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—— Abstract

We describe the methods used by Team Shadoks to win the CG:SHOP 2026 Challenge on parallel
reconfiguration of planar triangulations. An instance is a collection of triangulations of a common

point set. We must select a center triangulation and find short parallel-flip paths from each input
triangulation to the center, minimizing the sum of path lengths. Our approach combines exact
methods based on SAT with several greedy heuristics, and also makes use of SAT and MaxSAT
for solution improvement. We present a SAT encoding for bounded-length paths and a global
formulation for fixed path-length vectors. We discuss how these components interact in practice and
summarize the performance of our solvers on the benchmark instances.
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1 Introduction

The CG:SHOP Challenge is an annual competition in geometric optimization. In its
eighth edition in 2026, the challenge focuses on a reconfiguration problem between planar
triangulations. Our team, called Shadoks, won first place with the best solution (among the
28 participating teams) to 249 instances out of 250 instances and provably optimal solutions
to 189 instances.

In this paper, we outline the exact methods and heuristics that we employed. We start
with some definitions that allow us to describe the problem. Throughout, we consider
triangulations of a common point set S C R2. Given a triangulation T, a undt flip is the
operation that removes an edge e € T and adds an edge ¢, obtaining a new triangulation
T' =T\ {e} U{e'}. Notice that the edge e must cross ¢’. Similarly, a parallel flip removes a
set of edges E C T and adds a set of edges E’, in a way that 7" = T\ EUE’ is a triangulation,
with the condition that no two edges of F are in the same triangle in T'. A path of length ¢ is
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a sequence of triangulations Ty, ..., T, such that for all ¢, the triangulation T} ; is obtained
from T; by performing a parallel flip.
An instance is a set S C R? of n points and a set T = T41,..., T of triangulations of

S, called input triangulations. A solution is a set of paths P, ..., P7| such that P; starts at
T, for all ¢ and all paths end in a common triangulation called center. The goal is to find a
solution that minimizes the objective value defined as the sum of the lengths of its paths.

During the competition, the organizers provided a total of 250 instances, with n ranging
from 15 to 12,500 points and | 7| ranging from 2 to 200 triangulations. The 250 instances are
divided into three classes: 100 random instances, 101 woc instances, and 49 rirs instances.
The former two instances have up to 320 points and 2 to 20 input triangulations (hence,
we call them small instances), while the latter have 500 to 12500 points and 20 to 200
input triangulations. The centers of some of our best solutions are presented in Figure 1.
Additional details about the challenge can be found in the organizers’ survey paper [5].

Our best solvers heavily rely on the SAT solver CaDiCal [3] and the MaxSAT solver
EvalMaxSAT [2]. Nevertheless, we also developed heuristics that do not rely on any external
solver, which are important to find initial solutions to some large instances, which are then
improved by roughly 10% using SAT and MaxSAT solvers. Furthermore, we managed to
solve 189 of the 201 small instances exactly by repeatedly using the SAT solver as well as
some lower bounds.

Mention the other teams strategy here...

We describe our exact algorithms in Section 2, the heuristics in Section 3, and discuss
the results we obtained in Section 4. Concluding remarks and open problems are presented
in Section 5.

2  Exact Algorithms

This section describes all elements of our exact solver, many of which are also used in the
heuristic solvers. We first show how to use a SAT solver to compute shortest paths between
two triangulations (Section 2.1). We then show how to extend this result to test if a solution
with a list of path lengths exists (Section 2.2). We show how to obtain lower bounds in
Section 2.3 and put the previous elements together to describe our exact solver in Section 2.4.

2.1 Path SAT Formulation

We now describe a SAT formulation for the following decision problem. The input is a set S
of n points, an integer £ and two triangulations T, T;. The output is whether there exists a
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Figure 1 Our best centers to instances random_78_40_10, woc-70-random-9a7d18d3,
woc-90-tsplib, and rirs-500-50-23d00ec5, respectively.
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path Ty, ..., T, of length £.

