [4, Theorem 3.2].

Proof. Let b denote the exact BCP distance. We obtain a constant approximation b ≤ a < 2b of the
BCP distance in O(n) expected time by running the randomized algorithm from [26]. Then, we build
a grid with cells of diameter a/4 and partition the red points accordingly. Note that since a/4 < b/2,
the BCP pair cannot be in the same grid cell, nor in two adjacent cells. The strategy of the algorithm
is to partition the red points among the grid cells and to perform a constant number of well-separated
approximate nearest neighbor queries for each blue point, returning the closest red-blue pair found.
More precisely, for each blue point q, we perform an approximate nearest neighbor query among the
grid cells QS that intersect the set theoretic difference of two balls of radii a and a/2 centered around
q. These are the only grid cells that may contain the closest red point and, by a simple packing
argument, the number of grid cells QS is constant. Since the grid cell Qq that contains q cannot be
adjacent to QS , it follows that the separation σ is at least 1.

To answer the queries efficiently, we separate the grid cells onto two types. If the number of
red points in the cell is greater than 1/εd/4, we say the cell is heavy, and otherwise we say the cell
is light. Clearly, the number of heavy cells is O(n · εd/4). We build well-separated approximate
nearest-neighbor data structures for the heavy cells. Using Lemma 6.2, the total preprocessing time
is O(n/εd/4+α). For each light cell, we simply store the red points it contains and answer nearest
neighbor queries by brute force in O(1/εd/4) time. Therefore, the total time spent answering queries
is O(n/εd/4).
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An approximation to the Euclidean minimum spanning tree and minimum bottleneck tree can
be computed by solving multiple BCP instances such that the sum of the number of points in all
instances is O(n log n) [4, Theorem 4.1]. Applying this reduction together with Theorem 1.3, we
prove Theorem 1.4.

The following reduction from ANN to APM is presented in [5, Lemma 9.3 of the journal version].
For the preprocessing time see [10, Lemma 8.3].

Lemma 6.3. Let 0 < ε ≤ 1/2 be a real parameter and S be a set of n points in Rd. Given a data
structure for approximate polytope membership in d-dimensional space with query time at most td(ε)
and storage sd(ε), and preprocessing time O(n log 1

ε + bd(ε)) it is possible to preprocess S into an
ANN data structure with

Query time: O

(
log n+ td+1(ε) · log

1

ε

)
Space: O

(
n log

1

ε
+ n

sd+1(ε)

td+1(ε)

)

Preprocessing: O

(
n log n log

1

ε
+ n

bd+1(ε)

td+1(ε)

)
.

Applying this reduction with the data structure from Theorem 1.5 and setting td+1(ε) = 1/(m ·
εd/2) for log 1

ε ≤ m ≤ 1/(εd/2 log 1
ε ), we obtain Theorem 1.7.

Next, we show how to obtain a data structure for approximate directional width queries (The-
orem 1.6) using the data structure for approximate polytope membership from Theorem 1.5. The
proof uses standard duality and binary search techniques.

Proof. Given a polytope P (defined as the intersection of n halfspaces) that contains the origin O, we
define a ray-shooting query (from the origin) as follows. Let v be a query direction and let r denote
the ray emanating from O in direction v. The result of the query q(P, v) is the length of r ∩ P . In
the ε-approximate version, any answer between q(P, v) and (1 + ε)q(P, v) is acceptable.

If we place the origin O in the center of the John ellipsoid of P , we have q(P,−v) = Θ(q(P, v)) for
all v. Thus, a constant approximation of q(P, v) can be obtained by replacing P by its circumscribing
John ellipsoid. We can then refine the approximation using binary search and approximate polytope
membership queries. (To see this, consider the point p ∈ ∂P that is hit by the ray, and let h be
any supporting hyperplane at p. Consider the slab containing P that is bounded by this hyperplane
and the parallel hyperplane on the opposite side of P . By properties of the John ellipsoid, the
origin lies within a central region of the slab. It follows from basic geometry that if we expand the
slab by ε times its width, the ratio between ray distances to the expanded slab boundary and the
original slab boundary is 1 + O(ε). An ε-APM query with respect to P along this ray will achieve
an approximation error that is no greater.) By a suitable adjustment to the constant factor, we can
obtain an ε-approximation to q(P, v) after O(log 1

