Approximate Range Searching in the Absolute Error Model

Guilherme D. da Fonseca CAPES BEX1319027

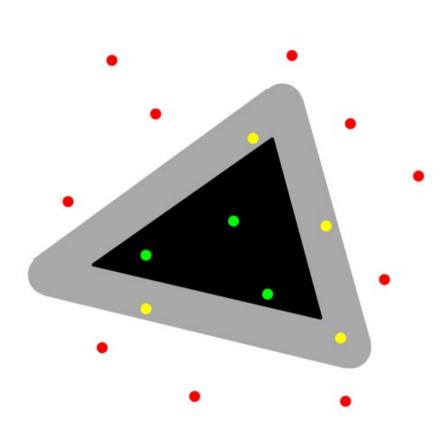
http://www.cs.umd.edu/~fonseca

Advisor: David M. Mount University of Maryland

WADS 2007

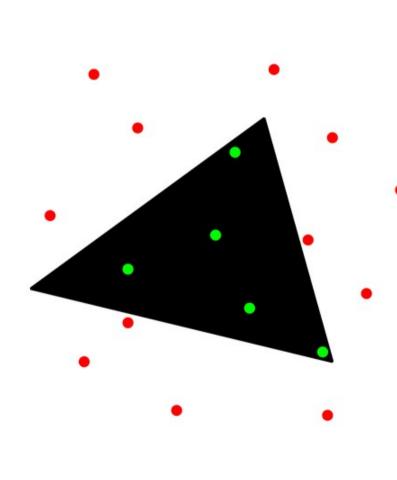
Halfspaces DDDDD

Contents

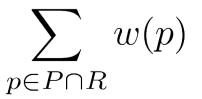


- Preliminaries
- Halfspace ranges
 - Semigroup version
 - Idempotent version
 - Exact version
- Halfbox quadtree
 - Spherical ranges
 - Simplex ranges

Range Searching – Exact Version



- *P*: Set of *n* points in *d*-dimensional space.
- w: Weight function.
- ℜ: Set of ranges (regions of the space).
- Preprocess *P*, in a way that, given *R* ∈ 𝔅, we can efficiently compute:



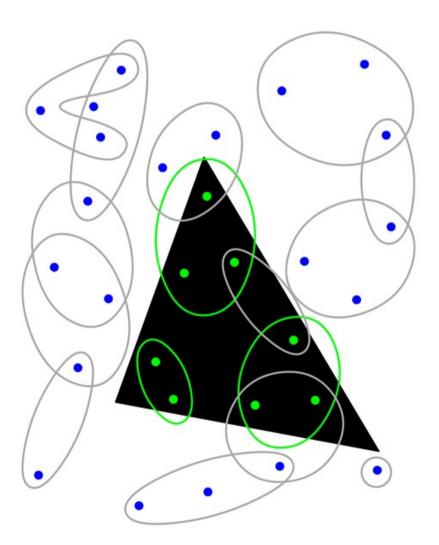
Semigroups, Groups and Idempotence

 In the most general version, the weights are drawn from a commutative semigroup.

Other properties may be useful:

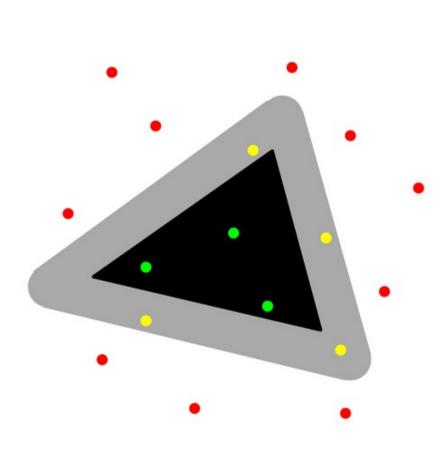
- **Group**: We can use subtraction.
- Idempotence: For every x, we have x+x=x:
 - maximum,
 - Boolean or.

Generators



- Generators represent sets of points whose sum is precomputed.
- A query is processed by summing generators.
- Large generators:
 - Low query time,
 - High storage.
- Small generators:
 - High query time,
 - Low storage.

The Absolute Error Model

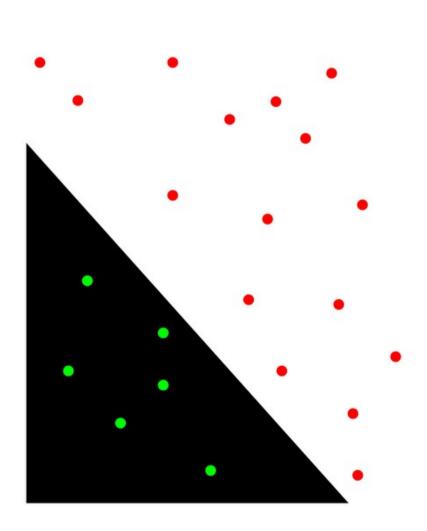


- Absolute error model: points within distance ε from the boundary may be counted or not
- All data points lie inside the unit hypercube [0,1]^d.
- **Relative** error model: fuzzy boundary is proportional to the diameter of the range (Arya, Mount, 2000).

