
Shadoks Approach to Knapsack Polygonal Packing
Guilherme D. da Fonseca #

LIS, Aix-Marseille Université

Yan Gerard #

LIMOS, Université Clermont Auvergne

Abstract
We describe the heuristics used by the Shadoks team in the CG:SHOP 2024 Challenge. Each instance
consists of a convex polygon called container and a multiset of items, where each item is a simple
polygon and has an associated value. The goal is to pack some of the items inside the container
using translations, in order to maximize the sum of their values. Our strategy consists of obtaining
good initial solutions and improving them with local search. To obtain the initial solutions we used
integer programming and a carefully designed greedy approach.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Packing, polygons, heuristics, integer programming, computational geometry

Category CG Challenge

Related Version arxiv.org/abs/

Supplementary Material (Source Code): https://github.com/gfonsecabr/shadoks-CGSHOP2024

Funding Work supported by the French ANR PRC grant ADDS (ANR-19-CE48-0005).

Acknowledgements We would like to thank the Challenge organizers and other competitors for their
time, feedback, and making this whole event possible. We would like to thank Hélène Toussaint,
Raphaël Amato, Boris Lonjon, and William Guyot-Lénat from LIMOS, as well as the Qarma and
TALEP teams and Manuel Bertrand from LIS, who continue to make the computational resources of
the LIMOS and LIS clusters available to our research. We would also like to thank Aldo Gonzalez-
Lorenzo and the undergraduate students Aymeric Beck, Houssam Boufarachan, Marine Izoulet, and
Carla Scardigli for coding viewers for the solutions.

1 Introduction

CG:SHOP Challenge is an annual geometric optimization challenge. The sixth edition in
2024 considers a 2-dimensional knapsack packing problem. The team Shadoks won first place
with the best solution (among the 14 participating teams) to 75 instances out of 180. In this

Figure 1 Our best solutions to jigsaw_cf2_5db5d75a_34, random_rcf4_6e323d40_100,
atris1240, and satris1786 instances.

mailto:guilherme.fonseca@lis-lab.fr
https://orcid.org/0000-0002-9807-028X
mailto:yan.gerard@uca.fr
https://orcid.org/0000-0002-2664-0650
https://arxiv.org/abs/
https://github.com/gfonsecabr/shadoks-CGSHOP2024


2 Shadoks Approach to Knapsack Polygonal Packing

paper, we describe the heuristics we used. We start by briefly describing the problem.
An input instance consists of a convex polygon called container and a multiset of items.

Each item is a simple polygon with an associated integer value. The goal is to pack some of
the instance items inside the container using integer translations in order to maximize the
sum of their values. In total, 180 instances have been given, ranging from 28 to 50,000 items.
The instances are of several different types according to the shape and values of the items.
Some instances have mostly convex items, while other instances have many non-convex items
such as polyominoes. In terms of item values, some items have only unit value, some have
values proportionals to the area, and other have random values, for example. Some solutions
are presented in Figure 1 and more details about the challenge are available in the organizers’
survey paper [3].

Our general strategy consists of finding a good initial solutions (using integer programming
or a greedy heuristic) and subsequently optimizing them with local search. Our strategy
shares many common elements with the second place [5], but they did not use integer
programming to obtain initial solutions and their optimization phase is more sophisticated
than ours. The third place [4] uses an hierarchical grid approach. The fourth place [1] used
a completely different integer programming model and a genetic algorithm.

We describe the algorithms in Section 2 and experimentally analyze their performance
using different parameters in Section 3. Our solvers were coded in Python and C++ and
executed on several desktop laptop computers, as well as the LIMOS and LIS clusters.

2 Algorithms

We used two different algorithms to compute initial solutions, a preprocessing phase that
can be executed beforehand, and a local search phase to improve the solutions.

