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Why study approximate polytope membership?

Fundamental problem

Exact solutions are inefficient

Gives the best known bounds for:

Approximate nearest neighbor searching
ε-kernel construction
Diameter approximation
Approximate bichromatic closest pair
Minimum Euclidean bottleneck tree approximation
...

out
in

ε

?
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Exact Polytope Membership Queries

Exact Polytope Membership Queries

Given a polytope P in d-dimensional space, preprocess P to
answer membership queries:

Given a point q, is q ∈ P?

Assume that dimension d is a constant and
P is given as intersection of n halfspaces

Dual of halfspace emptiness searching

For d ≤ 3
Query time: O(log n) Storage: O(n)

For d ≥ 4
Query time: O(log n) Storage: O(nbd/2c)

out
in
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Approximate Polytope Membership Queries

Approximate Version

An approximation parameter ε > 0 is given

Assume the polytope has diameter 1

If the query point’s distance from P :

0: answer must be inside
≥ ε: answer must be outside
> 0 and < ε: either answer is acceptable

Time-efficient
Optimal query time: O(log 1

ε )

Space-efficient
Optimal storage: O(1/ε(d−1)/2)

out
in

ε

?
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Time Efficient Solution [BFP82]

ε
P

1 Create a grid with cells of size ε

2 For each column, store the topmost and
bottommost cells intersecting P

3 Query processing:

Locate the column that contains q
Compare q with the two extreme values

Time Efficient Solution [BFP82]

O(1/εd−1) columns

Query time: O(log 1
ε ) ← optimal

Storage: O(1/εd−1) ← not optimal
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Space Efficient Solution [Dud74]

1 Ball B of radius 2

2
√
ε-net N on B

3 Closest point on K for each point in N

4 P bounded by tangent hyperplanes

5 Query processing:

Inspect all O(1/ε
d−1
2 ) hyperplanes

Space Efficient Solution [Dud74]

Query time: O(1/ε
d−1
2 ) ← not optimal

Storage: O(1/ε
d−1
2 ) ← optimal

K
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A Simple Tradeoff

1 Generate a grid of size r ∈ [ε, 1]

2 Preprocessing: For each cell Q intersecting
P ’s boundary:

Apply Dudley to P ∩Q
O((r/ε)(d−1)/2) halfspaces per cell

3 Query Processing:

Find the cell containing q
Check whether q lies within every
halfspace for this cell

Simple Tradeoff

Query time: O((r/ε)(d−1)/2)

Storage: O(1/(rε)(d−1)/2)

r
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Split-Reduce Data Structure [AFM18]

t = 2

Tradeoff

Query time: O(t)

Storage: ???

Input: P , ε, t

Q← unit hypercube

Split-Reduce(Q)

Split-Reduce(Q)

Find an ε-approximation of Q ∩ P
If at most t facets, then
Q stores them

Otherwise, subdivide Q and recurse



Introduction

Motivation

Definition

Previous

Data Struct.

Split-Reduce

Upper Bound

Lower Bound

Tradeoff

Macbeath

Hierarchy

Queries

Analysis

Applications

ANN

Reduction

Tradeoff

Kernel

History

Construction

Diameter

Conclusions

Results

Open Problems

References

Split-Reduce Data Structure [AFM18]

t = 2

Tradeoff

Query time: O(t)

Storage: ???

Input: P , ε, t

Q← unit hypercube

Split-Reduce(Q)

Split-Reduce(Q)

Find an ε-approximation of Q ∩ P
If at most t facets, then
Q stores them

Otherwise, subdivide Q and recurse



Introduction

Motivation

Definition

Previous

Data Struct.

Split-Reduce

Upper Bound

Lower Bound

Tradeoff

Macbeath

Hierarchy

Queries

Analysis

Applications

ANN

Reduction

Tradeoff

Kernel

History

Construction

Diameter

Conclusions

Results

Open Problems

References

Split-Reduce Data Structure [AFM18]

t = 2

Tradeoff

Query time: O(t)

Storage: ???

Input: P , ε, t

Q← unit hypercube

Split-Reduce(Q)

Split-Reduce(Q)

Find an ε-approximation of Q ∩ P
If at most t facets, then
Q stores them

Otherwise, subdivide Q and recurse



Introduction

Motivation

Definition

Previous

Data Struct.

