
Fitting Flats To Points With Outliers

Guilherme D. da Fonseca∗

Appeared at International Journal of Computational Geometry and
Applications, 21(5):559-569, 2011. A preliminary version was presented at the

26th European Workshop on Computational Geometry, 2010.

Abstract

Determining the best shape to fit a set of points is a fundamental problem in
many areas of computer science. We present an algorithm to approximate the k-
flat that best fits a set of n points with n −m outliers. This problem generalizes
the smallest m-enclosing ball, infinite cylinder, and slab. Our algorithm gives an
arbitrary constant factor approximation in O(nk+2/m) time, regardless of the di-
mension of the point set. While our upper bound nearly matches the lower bound,
the algorithm may not be feasible for large values of k. Fortunately, for some prac-
tical sets of inliers, we reduce the running time to O(nk+2/mk+1), which is linear
when m = Ω(n).

1 Introduction

Determining the best shape to fit a set of points is a fundamental problem in statistics,
machine learning, data mining, computer vision, clustering, metrology, and assembly
planning. Recently, the problem received considerable attention in the computational
geometry literature [1, 3, 5–8, 11, 13–15, 17–19]. The case of fitting a lower-dimensional
space is particularly important since it can be used to minimize the effects of the curse
of dimensionality when the points have low intrinsic dimension.

A widely used measure of how well a shape S fits a set P of n points in d-dimensional
space is maxp∈P mins∈S ‖ps‖, the maximum Euclidean distance between any point p ∈ P
and the shape S. Unfortunately, this measure is very sensitive to the presence of outliers.
In this paper, we consider a more robust measure in the presence of n−m outliers and
m inliers. The measure consists of minimizing the following cost function: given a
parameter m ≤ n, the cost is the m-th smallest distance between a point in P and the
shape S.

Our results. We consider an approximation to the case when S is a k-flat, for a
given value of k ∈ {0, . . . , d − 1}. We show that, for an arbitrary ε > 0, we can find

∗Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, Brazil, fon-
seca@uniriotec.br. Research supported by FAPERJ grant E26-110.091/2010 and CNPq/FAPERJ grant
E26-110.552/2010.

1

in Oε(nk+2/m) time1 a k-flat S with cost at most 1 + ε times the optimum. We refer
to this problem as flat fitting. We assume that the dimensions k, d are constants, but
1/ε is an asymptotic quantity. It is noteworthy that the complexity depends only on
the target dimension k, regardless of the dimension d of the point set. Our algorithm
is Monte Carlo, but can be made deterministic at the expense of an O(m) factor in the
running time.

In the most interesting case when m is a constant fraction of n, the running time
of our Monte Carlo algorithm is Oε(nk+1). While our upper bound is close to the
Ω(nk) lower bound, the algorithm is still super-linear for k ≥ 1. Algorithms for robust
estimators that benefit from well-behaved sets of inlier are presented in [17, 18], and
evidence that some practical data sets resemble to points uniformly distributed on a
lower dimensional flat is suggested in [16]. Informally, we say that the set of inliers is
outer-dense if any halfspace with normal vector v that contains 1/4 of the width of the
point set in direction v also contains a constant fraction of the inliers. We show that, if
the set of inliers is outer-dense, then flat fitting can be solved in time Oε(nk+2/mk+1),
which is linear for m = Ω(n). Point sets uniformly distributed in a convex region or on
the boundary of a convex region are outer-dense with high probability. Consequently,
despite the high worst-case complexity of the problem, there is a feasible solution for
some practical large data sets.

Related work. The case of k = 0 corresponds to the well-studied problem of approx-
imating the smallest ball enclosing m points [8, 11, 13]. The first linear time solution
is presented in [13]. The ε-dependencies can be improved to an expected running time
of O(n/εd−1) by using techniques from [4, 8]. Existing algorithms for k = 0 rely on the
fact that balls are bounded fat objects and therefore these algorithms do not generalize
to larger values of k. An easier variation of the problem, where an inlier is known, is
used as a base case for our algorithm.