2.1 Integer Programming Approach

A simple idea to solve the challenge problem is to produce a set V of random translations of
each item inside the container and then reduce the problem to a kind of maximum weight
independent set problem in a graph G = (V, E). Each translated item is a vertex and there
are two types of edges: (1) an edge between two translations that overlap and (2) translations
of the same item i form a clique Ci. If all item have quantity one, then this is a traditional
maximum weight independent set problem. However, if items have non-unit quantities, then
each clique Ci is associated with the quantity qi of item i and at most qi vertices of the
clique are allowed in the solution.

This combinatorial problem can easily be modeled as integer programming with one
binary variable per vertex. A type-1 edge uv is modeled as u + v ≤ 1 and each clique Ci

is modeled as
∑

v∈Ci
v ≤ qi. The CPLEX solver [2] can optimally solve graphs with a few

thousand vertices obtained from the challenge instances, which is not enough to obtain good
solutions using uniformly random placements.

To obtain better solutions, we start from a solutions S obtained with the aforementioned
method and build a new graph G = (V, E) as follows. Let σ > 0 be a parameter and N be a
set of the zero vector and random vectors where each random vector has x and y coordinates
as Gaussian random variables of average 0 and standard deviation σ. We create a translation
in V for each item that is placed in S and for each translation vector in N if the translation
is inside the container. We also create vertices in V using uniform random translations for
all items. Edges and cliques are created as before, and the new combinatorial problem is



Guilherme D. da Fonseca and Yan Gerard 3

solved with CPLEX. We repeat this procedure multiple times using the previous solution S

and reducing the value of σ at each step.
This method works well for instances with up to 200 items. To handle larger instances,

we partition the container using a square grid and partition the items equally among the
cells. The partition is such that items are grouped by the slope of the longest edge, breaking
ties by the slope of the diameter. Each cell is then solved independently. The intuition to
group items of similar slope together is that they can often be placed in a way that minimizes
the wasted space. Since the values of the items do not seem to be related to the slopes, this
approach works well for the challenge instances.

2.2 Greedy Heuristic
The greedy heuristic starts by creating an initial list L of n grid points inside the container
(typically n = 1000). The list L is shuffled and we compute its centroid c rounded to integer
coordinates. The point c is inserted in the beginning of L. The input items are placed into a
list I ordered by decreasing utility, where the utility function is described next. Different
utility functions may be used (more details in Section 3). The goal is that items of small
area and high value have high utility while large items with small value have low utility.

We then build the packing by considering the items of the list I one by one in order. At
each step, we have a current packing and a new item i to pack. We first try to pack i at
the first grid position g ∈ L and at a number of random positions around g. If one of these
positions is available, i.e the item is fully contained in the container and does not cross any
currently packed item, then we pack item i at the corresponding position and proceed to the
next item in I. Otherwise, we go to the next position. If all the positions have been tried
without success, then we go to the next item in I.

Immediately after an item i ∈ I is packed, its position is modified as follows. We choose a
direction u in which i is pushed until it hits another item or the container boundary. Pushing
an item means that we translate it in the direction u and in directions v where the dot
product of u and v is positive until no improvement in any direction u or v can be achieved.

The greedy algorithms ends when all items in I have either been packed or tested at all
the positions of the list L.

2.3 Slates Preprocessing
The goal of the preprocessing step is to precompute some sets of items that assemble together
efficiently. We call slate a set of items with a fixed relative position. A slate plays the same
role as an item, but it is a polygonal set instead of a simple polygon. As computing slates
takes a lot of time, we control it by building graphs of items. The goal of these graphs is
to tell the pairs of items that we want to try to assemble together. A first graph contains
for instance all the thin items and connects the items with similar diameter directions.
Another graph contains the non convex items and connects them with items that can fill their
concavities. We also compute graphs containing hundreds of random items and connecting
items having a close pair of edges uv and u′v′ where the Euclidean distance d(v − u, u′ − v′)
is small compared to d(u, v). For each graph, we try to assemble adjacent items by searching
for a relative position minimizing the area of the convex hull of their union. Each slate
composed by two items has a utility and we only keep the slates of high utility. We take the
slates composed by two items and try to assemble a third adjacent item of the graph. We
get a new generation of slates with 3 items and continue the growing process until a fixed
level. Again at each generation, we keep only the slates of high utility.