ε ) membership queries.
The polar body P ∗ (defined as the convex hull of n points) of P has the property that widthv(P

∗) =
1/q(P, v)+1/q(P,−v). Therefore, we can ε-approximate the width of a set of points P ∗ using O(log 1

ε )
approximate polytope membership queries on P and Theorem 1.6 follows.

Agarwal, Matoušek, and Suri [3] showed that the diameter of a point set S can be ε-approximated
by computing the maximum width of S among O(1/ε(d−1)/2) directions. Therefore, Theorem 1.2
follows immediately from Theorem 1.6.
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[21] B. Chazelle and J. Matoušek. On linear-time deterministic algorithms for optimization problems
in fixed dimension. J. Algorithms, 21:579–597, 1996.

[22] R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. J. Approx.
Theory, 10(3):227–236, 1974.

18



[23] K. Dutta, A. Ghosh, B. Jartoux, and N. H. Mustafa. Shallow packings, semialgebraic set systems,
Macbeath regions and polynomial partitioning. In Proc. 33rd Internat. Sympos. Comput. Geom.,
pages 38:1–15, 2017.

[24] G. Ewald, D. G. Larman, and C. A. Rogers. The directions of the line segments and of the r-
dimensional balls on the boundary of a convex body in Euclidean space. Mathematika, 17:1–20,
1970.

[25] F. John. Extremum problems with inequalities as subsidiary conditions. In Studies and Essays
Presented to R. Courant on his 60th Birthday, pages 187–204. Interscience Publishers, Inc., New
York, 1948.

[26] S. Khuller and Y. Matias. A simple randomized sieve algorithm for the closest-pair problem.
Information and Computation, 118(1):34–37, 1995.

[27] A. M. Macbeath. A theorem on non-homogeneous lattices. Ann. of Math., 56:269–293, 1952.

[28] N. Megiddo. Linear-time algorithms for linear programming in R3 and related problems. SIAM
J. Comput., 12:759–776, 1983.

[29] N. Megiddo. Linear programming in linear time when the dimension is fixed. J. Assoc. Comput.
Mach., 31:114–127, 1984.

[30] N. H. Mustafa and S. Ray. Near-optimal generalisations of a theorem of Macbeath. In Proc.
31st Internat. Sympos. on Theoret. Aspects of Comp. Sci., pages 578–589, 2014.

19



Reports

Next, we include the reports of the the dissertation committee members:

• Jean Cardinal, Université Libre de Bruxelles (in French)

• Timothy Chan, University of Illinois at Urbana-Champaign

• Nabil Mustafa, Université de Paris-Est, ESIEE Paris

Followed by the report of the defense committee members:

• Nabil Mustafa, ESIEE Paris

• Jean-Daniel Boissonnat, INRIA, Sophia Antipolis

• Victor Chepoi, Aix-Marseille Université

• Bruno Martin, Université de Nice Sophia Antipolis

• David M. Mount, University of Maryland

143
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Concerne Rapport HDR Guilherme Dias da Fonseca

Bruxelles, le 25 mai 2018

Ceci est un rapport d’évaluation de l’Habilitation à Diriger des Recherches (HDR) de Guilherme
Dias da Fonseca, Mâıtre de Conférence en Informatique à l’Université de Clermont Auvergne, en
délégation à l’INRIA Sophia Antipolis, rédigé par Jean Cardinal, Professeur à l’Université libre de
Bruxelles (ULB), rapporteur.

Le présent rapport se compose de deux parties : (i) un résumé des apports principaux décrits
dans le document soumis, (ii) une évaluation en termes d’importance et variété des résultats, de
qualité et de visibilité, et une appréciation de l’autonomie du candidat.

