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Abstract1

We describe the methods used by Team Shadoks to win the CG:SHOP 2026 Challenge on parallel2

reconfiguration of planar triangulations. An instance is a collection of triangulations of a common3

point set. We must select a center triangulation and find short parallel-flip paths from each input4

triangulation to the center, minimizing the sum of path lengths. Our approach combines exact5

methods based on SAT with several greedy heuristics, and also makes use of SAT and MaxSAT6

for solution improvement. We present a SAT encoding for bounded-length paths and a global7

formulation for fixed path-length vectors. We discuss how these components interact in practice and8

summarize the performance of our solvers on the benchmark instances.9
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1 Introduction10

The CG:SHOP Challenge is an annual competition in geometric optimization. In its13

eighth edition in 2026, the challenge focuses on a reconfiguration problem between planar14

triangulations. Our team, called Shadoks, won first place with the best solution (among the15

28 participating teams) to 249 instances out of 250 instances and provably optimal solutions16

to 189 instances.17

In this paper, we outline the exact methods and heuristics that we employed. We start18

with some definitions that allow us to describe the problem. Throughout, we consider19

triangulations of a common point set S ⊂ R2. Given a triangulation T , a unit flip is the20

operation that removes an edge e ∈ T and adds an edge e′, obtaining a new triangulation21

T ′ = T \ {e} ∪ {e′}. Notice that the edge e must cross e′. Similarly, a parallel flip removes a22

set of edges E ⊂ T and adds a set of edges E′, in a way that T ′ = T \E ∪E′ is a triangulation,23

with the condition that no two edges of E are in the same triangle in T . A path of length ℓ is24
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2 Shadoks Approach to Parallel Reconfiguration of Triangulations

a sequence of triangulations T0, . . . , Tℓ such that for all i, the triangulation Ti+1 is obtained25

from Ti by performing a parallel flip.26

An instance is a set S ⊂ R2 of n points and a set T = T1, . . . , T|T | of triangulations of27

S, called input triangulations. A solution is a set of paths P1, . . . , P|T | such that Pi starts at28

Ti for all i and all paths end in a common triangulation called center. The goal is to find a29

solution that minimizes the objective value defined as the sum of the lengths of its paths.30

During the competition, the organizers provided a total of 250 instances, with n ranging31

from 15 to 12,500 points and |T | ranging from 2 to 200 triangulations. The 250 instances are32

divided into three classes: 100 random instances, 101 woc instances, and 49 rirs instances.33

The former two instances have up to 320 points and 2 to 20 input triangulations (hence,34

we call them small instances), while the latter have 500 to 12500 points and 20 to 20035

input triangulations. The centers of some of our best solutions are presented in Figure 1.36

Additional details about the challenge can be found in the organizers’ survey paper [5].37

Our best solvers heavily rely on the SAT solver CaDiCal [3] and the MaxSAT solver38

EvalMaxSAT [2]. Nevertheless, we also developed heuristics that do not rely on any external39

solver, which are important to find initial solutions to some large instances, which are then40

improved by roughly 10% using SAT and MaxSAT solvers. Furthermore, we managed to41

solve 189 of the 201 small instances exactly by repeatedly using the SAT solver as well as42

some lower bounds.43

Mention the other teams strategy here...44

We describe our exact algorithms in Section 2, the heuristics in Section 3, and discuss45

the results we obtained in Section 4. Concluding remarks and open problems are presented46

in Section 5.47

2 Exact Algorithms48

This section describes all elements of our exact solver, many of which are also used in the49

heuristic solvers. We first show how to use a SAT solver to compute shortest paths between50

two triangulations (Section 2.1). We then show how to extend this result to test if a solution51

with a list of path lengths exists (Section 2.2). We show how to obtain lower bounds in52

Section 2.3 and put the previous elements together to describe our exact solver in Section 2.4.53