4 Shadoks Approach to Knapsack Polygonal Packing

Figure 2 Slates for the instances jigsaw_cf2_xf42cb20_670, random_cf3_x21f5def_200,
satris1685, and atris1660. The items of a slate are drawn with the same color.

Slates work particularly well for the atris instances where the items resemble polyominoes.

2.4 Local Search
To improve the quality of the solutions obtained with the previous approaches, we use a local
search optimization scheme by repeating the following routine until a time limit is reached.
We randomly choose between executing two routines, either a fill routine or a push routine.
The fill routine is similar to the greedy heuristic. We try to pack all the unpacked items at
several grid and random positions.

The push routine first randomly chooses either a point v in the interior of the container
or a vertex of the container. The packed items are sorted by the distance of their centroids
to the point v, from the farthest to the closest. Then, each packed item i with centroid ci is
pushed in the direction ci − v. The goal is to free the space around v. Once all packed items
have been pushed, we try to pack the unpacked items around v by using the grid points g in
L close to v and some random integer points around each point g. It may be the case that
an item can be packed if we remove some other items of the packing that intersect it. In
this case, we compute the benefit of removing the conflicting items in order to pack the new
item, replacing the item if the benefit is non-negative. To accelerate the procedure for large
instances, we add a parameter which allows us to push only the items that are close to v.

3 Parameter Analysis

In order to compare the different parameters, we consider 18 instances of various sizes, as
shown in Table 1. Throughout, we refer to the ratio between the value of the solution in
question and the value of the best solution in the challenge as the value ratio (notice that
the competition score is the square of the value ratio). The best solutions to the first 15
table instances are shown in Figure 3.



Guilherme D. da Fonseca and Yan Gerard 5

Figure 3 Our best solutions to the first 15 rows of Table 1, in order.



6 Shadoks Approach to Knapsack Polygonal Packing

Instance IP IP + LS Gr Gr + LS Our best
jigsaw_cf4_273db689_28 1 1 .900 .950 1
random_cf1_64ac4991_50 .926 .926 .851 .925 .926
jigsaw_rcf4_7702a097_70 .959 .982 .867 .924 1
random_cf4_50e0d4d9_100 .943 .972 .877 .941 1
random_cf3_x21f5def_200 .950 .967 .893 .967 1
random_rcf1_340f4443_500 .952 .960 .932 .981 .984
random_rcf3_x7651267_1000 .927 .970 .926 .980 1
jigsaw_rcf4_6de1b3b7_1363 .934 .948 .928 .980 1
random_cf1_x51ab828_2000 .937 .945 .892 .950 .961
atris2986 .910 .931 .881 .948 .988
atris3323 .893 .918 .866 .951 1
satris4681 .919 .930 .886 .937 1
jigsaw_cf1_4fd4c46e_6548 .944 .944 .955 .963 .975
atris7260 .886 .902 .872 .920 .974
random_cf3_x4b49fe2_10000 .924 .938 .889 .963 1
satris15666 .923 .951 .877 .910 1
jigsaw_cf1_203072aa_32622 .732 .876 .972 .973 .985
atris41643 .513 .803 .854 .877 .911

Table 1 Value ratio of several instances using integer programming (IP) or greedy (Gr), both
before and after 24 hours of local search (LS).

Figure 4 shows the evolution of the value ratio by using the slate preprocessing step, the
greedy algorithm followed by local search until it becomes stable with standard parameters
for three instances with 100, 200 and 1000 items, respectively. It shows that sometimes the
slates provide a benefit, while sometimes it has a negative impact on the results.