Split-Reduce

Upper Bound

Lower Bound

Tradeoff

Macbeath

Hierarchy

Queries

Analysis

Applications

ANN

Reduction

Tradeoff

Kernel

History

Construction

Diameter

Conclusions

Results

Open Problems

References

Split-Reduce Data Structure [AFM18]

t = 2

Tradeoff

Query time: O(t)

Storage: ???

Input: P , ε, t

Q← unit hypercube

Split-Reduce(Q)

Split-Reduce(Q)

Find an ε-approximation of Q ∩ P
If at most t facets, then
Q stores them

Otherwise, subdivide Q and recurse



Introduction

Motivation

Definition

Previous

Data Struct.

Split-Reduce

Upper Bound

Lower Bound

Tradeoff

Macbeath

Hierarchy

Queries

Analysis

Applications

ANN

Reduction

Tradeoff

Kernel

History

Construction

Diameter

Conclusions

Results

Open Problems

References

Analysis of Split-Reduce (easy case)

Easy analysis: t = 1/ε(d−1)/4

By Dudley in the cell, if diameter ≤
√
ε,

then O(1/ε(d−1)/4) halfspaces suffice

Cells of size
√
ε are not subdivided

Each Dudley halfspace is only useful within a
radius of

√
ε

It hits O(1) cells of size
√
ε

Total number of halfspaces: O(1/ε(d−1)/2)

√
ε
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Lower bound to Split-Reduce

Place a small enough ball in Rk

High curvature forces small cells

No problem: small diameter

Extrude the ball in d− k dimensions

Quadtree cells are hypercubes

Too many cells!

What if cells are not hypercubes?
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General Tradeoff

1
2

5
8

7
8

3
4 1

1
8

1
4

3
4

1
2

x

y

s = 1/εxdstorage

t
=

1/
εy

d
q
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y
ti
m
e

1
16

0

Tight analysis is an open problem

Best analysis is very complex

(a) Simple tradeoff

(b) Easy t = 1/ε(d−1)/4 case

(c) Best upper bound

(d) Lower bound to Split-Reduce

(e) Next data structure:
uses Macbeath regions!
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Macbeath Regions [Mac52]

K

x

M(x)

M ′(x)

Given a convex body K, x ∈ K, and λ > 0:

Mλ(x) = x+ λ((K − x) ∩ (x−K))

M(x) = M1(x): intersection of K and
K reflected around x

M ′(x) = M1/5(x)

Properties

M ′(x) ∩M ′(y) 6= ∅ ⇒ M ′(x) ⊆M(y)

y ∈M ′(x) ⇒ δ(y) = Θ(δ(x))

δ(x): distance from x to ∂K
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Macbeath Ellipsoids

M ′(x)

John Ellipsoid [Joh48]

For every centrally symmetric convex body K in
Rd, there exist ellipsoids E1, E2 such that
E1 ⊆ K ⊆ E2 and E2 is a

√
d-scaling of E1

Macbeath Ellipsoid

E(x): enclosed John ellipsoid of M ′(x)

Mλ(x) ⊆ E(x) ⊆M ′(x) for λ = 1/(5
√
d)
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E(x) John Ellipsoid [Joh48]

For every centrally symmetric convex body K in
Rd, there exist ellipsoids E1, E2 such that
E1 ⊆ K ⊆ E2 and E2 is a

√
d-scaling of E1
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√
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Shadow of Macbeath Ellipsoids

O

K

E

Shadow of ellipsoid E

Points p ∈ K such that ray Op intersects E

Reaches the boundary

Directional width: similar to E



Introduction

Motivation

Definition

Previous

Data Struct.