2.1 Path SAT Formulation54

We now describe a SAT formulation for the following decision problem. The input is a set S55

of n points, an integer ℓ and two triangulations T0, Tℓ. The output is whether there exists a56

Figure 1 Our best centers to instances random_78_40_10, woc-70-random-9a7d18d3,
woc-90-tsplib, and rirs-500-50-23d00ec5, respectively.
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path T0, . . . , Tℓ of length ℓ.57

We define two types of variables. For i = 0, . . . , ℓ and for u ≠ v ∈ S, we define an edge58

variable e(u, v, i). The variable e(u, v, i) represents that the edge uv is in the triangulation Ti.59

There are O(n2ℓ) edge variables. It would be possible to define a SAT formulation using only60

such variables. However, a SAT formulation that performed much better in our experiments61

uses a second type of variable.62

u v

u2

v2

u v

u2

v2

Ti Ti+1
f(u, v, u2, v2, i)

Figure 2 Illustration of a flip variable f(u, v, u2, v2, i).63

We say that a convex quadrilateral is empty if it contains no point of S except for its64

vertices. For i = 0, . . . , ℓ and for u ≠ v ≠ u2 ̸= v2 ∈ S such that u, u2, v, v2 form an empty65

convex quadrilateral, we define a flip variable f(u, v, u2, v2, i). The variable f(u, v, u2, v2, i)66

represents a unit flip such that the edge uv is in triangulation Ti and u2v2 is in triangulation67

Ti+1, as shown in Figure 2. Notice that if the points are uniformly distributed, then68

the number of empty convex quadrilaterals is Θ(n2) [4], which means that for uniformly69

distributed points, the number of flip variables is also O(n2ℓ). However, the number of flip70

variables is Θ(n4ℓ) if the points are in convex position (which is not the case for the challenge71

instances). Next, we describe the different types of clauses.72

Start. For every edge variable e(u, v, 0), we have the clause e(u, v, 0) if uv ∈ T0 and73

¬e(u, v, 0) if uv /∈ T0.74

Target. For every edge variable e(u, v, ℓ), we have the clause e(u, v, ℓ) if uv ∈ Tℓ and75

¬e(u, v, ℓ) if uv /∈ Tℓ.76

Flips need edges. For every flip variable f(u, v, u2, v2, i), we have the clause77

f(u, v, u2, v2, i) =⇒ e(u, v, i) ∧ e(u, v2, i) ∧ e(u, u2, i) ∧ e(v, v2, i) ∧ e(v, u2, i),78

which easily translates to 5 binary CNF clauses.79

Flips keep edges. For every flip variable f(u, v, u2, v2, i), we have the clause80

f(u, v, u2, v2, i) =⇒ e(u2, v2, i+1)∧e(u, v2, i+1)∧e(u, u2, i+1)∧e(v, v2, i+1)∧e(v, u2, i+1),81

which easily translates to 5 binary CNF clauses.82

Flips flip edges. For every flip variable f(u, v, u2, v2, i), we have the two clauses83

f(u, v, u2, v2, i) =⇒ e(u2, v2, i + 1) and f(u, v, u2, v2, i) =⇒ ¬e(u, v, i + 1).84

Edge changes require flips. The last type of clause is the only one that has more than 285

variables in CNF form. It states that if the edge variable changes from triangulation i to86

i + 1, then there must be a flip. The
∨

below considers all values that produce valid flips.87

We have two such clauses for every edge variable:88

e(u, v, i) ∧ ¬e(u, v, i + 1) =⇒
∨

u2,v2

f(u, v, u2, v2, i) and89
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90

¬e(u2, v2, i) ∧ e(u2, v2, i + 1) =⇒
∨
u,v

f(u, v, u2, v2, i).91

The number of variables and clauses grows very fast, even though the number of clauses92

is linear in the number of variables. Next, we show how to eliminate many variables from the93

model. All eliminated variables are assumed to be false in every clause, and the clauses that94

become tautologies are also eliminated. If a CNF clause becomes empty, then the problem is95

unsatisfiable.96

Notice that we can easily eliminate e(u, v, 0) for uv /∈ T0 and e(u, v, ℓ) for uv /∈ Tℓ. This97

is, however, only a special case of a more general rule. The following theorem is easy to98

prove and implies that Ω(log n) parallel flips are sometimes necessary to reconfigure two99

triangulations of n points, even when the points are in convex position. We say that two100

segments cross if they intersect at a point that is not an endpoint of either segment.101

