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Abstract

Coverings of convex bodies have emerged as a central component in the design of efficient
solutions to approximation problems involving convex bodies. Intuitively, given a convex body
K and ε > 0, a covering is a collection of convex bodies whose union covers K such that a
constant factor expansion of each body lies within an ε expansion of K. Coverings have been
employed in many applications, such as approximations for diameter, width, and ε-kernels of
point sets, approximate nearest neighbor searching, polytope approximations with low combi-
natorial complexity, and approximations to the Closest Vector Problem (CVP).

It is known how to construct coverings of size nO(n)/ε(n−1)/2 for general convex bodies in
Rn. In special cases, such as when the convex body is the `p unit ball, this bound has been
improved to 2O(n)/ε(n−1)/2. This raises the question of whether such a bound generally holds.
In this paper we answer the question in the affirmative.

We demonstrate the power and versatility of our coverings by applying them to the problem
of approximating a convex body by a polytope, where the error is measured through the Banach-
Mazur metric. Given a well-centered convex body K and an approximation parameter ε > 0,
we show that there exists a polytope P consisting of 2O(n)/ε(n−1)/2 vertices (facets) such that
K ⊂ P ⊂ K(1 +ε). This bound is optimal in the worst case up to factors of 2O(n). (This bound
has been established recently using different techniques, but our approach is arguably simpler
and more elegant.) As an additional consequence, we obtain the fastest (1 + ε)-approximate
CVP algorithm that works in any norm, with a running time of 2O(n)/ε(n−1)/2 up to polynomial
factors in the input size, and we obtain the fastest (1 + ε)-approximation algorithm for integer
programming. We also present a framework for constructing coverings of optimal size for any
convex body (up to factors of 2O(n)).

∗An earlier version of this paper appeared in the Proceedings of the 2023 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 1834–1861, 2023.
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1 Introduction

Convex bodies are of fundamental importance in mathematics and computer science, and given the
high complexity of exact representations, concise approximate representations are essential to many
applications. There are a number of ways to define the distance between two convex bodies (see,
e.g., [20]), and each gives rise to a different notion of approximation. While Hausdorff distance
is commonly studied, it is not sensitive to the shape of the convex body. In this paper we will
consider a common linear-invariant distance, called the Banach-Mazur distance.

Given two convex bodies X and Y in real n-dimensional space, Rn, both of which contain the
origin in their interiors, their Banach-Mazur distance, denoted distBM(X,Y ), is defined to be the
minimum value of lnλ such that there exists a linear transformation T such that TX ⊆ Y ⊆ λ ·TX.
Given δ > 0, we say that Y is an Banach-Mazur δ-approximation of X if distBM(X,Y ) ≤ δ. T
will be the identity transformation in our constructions, and thus, given a convex body K in
Rn and ε > 0, we seek a convex polytope P such that K ⊆ P ⊆ (1 + ε)K. This implies that
distBM (K,P ) ≤ ln(1 + ε), which is approximately ε for small ε. The scaling is taking place about
the origin, and it is standard practice to assume that K is well-centered in the sense that the origin
lies within K and is not too close to K’s boundary. (See Section 2.2 for the formal definition.)
Unlike Hausdorff, the Banach-Mazur measure has the desirable property of being sensitive to K’s
shape, being more accurate where K is narrower and less accurate where K is wider.

The principal question is, given n and ε > 0, what is the minimum number of vertices (or facets)
needed to ε-approximate any convex body K in Rn by a polytope in the above sense. This problem
has been well studied. Existing bounds hold under the assumption that K is well-centered. We say
that a bound is nonuniform if it holds for all ε ≤ ε0, where ε0 depends on K. Typical nonuniform
bounds assume that K is smooth, and the value of ε0 depends on K’s smoothness. Our focus will
be on uniform bounds, where ε0 does not depend on K.

Dudley [28] and Bronshtein and Ivanov [23] provided uniform bounds in the Hausdorff context,
but their results can be recast under Banach-Mazur, where they imply the existence of an ap-
proximating polytope with nO(n)/ε(n−1)/2 vertices (facets). For smooth convex bodies, Böröczky
[20, 38] established a nonuniform bound of 2O(n)/ε(n−1)/2. Barvinok [17] improved the bound in
the uniform setting for symmetric convex bodies. Ignoring a factor that is polylogarithmic in 1/ε,
his bound is 2O(n)/εn/2. Finally, Naszódi, Nazarov, and Ryabogin obtained a worst-case optimal
approximation of size 2O(n)/ε(n−1)/2 [52]. Their bound is uniform and holds for general convex
bodies.

The main result of this paper is an alternative asymptotically optimal construction of an ε-
approximation of a convex body K in Rn in the Banach-Mazur setting. Our construction is superior
to that of [52] in two ways. First, while the construction presented in [52] is very clever, it involves
the combination of a number of technical elements (transforming the body to standard position,
rounding it, computing a Bronshteın-Ivanov net, and filtering to reduce the sample size). In con-
trast, ours is quite simple. We employ a greedy process that samples points from K’s interior, and
the final approximation is just the convex hull of these points. Second, our construction is more
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powerful in that it provides an additional covering structure for K. Each sample point is associated
with a centrally symmetric convex body, and together these bodies form a cover of K such that
their union lies within the expansion (1+ε)K. As a direct consequence of this additional structure,
we obtain the fastest approximation algorithm to date for the closest vector problem (CVP) that
operates in any norm.

1.1 Our Results

Throughout, we assume that K is a full-dimensional convex body in Rn, which is well-centered
about the origin. There are a number of notions of centrality that suffice for our purposes (see
Section 2.2 for formal definitions). Our first result involves the existence of concise coverings. Given
a convex body K that contains the origin in its interior and reals c ≥ 1 and ε > 0, a (c, ε)-covering
of K is a collection Q of bodies whose union covers K such that a factor-c expansion of each Q ∈ Q
about its centroid lies within (1+ε)K (see Figure 1). Coverings have emerged as an important tool
in convex approximation. They have been applied to several problems in the field of computational
geometry, including combinatorial complexity [6, 8, 10], approximate nearest neighbor searching [9],
and computing the diameter and ε-kernels [7].

O

(1 + ε)K

K

Figure 1: A (2, ε)-covering.

Given a convex body in Rn, constant c ≥ 1 and parameter ε > 0, what is the minimum size of a
(c, ε)-covering as a function of n and ε? Abdelkader and Mount considered the problem in spaces
of constant dimension [1]. They did not analyze their bounds for the high-dimensional case, but
based on results from [9], it can be shown that their results yield an upper bound of nO(n)/ε(n−1)/2

in Rn. A number of special cases have been explored in the high dimensional case. Naszódi and
Venzin demonstrated the existence of (2, ε)-coverings of size 2O(n)/εn/2 when K is an `p ball for
any fixed p ≥ 2 [53]. For the `∞ ball, Eisenbrand, Hähnle, and Niemeier showed the existence
of (2, ε)-coverings of size 2O(n)/ logn(1/ε), consisting of axis-parallel rectangles [32]. They also
presented a nearly matching lower bound of 2−O(n)/ logn(1/ε), even when the covering consisted of
parallelepipeds.

In this paper we establish the following bound on the size of (c, ε)-coverings, which holds for any
well-centered convex body in Rn.

Theorem 1. Let 0 < ε ≤ 1 be a real parameter and c ≥ 2 be a constant. Let K ⊆ Rn be a well-
centered convex body. Then there is a (c, ε)-covering for K consisting of at most 2O(n)/ε(n−1)/2

centrally symmetric convex bodies.

It is not difficult to prove a lower bound of 2−O(n)/ε(n−1)/2 on the size of any (2, ε)-covering for
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Euclidean balls (see, e.g., Naszódi and Venzin [53]). Therefore, the above bound is optimal with
respect to ε-dependencies. In Section 4.1 (Theorem 4), we prove that for any constant c ≥ 2,
our construction is in fact instance optimal to within a factor of 2O(n). This means that for any
well-centered convex body K, our covering exceeds the size of any (c, ε)-covering for K by such a
factor. In Section 6.2, we present a randomized algorithm that constructs a slightly larger covering
(by a factor of log(1/ε)). Following standard convention, our constructions assume that access to
K is provided by a weak membership oracle (defined in Section 6).

We present a number of applications of this result. First, in Section 5 we show that the convex
hull of the center points of the covering elements yields an approximation in the Banach-Mazur
metric.

Theorem 2. Given a well-centered convex body K and an approximation parameter ε > 0, there
exists a polytope P consisting of 2O(n)/ε(n−1)/2 vertices (facets) such that K ⊂ P ⊂ K(1 + ε).

There are also applications to lattice problems. In the Closest Vector Problem (CVP), an n-
dimensional lattice L in Rn is given (that is, the set of integer linear combinations of n basis
vectors) together with a target vector t ∈ Rn. The problem is to return a vector in L closest
to t under some given norm. This problem has applications to cryptography [41, 55, 56], integer
programming [25, 26, 45], and factoring polynomials over the rationals [44], among several other
problems. The problem is NP-hard for any `p norm [34] and cannot be solved exactly in 2(1−γ)n

time for constant γ > 0, under certain conditional hardness assumptions [18].

This problem has a considerable history. The first solution proposed to the CVP under the `∞
norm takes 2O(n3) time through integer linear programming [45], which was later improved to
nO(n) [42]. For the `2 norm, Micciancio and Voulgaris presented an algorithm that runs in single
exponential 2O(n) time [49], and currently the fastest algorithm for exact Euclidean CVP is by
Aggarwal, Dadush, and Stephens-Davidowitz [3] and runs in 2n+o(n) time. However, solving the
CVP problem exactly in single exponential time for norms other than Euclidean remains an open
problem. (For additional information, see [40].) Dadush, Peikert, and Vempala [26] considered
CVP and the related Shortest Vector Problem (SVP) in the context of (possibly asymmetric) norms
defined by convex bodies. Their work demonstrated a rich connection between lattice algorithms
and convex geometry.

In the approximate version of the CVP problem, denoted (1+ε)-CVP, we are also given a parameter
ε > 0, and the goal is to find a lattice vector whose distance to t is at most 1+ε times the optimum.
CVP is NP-hard to approximate [5, 27] and conditional hardness results show that for p ≥ 1 CVP
in `p is hard to approximate in 2(1−γ)n time for constant γ > 0, except when p is even [2].

The randomized sieving approach of Ajtai, Kumar, and Sivakumar [4] was extended to approximate
CVP for `p norms by Blömer and Naewe [19] and to the general case of well-centered norms by
Dadush [24]. These algorithms run in time and space 2O(n)/ε2n. Building on the Voronoi cell
approach [26, 49], Dadush and Kun [25] presented deterministic algorithms that improved the
running time to 2O(n)/εn and space to Õ(2n).

Eisenbrand, Hähnle, and Niemeier [32] and Naszódi and Venzin [53] have explored the use of
(c, ε)-coverings of the unit ball in the norm to obtain efficient algorithms for approximate CVP by
“boosting” a weak constant-factor approximation to a strong (1 + ε)-approximation. By exploiting
the unique properties of hypercubes, Eisenbrand et al. [32] improved the running time for the `∞
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norm to 2O(n) logn(1/ε) time. Naszódi and Venzin [53] extended this approach to `p norms. The
running time of their algorithm is 2O(n)/εn/2 for p ≥ 2 and 2O(n)/εn/p for 1 ≤ p ≤ 2. The constants
in the 2O(n) term in the running time depend on p.

By applying our covering within existing algorithms, we obtain the fastest algorithm to date for
(1 + ε)-approximate CVP that operates in any norm. The algorithm is randomized and runs in
single exponential time, 2O(n)/ε(n−1)/2. (Following standard practice, we ignore factors that are
polynomial in the input size.) The result is stated formally below.

Theorem 3. There is a randomized algorithm that, given any well-centered convex body K and
lattice L, solves the (1 + ε)-CVP problem in the norm defined by K, in 2O(n)/ε(n−1)/2-time and
O(2n)-space, with probability at least 1− 2−n.

Finally, through a reduction from approximate CVP to approximate integer programming (IP)
due to Dadush [24], we present a randomized algorithm for approximate IP (see Theorem 5 in
Section 6.3).