Split-Reduce

Upper Bound

Lower Bound

Tradeoff

Macbeath

Hierarchy

Queries

Analysis

Applications

ANN

Reduction

Tradeoff

Kernel

History

Construction

Diameter

Conclusions

Results

Open Problems

References

Covering with Macbeath Ellipsoids

Covering (see [Bar07])

Given:

K: convex body

δ: small positive parameter

There exist ellipsoids E(x1), . . . , E(xk)

δ(x1) = · · · = δ(xk) = δ

Cover: Shadows cover the boundary

k = O(1/δ(d−1)/2) [AFM17c]

δ
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Hierarchy of Macbeath Ellipsoids [AFM17a]

Hierarchy

Each level i a δi-covering

` = Θ(log 1
ε ) levels

δ0 = Θ(1), δ` = Θ(ε)

δi+1 = δi/2

E is parent of E′ if

Levels are consecutive
Shadow of E intersects E′

Each node has O(1) children
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Hierarchy of Macbeath Ellipsoids [AFM17a]
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Each node has O(1) children
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Ray Shooting from the Origin

Ray Shooting from the Origin
(generalizes polytope membership)

Preprocess:

K: convex body

ε: small positive parameter

Query:

Oq: ray from the origin towards q

Query algorithm:

Find an ellipsoid intersecting Oq
at level 0

Repeat among children at next level

Stop at leaf node

Leaf ellipsoid ε-approximates boundary

O

q
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Analysis

O

q

Out-degree: O(1)

Query time per level: O(1)

Number of levels: O(log 1
ε )

Query time

O(log 1
ε ) ← optimal

Storage for bottom level: O(1/ε(d−1)/2)

Geometric progression of storage per level

Storage

O(1/ε(d−1)/2) ← optimal
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Out-degree: O(1)

Query time per level: O(1)

Number of levels: O(log 1
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Query time

O(log 1
ε ) ← optimal

Storage for bottom level: O(1/ε(d−1)/2)

Geometric progression of storage per level
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Approximate Nearest (ANN) Neighbor Searching

q
`

(1 + ε)`

Approximate Nearest Neighbor

Preprocess n points such that, given a query point q, we can find a point within at
most 1 + ε times the distance to q’s nearest neighbor

Applications to pattern recognition, machine learning, computer vision...

Huge literature (theory, applications, heuristics...)
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Lifting

Exact nearest neighbor reduces to
ray shooting

Dimension increases by 1

Each data point is lifted into a
paraboloid

Polyhedron defined by tangent
hyperplanes

Query: vertical ray shooting
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Lifting

Exact nearest neighbor reduces to
ray shooting

Dimension increases by 1

Each data point is lifted into a
paraboloid

Polyhedron defined by tangent
hyperplanes

Query: vertical ray shooting

xd+1

xd+1 = x2
1 + . . .+ x2

d
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Lifting

Exact nearest neighbor reduces to
ray shooting

Dimension increases by 1

Each data point is lifted into a
paraboloid

Polyhedron defined by tangent
hyperplanes

Query: vertical ray shooting

xd+1

q
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Reduction to Approximate Polytope Membership [AFM18]

Polyhedron is unbounded

Unbounded approximation error

Solution: separation

Partition space into cells such that: [AMM09]

Each cell Q is associated with candidates to
be the ANN for query points in Q
Total number of candidates is Õ(n)
All but 1 candidate are inside a
constant-radius annulus

Q

c ·BQ

BQ
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Reduction

Given APM

d+ 1 dimensions

Query time: at most t

Storage: s

Preprocessing: O(n log 1
ε + b)

t, s, b: functions of ε

q

Resulting ANN

d dimensions

Query time: O(log n+ t · log 1
ε )

Storage: O(n log 1
ε + n · s/t)

Preprocessing:
O(n log n log 1

ε + n · b/t)
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Space-Time Tradeoffs for ANN
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(a) First generation (before 2002)

(b) AVDs [AMM09]

(c) Reduction to Split-Reduce

(d) Reduction to Macbeath regions

Best Upper Bound

For log 1
ε ≤ m ≤ 1/εd/2

Query time: O(log n+ 1/(m εd/2))
Storage: O(nm)

Setting m = 1/εd/2

Query time: O(log n)
Storage: O(n/εd/2)
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(c) Reduction to Split-Reduce

(d) Reduction to Macbeath regions

Best Upper Bound

For log 1
ε ≤ m ≤ 1/εd/2

Query time: O(log n+ 1/(m εd/2))
Storage: O(nm)

Setting m = 1/εd/2

Query time: O(log n)
Storage: O(n/εd/2)
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Directional Width

Directional width

Given:

S: set of n points in Rd

v: unit vector

Define widthv(S):