▶ Theorem 1. Consider two triangulations T, T ′ of S such that a parallel flip transforms102

T into T ′ and a segment s with endpoints in S. Let χ, χ′ respectively denote the number of103

edges of T, T ′ crossed by s. We then have χ′ ≥ ⌊χ/2⌋.104

Proof. Consider the sequence L of edges of T crossed by s in the order they cross the segment105

s. A parallel flip cannot remove two consecutive edges of L because they share a triangle,106

hence the theorem follows. ◀107

Consequently, we only define the variable e(u, v, i) when uv crosses strictly less than108

2i edges of T0 and strictly less than 2ℓ−i target edges. We only define flip variables when109

a certain set of edge variables is defined. Namely, f(u, v, u2, v2, i) is only defined when110

uv, uv2, uu2, vv2, vu2, are all defined at i and u2v2, uv2, uu2, vv2, vu2, are all defined at i + 1.111

2.2 Solution SAT Formulation112

Next, we describe a SAT formulation for the following decision problem. Recall that an113

instance is a set S of n points and a list T of input triangulations T1, . . . , T|T |. The input114

of the decision problem is an instance and |T | integers ℓ1, . . . , ℓ|T |. The output is whether115

there exists a solution P1, . . . , P|T | such that path Pi has length ℓi for all i.116

We model the |T | paths P1, . . . , P|T | independently as before, starting path Pi at the117

input triangulation Ti. The final triangulation of each path is unknown, but the same edge118

variables are used for the final triangulation of every path, since a valid solution requires119

that all paths end in the same triangulation. It is easy to see that the SAT formulation is120

satisfiable if and only if there exists a solution with the given lengths.121

2.3 Lower Bound122

In order to obtain an exact solution to an instance I, we start by computing a lower bound123

to its objective value. We say that the distance between two triangulations T, T ′ is the length124

of the shortest path from T to T ′. We create a complete directed graph G(I) with edge125

weights as follows. The vertices are the triangulations T and the weight of the edges are the126

distances between the corresponding triangulations. A cycle packing of G is a collection of127

vertex-disjoint directed cycles, i.e. a subset of edges such that each vertex has at most one128

outgoing and at most one incoming edge in the subset. The graph is directed to allow for129

cycles with only 2 edges. The length of a cycle is the sum of the lengths of its edges, and130

the length of a cycle packing is the sum of the lengths of its cycles. We have the following131

theorem.132
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Figure 3 (a) A cycle packing. (b) Illustration of the proof. In this example,d1,2 ≤ r1 + r2,
d2,1 ≤ r2 + r1, d3,4 ≤ r3 + r4, d4,5 ≤ r4 + r5, and d5,3 ≤ r5 + r3 by triangle inequality.

133

134

▶ Theorem 2. Given an instance I, the objective value of a solution is at least the length of135

any cycle packing of G(I) divided by 2.136

Proof. Let di,j denote the distance between the input triangulations Ti, Tj . Let C be a137

potential center and let ri be the distance from C to Ti. Consider a cycle T1, . . . , Tk in the138

cycle packing. By triangle inequality di,i+1 ≤ ri + ri+1 with indices taken modulo k (see139