The case of k = d − 1 corresponds to approximating the narrowest slab enclosing
m points. In contrast to the linear complexity for k = 0, the most efficient solu-
tion for k = d − 1 is a high probability Monte Carlo algorithm [7] with running time
O(nd(logO(1) 1

ε)/mε). Major improvements are unlikely, since there is a lower bound of
Ω((n −m)d−1 + (n/m)d) for obtaining a constant approximation [7], assuming a con-
jecture for the affine degeneracy problem holds. A related problem is the Least Median
of Squares (LMS) estimator, where the vertical distance is minimized, instead of the
Euclidean distance [3, 7]. Algorithms for k = d − 1 use point-hyperplane duality and
arrangements, and therefore cannot be generalized for other values of k.

The case of k = 1 corresponds to approximating the smallest infinite cylinder enclos-
ing m points, which is stated as an open problem by Har-Peled and Mazumdar [13]. A
linear time solution for arbitrary values of m is unlikely, since even the planar approxi-
mation problem is 3SUM-hard [12]. To see that, note that it is 3SUM-hard to decide if
there are three points on a line and that there is a planar cylinder of radius 0 enclosing
three points if and only if there are three points on a line.

While we know of no previous approximate algorithm for arbitrary k and d with run-
ning time polynomial in 1/ε, there are several relevant results for the flat fitting problem

1We use the Oε(·) notation to hide polynomial ε-dependencies.

2

under different assumptions. When the number n−m of outliers is small compared to n,
we can use the coreset framework to reduce the number of points to O((n−m)/ε(d−1)/2)
and then solve the problem for the reduced point set [1], using either exact algorithms
or our approximate algorithm. The case when d is an asymptotic variable is considered
in [14], where an algorithm with running time linear in d but exponential in 1/ε is pre-
sented. Approaches based on random sampling such as RANSAC [9] are widely used in
practice, but do not guarantee approximation with respect to the optimum.

The non-robust version of the problem (when m = n) is generally approximated
using coresets [6]. The case when d is an asymptotic variable is considered in [15].
When k = 0, it is well known that the non-robust exact version can be solved in O(n)
time. Exact solutions for other values of k are considerably less efficient, even in the
non-robust version. Chan [5] mentions an O(ndd/2e) algorithm for k = d − 1 and an
O(n2d−1+δ) algorithm for k = 1, where δ is an arbitrarily small constant. When k = 1
and d = 3, the problem can be solved in O(n4 logO(1) n) time [19].

The exact robust version seems even harder. A trivial solution takes O(n(d−k)(k+1)+2)
time, by counting the number of points for each potential set of up to (d− k)(k +1)+1
farthest inliers. When k = d−1, the problem can be solved in O(nd) expected time [3, 7],
improving the trivial solution by a factor of O(n2). When k = 0 and d = 2, the problem
can be solved in O(nm) time [13].

A lower bound of Ω((n−m)d−1 + (n/m)d) for obtaining a constant approximation
when k = d− 1 in presented in [7]. The lower bound is based on a conjecture that the
affine degeneracy problem in d-dimensional space requires Ω(nd) time. We can linearly
reduce the flat fitting problem with k = d − 1 to the flat fitting problem in higher
dimension d′ ≥ d and the same value of k. Therefore, the lower bound for k = d − 1
implies a lower bound of Ω((n−m)k+(n/m)k+1) for arbitrary k. In the most interesting
case when m is a constant fraction of n, the lower bound is Ω(nk) and we present an
upper bound of O(nk+1).

In Section 2, we present approximate algorithms for the flat fitting problem: a
Monte Carlo algorithm with running time Oε(nk+2/m) and a deterministic algorithm
with running time Oε(nk+2). In Section 3, we show how to reduce the running time
of the Monte Carlo algorithm to Oε(nk+2/mk+1) for some sets of inliers. Concluding
remarks and open problems are discussed in Section 4.

2 Approximate Algorithm

The general idea of the algorithm is the following.