1.2 Techniques

As mentioned above, coverings are a powerful tool in obtaining efficient solutions to approximation
problems involving convex bodies. The fundamental problem tackled here involves the sizes of
(c, ε)-coverings for general convex bodies in Rn and especially the dependencies on ε. Our approach
employs a classical concept from convex geometry, called a Macbeath region [46]. Given a convex
body K and a point x ∈ K, the Macbeath region MK(x) is the largest centrally symmetric body
centered at x and contained in K (see Figure 2(a)). Macbeath regions have found numerous uses
in the theory of convex sets and the geometry of numbers (see Bárány [15] for an excellent survey).
They have also been applied to several problems in the field of computational geometry, including
lower bounds [12, 13, 22], combinatorial complexity [6, 8, 10, 29, 51], approximate nearest neighbor
searching [9], and computing the diameter and ε-kernels [7].

K

xMK(x)

K

(a) (b)

Kε = (1 + ε)K

x

MKε(x)

O
M

1/c
Kε

(x)

Figure 2: (a) A Macbeath region and (b) a covering element derived from a shrunken Macbeath
region.

In the context of (c, ε)-coverings, the obvious (and indeed maximal) choice for a covering element
centered at any point x is to take the Macbeath region centered at x with respect to the expanded
body Kε = (1 + ε)K, and then scale it by a factor of 1

c about x (see Figure 2(b)). The construction
and analysis of such Macbeath-based coverings is among the principal contributions of this paper.
In their work on the economical cap cover, Bárány and Larman observed how Macbeath regions
serve as an efficient agent for covering the region near the boundary of a convex body [16]. While
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Macbeath regions can be quite elongated, especially near the body’s boundary, they behave in
many respects like fixed-radius balls in a metric space. (Vernicos and Walsh proved that shrunken
Macbeath regions are similar in shape to fixed-radius balls in the Hilbert geometry induced by
K [1, 63].) This leads to a very simple covering construction based on computing a maximal set
of points such that the suitably shrunken Macbeath regions centered at these points are pairwise
disjoint. The covering is then constructed by uniformly increasing the scale factor so the resulting
Macbeath regions cover K.

Two challenges arise in implementing and analyzing this construction. The first is that of how to
compute these Macbeath regions efficiently. The second is proving that this simple construction
yields the desired bound on the size of the covering. A natural approach to the latter is a packing
argument based on volume considerations. Unfortunately, this fails because Macbeath regions may
have very small volume. Our approach for dealing with small Macbeath regions is to exploit a
Mahler-like reciprocal property in the volumes of the Macbeath regions in the original body K and
its polar, K∗ (see Section 2.2 for definitions). In the low-dimensional setting, the analysis exploits
a correspondence between caps in K and K∗, such that the volumes of these caps have a reciprocal
relationship (see, e.g., [6]). As a consequence, for each Macbeath region in K of small volume, there
is a Macbeath region in K∗ of large volume. Thus, by randomly sampling in both K and K∗, it is
possible to hit all the Macbeath regions.

Generalizing this to the high-dimensional setting involves overcoming a number of technical difficul-
ties. A straightforward generalization of the methods of [6] yields a covering of size nO(n)/ε(n−1)/2.
A critical step in the analysis involves relating the volumes of two (n−1)-dimensional convex bodies
that arise by projecting caps and dual caps. In earlier works, where the dimension was assumed to
be a constant, a crude bound sufficed. But in the high-dimensional setting, it is essential to avoid
factors that depend on the dimension. A key insight of this paper is that it is possible to avoid
these factors through the use of the difference body. (See Lemma 3.1 in Section 3.1.) Through the
use of this more refined geometric analysis, we establish this Mahler-like relationship in Sections 3
(particularly Lemmas 3.3 and 3.4). We apply this in Section 4.2 to obtain our bounds on the size
of the covering. In Section 5 we show how this leads to an ε-approximation in the Banach-Mazur
measure. The sampling process is described in Section 6 along with applications.

2 Preliminaries

In this section, we introduce terminology and notation, which will be used throughout the paper.
This section can be skipped on first reading (moving directly to Section 3).

2.1 Lengths and Measures

Given vectors u, v ∈ Rn, let 〈u, v〉 denote their dot product, and let ‖v‖ =
√
〈v, v〉 denote v’s

Euclidean length. Throughout, we will use the terms point and vector interchangeably. Given
points p, q ∈ Rn, let ‖pq‖ = ‖p − q‖ denote the Euclidean distance between them. Let vol(·) and
area(·) denote the n-dimensional and (n− 1)-dimensional Lebesgue measures, respectively.

Throughout, K ⊆ Rn will denote a full-dimensional compact convex body with the origin O in
its interior. Let ‖x‖K = inf{s ≥ 0 : x ∈ sK} denote K’s associated Minkowski functional, or
gauge function. If K is centrally symmetric, its gauge function defines a norm, but we will abuse
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notation and use the term “norm” even when K is not centrally symmetric. Given ε > 0, define
Kε = (1 + ε)K to be a uniform scaling of K by 1 + ε.

Given a convex body K ⊆ Rn, its difference body, denoted ∆(K), is defined to be the Minkowski
sum K ⊕ −K. The difference body is convex and centrally symmetric and satisfies the following
property.

Lemma 2.1 (Rogers and Shephard [57]). Given a convex body K ⊆ Rn, vol(∆(K)) ≤ 4n vol(K).

2.2 Polarity and Centrality Properties

Given a bounded convex body K ⊆ Rn that contains the origin O in its interior, define its polar,
denoted K∗, to be the convex set

K∗ = {u : 〈u, v〉 ≤ 1, for all v ∈ K}.

The polar enjoys many useful properties (see, e.g., Eggleston [31]). For example, it is well known
that K∗ is bounded and (K∗)∗ = K. Further, if K1 and K2 are two convex bodies both containing
the origin such that K1 ⊆ K2, then K∗2 ⊆ K∗1 .

Given a nonzero vector v ∈ Rn, we define its “polar” v∗ to be the hyperplane that is orthogonal to v
and at distance 1/‖v‖ from the origin, on the same side of the origin as v. The polar of a hyperplane
is defined as the inverse of this mapping. We may equivalently define K∗ as the intersection of the
closed halfspaces that contain the origin, bounded by the hyperplanes v∗, for all v ∈ K.

Given a convex body K ⊆ Rn, there are many ways to characterize the property that K is centered
about the origin [39, 61]. In this section we explore a few relevant measures of centrality.

First, define K’s Mahler volume to be the product vol(K) · vol(K∗). The Mahler volume is well
studied (see, e.g. [47, 59, 60]). It is invariant under linear transformations, and it depends on the
location of the origin within K. In the following definitions, any fixed constant may be used in the
O(n) term.

Santaló property: The Mahler volume of K is at most 2O(n) · ω2
n, where ωn denotes the volume

of the n-dimensional unit Euclidean ball (ωn = πn/2/Γ
(
n
2 + 1

)
).

Winternitz property: For any hyperplane passing through the origin, the ratio of the volume of
the portion of K on each side of the hyperplane to the volume of K is at least 2−O(n).

Kovner-Besicovitch property: The ratio of the volume of K ∩ −K to the volume of K is at
least 2−O(n).

Following Dadush, Peikert, and Vempala [26], we say that K is well-centered if it satisfies the
Kovner-Besicovitch property. Generally, K is well-centered about a point x if K − x is well-
centered. For our purposes, however, any of the above can be used, as shown in the following
lemma.

Lemma 2.2. The three centrality properties (Santaló, Winternitz, and Kovner-Besicovitch) are
equivalent in the sense that a convex body K ⊆ Rn that satisfies any one of them satisfies the other
two subject to a change in the 2O(n) factor. Further, if the origin coincides with K’s centroid, these
properties are all satisfied.
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Let us first introduce some notation. Given a hyperplane h, let h+ and h− denote its two halfspaces.
Given 0 < δ < 1

2 , let h be a hyperplane that intersects K such that vol(K∩h+) = δ ·vol(K). Define
the δ-floating body, denoted Kδ, to be the intersection of halfspaces h− for all such hyperplanes h.
For t > 0, define the t-Santaló region S(K, t) ⊆ K to be the set of points x ∈ K such that the Mahler
volume of K with respect to x is at most t ω2

n, where ωn denotes the volume of the n-dimensional
unit Euclidean ball. Both the floating body and the Santaló region (when nonempty) are convex
subsets of K, and Meyer and Werner showed that they satisfy the following property.

Lemma 2.3 (Meyer and Werner [48]). For all 0 < δ < 1
2 , Kδ ⊆ S(K, t), where t = 1/(4δ(1− δ)).

We also need the following result by Milman and Pajor [50] (Remark 4 following Corollary 3),
which implies that if K satisfies Santaló, then it satisfies Kovner-Besicovitch.

Lemma 2.4 (Milman and Pajor [50]). Let K be a convex body with the origin O in its interior
such that vol(K) ·vol(K∗) ≤ sw2

n, where s is a parameter. Then vol(K ∩−K)/ vol(K) ≥ 2−O(n)/s.

We are now ready to prove Lemma 2.2.

Proof. (of Lemma 2.2) First, suppose that K satisfies Kovner-Besicovitch, that is, vol(K ∩−K) ≥
2−O(n) · vol(K). Consider any hyperplane h passing through the origin. As K ∩ −K is centrally
symmetric, half of this body lies on each side of h. Thus, the volume of the portion of K on either
side of h is at least 2−O(n) · vol(K), and so K satisfies the Winternitz property.

Next, suppose that K satisfies Winternitz. Observe that any point outside the floating body Kδ

is contained in a halfspace h+ such that vol(K ∩ h+) ≤ δ · vol(K). By Winternitz, all halfspaces
containing the origin have volume at least 2−O(n) ·vol(K), and so the origin is contained within the
floating body Kδ for δ = 2−O(n). It follows from Lemma 2.3 that the origin lies within the Santaló
region S(K, t) for some t = 2O(n). Thus, K satisfies the Santaló property.

Finally, ifK satisfies Santaló, then it follows from Lemma 2.4 that it satisfies the Kovner-Besicovitch
property. This establishes the equivalence of the three centrality properties.

Milman and Pajor [50] (Corollary 3) showed that if the origin coincides with K’s centroid, then K
satisfies Kovner-Besicovitch, implying that it satisfies the other properties as well.

Lower bounds on the Mahler volume have also been extensively studied [21, 43, 54]. Recalling the
value of ωn from the Santaló property, the following lower bound holds irrespective of the location
of the origin within a convex body [21].

Lemma 2.5. Given a convex body K ⊆ Rn whose interior contains the origin, vol(K) · vol(K∗) ≥
2−O(n) · ω2

n.

2.3 Caps, Rays, and Relative Measures

Consider a compact convex body K in n-dimensional space Rn with the origin O in its interior. A
cap C of K is defined to be the nonempty intersection of K with a halfspace. Letting h1 denote
a hyperplane that does not pass through the origin, let capK(h1) denote the cap resulting by
intersecting K with the halfspace bounded by h1 that does not contain the origin (see Figure 3(a)).
Define the base of C, denoted base(C), to be h1 ∩K. Letting h0 denote a supporting hyperplane
for K and C parallel to h1, define an apex of C to be any point of h0 ∩K.
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K K∗

O O

h1h0

p1 p0

h∗
1

p∗0

p∗1p2

p∗2h∗
2

h2

C base(C)

(a) (b)

h∗
0

Figure 3: Convex body K and polar K∗ with definitions used for width and ray.

We define the absolute width of cap C to be dist(h1, h0). When a cap does not contain the ori-
gin, it will be convenient to define the relative width of C, denoted widK(C), to be the ratio
dist(h1, h0)/ dist(O, h0). We extend the notion of width to hyperplanes by defining widK(h1) =
widK(capK(h1)). Observe that as a hyperplane is translated from a supporting hyperplane to the
origin, the relative width of its cap ranges from 0 to a limiting value of 1.

We also characterize the closeness of a point to the boundary in both absolute and relative terms.
Given a point p1 ∈ K, let p0 denote the point of intersection of the ray Op1 with the boundary
of K. Define the absolute ray distance of p1 to be ‖p1p0‖, and define the relative ray distance of
p1, denoted rayK(p1), to be the ratio ‖p1p0‖/‖Op0‖. Relative widths and relative ray distances are
both affine invariants, and unless otherwise specified, references to widths and ray distances will
be understood to be in the relative sense.

We can also define volumes in a manner that is affine invariant. Recall that vol(·) denotes the
standard Lebesgue volume measure. For any region Λ ⊆ K, define the relative volume of Λ with
respect to K, denoted volK(Λ), to be vol(Λ)/ vol(K).