Figure 3 (b)). Summing over the inequalities for i from 1 to k, we have that the length140

of the cycle is at most 2
∑

i ri. Applying the same argument to every cycle, the theorem141

follows. ◀142

2.4 The Exact Solver143

First, we use the exact path formulation from Section 2.1 to calculate the distance between144

all
(T

2
)

pairs of input triangulations using a SAT solver (in our case, CaDiCal). It is easy to145

formulate the problem of finding a maximum length cycle packing as a weighted MaxSAT146

problem, which provides a lower bound b to the objective value (see Section 2.3). We solve this147

problem using a weighted MaxSAT solver (in our case EvalMaxSAT). We then use backtracking148

to list all integer solutions to ℓ0, . . . , ℓ|T | = b that satisfy ℓi + ℓj ≥ distance(Ti, Tj). We149

use the SAT formulation from Section 2.2 to test the existence of a solution with the given150

lengths ℓ0, . . . , ℓ|T |, again using the CaDiCal SAT solver. If a solution is found, then it is151

optimal. Otherwise, we increment b and repeat. Notice that b is always a lower bound to the152

objective value. Hence, if a solution obtained by a heuristic attains this lower bound, then it153

is optimal.154

3 Heuristics155

In this section, we describe different approaches that can be used when we do not need to156

guarantee the optimality of the solution. In Section 3.1, we present a conjecture that allows157

us to significantly increase the performance of the SAT solver. In Section 3.2, we show how158

to further increase the performance of the SAT solver using a heuristic coupled with some159

instance-independent preprocessed data. In Section 3.3, we show how to use the SAT solver160

to improve existing solutions. In Sections 3.4 and 3.5, we respectively show how to compute161

short paths and good solutions without a SAT solver.162

3.1 Happy Edges Conjecture163

The happy edges conjecture [1] is a general conjecture that is false for some reconfiguration164

problems and true for others.165
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▶ Conjecture 3. For any pair of configurations T, T ′, there always exist a shortest path166

between T, T ′ where the edges that are common to both T and T ′ appear in every intermediate167

configuration.168

The conjecture is false for triangulations under unit flips and arbitrary points [10] but169

true when the points are in convex position [11]. Our experiments lead us to believe that the170

conjecture is true for parallel flips and arbitrary point sets.171

Enforcing that an edge never disappears and later reappears along a path actually makes172

the SAT formulation harder to solve. However, there are some implications of the conjecture173

that are very useful to make the SAT formulation shorter and easier to solve.174

When computing a path of length ℓ from T0 to Tℓ using SAT, for every edge uv that175

appears in both T0 and Tℓ, we add clauses e(u, v, i) that force the variable to be true for all176

i. More importantly, we then eliminate every edge variables corresponding to edges that177

cross uv. The same idea can be applied to the SAT formulation that finds a solution, but178

then only the edges that appear in all input triangulations are forced to be true for all i, and179

again the edges that cross them are eliminated.180

Furthermore, when computing a path, for every edge uv ∈ Tℓ, we eliminate flip variables181

that remove uv, i.e. f(u, v, u2, v2, i) for all u2, v2, i. Similarly, for every edge u2v2 ∈ T0, we182

eliminate flip variables that insert u2v2, that is f(u, v, u2, v2, i) for all u, v, i.183

3.2 Crossing Lower Bound184

Let b(uv, T0) denote the number of parallel flips needed to obtain an edge uv starting at a185

triangulation T0. Clearly, when creating the SAT formulation for a path T0, T1, . . . we only186

need to define the edge variable e(u, v, i) for i ≥ b(T0, uv). Theorem 1 implies that if an edge187

uv crosses χ(uv, T0) segments of T0, then b(uv, T0) ≥ ⌈log2(χ(uv, T0) + 1)⌈. This bound is188

tight when all the edges of T0 that cross uv share a common endpoint and the endpoints are189

in convex position (Figure 4). However, there are different ways in which the edges of T0190