Apports principaux

Contexte. Le candidat est spécialiste en géométrie algorithmique, et plus particulièrement des
aspects théoriques liés aux problèmes de détection de proximité (appartenance à un polytope, plus
proches voisins, diamètre) en haute dimension. Ces problèmes forment un corpus spécifique de la
géométrie algorithmique, dans lesquels des outils théoriques sont nécessaires pour lutter contre le
“fléau de la dimension”, qui rend souvent impossible l’adaptation directe de méthodes en dimension
deux ou trois à des dimensions plus hautes. Pour cette raison, on a souvent recours à des technique
d’approximation.

Le problème principal étudié est celui de l’appartenance à un polytope : Etant donné un
polytope P, construire une structure de données permettant de décider efficacement si un point
q donné appartient à P. Cette réponse est ici approximative : on se donne en outre une petite
constante ε et la réponse est arbitraire dans le cas où q est à l’extérieur mais à une distance
inférieure à ε de P.



 

 
  

  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

Partie 1 : Appartenance à un polytope par la méthode Split-Reduce. La première partie
du document concerne des travaux publiés par le candidat en 2011 et 2012 dans les conférences
STOC et SODA, et compilés dans un article de la revue SIAM Journal on Computing publié
en 2018. Ces travaux établissent l’existence de solutions intermédiaires interpolant entre deux
méthodes connues depuis plusieurs décennies pour le problème d’appartenance, à savoir une ε-
approximation par un polytope due à Dudley, et l’utilisation de quadtrees par Bentley. La méthode
proposée est naturelle mais son analyse est difficile : les bornes inférieures et supérieures connues
sur la complexité de requête ne correspondent pas. En particulier, à espace fixé, l’écart entre la
borne inférieure et supérieure sur le temps de requête est encore superquadratique. Une discussion
concise mais précise des progrès effectués sur les bornes inférieures et supérieures est donnée dans
le document, et résumée dans la figure 2.4.

Cette méthode ne permet néanmoins pas de résoudre le problème en espace O(1/ε(d−1)/2) avec
un temps de requête O(log 1

ε ).La seconde partie présente une méthode complètement différente
permettant ces performances.

Partie 2 : Appartenance à un polytope par la méthode des régions de MacBeath. La
seconde méthode, présentée dans des articles des conférences SODA et SoCG en 2017, utilise
les notions de régions de MacBeath. Celles-ci constituent un outil fondamental en théorie de la
convexité, qui est ici intelligemment employé à des fins algorithmiques. En combinant un lemme
de packing avec des résultats classiques d’approximation d’un polytope par un ellipsöıde, il est
possible de construire une structure hiérarchique possédant les deux qualités désirables d’avoir un
degré borné d’une part, et de couvrir le bord de P avec un nombre asymptotiquement minimum de
régions d’autre part. L’algorithme de requête est une marche dans cette hiérarchie, qui consomme
un nombre d’étapes logarithmique en 1/ε.

Partie 3 : Applications. La troisième partie résume les applications des résultats à d’autres
problèmes fondamentaux en géométrie algorithmique. Loin d’être de simples corollaires, ces appli-
cations nécessitent parfois un traitement spécifique. L’application à la recherche de plus proches
voisins repose sur les propriétés du relevé des points sur un parabolöıde en dimension d+1. Le calcul
d’un ε-kernel repose sur la construction approximative de la hiérarchie de régions de MacBeath.
Ces deux résultats peuvent être utilisés à leur tour dans un algorithme d’approximation du diamètre
et de plus proches paires bichromatiques (BCP). Finalement, le résultat sur BCP peut être utilisé
dans un algorithme d’approximation d’arbre couvrant Euclidien minimum.

Evaluation

Pertinence des problèmes étudiés. Les applications de la troisième partie mettent très claire-
ment en évidence le caractère fondamental et omniprésent du problème étudié. Loin de résoudre
uniquement un problème ponctuel, les méthodes présentées sont des outils génériques permettant
d’attaquer un grand nombre de questions fondamentales en géométrie algorithmique sous l’angle
de l’approximation.