1. Find a set of vectors V that contains a vector that is approximately parallel to
the best fitting flat.

2. For each vector v ∈ V , project the points onto a hyperplane perpendicular to v.

3. Recursively solve a lower dimensional problems, returning the best solution found,
and using k = 0 as a base case.

We start by providing some definitions, illustrated in Figure 1(a).

3

ck,d(P)

v
θv

Sk,d(P)

v′

hv′(P
′)

ck−1,d−1(P|v)

(a)

v′
θv

v ck,d(P) cos θv

hv′(P
′) sin θv

2

ck,d(P)

t

hv′(P
′)

2

(b)

Figure 1: (a) Diagram of definitions. The m = 10 inliers are represented by solid circles.
(b) Figure for the proof of Lemma 2.1.

Let Sk,d(P) and ck,d(P) respectively denote the optimal k-flat for point set P in
d-dimensional space and its cost. We refer to the m points P ′ ⊆ P within distance
ck,d(P) of Sk,d(P) as inliers. Given a d-dimensional set of points P and a vector v, let
P|v denote a (d− 1)-dimensional point set obtained by projecting P onto a hyperplane
perpendicular to v. Given a vector v let v′ be the unit length projection of v onto
the optimal flat Sk,d(P), hv′(P ′) = maxp∈P ′ v′ · p − minp∈P ′ v′ · p be the directional
width in direction v′ of the inliers, and θv be the acute angle between v and v′. The
following lemma shows how to use the solution of a lower dimensional problem in order
to approximate the original problem.

Lemma 2.1. For any vector v we have

ck,d(P) ≤ ck−1,d−1(P|v) ≤ ck,d(P) + hv′(P ′) θv/2.

Proof. To see that ck,d(P) ≤ ck−1,d−1(P|v), note that a (k−1)-flat in (d−1)-dimensional
space can be extended in direction v creating a k-flat in d-dimensional space with the
same cost.

We now show that ck−1,d−1(P|v) ≤ ck,d(P) + hv′(P ′)θv/2. Let t the midpoint of the
projection of the segment that defines hv′(P ′) onto Sk,d(P) and let S′ denote the (k−1)-
flat obtained by intersecting Sk,d(P) with the hyperplane perpendicular to v that passes
through t. The distance between S′ and P ′

|v is at most ck,d(P) cos θv +hv′(P ′) sin θv/2 ≤
ck,d(P) + hv′(P ′)θv/2 (Figure 1(b)).

By Lemma 2.1, it is possible to obtain a constant approximation by finding a vector
v with angle

θv ≤
ck,d(P)
hv′(P ′)

and recursively solving the lower dimensional problem. Instead of explicitly finding such
vector v, our algorithm builds a set V that contains the desired vector and recursively
solves the problem for all v ∈ V . The solution of minimum cost found is therefore a
valid approximation. The following lemma is the key to obtain the set of vectors V .

4

2ck,d(P)

hv′(P
′)

v ||v||
θv

≤ hv′(P
′)

≤ 2ck,d(P)

p

q

v′

≥ hv′(P
′)/2

q

p

q′

Figure 2: Proof of Lemma 2.2.

Lemma 2.2. For every inlier p ∈ P ′, there is an inlier q ∈ P ′ such that the vector
v = q − p has

θv ≤
4ck,d(P)
hv′(P ′)

and
hv′(P ′)

2
≤ ‖v‖ ≤ 2ck,d(P) + hv′(P ′).

Proof. Consider the inlier q ∈ P ′ that is farthest from p with distances measured be-
tween their projections onto the optimal flat. In other words, q is the inlier that max-
imizes |v′ · p − v′ · q| (see Figure 2). Let q′ denote the projection of q onto the line
that passes through p in direction v′. It follows that hv′(P ′)/2 ≤ ‖pq′‖ ≤ hv′(P ′) and
‖qq′‖ ≤ 2ck,d(P). Consequently, hv′(P ′)/2 ≤ ‖v‖ = ‖pq‖ ≤ 2ck,d(P) + hv′(P ′). Also,
tan(θv) ≤ 4ck,d(P)/hv′(P ′). Since θv ≤ tan(θv), the lemma follows.