We define two types of variables. For i = 0,...,¢ and for u # v € S, we define an edge
variable e(u, v,i). The variable e(u, v, %) represents that the edge uv is in the triangulation T;.
There are O(n?/) edge variables. It would be possible to define a SAT formulation using only
such variables. However, a SAT formulation that performed much better in our experiments
uses a second type of variable.

U3

T; Uz Tita
f(u7 v, U2, V2, 7’)
>
u v u v
V: )

2

)

Figure 2 Illustration of a flip variable f(u,v,u2,v2,17).

We say that a convex quadrilateral is empty if it contains no point of S except for its
vertices. For ¢ =0,...,¢ and for u # v # ug # vy € S such that u, us, v, vy form an empty
convex quadrilateral, we define a flip variable f(u,v,us,vs,1). The variable f(u,v,ug,ve,1)
represents a unit flip such that the edge uwv is in triangulation T; and usvs is in triangulation
T;11, as shown in Figure 2. Notice that if the points are uniformly distributed, then
the number of empty convex quadrilaterals is ©(n?) [4], which means that for uniformly
distributed points, the number of flip variables is also O(n?¢). However, the number of flip
variables is ©(n¢) if the points are in convex position (which is not the case for the challenge
instances). Next, we describe the different types of clauses.

Start. For every edge variable e(u,v,0), we have the clause e(u,v,0) if uv € Ty and
—e(u,v,0) if uv ¢ Tp.

Target. For every edge variable e(u,v,{), we have the clause e(u,v,£) if uv € T; and

—e(u,v, ) if uv ¢ Ty.

Flips need edges. For every flip variable f(u,v,us,vs,1), we have the clause
flu,v,ug,v9,7) = e(u,v,%) A e(u,va,i) Ae(u,us, i) Ae(v,vs,i) Ae(v,us, i),

which easily translates to 5 binary CNF clauses.

Flips keep edges. For every flip variable f(u,v,us,v2,1), we have the clause
flu,v,ug,v9,7) = e(ug,va, i+1)Ae(u,ve, i+1)Ae(u, uz, i+1)Ae(v, va, i+1)Ae(v, ug, i+1),

which easily translates to 5 binary CNF clauses.

Flips flip edges. For every flip variable f(u,v,us,v2,%), we have the two clauses

flu,v,ug,v9,7) = e(ug,va,i+ 1) and f(u,v,us,vs,i) = —e(u,v,i+ 1).

Edge changes require flips. The last type of clause is the only one that has more than 2
variables in CNF form. It states that if the edge variable changes from triangulation i to
i+ 1, then there must be a flip. The \/ below considers all values that produce valid flips.
We have two such clauses for every edge variable:

e(u,v,i) A —e(u,v,i +1) = \/ f(u,v,ug,v9,4) and

U2,v2
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—e(ug, v2,7) Ae(ug,ve,i+1) = \/f(u,v,uz,vg,i).
u,v

The number of variables and clauses grows very fast, even though the number of clauses
is linear in the number of variables. Next, we show how to eliminate many variables from the
model. All eliminated variables are assumed to be false in every clause, and the clauses that
become tautologies are also eliminated. If a CNF clause becomes empty, then the problem is
unsatisfiable.

Notice that we can easily eliminate e(u,v,0) for uv ¢ Ty and e(u, v, £) for uv ¢ Tp. This
is, however, only a special case of a more general rule. The following theorem is easy to
prove and implies that Q(logn) parallel flips are sometimes necessary to reconfigure two
triangulations of n points, even when the points are in convex position. We say that two
segments cross if they intersect at a point that is not an endpoint of either segment.

» Theorem 1. Consider two triangulations T, T’ of S such that a parallel flip transforms
T into T' and a segment s with endpoints in S. Let x,x’ respectively denote the number of
edges of T, T" crossed by s. We then have X' > |x/2].

Proof. Consider the sequence L of edges of T' crossed by s in the order they cross the segment
s. A parallel flip cannot remove two consecutive edges of L because they share a triangle,
hence the theorem follows. <

Consequently, we only define the variable e(u,v,i) when uv crosses strictly less than
27 edges of T and strictly less than 2¢7% target edges. We only define flip variables when
a certain set of edge variables is defined. Namely, f(u,v,us,vs2,4) is only defined when
UV, UV, Ully, VU2, Vg, are all defined at ¢ and ugvo, uvs, uus, vvg, Vug, are all defined at 7 + 1.