Qualité des résultats et visibilité. Les résultats sont conséquents et bien exposés. Le résultat
concernant les hiérarchies de régions de MacBeath est brillant, tant dans l’originalité de l’utilisation
du concept de MacBeath, que dans le traitement non-trivial des propriétés relatives à son efficacité
dans ce cadre précis. Un indicateur fiable de la qualité et de la visibilité de ces résultats est la liste
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des conférences dans lesquelles ils ont été publiés. STOC, SODA et SoCG font effet partie des
conférences du domaines les plus sélectives.

Une caractéristique peu commune du travail de Guilherme da Fonseca présenté dans cette HDR
est la progression constante sur un problème de recherche fondamental et bien défini. Loin d’être
un assemblage de résultats disparates, le document convoie efficacement les étapes successives
d’une réflexion sur un problème dans une direction. Les questions ouvertes présentées à la fin du
document indiquent en outre que le sujet est loin d’être épuisé.

Autonomie et collaborations. Les travaux présentés dans le document ont tous été réalisés
en collaboration avec les professeurs Sunil Arya (HKUST) et David Mount (UMD), tous les deux
spécialistes des problèmes de proximité géométrique. David Mount est en outre l’ancien directeur
de thèse du candidat. En revanche, d’autres travaux non présentés dans ce document et réalisés
avec une douzaine d’autres coauteurs internationaux attestent de la qualité de son réseau de
collaborateurs.

Conclusion

Il ne fait aucun doute, à la lecture du document soumis, que Guilherme da Fonseca est
un chercheur confirmé, ayant contribué à la résolution de nombreuses questions pertinentes et
fondamentales, et qu’il possède toutes les capacités à contribuer au progrès des connaissances en
informatique théorique et en géométrie discrète, ainsi qu’à encadrer des recherches dans ce domaine.

Je soutiens fermement et sans réserve l’organisation de la défense de cette HDR.

Jean Cardinal
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Report on the HDR of Guilherme Dias da Fonseca

This dissertation studies efficient algorithms and data structures for approximate polytope member-
ship queries, which are of fundamental importance and lie at the heart of several central problems
in low-dimensional computational geometry, including approximate nearest neighbor search, ap-
proximate diameter, width, minimum-bottleneck spanning tree, etc.

In the mid-1990s, data structures were found by Arya, Mount, et al. that can answer (1 + ε)-
approximate nearest neighbor queries in logarithmic time and linear space, in any constant dimen-
sion, for any positive constant ε. For nearly two decades since, researchers have sought methods
with better dependencies of the query time and space on the quality of approximation ε, with work
by Clarkson [SoCG’94], myself [SoCG’97], Har-Peled [FOCS’01], and Arya, Malamatos, and Mount
[SODA’02 and STOC’02], . . . The work described in this dissertation, from a remarkable series
of papers Guilherme wrote with Sunil Arya and David Mount [STOC’11, SODA’12, SODA’17,
SoCG’17] (all done after his PhD), contains the current best results on this fundamental problem,
introducing new techniques and pushing them to their limit.

The STOC’11 and SODA’12 papers (Article 1) by Guilherme and co-authors are truly seminal
work. These papers are the first to formulate the approximate polytope membership problem,
explain why this is the key to understanding the ε-dependency of approximate nearest neighbor
search, and present improved results for a wide range of space/query-time trade-offs. Their solution
is obtained by combining an elegant recursive quadtree algorithm (called “SplitReduce”) with
standard constructions (by Dudley) in the base cases. The analysis of the algorithm is highly
nontrivial, and requires techniques from convexity theory, including the so-called “Mahler volume.”

The SODA’17 paper (Article 2) describes further improvements. But these are not merely “incre-
mental” improvements—Guilherme and co-authors in fact achieve the ultimate, optimal space/query-
time bounds for the approximate polytope membership problem. Their data structure, consisting
of a hierarchy of ellipsoids, requires O((1/ε)(d−1)/2) space with O(log(1/ε)) query time, and is
obtained via a powerful new technique, based on so-called “Macbeath regions”.