Minimum distance between two
hypeplanes orthogonal to v enclosing S

v

widthv(S)
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ε-Kernel

Input

S: Set of n points in Rd
ε > 0: Approximation parameter

Output

Q ⊆ S such that for all vector v,

widthv(Q) ≥ (1− ε) widthv(S)

and |Q| = O(1/ε(d−1)/2)

Approximation of the convex hull

Minimum size: Θ(1/ε(d−1)/2) v

widthv(S)
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History of ε-Kernel Algorithms

[AHV04] O
(
n+ 1/ε

3(d−1)
2

)
[Cha06] O

(
n log 1

ε
+ 1/εd−2

)
[ArC14] O

(
n+
√
n/ε

d
2

)
[Cha17] Õ

(
n
√

1
ε
+ 1/ε

d−1
2

+ 3
2

)
Our near-optimal construction

O
(
n log 1

ε
+ 1/ε

d−1
2

+α
)

α > 0 arbitrarily small

Independent of [Cha17] and
completely different technique 0 1

2
3
21 2

1
2

1

3
2

2

x

n = 1/εxd

O∗
(
n + 1/ε

3
2d

)

trivial

y

input size

t
=
1/
εy

d
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n
n
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g
ti
m
e
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(
n
√

1
ε
+ 1/ε

d−1
2

+ 3
2

)
Our near-optimal construction

O
(
n log 1

ε
+ 1/ε

d−1
2

+α
)

α > 0 arbitrarily small

Independent of [Cha17] and
completely different technique 0 1

2
3
21 2

1
2

1

3
2

2

x

O∗
(
n +
√
n/ε

1
2d

)

y

O∗
(
n + 1/εd

)
O∗

(
n + 1/ε

3
2d

)

trivial

n = 1/εxdinput size

t
=
1/
εy

d
ru
n
n
in
g
ti
m
e



Introduction

Motivation

Definition

Previous

Data Struct.

Split-Reduce

Upper Bound

Lower Bound

Tradeoff

Macbeath

Hierarchy

Queries

Analysis

Applications

ANN

Reduction

Tradeoff

Kernel

History

Construction

Diameter

Conclusions

Results

Open Problems

References

History of ε-Kernel Algorithms

[AHV04] O
(
n+ 1/ε

3(d−1)
2

)
[Cha06] O

(
n log 1

ε
+ 1/εd−2

)
[ArC14] O

(
n+
√
n/ε

d
2

)
[Cha17] Õ
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Hierarchy of Macbeath Ellipsoids

Hierarchy construction takes:

O
(
n+ 1/ε

3(d−1)
2

)
time

Input polytope may be described as:

Intersection of n halfspaces
Convex hull of n points

Too slow to efficiently build ε-kernel
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Hierarchy Properties

Query point q ∈ K:

Find leaf shadow that contains q
Or report q as far from the boundary
O(log 1

ε ) time

Hierarchy −→ Kernel

Split points among leaf shadows
Pick one point per leaf shadow
(if there’s one)
O(n log 1

ε ) time

q
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Hierarchy Properties

Query point q ∈ K:

Find leaf shadow that contains q
Or report q as far from the boundary
O(log 1

ε ) time

Hierarchy −→ Kernel

Split points among leaf shadows
Pick one point per leaf shadow
(if there’s one)
O(n log 1

ε ) time
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Kernel Construction [AFM17b]

1 Build hierarchy for δ = ε1/3:

O
(
n+ 1/δ

3(d−1)
2

)
= O

(
n+ 1/ε

d−1
2

)
time

2 Split points among shadows: O(n log 1
ε ) time

3 Build ε
δ -kernel for each shadow

(using existing O(n log 1
ε + 1/εd−1) algorithm)

O

(
n log 1

ε +
(
1
δ

) d−1
2
(
δ
ε

)d−1)
=

O

(
n log 1

ε +
(
1
ε

) 5(d−1)
6

)
4 Return union of kernels

Time: O
(
n log 1

ε + 1/ε
5(d−1)

6

)
Kernel size: O

((
1
δ

) d−1
2
(
δ
ε

) d−1
2

)
= O

(
1/ε

d−1
2

)
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Bootstrapping

Bootstrap using improved ε-kernel construction:

O
(
n log 1

ε +
(
1
ε

)t(d−1))
time −→ O

(
n log 1

ε +
(
1
ε

) 4t+1
6

(d−1)
)

time

t : 1 −→ 5
6 −→

13
18 −→

35
54 −→ · · · −→

1
2 + α

Exponent t arbitrarily close to 1
2

Running Time

O
(
n log 1

ε + 1/ε
d−1
2

+α
)

, for arbitrarily small α > 0
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Preprocessing Approximate Polytope Membership

Same strategy to efficiently preprocess
an approximate polytope membership data
structure

Approximate Polytope Membership

Query time: O(log 1
ε ) ← optimal

Storage: O(1/ε
d−1
2 ) ← optimal

Preprocessing: O(n log 1
ε + 1/ε

d−1
2

+α)
↑ almost optimal
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Approximate Diameter [AFM17b]

Input

S: Set of n points in Rd
ε > 0: Approximation parameter

Output

p, q ∈ S with

‖pq‖ ≥ (1− ε) diam(S)

diam(S)
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Approximate Diameter [AFM17b]

Input

S: Set of n points in Rd
ε > 0: Approximation parameter

Output

p, q ∈ S with

‖pq‖ ≥ (1− ε) diam(S)

diam(S)

p

q

≥ (1− ε)diam(S)
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Polarity

polar(K)

K

K: convex body

Polar of K:
points p such that p · q ≤ 1 for q ∈ K
In K: extreme point in direction v

In polar(K): ray shooting in direction v
from origin
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Polarity

v

v

polar(K)

K

K: convex body

Polar of K:
points p such that p · q ≤ 1 for q ∈ K
In K: extreme point in direction v

In polar(K): ray shooting in direction v
from origin



Introduction

Motivation

Definition

Previous

Data Struct.

Split-Reduce

Upper Bound

Lower Bound

Tradeoff

Macbeath

Hierarchy

Queries

Analysis

Applications

ANN

Reduction

Tradeoff

Kernel

History

Construction

Diameter

Conclusions

Results

Open Problems

References

Diameter by Extreme Points

Diameter: maxv widthv(K)

Diameter: Approximated using

O(1/ε
d−1
2 ) directional width queries [Cha02]

1 Preprocess polar(K) for ray shooting

2 Perform O(1/ε
d−1
2 ) directional width queries on K

3 Return maximum width found

Running Time

O
(
n log 1

ε + 1/ε
d−1
2

+α
)

, for arbitrarily small α > 0

∆

v
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Diameter by Extreme Points

Diameter: maxv widthv(K)

Diameter: Approximated using

O(1/ε
d−1
2 ) directional width queries [Cha02]

1 Preprocess polar(K) for ray shooting

2 Perform O(1/ε
d−1
2 ) directional width queries on K

3 Return maximum width found

Running Time

O
(
n log 1

ε + 1/ε
d−1
2

+α
)

, for arbitrarily small α > 0

v′
√
ε

∆

≥ (1− ε)∆
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Results

Our approximate polytope membership data structure is optimal

Query time: O(log 1
ε )

Storage: O(1/ε
d−1
2 )

Preprocessing: O(n log 1
ε + 1/ε

d−1
2

+α)

We showed how to use it to obtain:

ANN searching in O(log n) query time with O(n/εd/2) storage

Near-optimal ε-kernel construction in O
(
n log 1

ε + 1/ε
d−1
2

+α
)

time

Diameter approximation in O
(
n log 1

ε + 1/ε
d−1
2

+α
)

time

Bichromatic closest pair approximation in O
(
n/ε

d
4
+α
)

expected time

Euclidean minimum spanning/bottleneck tree approximation in

O
(

(n log n)/ε
d
4
+α
)

expected time
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Open Problems

Still, several open problems remain

Faster preprocessing

Further improvements to approximate nearest neighbor searching

Generalization to k-nearest neighbors

Lower bound for diameter (or improved upper bound)

Diameter for non-Euclidean metrics

Other applications of the hierarchy

Ongoing work:

Approximate the width

Approximate polytope intersection

ANN with non-Euclidean metrics
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Painting by Robert Delaunay

Thank you!
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