2.2 Solution SAT Formulation

Next, we describe a SAT formulation for the following decision problem. Recall that an
instance is a set S of n points and a list 7 of input triangulations Ty, ..., T|7. The input
of the decision problem is an instance and |7 integers £1,..., £ 7). The output is whether
there exists a solution P, ..., P7| such that path P; has length ¢; for all i.

We model the |T| paths P, ..., Pi7| independently as before, starting path P; at the
input triangulation T;. The final triangulation of each path is unknown, but the same edge
variables are used for the final triangulation of every path, since a valid solution requires
that all paths end in the same triangulation. It is easy to see that the SAT formulation is
satisfiable if and only if there exists a solution with the given lengths.

2.3 Lower Bound

In order to obtain an exact solution to an instance Z, we start by computing a lower bound
to its objective value. We say that the distance between two triangulations T, T" is the length
of the shortest path from T to T'. We create a complete directed graph G(Z) with edge
weights as follows. The vertices are the triangulations 7 and the weight of the edges are the
distances between the corresponding triangulations. A cycle packing of G is a collection of
vertex-disjoint directed cycles, i.e. a subset of edges such that each vertex has at most one
outgoing and at most one incoming edge in the subset. The graph is directed to allow for
cycles with only 2 edges. The length of a cycle is the sum of the lengths of its edges, and
the length of a cycle packing is the sum of the lengths of its cycles. We have the following
theorem.
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Ts
T1 T2 T5
Ty
1 T2 T3
T4 s
C C

(a) (b)

Figure 3 (a) A cycle packing. (b) Illustration of the proof. In this example,d; 2 < ri + 72,
d2,1 <ro 41, d3,4 < r3 4714, d4,5 <r4—+rs, and d5,3 <7rs5—+r3 by triangle inequalityA

» Theorem 2. Given an instance I, the objective value of a solution is at least the length of
any cycle packing of G(I) divided by 2.

Proof. Let d; ; denote the distance between the input triangulations T;, T;. Let C be a
potential center and let r; be the distance from C' to T;. Consider a cycle T1,..., Ty in the
cycle packing. By triangle inequality d;;+1 < 7; + ;41 with indices taken modulo k (see
Figure 3 (b)). Summing over the inequalities for ¢ from 1 to k, we have that the length
of the cycle is at most 2, r;. Applying the same argument to every cycle, the theorem
follows. |

2.4 The Exact Solver

First, we use the exact path formulation from Section 2.1 to calculate the distance between
all (7) pairs of input triangulations using a SAT solver (in our case, CaDiCal). It is easy to
formulate the problem of finding a maximum length cycle packing as a weighted MaxSAT
problem, which provides a lower bound b to the objective value (see Section 2.3). We solve this
problem using a weighted MaxSAT solver (in our case EvalMaxSAT). We then use backtracking
to list all integer solutions to o, ..., 7 = b that satisfy ¢; + £; > distance(T},T;). We
use the SAT formulation from Section 2.2 to test the existence of a solution with the given
lengths £y, ..., {|7|, again using the CaDiCal SAT solver. If a solution is found, then it is
optimal. Otherwise, we increment b and repeat. Notice that b is always a lower bound to the
objective value. Hence, if a solution obtained by a heuristic attains this lower bound, then it
is optimal.

3 Heuristics

In this section, we describe different approaches that can be used when we do not need to
guarantee the optimality of the solution. In Section 3.1, we present a conjecture that allows
us to significantly increase the performance of the SAT solver. In Section 3.2, we show how
to further increase the performance of the SAT solver using a heuristic coupled with some
instance-independent preprocessed data. In Section 3.3, we show how to use the SAT solver
to improve existing solutions. In Sections 3.4 and 3.5, we respectively show how to compute
short paths and good solutions without a SAT solver.

3.1 Happy Edges Conjecture

The happy edges conjecture [1] is a general conjecture that is false for some reconfiguration
problems and true for others.
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» Conjecture 3. For any pair of configurations T,T', there always exist a shortest path
between T, T" where the edges that are common to both T and T' appear in every intermediate
configuration.

