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Range Searching — Exact Version

P. Set of n points In
d-dimensional space.

w: Weight function.

R . Set of ranges (regions of
. the space).

* Preprocess P, in a way

that, given R € %, we can
efficiently compute:
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Semigroups, Groups and ldempotence

* |n the most general version, the
weights are drawn from a
commutative semigroup.

Other properties may be useful:
- Group: We can use subtraction.

- ldempotence: For every z, we
have z+z=z:

- maximum,

— Boolean or.
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Generators

» Generators represent sets
. : of points whose sum is
.« /o precomputed.

* A query iIs processed by
summing generators.

- Large generators:
* Low query time,
» High storage.

> Small generators:
* High query time,
e Low storage.
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Why Approximate?

 Exact solutions are
generally complicated and
Inefficient.

» Polylogarithmic query time
requires about n‘ space.

* With linear space, the
guery time approaches
O(n) as d increases.

* Points near the range
boundary require the use of
many small generators.
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The Absolute Error Model

* Absolute error model:
. o points within distance €
from the boundary may or
" may not be counted.

» All data points lie inside the
unit hypercube [0,1]".

* Relative error model: fuzzy
. boundary is proportional to
the diameter of the range
(Arya, Mount, 2000).
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Our Results

* The first work on approximate range searching in
the absolute error model for fixed dimensions.

e Our data structures are simple and amenable to
efficient implementation.

* We exploit idempotence to achieve better
performance.

 Introduction of the versatile halfbox quadtree.

 We apply our results to several problems, including
exact idempotent halfspace range searching, the
relative error model, and the data stream model.
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Contents

e Preliminaries

* Orthogonal & convex
ranges

« Halfspace ranges
. (application to exact range
searching)

r  Halfbox quadtree
»  Relative Model
e Conclusions
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Convex Ranges

Ranges are general convex
shapes.

Unit cost test assumption: we can
determine whether the range
Intersects a given hypercube in
constant time.

No equivalent structure for the
exact version.

Semigroup in the absolute model:
- Query time: O(1/€™).
- Space: O(min(n,1/€%).

Relative error model structure by
Arya and Mount, 2000.



Convex Ranges Structure

Build a quadtree with the points.

Stop subdividing when a box
has diameter <€ or there are no
Internal points.

Each node stores a partial sum
of the points inside.

Space: O(1/€9).
Depth: O(log 1/€).

Compression can be used to
reduce storage to

O(min(n, 1/€%)).
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Convex Range Queries
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Do not do anything if the box is
empty.

If the box Is completely inside
the range, count points as
Inside.

If the box is completely outside
the range, do not count points.

If the box has minimum size,
count the points only if the box
center is inside the range.

Otherwise, make a recursive call
for each box subdivision.
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Orthogonal Ranges

 Ranges are axis-aligned
. . rectangles.

 Exact (Chazelle, 1988):
© - Query time: O(log™*n).
- Space: O(n log““n).

* Approximate group:
- Query time: O(1).
- Space: O(1/e9).

Slightly larger complexity for
. the semigroup version.




Orthogonal Ranges
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Reduction to partial sums.

Partial sum: orthogonal query
In multidimensional array.

Build a grid with cells of
diameter 2¢.

Build a d-dimensional array
with the sum for each cell.

Use data structures from
Chazelle and Rosenberg,
1989 or Yao, 1982.
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Halfspace Ranges

 Ranges are d-dimensional
halfspaces.

« Exact (Matousek, 1993).
- Query time: O(n*™9).
- Space: O(n).

- Polylogarithmic query
time takes n’ space.

* Approximate:
- Query time: O(1).
- Space: O(1/€9).
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Halfspace Ranges Structure

 We can g-approximate all
halfspaces inside the unit
cube with O(1/€9)
halfspaces.

e Store the results in a table.

* Answer queries by
rounding halfspace
parameters and returning
the proper table entry.

0 01 02 03 04 05 06 07 08 09 1
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Preprocessing

* Nalve preprocessing takes
O(n/€”) or O(n+1/€*?) time.

e Instead, we perform 2¢
approximate queries in the
guadtree subdivisions.

 Problem: Error accumulates
through O(log 1/¢) levels.

e Solution: Scale € to become
e /log(1/¢), and remove extra
entries afterwards.

e Time: O(log”*(1/¢)/e%).
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ldempotent Version

e |[dempotent semigroup:
r+x=x, for all z.

* Generators can overlap.

* Use large spherical
generators.

- Space: O(1/g"?),
- Query time: O(1/g“1"),

- Trade-off: O(m) space,
O(1/me”) query time.
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Exact Uniformly Distributed Idempotent
Version

« Approximate version: _
 Space: O(L/e7) i AN
- Query time: O(1/e“"Y?), _

e Set € = 1/n?*D: U
- Space: O(n).

e The en = O(n1—2/(d+1)) R

remaining points are |
counted one by one. NN

............
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Exact Uniformly Distributed Idempotent
Version

* Approximate version: Works in the semigroup

- Space: O(1/g4*172), arithmetic model.
~ Query time: O(1/€@?). e Uniform distribution.
e Set £ = 1/n2@D: * Matches the best lower
' bound up to logarithmic
- Space: O(n). terms (Bronnimann,
~ Query: O(nt~ 2@y Chazelle, Pach, 1993).
e The en = O(nt~ 2D ¢ Same assumptions as the
lower bound.

remaining points are
counted one by one.
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Halfbox Quadtree

* One halfspace data structure
for each quadtree box.

e Generators: intersection of
guadtree boxes and
halfspaces (halfboxes).