With the aid of the polar transformation we can extend the concepts of width and ray distance to
objects lying outside of K. Consider a hyperplane h2 parallel to h1 that lies beyond the supporting
hyperplane h0 (see Figure 3(a)). It follows that h∗2 ∈ K∗, and we define widK(h2) = rayK∗(h

∗
2) (see

Figure 3(b)). Similarly, for a point p2 /∈ K that lies along the ray Op1, it follows that the hyperplane
p∗2 intersects K∗, and we define rayK(p2) = widK∗(p

∗
2). By properties of the polar transformation,

it is easy to see that widK(h2) = dist(h0, h2)/ dist(O, h2). Similarly, rayK(p2) = ‖p0p2‖/‖Op2‖.
Henceforth, we will omit references to K when it is clear from context.

Some of our results apply only when we are sufficiently close to the boundary ofK. Given 0 ≤ α ≤ 1,
we say that a cap C is α-shallow if wid(C) ≤ α, and we say that a point p is α-shallow if ray(p) ≤ α.
We will simply say shallow to mean α-shallow, where α is a sufficiently small constant.

Given any cap C and a real λ > 0, we define its λ-expansion, denoted Cλ, to be the cap of K cut
by a hyperplane parallel to the base of C such that the absolute width of Cλ is λ times the absolute
width of C. (Note that if the expansion of a cap is large enough it may be the same as K.)

We now present a number of useful technical results on ray distances and cap widths in both their
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absolute and relative forms.

Lemma 2.6. Let C be a cap of K that does not contain the origin and let p be a point in C. Then
ray(p) ≤ wid(C).

Proof. Let h be the hyperplane passing through the base of C, and let h0 be the supporting
hyperplane of K parallel to h at C’s apex. Let q, p0, and q0 denote the points of intersection of the
ray Op with h, ∂K, and h0, respectively. Since p ∈ C, the order of these points along the ray is
〈O, q, p, p0, q0〉. By considering the hyperplanes parallel to h passing through these points, we have

ray(p) =
‖pp0‖
‖Op0‖

≤ ‖qp0‖
‖Op0‖

≤ ‖qp0‖+ ‖p0q0‖
‖Op0‖+ ‖p0q0‖

=
‖qq0‖
‖Oq0‖

=
dist(h, h0)

dist(O, h0)
= wid(C).

There are two natural ways to associate a cap with any point p ∈ K. The first is the minimum
volume cap, which is any cap whose base passes through p of minimum volume among all such caps.
For the second, assume that p 6= O, and let p0 denote the point of intersection of the ray Op with
the boundary of K. Let h0 be any supporting hyperplane of K at p0. Take the cap C induced by
a hyperplane parallel to h0 passing through p. As shown in the following lemma this is the cap of
minimum width containing p.

Lemma 2.7. For any p ∈ K \ {O}, consider the cap C defined above. Then wid(C) = ray(p) and
further, C has the minimum width over all caps that contain p.

Proof. Let h denote the hyperplane passing through p parallel to h0 (defined above). By similar
triangles, we have

wid(C) =
dist(h, h0)

dist(O, h0)
=
‖pp0‖
‖Op0‖

= ray(p).

By Lemma 2.6, for any cap C ′ that contains p, ray(p) ≤ wid(C ′), and hence wid(C) ≤ wid(C ′).

The following lemma gives a simple lower and upper bound on the absolute volume of a cap.

Lemma 2.8. Let C be a 1
2 -shallow cap, let a = area(base(C)), and let w denote C’s absolute width.

Then aw/n ≤ vol(C) ≤ 2n−1aw.

Proof. Let p be the apex of C and base(C) denote its base. Let P = conv(base(C)∪{p}). Clearly,
P ⊆ C and vol(P ) = aw/n, which yields the lower bound. To see the upper bound, observe that C
lies within the generalized infinite cone whose apex is O and base is base(C). Because wid(C) ≤ 1

2 ,
it follows that the area of any slice of C cut by a hyperplane parallel to base(C) exceeds the area
of base(C) by a factor of at most 2n−1. The upper bound follows from elementary geometry.

An easy consequence of convexity is that, for λ ≥ 1, Cλ is a subset of the region obtained by scaling
C by a factor of λ about its apex. This implies the following lemma.

Lemma 2.9. Given any cap C and a real λ ≥ 1, vol(Cλ) ≤ λn vol(C).

Another consequence of convexity is that containment of caps is preserved under expansion. This
is a straightforward adaptation of Lemma 4.4 in [8].

Lemma 2.10. Given two caps C1 ⊆ C2 and a real λ ≥ 1, Cλ1 ⊆ Cλ2 .
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The following lemma is a technical result, which shows that if a ray hits the interior of the base of
a cap of width at least ε, then it hits the interior of the base of a cap of width exactly ε that is
contained in the original.

Lemma 2.11. Let 0 < ε < 1, and let K ⊆ Rn be a convex body containing the origin in its
interior. Let r be a ray shot from the origin, and let D be a cap of K of width at least ε such that
ray r intersects the interior of its base. Then there exists a cap E ⊆ D of width ε such that ray r
intersects the interior of its base.

Proof. Let p be the point of intersection of ray r with the boundary of K. Let F ⊆ D be the cap
whose base passes through p and is parallel to the base of D. We now consider two cases.

If the width of cap F is less than ε, then we let E be the cap of width ε obtained by translating
the base of F parallel to itself (towards the base of D, as shown in Figure 4(a)). Clearly E ⊆ D
and satisfies the conditions specified in the lemma.

O K

r

O K

r

p
p

D

F
E

E
F

D

(a) (b)

uF up

Figure 4: Proof of Lemma 2.11.

Otherwise, if the width of cap F is at least ε, then intuitively, we can rotate its base about p
(shrinking cap F in the process), until its width is infinitesimally smaller than ε (Figure 4(b)).
More formally, let uF denote the normal vector for F ’s base and let up denote the (any) surface
normal vector to K at p (both unit length). Since p is on the boundary, the cap orthogonal to up
and passing through p has width zero. Since F has width at least ε, uF 6= up.

Considering the 2-dimensional linear subspace spanned by uF and up, we rotate continuously from
uF to up, and consider the hyperplane passing through p orthogonal to this vector. Clearly, the
width of the associated cap varies continuously from wid(F ) to zero. Thus, there must be an angle
where the cap width is infinitesimally smaller than ε. We can expand this cap by translating its
base parallel to itself to obtain a cap E of width ε, which satisfies all the conditions specified in
the lemma.

2.4 Dual Caps and Cones

It will be useful to consider the notion of a cap in a dual setting (see, e.g., [10, 11]). Given a convex
body K ⊆ Rn and a point z that is exterior to K, we define the dual cap of K with respect to z,
denoted dcapK(z), to be the set of (n − 1)-dimensional hyperplanes that pass through z and do
not intersect K’s interior (see Figure 5). In this paper, K will be either full dimensional or one
dimension less. We define the polar of a dual cap to be the set of points that results by taking the
polar of each hyperplane of the dual cap.

11



O O

z

z∗

K K∗

h
h∗

dcapK(z)
(dcapK(z))

∗

Figure 5: A dual cap and its polar.

Given z exterior to K, and consider the cap of K∗ induced by the hyperplane z∗. By standard
properties of the polar transformation, a hyperplane h ∈ dcapK(z) if and only if the point h∗ lies
on K∗ ∩ z∗. As an immediate consequence, we obtain the following relationship between caps and
dual caps.

Lemma 2.12. Let K ⊆ Rn be a full dimensional convex body that contains the origin and let
z 6∈ K. Then (dcapK(z))∗ = base(capK∗(z

∗)).

Another useful concept involves cones induced by external points. A convex body K and a point
z 6∈ K naturally define two infinite convex cones. The inner cone, denoted icone(K, z), is the
intersection of all the halfspaces that contain K whose bounding hyperplanes pass through z (see
Figure 11). Equivalently, icone(K, z) is the set of points p such that the ray zp intersects K. The
outer cone, denoted ocone(K, z), is defined analogously as the intersection of halfspaces passing
through z that do not contain any point of K (see Figure 6). It is easy to see that ocone(K, z)
is the reflection of icone(K, z) about z. The following lemma shows that membership in the outer
cone and containment of caps are related through duality.

O

z

K∗

O

z∗

u

u∗
ocone(K, z)

O

icone(K, z)

K

Figure 6: Inner and outer cones.

Lemma 2.13. Let K be a convex body with the origin O in its interior. Then u ∈ ocone(K, z) if
and only if capK∗(z

∗) ⊆ capK∗(u
∗).

Proof. By definition, u ∈ ocone(K, z) if and only if any hyperplane h that separates z from K
also separates u from K. Also, by standard properties of the polar transformation, a hyperplane
h separates z from K if and only if the point h∗ ∈ capK∗(z

∗). Similarly, hyperplane h separates u
from K if and only if the point h∗ ∈ capK∗(u

∗). Thus, the condition u ∈ ocone(K, z) is equivalent
to the condition capK∗(z

∗) ⊆ capK∗(u
∗).
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2.5 Macbeath Regions

Given a convex body K and a point x ∈ K, and a scaling factor λ > 0, the Macbeath region Mλ
K(x)

is defined as

Mλ
K(x) = x+ λ((K − x) ∩ (x−K)).

It is easy to see that M1
K(x) is the intersection of K with the reflection of K around x, and so

M1
K(x) is centrally symmetric about x. Indeed, it is the largest centrally symmetric body centered

at x and contained in K. Furthermore, Mλ
K(x) is a copy of M1

K(x) scaled by the factor λ about
the center x (see the right side of Figure 16). We will omit the subscript K when the convex body
is clear from the context. As a convenience, we define M(x) = M1(x).

We now present lemmas that encapsulate standard properties of Macbeath regions. The first
lemma implies that a (shrunken) Macbeath region can act as a proxy for any other (shrunken)
Macbeath region overlapping it [22, 35]. Our version uses different parameters and is proved in [9]
(Lemma 2.4).

Lemma 2.14. Let K be a convex body and let λ ≤ 1
5 be any real. If x, y ∈ K such that Mλ(x) ∩

Mλ(y) 6= ∅, then Mλ(y) ⊆M4λ(x).

The following lemmas are useful in situations when we know that a Macbeath region overlaps a
cap of K, and allow us to conclude that a constant factor expansion of the cap will fully contain
the Macbeath region. The first applies to shrunken Macbeath regions and the second to Macbeath
regions with any scaling factor. The proof of the first appears in [8] (Lemma 2.5), and the second
is an immediate consequence of the definition of Macbeath regions.

Lemma 2.15. Let K be a convex body. Let C be a cap of K and x be a point in K such that
C ∩M1/5(x) 6= ∅. Then M1/5(x) ⊆ C2.

Lemma 2.16. Let K be a convex body and λ > 0. If x is a point in a cap C of K, then Mλ(x)∩K ⊆
C1+λ.

Points in a shrunken Macbeath region are similar in many respects. For example, they have similar
ray distances.

Lemma 2.17. Let K be a convex body. If x is a 1
2 -shallow point in K and y ∈ M1/5(x), then

ray(x)/2 ≤ ray(y) ≤ 2 ray(x).

Proof. Let Cx denote the minimum width cap for x. By Lemma 2.7, wid(Cx) = ray(x). Also, by
Lemma 2.15, we have M1/5(x) ⊆ C2

x and so y ∈ C2
x. It follows from Lemma 2.6 that ray(y) ≤

wid(C2
x) = 2 wid(Cx). Thus ray(y) ≤ 2 ray(x), which proves the second inequality. To prove the

first inequality, note that this follows trivially unless ray(y) ≤ 1
4 (since ray(x) ≤ 1

2). If ray(y) ≤ 1
4 ,

consider the minimum width cap Cy for y. By Lemma 2.7, wid(Cy) = ray(y). Also, by Lemma 2.15,
we have M1/5(x) ⊆ C2

y and so x ∈ C2
y . It follows from Lemma 2.6 that ray(x) ≤ wid(C2

y ) =
2 wid(Cy). Thus ray(x) ≤ 2 ray(y), which completes the proof.

The remaining lemmas in this section relate caps with the associated Macbeath regions.

Lemma 2.18 (Bárány [14]). Given a convex body K ⊆ Rn, let C be a 1
3 -shallow cap of K, and let

p be the centroid of base(C). Then C ⊆M2n(p).
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Lemma 2.19. Let 0 < β < 1 be any constant. Let K ⊆ Rn be a well-centered convex body, p ∈ K,
and C be the minimum volume cap associated with p. If C contains the origin or wid(C) ≥ β, then
volK(M(p)) ≥ 2−O(n).