The conjecture is false for triangulations under unit flips and arbitrary points [10] but
true when the points are in convex position [11]. Our experiments lead us to believe that the
conjecture is true for parallel flips and arbitrary point sets.

Enforcing that an edge never disappears and later reappears along a path actually makes
the SAT formulation harder to solve. However, there are some implications of the conjecture
that are very useful to make the SAT formulation shorter and easier to solve.

When computing a path of length ¢ from Tj to Ty using SAT, for every edge uv that
appears in both Tj and Ty, we add clauses e(u, v, ) that force the variable to be true for all
1. More importantly, we then eliminate every edge variables corresponding to edges that
cross uv. The same idea can be applied to the SAT formulation that finds a solution, but
then only the edges that appear in all input triangulations are forced to be true for all 7, and
again the edges that cross them are eliminated.

Furthermore, when computing a path, for every edge uv € Ty, we eliminate flip variables
that remove uv, i.e. f(u,v,us,ve,1) for all us, ve,i. Similarly, for every edge usve € Ty, we
eliminate flip variables that insert usve, that is f(u,v,us, ve,4) for all u, v, 1.

3.2 Crossing Lower Bound

Let b(uv,Ty) denote the number of parallel flips needed to obtain an edge uv starting at a
triangulation Ty. Clearly, when creating the SAT formulation for a path Ty, 71, ... we only
need to define the edge variable e(u, v, i) for ¢ > b(Tp, uv). Theorem 1 implies that if an edge
uv crosses x(uv,Ty) segments of Ty, then b(uv,Ty) > [logy(x(uv, To) + 1)[. This bound is
tight when all the edges of Ty that cross uv share a common endpoint and the endpoints are
in convex position (Figure 4). However, there are different ways in which the edges of Tj
may cross uv that may imply higher values of b(uv, Tp).

S=<AAAAAD>

Figure 4 A path of length 3 to insert an edge that had 6 crossings.

We consider estimations of b(uv,Ty) based on the sequence of triangles that contain
an upper or a lower edge (Figure 5). An edge uwv that crosses x(uv,Tp) segments of Ty is
translated into a string s = s(uv, Tp) of x(uv,Tp) + 1 symbols in the alphabet {V, A, <, >},
according to which sides of uv contain the edges that are not crossed by wv in each triangle.

AR

S =<AAVAVYD> 5= <AVAD> 5 =<VY> =0

Figure 5 A path of length 4 to insert an edge that had 6 crossings. Each triangle is labeled and
colored as containing an upper or a lower edge.

The unit flips on Tj have equivalent productions on s that replace the substring on the
left-hand side by the substring on the right-hand side. We define a substring as a contiguous
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subsequence. Flipping the two extreme triangles translates to the extreme productions
<JA — 4, ¥ — <, A> — >, and ¥> — >. Flipping intermediate triangles with the same
orientation translates to AA — A and YV — V. while flipping intermediate triangles
of different orientations translates to YA — AV and AY — VA. The last flip to insert
the edge uv is <> — (). There are other productions that may increase the string length
such as A — AA, which consist of exchanging the left-hand and right-hand side of some
aforementioned productions, but we show that we can always obtain shortest paths without
using them.

A parallel flip means that we may apply several productions simultaneously as long as
their left-hand side corresponds to disjoint substrings. We call the application of several
productions a rewriting. A rewriting sequence of length ¢ is a sequence of £ 4+ 1 strings
connected by rewriting operations and ending at the empty string (). We want to find shortest
rewriting sequences. Let b(s) be the length of the shortest rewriting sequence of the string s.

Notice that if the points are not in convex position, then some productions may correspond
to invalid flips. Hence, assuming convex position provides a lower bound b(s(uv,Tp)) <
b(uv, Tp). Furthermore, the productions assume that there is an unbounded number of points,
so that new triangles may be created freely.