Finally, the SoCG’17 paper (Article 3) continues the investigation into the preprocessing time
needed to build such data structures, and obtained the current best preprocessing-time/query-time
trade-offs, which are paramount to algorithmic applications. The construction is closely linked to
a type of coresets called ε-kernels, which form another fundamental family of problems in compu-
tational geometry and have been extensively studied by many researchers in the past (Agarwal,
Har-Peled, and Varadarajan [JACM’04], myself [SoCG’04], and Arya and myself [SoCG’14]). Guil-
herme and co-authors obtained significantly better algorithms, in fact, almost optimal algorithms,
for constructing ε-kernels. The new time bound, near O(n + (1/ε)(d−1)/2), improves the previous
bound, near O(n + (1/ε)d−2). Applications include well known problems such as approximating
the diameter of a point set, and the bichromatic closest pair (for the latter, the new time bound,
near O((1/ε)(d−1)/4n), improves the previous time bound, near O((1/ε)(d−1)/3n)). In my opinion,
these are fantastic results! In an independent SoCG’17 paper, I recently discovered similar bounds,
using very different techniques; Guilherme’s bounds are actually slightly better than mine.

The concluding chapter of the dissertation hints at still more applications of these techniques, for
example, to approximating the width of a point set in near O(n + (1/ε)(d−1)/2) time. These new
results also look intriguing (the width problem in particular is one that I have posed and was unable
to solve), and I eagerly look forward to reading about them in the future.

In summary, this dissertation contains impressive original results, of fundamental importance, and
with great technical depth. In addition, it is very well written. Clearly, this HDR deserves to be
defended.

Sincerely,

Timothy Chan
Founder Professor in Computer Science
University of Illinois at Urbana-Champaign
http://tmc.web.engr.illinois.edu/

P.S. Some minor comments:

• The O(n)-time algorithm for approximate bichromatic closest pair uses constant-time hash-
ing, and requires the unit-cost word RAM model, despite the largest paragraph on page 7
specifying the real RAM as the main computational model.

• In [1,3,66] of the bibliography, “minkowski” should be capitalized.
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Report on HDR thesis of Guilherme Dias da
Fonseca.

Nabil Mustafa
Professor

ESIEE Paris
Laboratoire d’Informatique Gaspard-Monge
Université Paris-Est,
Champs-sur-Marne, France.

Telephone: +33 1 92 45 66 07
Email: mustafan@esiee.fr

18 May, 2018.

The HDR thesis of Guilherme Dias da Fonseca is entitled “Approximate Poly-
tope Membership Queries and Applications”. Polytopes are key structures in the
study of convexity, and succinct approximations of polytopes is one of the basic
questions in the area. The contents of the thesis can be divided into two parts: the
first part deals with aspects—both combinatorial and computational—of poly-
tope approximation and approximate polytope membership problem in Rd. The
second part then presents applications of the results of the first part to many
basic geometric optimization problems.

The basic setting is that, given a polytope C in Rd, one would like to construct a
small-sized ‘approximate polytope’ of C, i.e., a simpler polytope C 0 such that the
following approximate polytope membership query can be answered e�ciently:
given a point q 2 Rd, does q lie inside C? The notion of approximation can



be parameterized by a parameter ✏ 2 [0, 1], so that the distance between C and
C 0 must be upper-bounded by ✏. C 0 is then called an ✏-approximating polytope
of C. There are several ways to define the size of C 0—e.g., number of faces,
number of vertices—as well as several di↵erent distance measures between C and
C 0—Hausdor↵ distance being the main one studied in this thesis.

A classical result of Dudley from 1974 (building on earlier results) shows that
for polytopes of constant diameter, there exist an ✏-approximating polytope C 0

with O
⇣

1

✏
d�1
2

⌘
faces. Furthermore, this is tight as can be seen when C is a

Euclidean ball. Unfortunately, algorithmically it is not very e�cient in answering

the approximate membership query; the näıve solution takes time O
⇣

1

✏
d�1
2

⌘
.