may cross uv that may imply higher values of b(uv, T0).191

u v u v u v

s = ◁▲▲▷s = ◁▲▲▲▲▲▷

u v

s = ◁▷ s = ∅

Figure 4 A path of length 3 to insert an edge that had 6 crossings.192

We consider estimations of b(uv, T0) based on the sequence of triangles that contain193

an upper or a lower edge (Figure 5). An edge uv that crosses χ(uv, T0) segments of T0 is194

translated into a string s = s(uv, T0) of χ(uv, T0) + 1 symbols in the alphabet {▼,▲, ◁, ▷},195

according to which sides of uv contain the edges that are not crossed by uv in each triangle.196

s = ◁▲▲▼▲▼▷ s = ◁▲▼▲▷ s = ◁▼▷

u v u vu v u v u v

s = ◁▷ s = ∅

Figure 5 A path of length 4 to insert an edge that had 6 crossings. Each triangle is labeled and
colored as containing an upper or a lower edge.

197

198

The unit flips on T0 have equivalent productions on s that replace the substring on the199

left-hand side by the substring on the right-hand side. We define a substring as a contiguous200
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subsequence. Flipping the two extreme triangles translates to the extreme productions201

◁▲ → ◁, ◁▼ → ◁, ▲▷ → ▷, and ▼▷ → ▷. Flipping intermediate triangles with the same202

orientation translates to ▲▲ → ▲ and ▼▼ → ▼, while flipping intermediate triangles203

of different orientations translates to ▼▲ → ▲▼ and ▲▼ → ▼▲. The last flip to insert204

the edge uv is ◁▷ → ∅. There are other productions that may increase the string length205

such as ▲ → ▲▲, which consist of exchanging the left-hand and right-hand side of some206

aforementioned productions, but we show that we can always obtain shortest paths without207

using them.208

A parallel flip means that we may apply several productions simultaneously as long as209

their left-hand side corresponds to disjoint substrings. We call the application of several210

productions a rewriting. A rewriting sequence of length ℓ is a sequence of ℓ + 1 strings211

connected by rewriting operations and ending at the empty string ∅. We want to find shortest212

rewriting sequences. Let b(s) be the length of the shortest rewriting sequence of the string s.213

Notice that if the points are not in convex position, then some productions may correspond214

to invalid flips. Hence, assuming convex position provides a lower bound b(s(uv, T0)) ≤215

b(uv, T0). Furthermore, the productions assume that there is an unbounded number of points,216

so that new triangles may be created freely.217

We use a heuristic together with a depth first search exact solution to estimate b(s). The218

heuristic is very involved and sometimes gives incorrect bounds (50182 wrong values for219

33554432 tested strings, which is roughly 1/600 wrong bounds, the smallest wrong bound220

being for ◁▼▲▲▼▲▲▲▲▷). To fix some wrong bounds, we use an instance-independent221

preprocessing to compute tight values of b(s) for small enough strings s and store only the222

values where the heuristic incorrectly computes b(s) in a file. This file is loaded by our solver223

and stored in a hash table.224

3.3 Improving a Solution225

Given a solution P1, . . . , P|T |, we may improve it as follows. We choose a random path Pi226

and use the SAT formulation to find a solution where the length of Pi is decremented and all227

other lengths remain the same. We repeat this as often as necessary. Notice that the method228

may converge to a locally optimal minimal list of lengths that is not globally optimal.229

If the number of clauses is too large, there are two different approaches that we can take230

(and they may be combined). We may force the new solution to be close to the original one231

by only creating edge variables that cross few edges in the corresponding triangulation of the232

previous solution.233

We may also trim the solution to a certain radius r, by only rebuilding the portion of the234

solution that is within r steps from the center. In this case, it is helpful to use MaxSAT first,235

in order to reduce the number of unit-flips performed in the last steps as follows. Given a236

path T0, . . . , T ℓ, we first use a MaxSAT solver to find the path of length ℓ that minimizes237

the number of unit flips performed from Tℓ−1 to Tℓ. The MaxSAT formulation is equal to238

the SAT formulation with soft clauses ¬f(u, v, u2, v2, ℓ) for each last step flip variable. We239

then find the path of length ℓ − 1 from T0 to the Tℓ−1 of the previosu path that minimizes240

the number of unit flips performed from Tℓ−2 to Tℓ−1. We continue this way for r steps.241