Proof. We claim that K satisfies the Winternitz property with respect to p. Note this is equivalent
to the claim that volK(C) ≥ 2−O(n).

We consider two cases. First, suppose that C contains the origin. Since K is well-centered,
by Lemma 2.2, K satisfies the Winternitz property with respect to the origin. It follows that
volK(C) ≥ 2−O(n). Otherwise, if C does not contain the origin, then since the width of C is at
least β, the expanded cap C1/β contains the origin. By Lemma 2.9, vol(C1/β) ≤ 2O(n) vol(C).
Again, using the fact that K satisfies the Winternitz property with respect to the origin, we have
volK(C1/β) ≥ 2−O(n). Thus, in both cases, volK(C) ≥ 2−O(n), which proves the claim.

Since K satisfies the Winternitz property with respect to p, by Lemma 2.2, it must satisfy the
Kovner-Besicovitch property with respect to p. Thus volK(M(p)) = volK((K − p) ∩ (p − K)) ≥
2−O(n), as desired.

Lemma 2.20. Given a convex body K ⊆ Rn, let C be a 1
3 -shallow cap of K, and let p be the

centroid of base(C). We have

2−O(n) · vol(C) ≤ vol(M(p)) ≤ 2 · vol(C).

Proof. The second inequality holds easily because half of M(p) lies inside C. To prove the first
inequality, let B = base(C), let a = area(B) denote its (n − 1)-dimensional volume, and let
B′ = M(p) ∩ B. Treating p as the origin of the coordinate system, by definition of Macbeath
regions, B′ = B∩−B. By applying Lemma 2.2 (to the hyperplane containing B) we have area(B′) ≥
a/2O(n).

Let x denote the apex of C, and let x′ be the farthest point on segment px that is contained in
M(p). By Lemma 2.18, ‖px′‖ ≥ ‖px‖/2n. By convexity, the generalized cone P = conv(B′ ∪ {x′})
is contained within M(p). Letting w denote the absolute width of C, the height of this cone is at
least w/2n. Thus

vol(M(p)) ≥ vol(P ) ≥ area(B′) · w/2n
n

≥ (a/2O(n)) · w/2n
n

=
aw

n22O(n)
.

By Lemma 2.8, vol(C) ≤ 2n−1aw, and thus,

vol(M(p)) ≥ 2−O(n) · vol(C),

as desired.

Corollary 2.21. Let K ⊆ Rn be a convex body, p ∈ K, and C be the minimum volume cap
associated with p. We have

2−O(n) · vol(C) ≤ vol(M(p)) ≤ 2 · vol(C).

14



Proof. The second inequality holds for the same reason as in Lemma 2.20. To prove the first
inequality, recall the well-known property of minimum volume caps that p is the centroid of the
base of its associated minimum volume cap [35]. Treating the centroid of K as the origin, we
consider two cases. If C is (1/3)-shallow, then the corollary follows from Lemma 2.20. Otherwise,
C contains the origin or its width is at least 1/3. Noting that K is well-centered with respect to
the centroid (Lemma 2.2) and applying Lemma 2.19, it follows that volK(M(p)) ≥ 2−O(n). That
is, vol(M(p)) ≥ 2−O(n) vol(K) ≥ 2−O(n) vol(C), which completes the proof.

2.6 Similar Caps

The Macbeath regions of a convex body K, and more specifically, its shrunken Macbeath regions,
provide an affine-invariant notion of the closeness between points, through the property that both
points lie within the same shrunken Macbeath region. We would like to define a similar affine-
invariant notion of closeness between caps. We say that two caps C1 and C2 are λ-similar for
λ ≥ 1, if C1 ⊆ Cλ2 and C2 ⊆ Cλ1 (see Figure 7(a)). If two caps are λ-similar for a constant λ, we
say that the caps are similar.

K∗ K
O O

ẑ

ẑ∗

z

K

C1

C2

Cλ
2

Cλ
1

(a) (b) (c)

Figure 7: Similar caps and ε-representative caps.

It is natural to conjecture that these two notions of similarity are related through duality. In order
to establish such a relationship consider the following mapping. Consider a point z ∈ K∗. Take
a point ẑ 6∈ K∗ on the ray Oz such that ray(ẑ) = ε (see Figure 7(b)). The dual hyperplane ẑ∗

intersects K, and so induces a cap, which we call z’s ε-representative cap (see Figure 7(c)). The
main result of this section is Lemma 2.23, which shows that points lying within the same shrunken
Macbeath region have similar representative caps. Before proving this, we begin with a technical
lemma.

Lemma 2.22. Let α ≤ 1
8 . Let y ∈ K∗ be an α-shallow point. Consider two rays r and r′ shot from

the origin through M1/5(y) (see Figure 8). Let z 6∈ K∗ be an α-shallow point on r and let u 6∈ K∗
be a point on r′ such that ray(u) > 4 ray(y) + 2 ray(z). Then capK(z∗) ⊆ capK(u∗).

Proof. Let h be any hyperplane passing through z that does not intersect K∗. We will show that
h separates u from K∗. This would imply that u ∈ ocone(K∗, z), and the result would then follow
from Lemma 2.13.

Let p be any point in r ∩ M1/5(y). By Lemma 2.17, we have ray(p) ≤ 2 ray(y). Consider a
hyperplane h′ that is parallel to h and passes through p (see Figure 9). Let C be the cap induced
by h′. Letting t denote the point of intersection of ray r with ∂K∗, we have

wid(C) ≤ ‖pz‖
‖Oz‖

=
‖pt‖+ ‖tz‖
‖Oz‖

≤ ‖pt‖
‖Ot‖

+
‖tz‖
‖Oz‖

= ray(p) + ray(z) ≤ 2 ray(y) + ray(z). (1)
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Figure 8: Statement of Lemma 2.22.

Since C intersects M1/5(y), by Lemma 2.15, the cap C2 encloses M1/5(y). Since y and z are
α-shallow for α = 1

8 , by Eq. (1) we have wid(C) ≤ 3/8. It follows wid(C2) < 1, and hence O
lies outside C2. Let h′′ denote the hyperplane passing through the base of C2. Since r′ intersects
M1/5(y), it follows that r′ must intersect h′′ and h. Let z′ denote the point of intersection of r′

with h. We will show that ray(z′) ≤ 4 ray(y)+2 ray(z). Recalling from the statement of the lemma
that ray(u) > 4 ray(y) + 2 ray(z), this would imply that h separates u from K∗, as desired.

M1/5(y)

r r′

z

u h

p

h′ h′′

z′

x
x′

t

K∗

y

ocone(K∗, z)

C2

C

Figure 9: Proof of Lemma 2.22.

Let x and x′ denote the points of intersection of the rays r and r′, respectively, with h′′. By similar
triangles we have ray(z′) ≤ ‖x′z′‖/‖Oz′‖ = ‖xz‖/‖Oz‖. Observe that the distance between h′′ and
h′ is no more than the distance between h′ and h, and so ‖xz‖ ≤ 2‖pz‖. Combining this with
Eq. (1), we obtain

ray(z′) ≤ ‖xz‖
‖Oz‖

≤ 2‖pz‖
‖Oz‖

≤ 2(2 ray(y) + ray(z)) = 4 ray(y) + 2 ray(z),

which completes the proof.

We now establish the main result of this section.

Lemma 2.23. Let ε ≤ 1
16 , and let y ∈ K∗ such that ray(y) ≤ ε. For any two points x, z ∈M1/5(y),

their respective ε-representative caps are 8-similar.
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Proof. Let x1 and z1 be points external to K∗ both at ray distance ε on the rays Ox and Oz,
respectively (see Figure 10(a)). Let Cx and Cz denote the ε-representative caps of x and z, re-
spectively (see Figure 10(b)). Recall that Cx and Cz are the caps in K induced by x∗1 and z∗1 ,
respectively. By standard properties of the polar transformation wid(Cx) = ray(x1) = ε, and sim-
ilarly, wid(Cz) = ray(z1) = ε. Let x2 and z2 be points external to K∗ both at ray distance 8ε on
the rays Ox and Oz, respectively (see Figure 10). By our bound on ε, these ray distances are at
most 1

2 . Clearly, x∗2 and z∗2 induce the caps C8
x and C8

z in K, respectively.

K∗ K

O O

x1

x2

z2

z1

y

M1/5(y)

x∗
1

z∗1
x∗
2

z∗2

Cz

C8
x

C8
z

x

z

Cx

Figure 10: Proof of Lemma 2.23.

Since ray(x2) = 8ε, ray(y) ≤ ε and ray(z1) = ε, we have ray(x2) > 2 ray(z1) + 4 ray(y). It follows
from Lemma 2.22 that Cz ⊆ C8

x. A symmetrical argument shows that Cx ⊆ C8
z . Therefore Cx and

Cz are 8-similar, as desired.

The next lemma shows that similarity holds, even if ray distances are altered by a constant fac-
tor.

Corollary 2.24. Let ε ≤ 1
16 , and let y ∈ K∗ such that ray(y) ≤ ε. Let Cx be a cap of K such

that ε/2 ≤ wid(Cx) ≤ 2ε, and such that the ray shot from the origin orthogonal to the base of Cx
intersects M1/5(y). Then the cap Cx and the ε-representative cap Cz of any point z ∈M1/5(y) are
16-similar.

Proof. Let r denote the ray shot from the origin orthogonal to the base of Cx. Let x be any point
that lies in r∩M1/5(y). Let C ′x be the ε-representative cap of x. By Lemma 2.23, the caps C ′x and
Cz are 8-similar. Also, it follows from our choice of point x that the caps Cx and C ′x have parallel
bases and their widths differ by a factor of at most two. Thus Cx and C ′x are 2-similar. Using the
fact that C ′x and Cz are 8-similar, and applying Lemma 2.10, it is easy to see that Cx and Cz are
16-similar.

3 Caps in the Polar: Mahler Relationship

As mentioned in Section 1.2, a central element of our analysis is establishing a Mahler-like reciprocal
relationship between volumes of caps in K and corresponding caps of K∗. While our new result
is similar in spirit to those given by Arya et al. [6] and that of Naszódi et al. [52], it is stronger
than both. Compared to [6], the dependency of the Mahler volume on dimension is improved from
2−O(n logn) to 2−O(n), which is critical in the high-dimensional setting in reducing terms of the
form nO(n) to 2O(n). Further, our result is presented in a cleaner form, which is affine-invariant.
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Compared to Naszódi et al. [52], which was focused on sampling from just the boundary of K, our
results can be applied to caps of varying widths, and hence it applies to sampling from the interior
of K. This fact too is critical in the applications we consider. Our improvements are obtained by
a more sophisticated geometric analysis and our affine-invariant approach.

For the sake of concreteness, we state the lemmas of this section in terms of an arbitrary direction,
which we call “vertical,” and any hyperplane orthogonal to this direction is called “horizontal.”
Since the direction is arbitrary, there is no loss of generality.

3.1 Dual Caps and the Difference Body

This subsection is devoted to a key construction in our analysis. Given a full dimensional convex
body K and a point z 6∈ K, the following lemma identifies an (n − 1)-dimensional body Υ such
that dcapΥ(z) = dcapK(z), where Υ is related to the base B of a certain ε-width cap in the sense
that Υ can be sandwiched between B and a scaled copy of the difference body of B.

O K

z

Hb
Cx

ΥB∆ B

ε

Θ(ε)

1

icone(K, z)

Figure 11: Statement of Lemma 3.1.

Lemma 3.1. Let ε ≤ 1
8 . Let K be a convex body with the origin O in its interior. Let z /∈ K

be a point on the ray from the origin directed vertically upwards such that ray(z) = 2ε. Consider
an ε-width cap C above the origin whose base B intersects Oz and is horizontal. Let Hb be the
hyperplane passing through the base B, and let Υ = icone(K, z) ∩ Hb. Let x denote the point of
intersection of B with Oz, and let B∆ = 5∆(B) + x. Then B ⊆ Υ ⊆ B∆ (see Figure 11).

Proof. By definition, K ⊆ icone(K, z), and so B ⊆ Υ. Thus, it suffices to show that Υ ⊆ B∆. To
prove this, we will show that K ⊆ icone(B∆, z).

Let a denote an apex of C and let a′ be the point obtained by projecting a orthogonally onto
Oz (see Figure 12). Without loss of generality, assume that ‖Oa′‖ = 1. Note that ‖xa′‖ = ε,
where x is the point of intersection of the ray Oz with the base of cap C. It is easy to check that
ε ≤ ‖a′z‖ ≤ 3ε.