The first part presents near-optimal solutions to this membership problem, re-
turning back to add new and original insights to this classical problem. A
first data-structure, called split-reduce data structure uses a clever combination
of computational geometry techniques—gridding, quadtrees, hierarchical parti-
tioning, coresets, ✏-nets—together with ideas from convex geometry (curvature,
Mahler volume etc.). In particular, the idea of analyzing the structure of convex
bodies using Mahler volume—so that one can take random samples either with
respect to curvature or surface area—is beautiful, and no doubt will turn out to
be influential in future years.

A second improved bound is obtained using the idea of Macbeath regions from con-
vex geometry. Roughly (ellipsoids of) Macbeath regions were used by Guilherme
and co-authors to define a new way to hierarchically decompose the boundary
of C with few ellipsoids. Besides the clever use of Macbeath regions, there are
several technical issues that arise that had to be solved. Then the membership
query can be answered by a variant of ray-shooting in this hierarchy. This is
a crowning achievement in this area: an algorithm that answers approximate

polytope membership queries in time O
�
log 1

✏

�
with storage O

⇣
1

✏
d�1
2

⌘
.

The second part of the thesis turns towards applications of this and related struc-
tures to many of the most basic problems in computational geometry:

• nearest neighbors for point sets in Rd, improving the storage bound from
O
�

n
✏d

�
to roughly O

�
n

✏d/2

�
, a very strong improvement on a bound from

over 15 years ago.

• small-sized kernels and coresets among points in Rd. This problem has be-

Laboratoire d’Informatique Gaspard-Monge, Université de Paris-Est, ESIEE Paris,
Champs-sur-Marne. http://ligm.u-pem.fr/.



come important in recent years with massive data, and the need to compute
small ‘sketches’ of data that capture various geometric and combinatorial
properties.

• approximation algorithms for computing the diameter of point sets in Rd,
as well as approximating the directional width of point sets.

• other problems such as approximation algorithms for bichromatic closest
pair and minimum spanning Euclidean trees.

The thesis

The thesis has been prepared with great care: there are many figures throughout
that clearly illustrate the technical ideas and the involved proofs. I especially
appreciated Chapters 2, 3 and 4, which are written elegantly and showed Guil-
herme’s capacity for very good exposition balancing both clarity of thought as
well as obeying the constraints of formal correctness. He explains clearly why
certain problems are studied, and how they were proved over the years. He also
demonstrates very clearly that his results truly advance the state of the art, and
that some of these results answer long-standing and heavily researched problems.

The candidate

I consider Guilherme de Fonseca to be a very successful researcher in discrete
and computational geometry. He has produced masterful works in the area of
discrete and computational geometry, obtaining many important and original
results. His command of classical mathematical subjects—convex geometry, dis-
crete geometry—and their unexpected applications in designing algorithms for
basic computational geometry problems is impressive. It is evident that Guil-
herme has clearly mastered these techniques, and built on them in a productive,
di�cult and useful manner.

Besides the results presented in this thesis, Guilherme has obtained other results
in range searching, matching theory, data structures and combinatorial opti-
mization problems in geometric intersection graphs. All these results have been
published in very selective and excellent journals and conferences—SoCG, SODA,

Laboratoire d’Informatique Gaspard-Monge, Université de Paris-Est, ESIEE Paris,
Champs-sur-Marne. http://ligm.u-pem.fr/.



STOC, Discrete & Computational Geometry, SIAM Journal on Computing, Algo-
rithmica. Overall, Guilherme de Fonseca is the author of more than 29 published
articles.

For all these reasons, I am very enthusiastically in favor of this thesis; the thesis
can be accepted without reserve for the “Diplome national d’Habilitation à diriger
des recherches”.

Sincerely,

Nabil Mustafa

Laboratoire d’Informatique Gaspard-Monge, Université de Paris-Est, ESIEE Paris,
Champs-sur-Marne. http://ligm.u-pem.fr/.
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