3.4 Path Heuristic242

The SAT formulation finds the shortest path connecting two triangulations reasonably fast,243

but it may be too slow for some usages. We also designed a heuristic that produces reasonably244



8 Shadoks Approach to Parallel Reconfiguration of Triangulations

short paths quickly. We are given two triangulations T0, T ′ and the goal is to find a short245

path from T0 to T ′.246

We use a greedy approach that iteratively obtains a triangulation Ti+1 from a triangulation247

Ti as follows. Let F denote the set of possible unit flips in Ti. More precisely, the elements248

of F are pairs e, e′ of edges such that a unit flip from Ti removes e and inserts e′. We then249

build a graph G(F ) with vertex set F and edges between two unit flips that share a triangle.250

Notice that the possible parallel flips correspond to independent sets in G(F ). We assign251

a weight to the vertices as follows. The weight of a vertex e, e′ is the number of edges in252

T ′ crossed by e′ minus the number of edges in T ′ crossed by e. Vertices of zero or negative253

weight are eliminated.254

We then proceed to greedily find an independent set I in G(F ). We iteratively add to I255

the unmarked vertex of maximum weight, breaking ties by minimum degree. We then mark256

all the vertices in the closed neighborhood of I. We repeat until all vertices are marked.257

This iterative approach is repeated until we reach T ′, which will happen in O(n2) flips258

because of the following Theorem from [7].259

▶ Theorem 4. Let T, T ′ be two triangulations of the same point set. If T ̸= T ′, then there260

exists a unit flip that replaces an edge e ∈ T by an edge e′ such that e crosses more edges of261

T ′ than e′ does.262

We further improve the heuristic using the squeaky wheel paradigm [8]. Initially, we263

assign weight 1 to every edge. We modify the definition of the weight of a flip as follows.264

The weight of a flip e, e′ is the sum of the weights of the edges in T ′ crossed by e′ minus the265

sum of the weights of the edges in T ′ crossed by e. When we reach triangulation Ti+1 = T ′
266

from a triangulation Ti we increment the weight of all edges in T ′ that are not in Ti+1. We267

repeat the greedy algorithm with the new weights, keeping the best solution found. This268

procedure is repeated multiple times.269

3.5 Solution Heuristic270

271

We use the following strategy to obtain reasonably good initial solutions that we may use272

as a basis to improve with the aforementioned methods. We start by adding the Delaunay273

triangulation as a candidate center. We then build other candidate centers by performing274

flips starting from the Delaunay triangulation. Given an edge e and a triangulation T , let275

χ(e, T ) denote the number of segments of T crossed by e. We repeatedly perform unit flips276

that remove an edge e and add an edge e′ maximizing277 ∑
T ∈T

χ(e)p − χ(e′)p,278

as long as the value of the sum is positive. We add the triangulation we obtained to the set279

of candidate center and repeat the process for a different value of p.280

We calculate the paths from the candidate centers to each solution, building a solution281

pool. For the next step it will be useful to have a small number of unit-flips in the last flip282

of the path from the input triangulation to the center. To do that, we either use the greedy283

heuristic or a MaxSAT formulation.284

To improve the solution pool, we pick a solution from the pool and look at the triangulations285

that are one flip away from the center in each path. For each such triangulation, we compute286

the distance to the input triangulations and add the solution to the pool as before.287
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4 Results288

In this section, we present the computational results that we obtained with our implementation289

of the aforementioned algorithms and heuristics. In Section 4.1, we present the results on290

computing short paths between two given triangulations. In Section 4.2, we present our291

exact solver, with and without the happy edges conjecture. In Section 4.3, we present the292

heuristics used to find solutions to the instances that we could not solve exactly.293