We use a heuristic together with a depth first search exact solution to estimate b(s). The
heuristic is very involved and sometimes gives incorrect bounds (50182 wrong values for
33554432 tested strings, which is roughly 1/600 wrong bounds, the smallest wrong bound
being for <VAAVAAAA>). To fix some wrong bounds, we use an instance-independent
preprocessing to compute tight values of b(s) for small enough strings s and store only the
values where the heuristic incorrectly computes b(s) in a file. This file is loaded by our solver
and stored in a hash table.

3.3 Improving a Solution

Given a solution Pi, ..., P17, we may improve it as follows. We choose a random path P;
and use the SAT formulation to find a solution where the length of P; is decremented and all
other lengths remain the same. We repeat this as often as necessary. Notice that the method
may converge to a locally optimal minimal list of lengths that is not globally optimal.

If the number of clauses is too large, there are two different approaches that we can take
(and they may be combined). We may force the new solution to be close to the original one
by only creating edge variables that cross few edges in the corresponding triangulation of the
previous solution.

We may also trim the solution to a certain radius r, by only rebuilding the portion of the
solution that is within r steps from the center. In this case, it is helpful to use MaxSAT first,
in order to reduce the number of unit-flips performed in the last steps as follows. Given a
path Ty, ..., T¥, we first use a MaxSAT solver to find the path of length ¢ that minimizes
the number of unit flips performed from Ty_; to Ty. The MaxSAT formulation is equal to
the SAT formulation with soft clauses —f(u, v, ug, ve, £) for each last step flip variable. We
then find the path of length ¢ — 1 from Ty to the Ty_; of the previosu path that minimizes
the number of unit flips performed from Ty_o to Ty_;. We continue this way for r steps.

3.4 Path Heuristic

The SAT formulation finds the shortest path connecting two triangulations reasonably fast,
but it may be too slow for some usages. We also designed a heuristic that produces reasonably
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short paths quickly. We are given two triangulations Ty, 7" and the goal is to find a short
path from Tg to T".

We use a greedy approach that iteratively obtains a triangulation T} from a triangulation
T; as follows. Let F' denote the set of possible unit flips in T;. More precisely, the elements
of F are pairs e, ¢’ of edges such that a unit flip from T; removes e and inserts e¢/. We then
build a graph G(F) with vertex set F' and edges between two unit flips that share a triangle.
Notice that the possible parallel flips correspond to independent sets in G(F). We assign
a weight to the vertices as follows. The weight of a vertex e, e’ is the number of edges in
T’ crossed by €’ minus the number of edges in 7" crossed by e. Vertices of zero or negative
weight are eliminated.

We then proceed to greedily find an independent set I in G(F'). We iteratively add to I
the unmarked vertex of maximum weight, breaking ties by minimum degree. We then mark
all the vertices in the closed neighborhood of I. We repeat until all vertices are marked.

This iterative approach is repeated until we reach T”, which will happen in O(n?) flips
because of the following Theorem from [7].

» Theorem 4. Let T,T' be two triangulations of the same point set. If T # T', then there
exists a unit flip that replaces an edge e € T by an edge €' such that e crosses more edges of
T’ than €' does.

We further improve the heuristic using the squeaky wheel paradigm [8]. Initially, we
assign weight 1 to every edge. We modify the definition of the weight of a flip as follows.
The weight of a flip e, ¢’ is the sum of the weights of the edges in T” crossed by ¢ minus the
sum of the weights of the edges in 7" crossed by e. When we reach triangulation T;4; = T"
from a triangulation T; we increment the weight of all edges in 7" that are not in T;11. We
repeat the greedy algorithm with the new weights, keeping the best solution found. This
procedure is repeated multiple times.

3.5 Solution Heuristic

We use the following strategy to obtain reasonably good initial solutions that we may use
as a basis to improve with the aforementioned methods. We start by adding the Delaunay
triangulation as a candidate center. We then build other candidate centers by performing
flips starting from the Delaunay triangulation. Given an edge e and a triangulation T, let
x(e,T) denote the number of segments of T crossed by e. We repeatedly perform unit flips
that remove an edge e and add an edge ¢/ maximizing

Z X(e)p - X(e/)pa

TeT

as long as the value of the sum is positive. We add the triangulation we obtained to the set
of candidate center and repeat the process for a different value of p.