§ » Powerful building blocks!

e Smaller boxes take less
space, as € is constant.

- Space: O(log(1/€)/€?).
- Prepro.: O(log“*(1/€)/€").
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Spherical Range Searching

. .  Ranges are d-dimensional
spheres.

e Exact version:

- Project the points onto a
(d+1)-dimensional
. paraboloid.

- Use halfspace range
searching.

* Approximate version:

. - Use the halfbox
guadtree.




Preliminaries smmmmmm Simple mmmmm Halfspace mmmmm Halfbox mmm1] Relative CITT 1111 Conclusion CIJ

Spherical Range Searching

* Approximate the range

/ﬁ- with halfboxes.

/ « Only O(1/e““"?) halfboxes
/
I

are necessatry.
* Use the halfbox quadtree
to query each halfbox in
X 4 O(1) time.
| - Query time: O(1/“1"?),
- Space: O(log(1/€)/e™).
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Simplex Range Searching

 Ranges are d-dimensional
’ ’ . simplices: intersection of
d+1 halfspaces.

* Exact version solved
similarly to halfspace range
searching:

. (Matousek, 1993)

- Query time: O(n

1-1/d) .

- Space: O(n).
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Simplex Range Searching

e Use the halfbox quadtree.

/\

 Recurse when you hit a
A (d-2)-face.

4 \ * Otherwise, subtract all
y \ disjoint (d-1)-faces.

/ \  Group version:

- Query time:

y \ O(1/e™* + log(1/€)).
“““““ =" - Space:
O(log(1/€)/e™).




Preliminaries ammmmmm Simple mmmmm Halfspace mmmmm Halfbox mmmmm Relative mCTT1T111 Conclusion 1]

Relative Error Model

Several data structures
are known for the
relative error model.

Most use complicated
properties from AVDs.

We improve the query
time, storage space, and
preprocessing time with
a simpler data structure.

First data structure for
simplex and smooth
ranges.



Compressed Quadtree

 The storage space of a
guadtree Is not bounded
In terms of n.

« Compression can be used
to make storage O(n), but
the height is still ©(n).

s ‘ . | * Fingers can be added to
. : search the compressed
. guadtree in O(log n) time.

* Preprocessing takes
O(n log n) time.




Relative Halfbox Quadtree

* Lety be a parameter to
control the tradeofft.

« Associate a (0/y)-
approximate halfspace
range searching data
structure with each
guadtree box of size 9.

e Storage:
O(ny").

* Preprocessing:
O(ny” + n log n).




Smooth Range

« Aconvexrange R IS
a-smooth if every point in the
boundary of R can be
touched by a ball of diameter
a diam(R) contained in R.

a diam(R)

* A sphere is 1-smooth.

 Arange is smooth if it is
a-smooth for constant a.

* |dempotent data structure by
Arya, Malamatos, and
Mount, 2006.
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Smooth Range Searching

* Besides the unit-cost
test assumption, we
assume that a tangent > diam(R) Vag
hyperplane inside a
guadtree box can be
found in O(1) time.

» Use quadtree boxes of
diameter at most
diam(R)Vae for the
boundary.

£ diam(R)

a diam(R) \
2
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Smooth Range Searching

» Besides the unit-cost
test assumption, we
assume that a tangent
hyperplane inside a
guadtree box can be
found in O(1) time.

» Use quadtree boxes of
diameter at most
diam(R)Vae for the
boundary.

Since each quadtree box of
diameter o contains a
(0/y)-approximate data
structure, use boxes of
diameter at most gy diam(R)
for the boundary.

By packing lemma, the
number of boxes Is
O(1/e“= + 1/(gy)™).

Query time:
O(log n + 1/“Y= + 1/(gy)*™).
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Simplex Range Searching (group version)

0 diﬁ;m(R) 5 dia;n(R)
/ <
£\
y |
\

Subtraction is used to
handle the intersection with
multiple disjoint halfspaces.

Any box size can be used in
the interior of the simplex.

Only boxes of size at most
e diam(R) can be used for
the (d-2)-faces.

Only boxes of size at most
ey diam(R) can be used for
the (d-1)-faces.



Query Time Analysis

« Lemma: If S'is a set of pairwise disjoint quadtree boxes, each of diameter at
least d<1, that intersect the boundary of a convex region of diameter 1, then

o))

« Lemma: If S'is a set of pairwise disjoint quadtree boxes, each of diameter at
least 0<1, that intersect the (d-2)-faces of a simplex of diameter 1, then

()

log O(1/2) logO(1 /=)

> oo(@)T)+ X o)) =0 (log (1> + %) +0 (#) .

=0 i=0

« Simplex query time:
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Conclusions

 The absolute error model Is better suited for several
applications.

« Data structures are simpler than exact and other
approximate data structures.

 Halfspace range searching is extremely fast.

* |In the iIdempotent version, halfspace range searching
requires little space (with slower query time).

* The halfbox quadtree Is efficient for various shapes of
ranges.

* The techniques extend to exact range searching and
approximate range searching in the relative model.
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Future Research

« Can we improve the data structures or obtain matching
lower bounds?

 How much space is required to achieve O(1) query
time for different shapes of ranges?

* Which other problems are interesting in the absolute
error model?

« Can we construct an idempotent version of the relative
halfbox quadtree?

« Can we obtain improved relative error model data
structures?
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