Finding an inlier. Before we apply the previous lemmas, we consider the problem
of finding a set that contains an inlier. In the deterministic version the set of all n
input points is guaranteed to contain an inlier. In the Monte Carlo version, we use the
following random sampling technique from [13] to find a set that contains an inlier with
constant probability. By definition, the set P contains m inliers. Therefore, a random
element of P is an inlier with probability m/n and a random sample of n/m elements
of P contains an inlier with probability at least 1− 1/e.

Base case. The base case for our algorithm consists of approximating the smallest
m-enclosing ball given an inlier p (a point inside the smallest m-enclosing ball). We
refer to the time complexity of the base case as t0,d. We start by presenting a simple
and practical algorithm to solve the problem in t0,d = O(n + m/εd) time.

1. Obtain a 2-approximation a of the optimum radius by finding the m-th farthest
point from p.

2. Create a set Q containing the Θ(m) points within distance 2a of p.

3. Consider a grid with cells of diameter εa. Compute the radius of the ball enclosing
m points from Q centered at each of the O(1/εd) grid vertices within distance a
from p, returning the smallest radius found.

5

Slightly better ε-dependencies can be obtained by using much more sophisticated
techniques. Using binary search and the algorithm from [8] for the decision version of the
problem, the running time becomes t0,d = O(n+m(log 1

ε)/εd−1) with high probability. If
we use Chan’s randomized optimization [4] instead of binary search, we obtain expected
running time t0,d = O(n + m/εd−1).

Alternatively, we can achieve expected running time t0,d = O(n + (logd+1 1
ε)/εd)

as follows. We reduce the decision problem to an absolute-model fixed-radius spherical
range searching data structure as in [11]. We then use the data structure with O(1) query
time from [2], preprocessed in O(n + (logd+1 1

ε)/εd) time by the recursive construction
from [10].

For simplicity, we use the slightly weaker bound of t0,d = O(n/εd) throughout the
paper.

Constant approximation. Before we address the (1+ ε)-approximation, we present
an algorithm that provides a constant factor approximation. The algorithm starts by
finding a set I of n/m points that contains an inlier with constant probability or, in
the deterministic version, a set of n points that is guaranteed to contain an inlier. For
each point p ∈ I, we repeat the following steps, which will be executed recursively.
For each point q ∈ P we obtain a vector v = q − p and project P onto a hyperplane
perpendicular to v. The problem is solved recursively with k ← k − 1, d ← d − 1,
and using the projection of p in place of p. The recursion stops by solving the problem
directly when k = 0.

The running time is the product of O(n) time for the base case, O(nk) time for the k
recursive calls, and O(n/m) for the set that contains an inlier (O(n) in the deterministic
version). Therefore the total running time is O(nk+2/m) in the Monte Carlo version and
O(nk+2) in the deterministic version. The fact that the algorithm provides a constant
factor approximation follows from Lemmas 2.1 and 2.2. Next we show how to reduce
the approximation factor to 1 + ε for arbitrarily small ε > 0.

(1 + ε)-approximation. By Lemma 2.1, if we project the points onto a hyperplane
perpendicular to a vector u such that

θu ≤
2ε′ck,d(P)
hu′(P ′)

= φ

at each iteration and solve the base case with approximation factor 1+ε′, then we obtain
a total approximation factor of (1 + ε′)k+1. Setting ε′ = (1 + ε)1/(k+1) − 1, we obtain
a (1 + ε)-approximation. Note that for ε < 1, we have ε′ > ε/2(k + 1), therefore the
asymptotic complexity remains the same. The (1+ε)-approximation algorithm is similar
to the constant approximation, except that for each vector considered in the constant
approximation, we also consider multiple vectors near the original vector. This way, we
obtain a set that contains a vector u with θu ≤ φ. Next, we describe how to find a set
that contains such vector u, given a vector v satisfying the properties of Lemma 2.2.