For the remainder of this proof, it will be convenient to imagine that the origin is at x. Our strategy
will be to show that C ⊆ icone(2(1+2ε)B, z) and K\C ⊆ icone(4(1+2ε)∆(B), z). Since B contains
the origin, it follows easily that B ⊆ ∆(B). This implies that K ⊆ icone(4(1 + 2ε)∆(B), z) ⊆
icone(5∆(B), z) since ε ≤ 1

8 . By definition of B∆, this would complete the proof.
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Figure 12: Proof of Lemma 3.1.

First, we will prove that C ⊆ icone(2(1 + 2ε)B, z). It follows from convexity that C is contained in
the truncated portion of icone(B,O) between the hyperplane Hb and the hyperplane above Hb that
is parallel to it at distance ε (call it Ha). Note that icone(B,O) ∩ Ha is the (n − 1)-dimensional
convex body obtained by scaling B about x by a factor of 1/(1 − ε) and translating it vertically
upwards by amount ε. Call this body Ba. (Formally, Ba = (1/(1− ε))B+a′.) It is easy to see that
C ⊆ icone(Ba, z). Since ‖zx‖ ≤ 2‖za′‖, it follows that icone(Ba, z) ∩ Hb ⊆ 2(1/(1 − ε))B. Thus
C ⊆ icone(2(1/(1 − ε))B, z) ⊆ icone(2(1 + 2ε)B, z), where in the last containment we have used
the fact that ε ≤ 1

8 .

It remains to prove that K \ C ⊆ icone(4(1 + 2ε)∆(B), z). By convexity, it follows that K \ C ⊆
icone(B, a). Define t = a′ − a and B+ = conv(B ∪ (B + t)). We claim that K \C ⊆ icone(B+, a′).
To prove this, let p be any point in K \ C. Since K \ C ⊆ icone(B, a), it follows that ap intersects
the base B; let b denote this point of intersection. Since b ∈ B, we have b ∈ B+. Define b′ = b+ t.
Clearly b′ ∈ B+ t and hence b′ ∈ B+. Note that the points b, b′, a′, a form a parallelogram (because
b′ − a′ = b− a). By elementary geometry, p also lies in the 2-dimensional flat of this parallelogram
and a′p intersects bb′. Since b, b′ ∈ B+ and B+ is convex, it follows that bb′ is contained in B+. Thus
a′p intersects B+, which implies that p ∈ icone(B+, a′). This proves that K \ C ⊆ icone(B+, a′),
as desired.

Next consider the cone obtained by translating icone(B+, a′) vertically upwards to z. Clearly the
resulting cone contains K \C, and since ‖zx‖ ≤ 4‖a′x‖, it follows that the intersection of this cone
with Hb is contained in 4B+. Thus K \ C ⊆ icone(4B+, z).

To complete the proof we need to relate B+ to ∆(B). To be precise, we will show that B+ ⊆
(1 + 2ε)∆(B). Recall that B+ = conv(B ∪ (B + t)). By our earlier remarks, a ∈ Ba and hence
−t = a − a′ ∈ (1/(1 − ε))B. It follows that B + t ⊆ (1/(1 − ε))B − (−t) ⊆ ∆((1/(1 − ε))B),
where the first containment is trivial and the second is immediate from the definition of difference
bodies. Also, B ⊆ ∆((1/(1 − ε))B) holds trivially. By convexity of difference bodies, it follows
that B+ ⊆ ∆((1/(1 − ε))B). Thus B+ ⊆ (1/(1 − ε))∆(B) ⊆ (1 + 2ε)∆(B). Recalling that
K \ C ⊆ icone(4B+, z), it follows that K \ C ⊆ icone(4(1 + 2ε)∆(B), z), which completes the
proof.
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3.2 Relating Caps in the Primal and Polar

In order to establish a Mahler-like relation between the volumes of caps of K and K∗, it will be
helpful to consider projections in one lower dimension, n− 1. We will make use of a special case of
a result appearing in [6] (Lemma 3.1). Consider a convex body K lying on an (n− 1)-dimensional
hyperplane and a point z that lies on the opposite side of this hyperplane from the origin (see
Figure 13). The polar of the dual cap of K with respect to z is an (n − 1)-dimensional convex
body on the hyperplane z∗. Letting G denote this object, the following lemma shows that if we
project both K and G onto a suitable (n − 1)-dimensional hyperplane, G is the polar of K up to
scale factor.

Lemma 3.2 (Arya et al. [6]). Let z ∈ Rn be a point that lies on a vertical ray from the origin O,
and let K be an (n− 1)-dimensional convex body whose interior intersects the segment Oz at some
point x. Further, suppose that K lies on a hyperplane orthogonal to Oz. Let G = (dcapK(z))∗ and
let t be the point of intersection of the vertical ray from O with z∗. Then G− t = α(K−x)∗, where
α = ‖xz‖/‖Oz‖.

G− t = α(K − x)∗
O

x

z

K − x

K

O

t
G

z∗

Figure 13: Statement of Lemma 3.2.

The following lemma describes the correspondence between caps in K and its polar K∗, and it
establishes the critical Mahler-type relationship between the volumes of these caps.

Lemma 3.3. Let 0 < ε ≤ 1
8 , and let K ⊆ Rn be a well-centered convex body. Let C be a cap of K

of width at least ε. Consider the ray shot from the origin orthogonal to the base of C, and let D be
a cap of K∗ of width at least ε such that this ray intersects the interior of its base (see Figure 14).
Then

volK(C) · volK∗(D) ≥ 2−O(n)εn+1.

KO

C

K∗
O

D

Figure 14: Statement of Lemma 3.3.
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Proof. Let C ′ be a cap of width 2ε whose base is parallel to the base of C and which is on the same
side of the origin as C. Clearly such a cap can be obtained by translating the base of C parallel
to itself. Note that C ′ ⊆ C2 and so, by Lemma 2.9, it follows that vol(C ′) ≤ 2O(n) · vol(C). Let r
denote the ray in the polar space, emanating from the origin of K∗ in a direction orthogonal to the
base of C (see Figure 15). Recall that r intersects the interior of the base of D. By Lemma 2.11,
we can find a cap D′ ⊆ D whose width is ε and such that ray r intersects the interior of the base
of D′. It is now easy to see that it suffices to prove the lemma with C ′ and D′ in place of C and
D, respectively. As a convenience, in the remainder of this proof, we will write C and D in place
of C ′ and D′, respectively.

KO

C

K∗O

D

r

HC

BC

HD

BD

z = H∗
C

xy

ΥB∆

Figure 15: Proof of Lemma 3.3.

As the product considered in this lemma is affine-invariant, we will apply a suitable linear trans-
formation to simplify the subsequent analysis. Specifically, we apply a linear transformation in
the polar space such that the base of D becomes horizontal while the ray r is directed vertically
upwards. It is easy to see that the effect of this transformation in the original space is to make
the base of cap C horizontal (because it is the polar of a point on ray r). To summarize, after the
transformation, the hyperplanes passing through the bases of the caps C and D are horizontal and
above the origin and as relative measures the widths of both caps are unchanged. Further, the ray
r is directed vertically upwards in the polar and intersects the interior of the base of D. Also, after
uniform scaling, we may assume that the absolute distance between the origin and the supporting
hyperplane of cap C that is parallel to its base is unity.

Let BC denote the base of cap C and HC denote the hyperplane passing through BC . Also,
let BD denote the base of cap D and HD denote the hyperplane passing through BD. Define
z = H∗C . Note that z lies outside K∗ on the ray from the origin directed vertically upwards and
ray(z) = wid(C) = 2ε. By Lemma 2.12, BC = (dcapK∗(z))

∗. Define Υ = icone(K∗, z) ∩ HD.
Clearly dcapK∗(z) = dcapΥ(z). Thus BC = (dcapΥ(z))∗.

Let y denote the point of intersection of the vertical ray from O with BC , and let x denote the
point of intersection of the vertical ray from O with BD. Henceforth, in this proof, we will treat
y as the origin in the primal space and x as the origin in the polar space. Applying Lemma 3.2
(setting K in that lemma to Υ), it follows that BC = αΥ∗, where α = ‖xz‖/‖Oz‖. Noting that
BC is (n− 1)-dimensional and α = Θ(ε), it follows that

area(BC) ≥ 2−O(n)εn−1 · area(Υ∗).
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By Lemma 2.8, we have vol(C) ≥ 2−O(n)ε · area(BC) and vol(D) ≥ 2−O(n)ε · area(BD). Thus,

vol(C) · vol(D) ≥ 2−O(n)ε2 · area(BC) · area(BD) ≥ 2−O(n)εn+1 · area(Υ∗) · area(BD). (2)

By Lemma 3.1, Υ ⊆ B∆, where B∆ = 5∆(BD). Recalling from Lemma 2.1 that area(∆(BD)) ≤
4n−1 · area(BD), we have

area(Υ) ≤ area(B∆) = 5n−1 · area(∆(BD)) ≤ 5n−1 · 4n−1 · area(BD) ≤ 2O(n) · area(BD).

Substituting this bound into Eq. (2), we obtain

vol(C) · vol(D) ≥ 2−O(n)εn+1 · area(Υ∗) · area(Υ) ≥ 2−O(n)εn+1 · ω2
n−1,

where we have applied Lemma 2.5 to lower bound the Mahler volume in the last step. Since K
is well-centered, it follows from Lemma 2.2 that K satisfies the Santaló property, that is, vol(K) ·
vol(K∗) ≤ 2O(n) · ω2

n. Recalling the definition of ωn from Section 2.2, we have ωn−1/ωn = Θ(
√
n).

Thus
volK(C) · volK∗(D) ≥ 2−O(n)εn+1,

as desired.

Finally, we present the main “take-away” of this section. This lemma shows that the bound on the
product of volumes from the previous lemma holds within the neighborhood of the ray, specifically
to any shrunken Macbeath region that intersects the ray.

Lemma 3.4. Let parameter ε, convex body K and cap C of K be as defined in Lemma 3.3. Suppose
that the ray r shot from the origin orthogonal to the base of C intersects a Macbeath region M1/5(x)
of K∗, where ray(x) = ε (see Figure 16). Then

volK(C) · volK∗(M
1/5(x)) ≥ 2−O(n)εn+1.

KO

C

K∗
O

rr

x

M1/5(x)

Figure 16: Statement of Lemma 3.4.

Proof. Let y be a point in the intersection of the ray r with M1/5(x) and let D denote the minimum
volume cap of K∗ that contains y. Since M1/5(y) ∩ M1/5(x) 6= ∅, by Lemma 2.14, we have
M1/5(y) ⊆M4/5(x). Thus vol(M1/5(x)) ≥ 2−O(n) · vol(M1/5(y)). Also, by Corollary 2.21, we have
vol(M1/5(y)) ≥ 2−O(n) · vol(D). Thus vol(M1/5(x)) ≥ 2−O(n) · vol(D). To complete the proof, it
suffices to show the inequality given in the statement of the lemma with D in place of M1/5(x).
By Lemma 2.17, we have ray(y) ≥ ray(x)/2, and by Lemma 2.6, we have wid(D) ≥ ray(y). Thus
wid(D) ≥ ray(x)/2 = ε/2. Applying Lemma 3.3 on caps C and D, the desired inequality now
follows.
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4 Covers of Convex Bodies

As mentioned earlier, we employ a Macbeath region-based adaptation of (c, ε)-coverings in our
solution to approximate CVP. Since our construction will involve composing coverings of various
regions of K, we define our coverings in the following restricted manner. Let K ⊆ Rn be a convex
body, let Λ be an arbitrary subset of int(K), and let c ≥ 2 be any constant. Define a Λ-limited
c-covering to be a collection Q of convex bodies that cover Λ, such that the c-factor expansion of
each body about its centroid is contained within K.

Our coverings will be based on Macbeath regions. Given X ⊆ K, define M λ
K(X) = {Mλ

K(x) :
x ∈ X}. Define a (K,Λ, c)-MNet to be any maximal set of points X ⊆ Λ such that the shrunken

Macbeath regions M
1/4c
K (X) are pairwise disjoint. Through basic properties of Macbeath regions,

we can obtain a covering by suitable expansion as shown in the following lemma, which summarizes
the properties of MNets.

Lemma 4.1. Given a convex body K ⊆ Rn, Λ ⊂ int(K), and c ≥ 2, a (K,Λ, c)-MNet X satisfies
the following properties:

(a) (Packing) The elements of M
1/4c
K (X) are pairwise disjoint.