The solvers were coded in C++ and compiled with GCC and run a single thread.294

During the competition, they were executed on several Linux computers, either using GNU295

Parallel [12] for local executions or Slurm [13] for cluster executions. It was very useful to296

have access to machines with 128GB or more RAM to be able to solve large SAT formulations297

with CaDiCal [3], which has been able to solve SAT instances with more than 50 million298

variables and 500 million clauses. The time measurements on this paper have all been taken299

on an AMD Ryzen 9 9900X CPU and ASUS TUF GAMING B650M motherboard with300

128GB of RAM running Fedora Core 43.301

4.1 Path Calculation302

Computing short paths between two given triangulations is a key component to obtain good303

solutions. Typically, these paths are computed with an input triangulation as one extreme,304

and a triangulation that makes a reasonably good center as the other extreme. In this section,305

we use the Delaunay triangulation as one extreme, because it is a well defined triangulation306

that makes a reasonably good (but not very good) center. Table 1 shows the length of the307

path and the running time of different heuristics and SAT solutions with and without the308

happy edges conjecture. The paths are calculated from the Delaunay triangulation to the309

first input triangulation of several instances. The SAT paths are obtained by first running310

the squeaky wheel heuristic in both directions, and then iteratively decreasing the path311

length. Notice that the running time of the heuristics is much smaller, while the result is312

rarely more than 1 unit away from the optimal distance, especially if we take the minimum313

of both directions. We run the squeaky wheel heuristic for at most 16 iterations, but stops314

earlier if the length increases from one iteration to the next.315

4.2 Exact Solutions334

This section presents the exact solver that we used to solve most instances exactly. Figure 6335

shows the number of exact solutions found as a function of the running time, both without336

and with the happy edges conjecture (the value of the solutions found in both cases is the337

same, hence the conjecture stands). Notice that the impact of the happy edges conjecture is338

less significant than when computing only paths, as there are few common edges on all input339

triangulations. We remark that during the competition, we managed to find exact solutions340

to 189 of the 201 small instances without assuming the happy edges conjecture.341

4.3 Heuristic Solutions344

The typical process to solve instances that we did not solve exactly consists of several steps.345

First, we use the heuristic from Section 3.5 to obtain a reasonably good center. Notice that346

no SAT solver is used in this part. The evolution of the objective value for this step is shown347

in Figure 7. The name of the rirs instances is composed of two values. The first is the348

number of points and the second is the number of input triangulations.349
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316 Greedy Greedy Squeaky Squeaky SAT SAT
317 forward backward forward backward happy exact
318 n ℓ t ℓ t ℓ t ℓ t ℓ t ℓ t
319 500 13 4.2 12 3.7 13 45 12 18 12 1512 12 10191
320 1000 12 7.8 12 6.8 12 25 12 38 11 6806 11 78264
321 1500 13 13 12 12 12 52 12 23 11 19302 11 201353
322 2000 15 21 13 18 13 65 13 104 13 16937 13 485177
323 3000 15 36 15 33 14 193 15 433 14 140729 · ·
324 4000 18 57 16 51 16 577 15 655 15 101402 · ·
325 5000 18 70 17 70 16 238 17 278 16 1037840 · ·
326 6000 17 93 16 83 17 1071 16 644 16 271081 · ·
327 7000 17 94 17 96 17 180 17 407 16 471389 · ·

Table 1 Length and computation time (in milliseconds) from the Delaunay triangulation to the
first input triangulation of the rirs-n--20 instance for different values of the number of points n.
The columns respectively correspond to the greedy heuristic forward and backward, the squeaky
wheel heuristic forward and backward, the SAT solution with the happy edges conjecture, and the
SAT solution without the happy edges conjecture, unless it takes too long. The best lengths found
are shown in bold.
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Figure 6 Number of exact solutions found as a function of the running time over 3 hours of
execution with and without assuming the happy edges conjecture.