Consider a d-dimensional unit hypercube centered at the origin. We refer to the set
of vertices of a grid on each hypercube face as a (d− 1)-dimensional grid of directions.
If 4ck,d(P) ≥ hv′(P ′), then we obtain a set of size O(1/εd−k) containing a vector u with

6

θu ≤ φ in the following manner. The intersection of an arbitrary (d − k + 1)-flat F in
general position and the optimal flat Sk,d(P) is a line `. Using a (d−k)-dimensional grid
of directions in F , we create a set of O(1/εd−k) vectors that contain a vector u within
angle at most ε′/2 of `, and consequently has θu ≤ φ. In the following paragraph, we
focus on the more interesting case when 4ck,d(P) < hv′(P ′).

By Lemma 2.2, we have that ‖v‖ is a constant factor approximation of hv′(P ′). Us-
ing Lemma 2.1, we can recursively solve the (d− 1)-dimensional problem with point set
P|v in order to obtain a constant factor approximation to ck,d(P). Putting both approx-
imations together and using that θv ≤ 4ck,d(P)/hv′(P ′), we obtain a constant factor
upper bound to θv. Since 4ck,d(P) < hv′(P ′), we have that hv′(P ′) and consequently
‖v‖ are constant factor approximations to hu′(P ′). Therefore, we can also calculate a
constant factor approximation to ck,d(P)/hu′(P ′). The set of vectors is defined by a
grid of directions in (d− k + 1)-dimensional space as before, but using the fact that the
angle between v and u is upper bounded by the approximation of θv. We create a set of
O(1/εd−k) vectors that contain a vector u within angle at most φ of `, and consequently
has θu ≤ φ. The size of the set follows from the fact that we only need to consider
vectors within angle at most θv of `.

Let p ∈ P ′ be an inlier. By Lemma 2.2, the set V = {p − q : q ∈ P} of size O(n)
contains a vector satisfying the condition of Lemma 2.2. Therefore, we can obtain a set
U of size O(n/εd−k) that contains a vector u with θu ≤ φ. For each vector u ∈ U , we
project the points onto a hyperplane perpendicular to u and recursively solve the lower
dimensional problem. The running time tk,d of the flat fitting algorithm, given an inlier
is

tk,d =

{
O(n/εd−k)tk−1,d−1 if k > 0
t0,d = O(n/εd) if k = 0.

Consequently,

tk,d = O

(
nk

εk(d−k)

)
t0,d−k = O

(
nk+1

ε(k+1)(d−k)

)
.

Considering that a set of O(n/m) random points contain an inlier with constant prob-
ability and a set of all O(n) points is guaranteed to contain an inlier, we conclude with
the following theorem.

Theorem 2.3. There is a Monte Carlo algorithm to compute, with constant probability,
a (1 + ε)-approximation of the k-flat that best fits m out of n points in d-dimensional
space in time Oε(nk+2/m) and, showing ε-dependencies,

O

(
nk+1

mεk(d−k)

)
t0,d−k = O

(
nk+2

mε(k+1)(d−k)

)
.

There is also also a deterministic algorithm with running time Oε(nk+2) and, showing
ε-dependencies,

O

(
nk+1

εk(d−k)

)
t0,d−k = O

(
nk+2

ε(k+1)(d−k)

)
.

7

3 Outer-dense Inliers

In this section, we show that for many data sets a random pair of inliers define a vector
v satisfying the properties of Lemma 2.2 with constant probability. Consequently, we
obtain a Monte Carlo algorithm with running time Oε(nk+2/mk+1), which is linear
for m = Ω(n). The idea is that, in lemma 2.2, all we need is a pair of inliers that is
sufficiently far from each other. If there are many inliers clustered near the center of the
set, and few inliers near the extremes, randomly finding such pair is hard. On the other
hand, if the points are uniformly distributed or more concentrated near the extremes,
then the problem gets much easier.

We say that a halfspace H with normal vector v′ is deep if hv′(P ′ \H) ≤ 3hv′(P ′)/4.
For a constant α ≤ 1/2, we say that the set P ′ is α-outer-dense if any deep halfspace
H has |P ′ ∩H| ≥ α|P ′|. The set P ′ is outer-dense if there is a constant α such that P ′

is α-outer-dense (see Figures 3(a) and 3(b) for an intuitive idea). We believe that many
practical sets of inliers are outer-dense. For example, point sets uniformly distributed
in a convex region or on the boundary of a convex region are outer-dense with high
probability. The following lemma is analogous to Lemma 2.2 when the set P ′ is α-
outer-dense.