(b) (Covering) The union of M
1/c
K (X) covers Λ.

(c) (Buffering) The union of MK(X) is contained within K.

Proof. Part (a) is an immediate consequences of the definition. Part (c) follows by basic properties
of Macbeath regions. To prove part (b), let λ = 1/c and consider any point y ∈ Λ. By maximality,
there is x ∈ X such that Mλ/4(x) overlaps Mλ/4(y). By Lemma 2.14, Mλ/4(y) ⊆ Mλ(x), which
implies that y ∈Mλ(x).

Observe that property (b) implies that if X is a (K,Λ, c)-MNet, then M
1/c
K (X) is a Λ-limited

c-covering. Further, recalling that Kε = (1 + ε)K, if X is a (Kε,K, c)-MNet, then M
1/c
K (X) is a

(c, ε)-covering of K (see Figure 17).

Kε = (1 + ε)K

(a) (b)

O
O

K

Kε = (1 + ε)K

K

Figure 17: (a) A (c, ε)-covering of K by Macbeath regions. (b) The corresponding maximal set of
disjoint Macbeath regions.
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4.1 Instance Optimality

In this section we show that an MNet for Kε naturally generates an instance optimal (2, ε)-covering
in the sense that its size cannot exceed that of any (2, ε)-covering of K by a factor of 2O(n)

(Lemma 4.4 and Theorem 4). It is worth noting that this fact holds irrespective of the location of
the origin in int(K). In other words, we require no centrality assumptions for this result.

We begin with two lemmas that are straightforward adaptations of lemmas in [53]. The first lemma
shows that one incurs a size penalty of only 2O(n) by restricting to c-coverings to centrally symmetric
convex bodies. The second shows that a constant change in the expansion factor results in a similar
penalty.

Lemma 4.2. Let c ≥ 2 be a constant. Let Q ⊆ Rn be a convex body with its centroid at the origin.
There exists a set of 2O(n) centrally symmetric convex bodies which together cover Q, such that the
central c-expansion of any of these bodies is contained within 2Q.

Proof. Let R = MQ(O) = Q ∩ −Q, and let R′ = 1
cR and R′′ = 1

2cR. Clearly, all these bodies

are centrally symmetric about the origin. By Lemma 2.2, vol(R) ≥ 2−O(n) vol(Q), and since c is a
constant, the volumes of R′ and R′′ are similarly bounded. Let X ⊂ Q be a maximal discrete set
of points such that the translates X ⊕R′′ = {x+R′′ : x ∈ X} are pairwise disjoint. We will show
that the bodies X ⊕R′ satisfy the lemma.

To establish the expansion property, observe that for all x ∈ X, x + cR′ = x + R ⊆ Q ⊕ R ⊆ 2Q.
To prove the size bound, by disjointness we have

|X| · vol(R′′) ≤ vol(2Q) ≤ 2O(n) vol(Q) ≤ 2O(n) vol(R′′),

and therefore |X| = 2O(n). Finally, to prove coverage, consider any y ∈ Q. By maximality there
exists x ∈ X such that x+R′′ overlaps y+R′′. Since c ≥ 2, it follows that y ∈ x+2R′′ = x+R′.

Lemma 4.3. Let K ⊆ Rn be a convex body, let Λ ⊂ int(K), and let c ≥ 2 be a constant. Let Q be a
Λ-limited c-covering with respect to K. For any constant c′ ≥ 2, there exists a Λ-limited c′-covering
with respect to K consisting of centrally symmetric convex bodies whose size is at most 2O(n)|Q|.

Proof. By Lemma 4.2, we can replace each body Q ∈ Q by a set of 2O(n) centrally symmetric
convex bodies which together cover Q and such that the c′-expansion of any of these bodies is
contained within the 2-expansion of Q (about its centroid). It is easy to see that the resulting set
of bodies is a Λ-limited c′-cover with respect to K with the desired size.

We are now ready to show that a (K,Λ, c)-MNet can be used to generate an instance-optimal
limited covering.

Lemma 4.4. Let K ⊆ Rn be a convex body, let Λ ⊂ int(K), and let c ≥ 2 be a constant. Let X be

a (K,Λ, c)-MNet, and let M = M
1/c
K (X) be the associated Λ-limited c-covering with respect to K.

Given any Λ-limited c-covering Q with respect to K, |M | ≤ 2O(n)|Q|.

Proof. By Lemma 4.3, there exists a Λ-limited 5-covering with respect to K consisting of at most
2O(n)|Q| centrally symmetric convex bodies. Let Q′ denote this covering, and let Y denote the
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set of centers of these bodies. Consider any Q ∈ Q′, and let y denote its center. By definition,
M(y) = MK(y) is the largest centrally symmetric body centered at y that is contained within K.
Since Q is a centrally symmetric convex body whose 5-expansion about y is contained within K,
it follows that Q ⊆M1/5(y). Therefore, M 1/5(Y ) is a Λ-limited 5-covering of the same cardinality
as Q′.

By the packing property of Lemma 4.1, the Macbeath regions M 1/4c(X) are pairwise disjoint. To
relate these two coverings, assign each x ∈ X to any y ∈ Y such that x ∈ M1/5(y). We will show
that at most 2O(n) elements of X are assigned to any y ∈ Y . Assuming this for now, we have

|M | = |X| ≤ 2O(n)|Y | = 2O(n)|Q′| ≤ 2O(n)|Q|,

thus completing the proof.

To prove the assertion, consider any x ∈ X assigned to some y ∈ Y . Since M1/5(x)∩M1/5(y) 6= ∅,
by Lemma 2.14 and the fact that c ≥ 2, we have

M1/4c(x) ⊆ M1/5(x) ⊆ M4/5(y).

Lemma 2.14 also implies that M1/5(y) ⊆ M4/5(x), and so vol(M1/4c(x)) ≥ 2−O(n) vol(M4/5(y)).
Since the Macbeath regions of M1/4c(X) are pairwise disjoint, by a simple packing argument, the
number of points of X assigned to any y ∈ Y is at most 2O(n), as desired.

Recall that a K-limited c-covering with respect to Kε = (1+ε)K is a (c, ε)-covering for K. Applying
the above lemma in this case, we obtain the main result of this section.

Theorem 4. Let 0 < ε ≤ 1, let K ⊆ Rn be a convex body such that O ∈ int(K), and let c ≥ 2 be

a constant. Let X be a (Kε,K, c)-MNet, and let M = M
1/c
Kε

(X) be the associated (c, ε)-covering

with respect to K. Given any (c, ε)-covering Q with respect to K, |M | ≤ 2O(n)|Q|.

4.2 Worst-Case Optimality

Our main result in this section, given in Lemma 4.6, establishes the existence of a (c, ε)-covering of
size 2O(n)/ε(n−1)/2. This directly implies Theorem 1. Before presenting this result, it will be useful
to first establish a bound on the maximum number of disjoint Macbeath regions associated with
Θ(ε)-width caps. The proof is based on the relationship between caps in K and K∗.

Let K ⊆ Rn be a well-centered convex body. Given 0 < ε ≤ 1
32 , let Λ ⊆ K denote the centroids

of the bases of all caps whose relative widths are between ε and 2ε. Given a constant c ≥ 2, let

X be a (K,Λ, c)-MNet, and let M (X) = M
1/c
K (X) be the associated covering. We will show that

|X| ≤ 2O(n)/ε(n−1)/2, which will imply a similar bound on the size of the associated Λ-limited
c-covering.

Recall that for any region Λ ⊆ K, its relative volume is volK(Λ) = vol(Λ)/ vol(K). Let t = ε(n+1)/2.

Define X≥t = {x ∈ X : volK(M
1/c
K (x)) ≥ t} to be the centers of the “large” Macbeath regions in

the covering of relative volume at least t, and let X<t = X \X≥t denote the centers of the remaining
“small” Macbeath regions.

To bound the number of small Macbeath regions, we will make use of the polar body K∗. Let Λ′

denote the boundary of (1 − ε)K∗. Let Y be a (K∗,Λ′, 5)-MNet, and let M (Y ) = M
1/5
K∗ (Y ) be
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the associated covering. Let t′ = 2−O(n)ε(n+1)/2, where the constant hidden in O(n) is sufficiently

large, and analogously define Y≥t′ = {y ∈ Y : volK∗(M
1/5
K∗ (y)) ≥ t′} to be the set of centers of the

“large” Macbeath regions in the polar covering M (Y ) whose relative volume is at least t′.

The following lemma summarizes the essential properties of the resulting Macbeath regions.

Lemma 4.5. Given a well-centered convex body K ⊆ Rn, 0 < ε ≤ 1
32 , constant c ≥ 2, and the

entities Λ, Λ′, X, Y , t, and t′ defined above, the following hold:

(a) The regions M
1/c
K (X) are contained in ΛK(ε) = K \ (1− 4ε)K, and volK(ΛK(ε)) = O(nε).

(b) For any x ∈ X≥t, volK(M1/c(x)) ≥ ε(n+1)/2, and |X≥t| ≤ 2O(n)/ε(n−1)/2.

(c) The regions M
1/5
K∗ (Y ) are contained in ΛK∗(ε) = K∗\(1−2ε)K∗, and volK∗(ΛK∗(ε)) = O(nε).

(d) For any y ∈ Y≥t′, volK∗(M
1/5(y)) ≥ 2−O(n)ε(n+1)/2, and |Y≥t′ | ≤ 2O(n)/ε(n−1)/2.

(e) For any x ∈ X<t, there is y ∈ Y≥t′ such that for any point z ∈M1/5(y), we have M1/c(x) ⊆
C32
z , and vol(M1/c(x)) ≥ 2−O(n) vol(C32

z ), where Cz ⊆ K is z’s ε-representative cap.

(f) |X| ≤ 2O(n)/ε(n−1)/2.

Proof. To prove (a), let x be any point of X and let Mx = M1/c(x) be the associated covering
Macbeath region. Because X is a (K,Λ, c)-MNet, Mx is centered at the centroid of the base of a
cap Cx of width between ε and 2ε. Since c ≥ 1, by Lemma 2.16, Mx ⊆ C2

x. As C2
x has width at most

4ε, it follows that C2
x ⊆ ΛK(ε), and so too is Mx. Clearly, volK(ΛK(ε)) = 1− (1− 4ε)n = O(nε).

To prove (b), observe that the Macbeath regions M 1/4c(X≥t) are pairwise disjoint, and each
has relative volume at least t/4n ≥ 2−O(n)ε(n+1)/2. By a simple packing argument, |X≥t| ≤
volK(ΛK(ε))/(t/4n) ≤ 2O(n)/ε(n−1)/2.

To prove (c), let y be any point of Y and let My = M1/5(y) be the associated covering Macbeath
region. Since y lies on the boundary of (1 − ε)K∗, y lies on the base of a cap Cy of K∗ induced
by the supporting hyperplane of (1− ε)K∗. By Lemma 2.16, My ⊆ C2

y . Since C2
y has width 2ε, it

follows that C2
y ⊆ ΛK∗(ε), and so too is My. Also, volK∗(ΛK∗(ε)) = 1− (1− 2ε)n = O(nε).

To prove (d), observe that by Lemma 4.1, the Macbeath regions M 1/(4·5)(Y≥t′) are pairwise disjoint,
and each has relative volume at least t′/4n = 2−O(n)ε(n+1)/2. By a simple packing argument,
|Y≥t′ | ≤ volK∗(ΛK∗(ε))/(t

′/4n) ≤ 2O(n)/ε(n−1)/2.

To prove (e), let x be any point of X<t and let Mx = M1/c(x) be the associated covering Macbeath
region. As in (a), Mx is centered at the centroid of the base of a cap Cx of width between ε and 2ε.
Since c is a constant, by Lemma 2.20, vol(Cx) ≤ 2O(n) vol(Mx). Since volK(Mx) ≤ t = ε(n+1)/2, we
have volK(Cx) ≤ 2O(n)ε(n+1)/2.