We calculate the paths from the candidate centers to each solution, building a solution
pool. For the next step it will be useful to have a small number of unit-flips in the last flip
of the path from the input triangulation to the center. To do that, we either use the greedy
heuristic or a MaxSAT formulation.

To improve the solution pool, we pick a solution from the pool and look at the triangulations
that are one flip away from the center in each path. For each such triangulation, we compute
the distance to the input triangulations and add the solution to the pool as before.
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4 Results

In this section, we present the computational results that we obtained with our implementation
of the aforementioned algorithms and heuristics. In Section 4.1, we present the results on
computing short paths between two given triangulations. In Section 4.2, we present our
exact solver, with and without the happy edges conjecture. In Section 4.3, we present the
heuristics used to find solutions to the instances that we could not solve exactly.

The solvers were coded in C++ and compiled with GCC and run a single thread.
During the competition, they were executed on several Linux computers, either using GNU
Parallel [12] for local executions or Slurm [13] for cluster executions. It was very useful to
have access to machines with 128GB or more RAM to be able to solve large SAT formulations
with CaDiCal [3], which has been able to solve SAT instances with more than 50 million
variables and 500 million clauses. The time measurements on this paper have all been taken
on an AMD Ryzen 9 9900X CPU and ASUS TUF GAMING B650M motherboard with
128GB of RAM running Fedora Core 43.

4.1 Path Calculation

Computing short paths between two given triangulations is a key component to obtain good
solutions. Typically, these paths are computed with an input triangulation as one extreme,
and a triangulation that makes a reasonably good center as the other extreme. In this section,
we use the Delaunay triangulation as one extreme, because it is a well defined triangulation
that makes a reasonably good (but not very good) center. Table 1 shows the length of the
path and the running time of different heuristics and SAT solutions with and without the
happy edges conjecture. The paths are calculated from the Delaunay triangulation to the
first input triangulation of several instances. The SAT paths are obtained by first running
the squeaky wheel heuristic in both directions, and then iteratively decreasing the path
length. Notice that the running time of the heuristics is much smaller, while the result is
rarely more than 1 unit away from the optimal distance, especially if we take the minimum
of both directions. We run the squeaky wheel heuristic for at most 16 iterations, but stops
earlier if the length increases from one iteration to the next.

4.2 Exact Solutions

This section presents the exact solver that we used to solve most instances exactly. Figure 6
shows the number of exact solutions found as a function of the running time, both without
and with the happy edges conjecture (the value of the solutions found in both cases is the
same, hence the conjecture stands). Notice that the impact of the happy edges conjecture is
less significant than when computing only paths, as there are few common edges on all input
triangulations. We remark that during the competition, we managed to find exact solutions
to 189 of the 201 small instances without assuming the happy edges conjecture.

4.3 Heuristic Solutions

The typical process to solve instances that we did not solve exactly consists of several steps.
First, we use the heuristic from Section 3.5 to obtain a reasonably good center. Notice that
no SAT solver is used in this part. The evolution of the objective value for this step is shown
in Figure 7. The name of the rirs instances is composed of two values. The first is the
number of points and the second is the number of input triangulations.
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Greedy Greedy Squeaky Squeaky SAT SAT
forward | backward forward backward happy exact
n L t l t L t £ t L t L t

500 | 13 4.2 | 12 3.7 | 13 45 12 18 | 12 1512 12 10191

1000 | 12 78 | 12 6.8 | 12 25 12 38 | 11 6806 11 78264

1500 | 13 13 | 12 12 12 52 12 23 | 11 19302 11 201353

2000 | 15 21 | 13 18 | 13 65 13 104 | 13 16937 13 485177

3000 | 15 36 | 15 33 | 14 193 | 15 433 | 14 140729

4000 | 18 57 | 16 51 16 577 | 15 655 | 15 101402

5000 | 18 70 | 17 70 | 16 238 | 17 278 | 16 1037840

6000 | 17 93 | 16 83 17 1071 | 16 644 | 16 271081

7000 | 17 94 | 17 96 17 180 | 17 407 | 16 471389
Table 1 Length and computation time (in milliseconds) from the Delaunay triangulation to the
first input triangulation of the rirs-n--20 instance for different values of the number of points n.
The columns respectively correspond to the greedy heuristic forward and backward, the squeaky
wheel heuristic forward and backward, the SAT solution with the happy edges conjecture, and the
SAT solution without the happy edges conjecture, unless it takes too long. The best lengths found

are shown in bold.
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Figure 6 Number of exact solutions found as a function of the running time over 3 hours of
execution with and without assuming the happy edges conjecture.