Lemma 3.1. If the inliers P ′ are α-outer-dense, then the vector v = q − p defined by
two random elements p, q ∈ P ′ has

θv ≤
4ck,d(P)
hv′(P ′)

and
hv′(P ′)

2
≤ ‖v‖ ≤ 2ck,d(P) + hv′(P ′)

with probability at least 2α2.

Proof. Consider two disjoint deep halfspaces H1,H2 with normal vector v′ such that v′ is
parallel to the optimal flat Sk,d(P) and each of H1 and H2 contain 1/4 of the directional
width in direction v′ (see Figure 3(c)). Since P ′ is outer-dense |P ′∩H1|, |P ′∩H2| ≥ α|P ′|.
Therefore, the probability that two random elements p, q ∈ P ′ are one in H1 and the
other in H2 is at least 2α2. The lemma then follows from the same arguments as in the
proof of Lemma 2.2.

Note that if a set of points is α-outer-dense, then the projection of the set onto
a (d − 1)-dimensional hyperplane is α-outer-dense in dimension d − 1. Therefore, we
obtain a Monte Carlo algorithm by sampling n/mα2 pairs of points at each step, and
then solving the lower dimensional problems. The following theorem presents this upper
bound.

Theorem 3.2. When the set of inliers is outer-dense, there is a Monte Carlo algorithm
to compute, with constant probability, a (1 + ε)-approximation of the k-flat that best
fits m out of n points in d-dimensional space in time Oε(nk+2/mk+1) and, showing
ε-dependencies,

O

(
nk+1

mk+1εk(d−k)

)
t0,d−k = O

(
nk+2

mk+1ε(k+1)(d−k)

)
.

8

hv′(P
′)

hv′(P
′)/4

(a)

hv′(P
′)

hv′(P
′)/4

(b)

2ck,d(P)

hv′(P
′)

4

v

p

q

hv′(P
′)

2

hv′(P
′)

4

H1

H2

v′

(c)

Figure 3: (a) Intuitive idea of an outer-dense set. (b) Intuitive idea of a set that is not
outer-dense. (c) Figure for the proof of Lemma 3.1.

4 Conclusions and Open Problems

We present an approximate algorithm to solve several natural problems such as the
smallest m-enclosing ball (k = 0), infinite cylinder (k = 1), and slab (k = d−1). Except
for the two extreme cases, we present the first solution for the flat fitting problem for
constant d. When m is a constant fraction of n, the gap between the lower bound and
our Monte Carlo upper bound of Oε(nk+1) is only Θ(n). While our upper bound is close
to the lower bound and does not depend on d, the algorithm is not efficient for large k.
Fortunately, if the set of inliers is outer-dense, then the problem becomes exceedingly
easier, with a linear time solution.

A related decision problem which may be useful to reduce the running time of our
Monte Carlo algorithm for general point sets by an Oε(n) factor is the following. Given
a set P of n points in d-dimensional space and an integer m ≤ n, determine if there
is a line ` that passes through the origin and is within distance 1 to m points of P .
The algorithm may give an approximate answer in the sense that points within distance
between 1 and 1 + ε may be counted either way. Except for the planar case, we know
of no near linear solution, nor do we know if the problem is 3SUM-hard.

References

[1] P. K. Agarwal, S. Har-Peled, and H. Yu. Robust shape fitting
via peeling and grating coresets. Discrete Comput. Geom. 39(1):38–
58, 2008, doi:10.1007/s00454-007-9013-2, http://valis.cs.uiuc.edu/~sariel/
papers/05/outliers_inc/outliers_inc.pdf.

[2] S. Arya, G. D. da Fonseca, and D. M. Mount. A unified approach to approximate
proximity searching. Proc. 18th Annu. Euro. Sympos. Algo. (ESA), p. to appear,
2010, http://www.uniriotec.br/~fonseca/proximity.pdf.