In the polar, consider the ray r shot from the origin orthogonal to the base of Cx. This ray will
intersect some covering Macbeath region My = M1/5(y), for some y ∈ Y . We will show that y
satisfies all the properties given in part (e). As K is well-centered, we can apply the Mahler-like
volume relation from Lemma 3.4 to obtain volK(Cx) · volK∗(My) ≥ 2−O(n)εn+1. Using the upper
bound on volK(Cx) shown above, it follows that volK∗(My) ≥ 2−O(n)ε(n+1)/2. Thus, y ∈ Y≥t′ .
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It is easy to verify that the preconditions of Corollary 2.24 are satisfied where Cx plays the role of C,
My plays the role of M1/5(y), and z is any point in My. It follows that the caps Cx and Cz are 16-
similar, that is, Cx ⊆ C16

z and Cz ⊆ C16
x . By Lemma 2.16, Mx ⊆ C2

x, and by Lemma 2.10, C2
x ⊆ C32

z .
Thus Mx ⊆ C32

z . Also, since Cz ⊆ C16
x , it follows from Lemma 2.9 that vol(Cx) ≥ 2−O(n) vol(Cz).

By Lemma 2.20, vol(Mx) ≥ 2−O(n) vol(Cx). Thus vol(Mx) ≥ 2−O(n) vol(Cz) ≥ 2−O(n) vol(C32
z ),

which establishes (e).

Finally, to prove (f), observe that in light of (b), it suffices to show that |X<t| ≤ 2O(n)/ε(n−1)/2.
This quantity can be bounded by the following charging argument. For each y ∈ Y≥t′ , we say that
it charges all the points x ∈ X whose Macbeath region M1/4c(x) is contained in C32

y and whose

volume is at least 2−O(n) vol(C32
y ), where the constant hidden in O(n) is sufficiently large. Note

that any point of Y≥t′ charges at most 2O(n) points of X. Applying part (e), it follows that every
x ∈ X<t is charged by some y ∈ Y≥t′ . Since |Y≥t′ | ≤ 2O(n)/ε(n−1)/2 and each point of Y≥t′ charges
at most 2O(n) points of X, it follows that |X<t| ≤ 2O(n)/ε(n−1)/2, which completes the proof.

We are now ready to present the main result of this section. Recall that K ⊆ Rn is a well-centered
convex body. Given 0 < ε ≤ 1, define a layered decomposition of K as follows. Recalling that
Kε = (1 + ε)K, for each x ∈ K, define its width, denoted wid(x), to be the width of the associated
minimum volume cap of Kε. Since rayKε

(x) ≥ ε/(1 + ε) ≥ ε/2, it follows from Lemma 2.6 that

wid(x) ≥ ε/2. Let β be a sufficiently small constant, and let k0 =
⌈
log β

ε

⌉
. For 0 ≤ i ≤ k0, define

the layer i be the set of points x ∈ K such that wid(x) ∈ [2i−1, 2i)ε. Define layer k0 + 1 to be
the set of remaining points of K, which have width at least β. Note that the number of layers is
O(log 1

ε ).

Lemma 4.6. Let 0 < ε ≤ 1, let K ⊆ Rn be a well-centered convex body, and let c ≥ 2 be a constant.

Let X be a (Kε,K, c)-MNet, and let M = M
1/c
Kε

(X). Then M is a (c, ε)-covering for K consisting

of at most 2O(n)/ε(n−1)/2 centrally symmetric convex bodies.

Proof. By Lemma 4.1, M is a (c, ε)-covering for K. We will bound the size of the covering by
partitioning the points of X based on the layered decomposition (defined above) and then use
Lemma 4.5 to bound the number of points in each layer.

For 0 ≤ i ≤ k0, let Xi be subset of points of X that are in layer i. Since K is well-centered, Kε is
also well-centered. By Lemma 4.5(f), |Xi| ≤ 2O(n)/(2iε)(n−1)/2. Summing |Xi| over all layers 0 to
k0 we have at most 2O(n)/ε(n−1)/2 points in all these layers.

It remains only to bound |Xk0+1|. Consider the set M
1/4c
Kε

(Xk0+1) of the associated packing
Macbeath regions. By Lemma 4.1, these Macbeath regions are pairwise disjoint. Recall that
the minimum volume cap of any point in Xk0+1 has width at least β (used in the definition of
k0). Hence by Lemma 2.19 (and the fact that c is a constant), each of these Macbeath regions has
relative volume of at least 2−O(n). By a simple packing argument, it follows that |Xk0+1| ≤ 2O(n),
which completes the proof.
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5 Applications: Banach-Mazur Approximation

In this section we show that the convex hull of the centers of any (c, ε)-covering implies the existence
of an approximating polytope in the Banach-Mazur distance. The main result is given in the
following lemma. Combining this with our covering from Theorem 1 establishes Theorem 2.

Lemma 5.1. Let 0 < ε < 1, let K ⊆ Rn be a well-centered convex body, and let c ≥ 2 be a
constant. Let X be the set of centers of any (c, ε′)-covering of K(1 + ε/c), where ε′ = 1+ε

1+ε/c − 1.

Then K ⊂ conv(X) ⊂ K(1 + ε).

Proof. Let M denote the covering mentioned in the statement of the lemma. By definition, the
bodies of M together cover K(1 + ε/c) and the c-expansion of any such body about its center is
contained within K(1 + ε). Since each body of M is contained within K(1 + ε), it follows that
X ⊂ K(1 + ε) and so conv(X) ⊂ K(1 + ε). To prove that K ⊂ conv(X), it suffices to show that
there is a point of X in every cap of K(1 + ε) defined by a supporting hyperplane of K.

O

K K(1 + ε/c) K(1 + ε)
HC

z Hz

x

B y p

Figure 18: Proof of Lemma 5.1.

Let C be a cap of K(1 + ε) defined by a supporting hyperplane H of K. Let x be a point at
which H touches K. For the sake of concreteness, assume that H is horizontal and K lies below
H. Consider the ray emanating from the origin passing through x. Suppose that this ray intersects
the boundary of K(1 + ε/c) at y and the boundary of K(1 + ε) at z. Let Hz denote the supporting
hyperplane of K(1 + ε) at z. Clearly Hz is parallel to H and the distance between H and Hz is c
times the distance between y and H.

Consider any body B of M that contains point y. We claim that the center p of the body B is
contained within C. By our earlier remarks, p ∈ K(1 + ε). Thus, we only need to show that p
cannot lie below H. To see this, recall that the body formed by expanding B about its center p by
a factor of c is contained within K(1+ε). In particular, the point p+c(y−p) ∈ K(1+ε). However,
if p lies below H, then the point p + c(y − p) would lie above Hz, and hence outside K(1 + ε). It
follows that p cannot lie below H, which completes the proof.

By Lemma 4.6, there exists a (c, ε′)-covering M for K(1+ε/c) consisting of at most 2O(n)/(ε′)(n−1)/2

centrally symmetric convex bodies. The bound on vertices in Theorem 2 now follows immediately
from the above lemma (setting P = conv(X) and noting that ε′ = Θ(ε)), and the bound on facets
follows via polarity and scaling by a factor of (1 + ε).
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6 Applications: Approximate CVP and IP

6.1 Preliminaries

An n-dimensional lattice L ⊆ Rn is the set of all integer linear combinations of a basis b1, . . . , bn
of Rn. Given a lattice L, a convex body K and a target t ∈ Rn, the closest vector problem (CVP)
seeks to find a closest vector in L to t under ‖·‖K . Given a parameter ε > 0, the (1+ε)-approximate
CVP problem seeks to find any lattice vector whose distance to t under ‖ · ‖K is at most (1 + ε)
times the true closest.

We employ a standard computational model in our (1 + ε)-CVP algorithm. Given reals 0 < r ≤ r′
and x ∈ Rn, we say that a convex body K ⊆ Rn is (x, r, r′)-centered if x + rBn

2 ⊆ K ⊆ x + r′Bn
2 ,

where Bn
2 is the unit Euclidean ball centered at the origin. We assume that the convex body K

inducing the norm is (O, r, r′)-centered, where both r and r′ are given explicitly as inputs. We
assume that the basis vectors of the lattice L are presented as an n× n matrix over the rationals.
Input size is measured as the total number of bits used to encode r, r′, t, and ε and the basis
vectors of L (all rationals).

Following standard conventions, we assume that access to K is provided through a membership
oracle, which on input x ∈ Rn returns 1 if x ∈ K and 0 otherwise. Our algorithms apply more
generally where K is presented using a weak membership oracle, which takes an extra parameter
δ > 0 and only needs to return the correct answer when x is at Euclidean distance at least δ from
the boundary of K.

In the oracle model of computation, the running time is measured by the number of oracle calls and
bit complexity of arithmetic operations. Note that the running time of our (1 + ε)-CVP algorithm
will be exponential in the dimension n. We will follow standard practice and suppress polynomial
factors in n and the input size. We will also simplify the presentation by expressing our algorithms
assuming exact oracles, but the adaptation to weak oracles is straightforward.

Our approach to approximate CVP follows one introduced by Eisenbrand et al. [32] for `∞ and
later extended in a number of works [33, 53, 58], which employs coverings of K. Given any constant
c ≥ 2, a (c, ε)-covering of an (O, r, r′)-centered convex body K is a collection Q of convex bodies,
such that a factor-c expansion of each Q ∈ Q about its centroid lies within Kε. Naszódi and Venzin
showed that a (2, ε)-covering of K can be used to boost the approximation factor of any 2-CVP
solver for general norms.

Lemma 6.1 (Naszódi and Venzin [53]). Let L be a lattice and let K be an (O, r, r′)-centered
convex body. Given a (2, ε)-covering of K consisting of N centrally symmetric convex bodies, we
can solve (1+7ε)-CVP under ‖·‖K with Õ(N) calls to a 2-CVP solver for norms (where Õ conceals
polylogarithmic factors).

6.2 CVP Algorithm

As in Lemma 4.6, let K ⊆ Rn be a well-centered convex body. In this section, we present our
algorithm for computing a (1 + ε)-approximation to the closest vector (CVP) under the norm
defined by K.

Given a convex body K ⊆ Rn, 0 < ε ≤ 1, and a constant c ≥ 2, a (c, ε)-enumerator is a procedure
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that outputs the elements of a (c, ε)-covering for K. Each of the elements of the covering is
represented as an oracle for an (a, r, r′)-centered convex body, where a, r, and r′ are given explicitly
in the output (as rationals). Our enumerator will be randomized in the Monte Carlo sense, meaning
that it achieves a stated running time, but the output may fail to be a (c, ε)-covering with some
given probability. Define an enumerator’s overhead to be its total running time divided by the
number of elements output, and its space complexity to be the amount of memory it needs.

Our enumerator is based on constructing hitting sets for coverings associated with certain MNets.
The following lemma will be useful.

Lemma 6.2. Let K ⊆ Rn be a convex body, Λ ⊂ int(K), and c ≥ 2. Let X be a (K,Λ, 4c)-MNet

and let M = M
1/4c
K (X) be the associated covering. Let Y be any hitting set for M in the sense

that for each M ∈M , Y ∩M 6= ∅. Then M
1/c
K (Y ) is a Λ-limited c-covering with respect to K.

Proof. Since c > 1, the c-expansion of any Macbeath region of M1/c(Y ) is contained within K. To
prove the covering property, let z be any point of Λ. By Lemma 4.1, there is a point x ∈ X such that
z ∈M1/4c(x). Let y be a point of Y that is contained in M1/4c(x). Since M1/4c(x)∩M1/4c(y) 6= ∅,
by Lemma 2.14, M1/4c(x) ⊆ M1/c(y). Thus z ∈ M1/c(y). It follows that M1/c(Y ) is a Λ-limited
c-covering with respect to K.

The following lemma shows that membership oracles for K can be extended to its polar as well as
Macbeath regions and caps that are ε-deep.

Lemma 6.3. Given an (O, r, r′)-centered convex body K, specified by a weak membership oracle,
in time polynomial in n, log 1

ε , and log r′

r we can do the following:

(i) Construct a weak membership oracle for K∗.

(ii) Given a point x ∈ K such that ray(x) ≥ ε, construct a weak membership oracle for Mλ
K(x)

for any constant λ > 0.

(iii) Given a hyperplane h intersecting K which induces a cap C of width at least ε, construct a
weak membership oracle for C.

Proof. Assertion (i) follows directly from standard reductions (see Theorem 4.3.2 and Lemma 4.4.1
from Grötschel, Lovász, and Schrijver [37]). Note that K∗ is

(
O, 1

r′ ,
1
r

)
-centered. To prove (ii),

note that we can construct a membership oracle for M(x) by using the fact that a point y ∈M(x)
if and only if y ∈ K and 2x − y ∈ K. If ray(x) ≥ ε, it is straightforward to show that M(x) is
(x,Ω(εr), r′)-centered. The generalization of this construction to Mλ

K(x) for any constant λ > 0 is
immediate. Finally, to prove (iii), observe that the membership oracle is easy, but centering is the
issue. We first determine the apex a of C (approximately) by finding the supporting hyperplane of
K that is parallel to h. We let b denote the point midway on the segment Oa between base of the
cap and a. It is easy to show that a Euclidean ball of radius Ω(εr) can be centered at b, which is
contained within C. Thus C is (b,Ω(εr), 2r′)-centered.