Second, we build a new solution that keeps the same center but we recalculate the paths
using the SAT formulation from 2.1, assuming the happy edges conjecture (Section 3.1) and
inexact lower bounds (Section 3.2). This will typically reduce the objective value by 1 to 4
percent. The calculation of 50 paths in each solution is shown in Figure 8. Notice that the
running time increases rapidly with the number of points and that finding a shorter path
(satisfiable SAT problem) is typically slower than when no shorter path exists (unsatisfiable
SAT problems).

Third, we improve the solution using the SAT formulation from Section 2.2, assuming
the happy edges conjecture (Section 3.1) and inexact lower bounds (Section 3.2). This part
requires adjusting a large number of parameters in order to obtain SAT problems that are
not too hard. The parameters include the distance to the previous center, the distance to
the previous path, and whether the solution will be trimmed. Optionally but recommended
when the problem is trimmed, we use MaxSAT to reduce the number of unit flips close to
the center. The improvement of some solutions over time is shown in Figure 9. Notice that
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Figure 7 Evolution of the best solution found by the heuristic solver without any SAT solver for
different instances.
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Figure 8 Path by path improvement of the heuristic solutions using a SAT solver, where each path
is recalculated but the center is kept unchanged. Each black vertical bar represents the beginning of
the computation of a path.

there is a significant preprocessing time to calculate edge variables with a limited number of
crossings. This preprocessing is applied initially and after every improvement. Also notice
that unsatisfiable SAT problems, which mean no improvement in the solution, are solved
much faster than satisfiable ones.

5 Conclusion and Open Problems

We were surprised that we managed to solve so many instances exactly and how well an
heuristic approximates the exact distance. We believe the following factors help explain the
strong practical performance:

The short path length that allows a somewhat small number of variables.

A SAT model where most clauses have size 2.

The ability to eliminate many variables through several arguments.

The fact that the happy edges conjecture is either true or at least holds in most practical
cases.
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Figure 9 Improvement of the whole solution using a SAT solver and reducing the length of a
random path by one unit at a time. We constrain the edges in the new solution to cross at most
3 edges of the corresponding triangulation in the solution (except for the instance rirs-500-20,
where the slower but more effective execution with the parameter set to at most 7 edges is also
pictured) but do not use trimming. Each black vertical bar represents a new path length that we
try to decrement.

The short path lengths are somewhat surprising, given that an (n) lower bound is
presented in [6], in contrast to the ©(logn) bound for combinatorial triangulations [9], where
we are allowed to flip non-convex quadrilaterals. In the challenge instances, we observed
path lengths that are roughly O(logn).

Still, there are random instances with only 160 points and 20 input triangulations and
woc instances with only 185 points and 6 triangulations that we could not solve exactly. Also,
we still managed to improve solutions to instances with as few as 320 points and 20 input
triangulations months after the beginning of the challenge.

The challenge instances did not have many points in convex position. Surprisingly, the
case where all points are in convex position is the hardest for our SAT formulation, as there
are ©(n*) empty convex quadrilaterals. We wonder if a different model works better when
all and also when most points are in convex position.

We believe that the same problem with unit flips is significantly harder because the long
path lengths make the SAT formulation much more complex and removing a happy edge can
reduce a path length from ©(n?) to O(n).

Many theoretical open problems remain, such as proving Conjecture 3. We also wonder
if parallel flip distance problem is NP-hard in general and in convex position, as well as
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the unit flip distance problem in the convex case (the problem is NP-hard for general point
sets [10]). We also do not know if the problem of calculating b(s) (see Section 3.2) can be
solved in polynomial time, possibly using dynamic programming.
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