[3] T. Bernholt. Computing the least median of squares estimator in time
O(nd). Proc. Inter. Conf. Comput. Sci. Appl. (ICCSA), pp. 697–706,

9

http://dx.doi.org/10.1007/s00454-007-9013-2
http://valis.cs.uiuc.edu/~sariel/papers/05/outliers_inc/outliers_inc.pdf
http://valis.cs.uiuc.edu/~sariel/papers/05/outliers_inc/outliers_inc.pdf
http://www.uniriotec.br/~fonseca/proximity.pdf

2005, doi:10.1007/11424758 72, ls2-www.cs.uni-dortmund.de/.../Computing_
the_Least_Median_of_Squares_Estimator.pdf.

[4] T. M. Chan. Geometric applications of a randomized optimization technique.
Discrete Comput. Geom. 22(4):547–567, 1999, doi:10.1007/PL00009478, http:
//www.cs.uwaterloo.ca/~tmchan/rand.ps.gz.

[5] T. M. Chan. Approximating the diameter, width, smallest enclosing cylinder,
and minimum-width annulus. Internat. J. Comput. Geom. Appl. 12(1/2):67–85,
2002, doi:10.1142/S0218195902000748, http://www.cs.uwaterloo.ca/~tmchan/
apx.ps.gz.

[6] T. M. Chan. Faster core-set constructions and data-stream algorithms in fixed
dimensions. Comput. Geom. 35(1):20–35, 2006, doi:10.1016/j.comgeo.2005.10.002,
http://www.cs.uwaterloo.ca/~tmchan/core.ps.

[7] J. Erickson, S. Har-Peled, and D. M. Mount. On the least median square prob-
lem. Discrete Comput. Geom. 36(4):593–607, 2006, doi:10.1007/s00454-006-1267-6,
http://www.cs.umd.edu/~mount/Papers/dcg06-lms.pdf.

[8] C. M. H. de Figueiredo and G. D. da Fonseca. Enclosing weighted
points with an almost-unit ball. Inform. Process. Lett. 109:1216–1221,
2009, doi:10.1016/j.ipl.2009.09.001, http://www.uniriotec.br/~fonseca/
enclosing-IPL.pdf.

[9] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM 24(6):381–395, 1981, doi:10.1145/358669.358692.

[10] G. D. da Fonseca and D. M. Mount. Approximate range searching: The absolute
model. Comput. Geom. 43(4):434–444, 2010, doi:10.1016/j.comgeo.2008.09.009,
http://www.uniriotec.br/~fonseca/ARS-CGTA.pdf.

[11] S. Funke, T. Malamatos, and R. Ray. Finding planar regions in a terrain: in prac-
tice and with a guarantee. Internat. J. Comput. Geom. Appl. 15(4):379–401, 2005,
doi:10.1142/S0218195905001750, www.mpi-inf.mpg.de/~funke/Papers/SoCG04/
IJCGA-SoCG04.pdf.

[12] A. Gajentaan and M. H. Overmars. On a class of O(n2) problems in computational
geometry. Comput. Geom. 5(3):165–185, 1995, doi:10.1016/0925-7721(95)00022-2.

[13] S. Har-Peled and S. Mazumdar. Fast algorithms for computing the smallest k-
enclosing circle. Algorithmica 41(3):147–157, 2005, doi:10.1007/s00453-004-1123-0,
http://valis.cs.uiuc.edu/~sariel/papers/03/min_disk/min_disk.pdf.

[14] S. Har-Peled and K. R. Varadarajan. Projective clustering in high dimensions using
core-sets. Proc. 18th Annu. ACM Sympos. Comput. Geom. (SoCG), pp. 312–318,
2002, doi:10.1145/513400.513440, http://valis.cs.uiuc.edu/~sariel/papers/
01/kflat/kflat.pdf.