We will make use of standard sampling results (see, e.g., [30, 62]), which state that given η > 0,
there exists an algorithm that outputs an η-uniform X ∈ K using at most poly

(
n, ln 1

η , ln
r′

r

)
calls

to a membership oracle for K and arithmetic operations. (A random point X ∈ K is η-uniform if
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the total variation distance between the sample X and uniform vector in K is at most η.) As with
membership oracles, it will simplify the presentation to state our constructions in terms of a true
uniform sampler, but the generalization is straightforward.

Lemma 6.4. Given 0 < ε ≤ 1, constant c ≥ 2, and an oracle for a convex body K ⊆ Rn which is
both well-centered and (O, r, r′)-centered, there exists a randomized (c, ε)-enumerator for K, which
generates a covering of size

2O(n) · 1

ε(n−1)/2
· log

1

ε
,

such that the cover elements are (a,O(εr), r′)-centered. The enumerator succeeds with probability
1− 2−O(n), and its overhead and space complexity are both polynomial in n, log r′

r and log 1
ε .

In our construction, the elements of the covering will be centrally symmetric, and more specifically,

the covering element centered at a point a ∈ K will be a Macbeath region of the form M
1/c′

Kε
(a),

where c′ = O(c).

Proof. Recall the layered decomposition of K described just before Lemma 4.6. For 0 ≤ i ≤ k0,
layer i consists of points x ∈ K such that wid(x) ∈ [2i−1, 2i)ε, and layer k0 + 1 consists of the
remaining points x ∈ K. Note that for points in layer k0 + 1, wid(x) ≥ β. Here β is a constant and
the number of layers k0 + 2 = O(log 1

ε ). Let Λi denote the points in layer i. Our enumerator runs
in phases, where the i-th phase generates elements of a Λi-limited c-covering with respect to Kε.
Clearly, the elements generated in all the phases together constitute a (c, ε)-covering for K.

For 0 ≤ i ≤ k0, to describe phase i of the enumerator, it will simplify notation to write K,Λ, ε, and c
for Kε,Λi, 2

i−1ε, and 4c, respectively. Our (new) objective is to generate a Λ-limited (c/4)-covering

in this phase. Let X be a (K,Λ, c)-MNet, let M = M
1/c
K (X) be the associated covering, and let

X ′ be a hitting set for M . By Lemma 6.2, M
4/c
K (X ′) is a Λ-limited (c/4)-covering.

We show how to generate the hitting set X ′ for M along with the elements of M
4/c
K (X ′) in the

desired form. In addition to the quantities K,Λ, ε, c,X defined above, define also the quantities
Λ′, Y, t, t′, as in Lemma 4.5. By Lemma 4.5(a), the regions of M are contained in ΛK(ε) =
K \ (1− 4ε)K. Recall the distinction between “large” and “small” Macbeath regions of M , based
on whether its relative volume is at least t. We will use a different strategy for hitting these two
kinds of regions.

First, let us consider the large Macbeath regions. We claim that it suffices to choose (2O(n)/ε(n−1)/2)·
log 1

ε points uniformly in ΛK(ε) to hit all the large Macbeath regions with high probability. Before
proving this, note that we can sample ΛK(ε) uniformly by first choosing a point p from the uniform
distribution in K and then choosing a point uniformly from the portion of the ray Op ∩ ΛK(ε).
Using binary search, we can find such a point with constant probability in O(log r′

r + log 1
ε ) steps.

We omit the straightforward details.

To prove the claim, let M be a large Macbeath region. By Lemma 4.5(a) and (b), M ⊆ ΛK(ε),
volK(M) ≥ ε(n+1)/2, and volK(ΛK(ε)) = O(nε). Thus vol(M)/ vol(ΛK(ε)) ≥ 2−O(n)ε(n−1)/2. Also,
by Lemma 4.5(b), the number of large Macbeath regions is at most 2O(n)/ε(n−1)/2. A standard
calculation implies that the probability of failing to hit some large Macbeath region in a layer is no
more than εO(n).
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Next we show how to generate a hitting set for the small Macbeath regions. Intuitively, as these are
small, they cannot be stabbed efficiently by uniform sampling in ΛK(ε). Instead, we will hit them
by exploiting the relationship between the small Macbeath regions of M and the large Macbeath

regions of M ′ = M
1/5
K∗ (Y ). Recall that Y is a (K∗,Λ′, 5)-MNet, where Λ′ is the boundary of

(1 − ε)K∗, and the large Macbeath regions of M ′ have volume at least t′ = 2−O(n)ε(n+1)/2. Our
high-level idea for hitting the small Macbeath regions of M is to hit the large Macbeath regions of
M ′ and then uniformly sample the associated ε-representative cap of K.

More precisely, we perform (2O(n)/ε(n−1)/2) · log(1/ε) iterations of the following procedure. First,
we choose a point p uniformly in ΛK∗(ε) = K∗ \ (1 − 2ε)K∗. (This can be done in a manner
analogous to uniformly sampling ΛK(ε), which we described above.) Next, we sample uniformly in
the cap C32

p , where Cp is p’s ε-representative cap in K. We claim that this procedure stabs all the
small Macbeath regions of M with high probability.

To see why, recall from Lemma 4.5(e) that for any small Macbeath region M ∈ M , there is a
large Macbeath region M ′ ∈ M ′ with the following properties. Let y be any point in M ′ and
let Cy be y’s ε-representative cap in K. Then M ⊆ C32

y and vol(M) ≥ 2−O(n) vol(C32
y ). Also,

by properties (c) and (d) of Lemma 4.5, we have M ′ ⊆ ΛK∗(ε), volK∗(M
′) ≥ 2−O(n)ε(n+1)/2, and

volK∗(ΛK∗(ε)) = O(nε). It follows that the probability of hitting a fixed small Macbeath region M
of M in any one trial (i.e., sampling p uniformly in ΛK∗(ε), followed by sampling a point uniformly
in the cap C32

p ) is at least 2−O(n)ε(n−1)/2. Also, by Lemma 4.5(f), the number of small Macbeath

regions of M is at most 2O(n)/ε(n−1)/2. The same calculation as for large Macbeath regions implies
that the probability of failing to hit some small Macbeath region of M is no more than εO(n).

Putting it together, it follows that we can hit the Macbeath regions in all the layers i, 0 ≤ i ≤ k0

with failure probability bounded by 2−O(n).

Finally, we describe phase k0 + 1 of the enumerator. Recall that Λk0+1 consists of points such
that the associated minimum volume cap has width at least β, where β is a constant. Let X be

a (Kε,Λk0+1, 4c)-MNet and let M = M
1/4c
Kε

(X) be the associated covering. By Lemma 2.19, the

Macbeath regions of M have relative volume at least 2−O(n). Thus, we can hit all the Macbeath
regions of M with 2O(n) uniformly sampled points in K with failure probability no more that
2−O(n).

In closing, we mention that Lemma 6.3 shows that the enumerator can construct the three mem-
bership oracles it needs for its operation. Specifically, for each point in the hitting set, by part (ii),
we can construct an oracle for the associated Macbeath region. By part (i), we can construct an
oracle for K∗, which we need to sample uniformly in K∗, and by part (iii), we can construct oracles
for the caps of K which need to be sampled uniformly. This completes the proof.

Our algorithm and its analysis follows the general structure presented by Eisenbrand et al. [32]
and Naszódi and Venzin [53]. We solve the (1 + ε)-CVP in the norm ‖ · ‖K by reducing it to the
(1 + ε)-gap CVP problem in this norm. In the (1 + ε)-gap CVP problem, given a target t and a
number γ > 0, we have to either find a lattice vector whose distance to t is at most γ or assert that
all lattice vectors have distance more than γ/(1 + ε). We solve the (1 + ε)-CVP problem via binary
search on the distance from the target. Given the problem parameters n, ε, ρ = r′

r , and letting
b denote the number of bits in the numerical inputs, the number of different distance values that
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need to be tested can be shown to be O(log n + log 1
ε + log ρ + log b). Let Φ(n, ε, ρ, b) denote this

quantity. For each distance, we need to solve the (1+ε)-gap CVP problem. In turn, the (1+ε)-gap
CVP problem is solved by invoking the (c, ε)-enumerator. For each of the N bodies generated by
the enumerator, we need to call a 2-gap CVP solver. For this purpose, we use Dadush and Kun’s
deterministic algorithm [25] as the 2-gap CVP solver. As this 2-gap CVP solver always yields the
correct answer, the only source of error in our algorithm arises from the fact that a valid covering
may not be generated. The failure rate of our (c, ε)-enumerator is 2−O(n), which we reduce further
by running it log Φ(n, ε, ρ, b) times. This ensures that all the coverings generated over the course of
solving the (1+ε)-CVP problem are correct with probability at least 1−2−O(n). Recalling that the
algorithm by Dadush and Kun takes 2O(n) time and O(2n) space, we have established Theorem 3
(neglecting polynomial factors in the input size).

6.3 Approximate Integer Programming

Through a reduction by Dadush, our CVP result also implies a new algorithm for approximate
integer programming (IP). We are given a convex body K ⊆ Rn and an n-dimensional lattice
L ⊂ Rn, and we are to determine either that K ∩ L = ∅ or return a point y ∈ K ∩ L. The
best algorithm known for this problem takes nO(n) time [42], which has sparked interest in the
approximate version. In approximate integer programming, the algorithm must return a lattice
point in (1 + ε)K (where the (1 + ε)-expansion of K is about the centroid), or assert that there are
no lattice points in K.

Dadush [24] has shown that approximate IP can be reduced to (1 + ε)-CVP problem under a well-
centered norm. His method is to first find an approximate centroid p and then make one call to
a (1 + ε)-CVP solver for the norm induced by K − p. By plugging in our solver, we obtain an
immediate improvement with respect to the ε-dependencies (neglecting polynomial factors in the
input size).

Theorem 5. There exists a 2O(n)/ε(n−1)/2-time and O(2n)-space randomized algorithm which solves
the approximate integer programming problem with probability at least 1− 2−n .

7 Conclusions

In this paper we have demonstrated the existence of concise coverings for convex bodies. In partic-
ular, we have shown that given a real parameter 0 < ε ≤ 1 and constant c ≥ 2, any well-centered
convex body K in Rn has a (c, ε)-covering for K consisting of at most 2O(n)/ε(n−1)/2 centrally
symmetric convex bodies. This bound is optimal with respect to ε-dependencies. Furthermore, we
have shown that the size of the covering is instance-optimal up to factors of 2O(n). Coverings are
useful structures. One consequence of our improved coverings is a new (and arguably simpler) con-
struction of ε-approximating polytopes in the Banach-Mazur metric. We have also demonstrated
improved approximation algorithms for the closest-vector problem in general norms and integer
programming.

In contrast to earlier approaches, our covering elements are based on scaled Macbeath regions for
the body K. This raises the question of what is the best choice of covering elements. Eisenbrand
et al. [32] showed that the size of any covering based on ellipsoids grows as Ω(nn/2), even when
the domain being covered is a hypercube. Our Macbeath-based approach results in a reduction
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of the dimensional dependence to 2O(n) for any convex body. Macbeath regions have many nice
properties, including the fact that it is easy to construct membership oracles from a membership
oracle for the original body. Unfortunately, Macbeath regions have drawbacks, including the fact
that their boundary complexity can be as high as K’s boundary complexity.

It is natural to wonder whether we can do better than ellipsoid-based coverings with uniform cover-
ing elements. For example, can we build more economical coverings based on affine transformations
of some other fixed convex body. Recent results from the theory of volume ratios imply that this
is not generally possible. The work of Galicer, Merzbacher, and Pinasco [36] (combined with po-
larity) implies that for any convex body L, there exists a convex body K, such that for any affine
transformation T , if T (L) is contained within K, then vol(T (L)) is at most vol(K)/(bn)n/2, where
b is an absolute constant. A straightforward packing argument implies that if we restrict covering
elements to affine images of a fixed convex body, the worst-case size of a (c, ε) covering grows as
Ω(nn/2) (independent of ε).
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