342

343

Second, we build a new solution that keeps the same center but we recalculate the paths352

using the SAT formulation from 2.1, assuming the happy edges conjecture (Section 3.1) and353

inexact lower bounds (Section 3.2). This will typically reduce the objective value by 1 to 4354

percent. The calculation of 50 paths in each solution is shown in Figure 8. Notice that the355

running time increases rapidly with the number of points and that finding a shorter path356

(satisfiable SAT problem) is typically slower than when no shorter path exists (unsatisfiable357

SAT problems).358

Third, we improve the solution using the SAT formulation from Section 2.2, assuming362

the happy edges conjecture (Section 3.1) and inexact lower bounds (Section 3.2). This part363

requires adjusting a large number of parameters in order to obtain SAT problems that are364

not too hard. The parameters include the distance to the previous center, the distance to365

the previous path, and whether the solution will be trimmed. Optionally but recommended366

when the problem is trimmed, we use MaxSAT to reduce the number of unit flips close to367

the center. The improvement of some solutions over time is shown in Figure 9. Notice that368
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Figure 7 Evolution of the best solution found by the heuristic solver without any SAT solver for
different instances.
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Figure 8 Path by path improvement of the heuristic solutions using a SAT solver, where each path
is recalculated but the center is kept unchanged. Each black vertical bar represents the beginning of
the computation of a path.
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there is a significant preprocessing time to calculate edge variables with a limited number of369

crossings. This preprocessing is applied initially and after every improvement. Also notice370

that unsatisfiable SAT problems, which mean no improvement in the solution, are solved371

much faster than satisfiable ones.372

5 Conclusion and Open Problems379

We were surprised that we managed to solve so many instances exactly and how well an380

heuristic approximates the exact distance. We believe the following factors help explain the381

strong practical performance:382

The short path length that allows a somewhat small number of variables.383

A SAT model where most clauses have size 2.384

The ability to eliminate many variables through several arguments.385

The fact that the happy edges conjecture is either true or at least holds in most practical386

cases.387
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Figure 9 Improvement of the whole solution using a SAT solver and reducing the length of a
random path by one unit at a time. We constrain the edges in the new solution to cross at most
3 edges of the corresponding triangulation in the solution (except for the instance rirs-500-20,
where the slower but more effective execution with the parameter set to at most 7 edges is also
pictured) but do not use trimming. Each black vertical bar represents a new path length that we
try to decrement.
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The short path lengths are somewhat surprising, given that an Ω(n) lower bound is388

presented in [6], in contrast to the Θ(log n) bound for combinatorial triangulations [9], where389

we are allowed to flip non-convex quadrilaterals. In the challenge instances, we observed390

path lengths that are roughly O(log n).391

Still, there are random instances with only 160 points and 20 input triangulations and392

woc instances with only 185 points and 6 triangulations that we could not solve exactly. Also,393

we still managed to improve solutions to instances with as few as 320 points and 20 input394

triangulations months after the beginning of the challenge.395

The challenge instances did not have many points in convex position. Surprisingly, the396

case where all points are in convex position is the hardest for our SAT formulation, as there397

are Θ(n4) empty convex quadrilaterals. We wonder if a different model works better when398

all and also when most points are in convex position.399

We believe that the same problem with unit flips is significantly harder because the long400

path lengths make the SAT formulation much more complex and removing a happy edge can401

reduce a path length from Θ(n2) to Θ(n).402

Many theoretical open problems remain, such as proving Conjecture 3. We also wonder403

if parallel flip distance problem is NP-hard in general and in convex position, as well as404
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the unit flip distance problem in the convex case (the problem is NP-hard for general point405

sets [10]). We also do not know if the problem of calculating b(s) (see Section 3.2) can be406

solved in polynomial time, possibly using dynamic programming.407
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