We now analyze the parameters of our algorithms. The greedy algorithm depends on
several parameters:

The number of grid positions and the number of random integer positions to consider
around each of these points. We typically used numbers from 500 to 3000 grid positions
plus from 3 to 10 random positions around each grid point. Figure 5 compares different
choices of the parameter and shows that there is no major improvement to wait for by
using more than 1000 grid positions.
The utility function used to sort L may be the value of the item, the value of the item
divided by its area, the value of the item to a power 1.5 divided by its area with or
without complementary weights. For the Table 1 instances, we show in Figure 6 the value
ratio first after greedy and second after optimization for different utility functions.
The direction u to push an item may be chosen randomly (strategy 1), or as a normal to
the item diameter (with a random choice to determine which side, strategy 2). However,
we mainly used the following direction choice. If the item is thin (ratio between its
diameter and its width normal to the diameter above 3), we push it in the normal
direction to its diameter but to the left while if it is fat (ratio below 3) we push it to the
right (strategy 3). Finally, we may push the items in a direction normal to their longest
edge if they are fat (strategy 4). The value of the average for 10 runs on each Table 1
instance is shown in Figure 7.



Guilherme D. da Fonseca and Yan Gerard 7

random_cf4_50e0d4d9_100

random_cf3_x21f5def_200

random_rcf3_x7651267_1000

Figure 4 The value ratio over time for the instances random_cf4_50e0d4d9_100,
random_cf3_x21f5def_200, and random_rcf3_x7651267_1000 for 12 independent executions of the
greedy algorithm and a subsequent local search. Red curves are computed without slate preprocessing,
while the light blue and dark blue curves respectively include a preprocessing of slates with at most
5 and 10 items.



8 Shadoks Approach to Knapsack Polygonal Packing

500 positions 1000 positions 2500 positions 5000 positions

Figure 5 Value ratio of the greedy algorithm (orange) for 500, 1000, 2500 and 5000 grid positions,
for the 18 instances in Table 1. In red, we show the value attained after 1000 seconds of local search.

value value/area value1.5/area (1 + t)value/area

Figure 6 Value ratio of the greedy algorithm (orange) using different utility functions, for the 18
instances in Table 1. t is the ratio between the length of the item diameter and the width of the
item in the direction normal to the diameter. In red, we show the value attained after 1000 seconds
of local search.

random direction diameter normal diameter + width diameter + longest edge

Figure 7 Value ratio of the greedy algorithm (orange) using different push strategies, for the 18
instances in Table 1. In red, we show the value attained after 1 hour of local search.



Guilherme D. da Fonseca and Yan Gerard 9

References
1 Alkan Atak, Kevin Buchin, Mart Hagedoorn, Jona Heinrichs, Karsten Hogreve, Guangping Li,

and Patrick Pawelczyk. Computing maximum polygonal packings in convex polygons using
best-fit, genetic algorithms and ilps. In Symposium on Computational Geometry (SoCG),
volume 293 of LIPIcs, pages 86:1–86:9, 2024.

2 IBM ILOG CPLEX. V22.1: User’s manual for CPLEX. International Business Machines
Corporation, 2023.

3 Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Stefan Schirra. Maximum polygon
packing: The cg:shop challenge 2024, 2024. arXiv:2403.16203.

4 Martin Held. Priority-driven nesting of irregular polygonal shapes within a convex polygonal
container based on a hierarchical integer grid. In Symposium on Computational Geometry
(SoCG), volume 293 of LIPIcs, pages 85:1–85:6, 2024.

5 Canhui Luo, Zhouxing Su, and Zhipeng Lü. A general heuristic approach for maximum
polygon packing. In Symposium on Computational Geometry (SoCG), volume 293 of LIPIcs,
pages 84:1–84:9, 2024.

https://arxiv.org/abs/2403.16203

	1 Introduction
	2 Algorithms
	2.1 Integer Programming Approach
	2.2 Greedy Heuristic
	2.3 Slates Preprocessing
	2.4 Local Search

	3 Parameter Analysis