10

http://dx.doi.org/10.1007/11424758_72
ls2-www.cs.uni-dortmund.de/.../Computing_the_Least_Median_of_Squares_Estimator.pdf
ls2-www.cs.uni-dortmund.de/.../Computing_the_Least_Median_of_Squares_Estimator.pdf
http://dx.doi.org/10.1007/PL00009478
http://www.cs.uwaterloo.ca/~tmchan/rand.ps.gz
http://www.cs.uwaterloo.ca/~tmchan/rand.ps.gz
http://dx.doi.org/10.1142/S0218195902000748
http://www.cs.uwaterloo.ca/~tmchan/apx.ps.gz
http://www.cs.uwaterloo.ca/~tmchan/apx.ps.gz
http://dx.doi.org/10.1016/j.comgeo.2005.10.002
http://www.cs.uwaterloo.ca/~tmchan/core.ps
http://dx.doi.org/10.1007/s00454-006-1267-6
http://www.cs.umd.edu/~mount/Papers/dcg06-lms.pdf
http://dx.doi.org/10.1016/j.ipl.2009.09.001
http://www.uniriotec.br/~fonseca/enclosing-IPL.pdf
http://www.uniriotec.br/~fonseca/enclosing-IPL.pdf
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1016/j.comgeo.2008.09.009
http://www.uniriotec.br/~fonseca/ARS-CGTA.pdf
http://dx.doi.org/10.1142/S0218195905001750
www.mpi-inf.mpg.de/~funke/Papers/SoCG04/IJCGA-SoCG04.pdf
www.mpi-inf.mpg.de/~funke/Papers/SoCG04/IJCGA-SoCG04.pdf
http://dx.doi.org/10.1016/0925-7721(95)00022-2
http://dx.doi.org/10.1007/s00453-004-1123-0
http://valis.cs.uiuc.edu/~sariel/papers/03/min_disk/min_disk.pdf
http://dx.doi.org/10.1145/513400.513440
http://valis.cs.uiuc.edu/~sariel/papers/01/kflat/kflat.pdf
http://valis.cs.uiuc.edu/~sariel/papers/01/kflat/kflat.pdf

[15] S. Har-Peled and K. R. Varadarajan. High-dimensional shape fitting in linear
time. Discrete Comput. Geom. 32(2):269–288, 2004, doi:10.1007/s00454-004-1118-
2, http://valis.cs.uiuc.edu/~sariel/papers/02/pcluster/pcluster.pdf.

[16] S. Maneewongvatana and D. M. Mount. On the efficiency of nearest neighbor
searching with data clustered in lower dimensions. Proc. Inter. Conf. Comput. Sci.
(ICCS), pp. 842–851, 2001.

[17] D. M. Mount, N. S. Netanyahu, C. D. Piatko, and R. Silverman. A practical
approximation algorithm for the LTS estimator. in preparation.

[18] D. M. Mount, N. S. Netanyahu, K. Romanik, R. Silverman, and A. Y. Wu. A
practical approximation algorithm for the LMS line estimator. Comput. Stat. Data
Anal. 51(5):2461–2486, 2007, doi:10.1016/j.csda.2006.08.033, http://www.cs.umd.
edu/~mount/Papers/csda07-alms.pdf.

[19] E. Schömer, J. Sellen, M. Teichmann, and C. Yap. Smallest enclosing cylin-
ders. Algorithmica 27(2):170–186, 2000, www.staff.uni-mainz.de/schoemer/
publications/SEC.pdf.

11

http://dx.doi.org/10.1007/s00454-004-1118-2
http://dx.doi.org/10.1007/s00454-004-1118-2
http://valis.cs.uiuc.edu/~sariel/papers/02/pcluster/pcluster.pdf
http://dx.doi.org/10.1016/j.csda.2006.08.033
http://www.cs.umd.edu/~mount/Papers/csda07-alms.pdf
http://www.cs.umd.edu/~mount/Papers/csda07-alms.pdf
www.staff.uni-mainz.de/schoemer/publications/SEC.pdf
www.staff.uni-mainz.de/schoemer/publications/SEC.pdf

	Introduction
	Approximate Algorithm
	Outer-dense Inliers
	Conclusions and Open Problems