Our Results

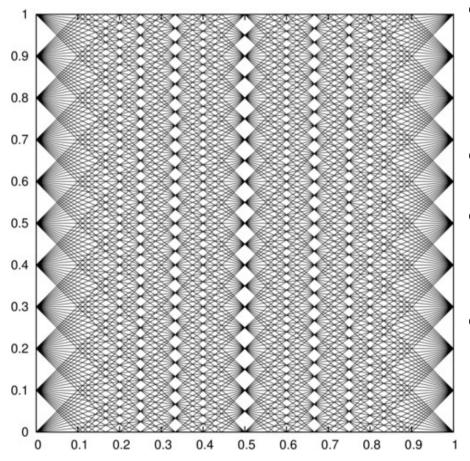
- The first work on approximate range searching in the **absolute error model** for fixed dimensions.
- Our data structures are simple and amenable to efficient implementation.
- We exploit **idempotence** to achieve better performance.
- Optimal "data structure" for exact idempotent halfspace range searching.
- Introduction of the versatile halfbox quadtree.

Halfspace Ranges



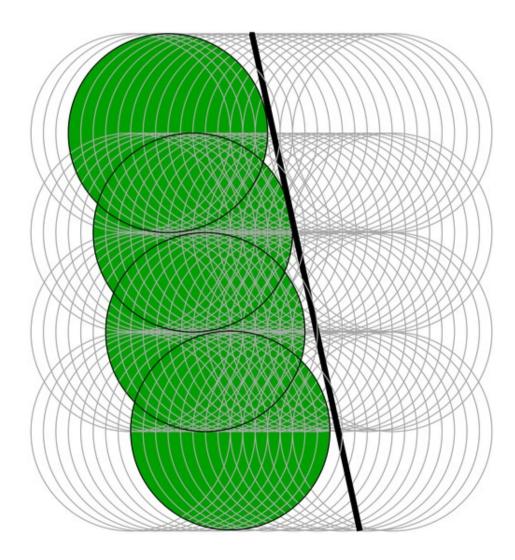
- Ranges are *d*-dimensional halfspaces.
- Exact (Matoušek, 1993):
 - Query time: $O(n^{1-1/d})$.
 - Space: O(n).
 - Polylogarithmic query time takes n^d space.
- Approximate:
 - Query time: O(1).
 - Space: O(1/ ε^d).

Halfspace Ranges Structure



- We can ε -approximate all halfspaces inside the unit cube with O(1/ ε^d) halfspaces.
- Store the results in a table.
- Naive preprocessing takes $O(n/\epsilon^d)$ or $O(n+1/\epsilon^{2d})$ time.
- We show how to use Õ(n+1/ε^d) preprocessing time.

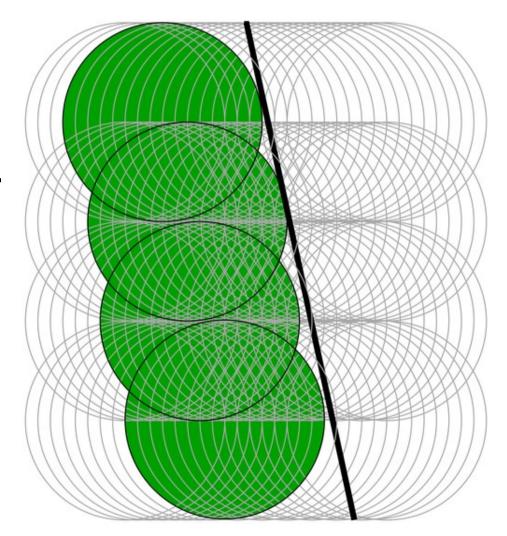
Idempotent Version



- Idempotent semigroup:
 x+x=x, for all x.
- Generators can overlap.
- Use large spherical generators.
 - Space: $O(1/\epsilon^{(d+1)/2})$.
 - Query time: $O(1/\epsilon^{(d-1)/2})$.
 - Trade-off: O(m) space, $O(1/m\epsilon^d)$ query time.

Exact Uniformly Distributed Idempotent Version

- Approximate version:
 - Space: $O(1/\epsilon^{(d+1)/2})$.
 - Query time: $O(1/\epsilon^{(d-1)/2})$.
- Set $\varepsilon = 1/n^{2/(d+1)}$:
 - Space: O(n).
 - Query: $O(n^{1-2/(d+1)})$.
- The $\varepsilon n = O(n^{1-2/(d+1)})$ remaining points are counted one by one.

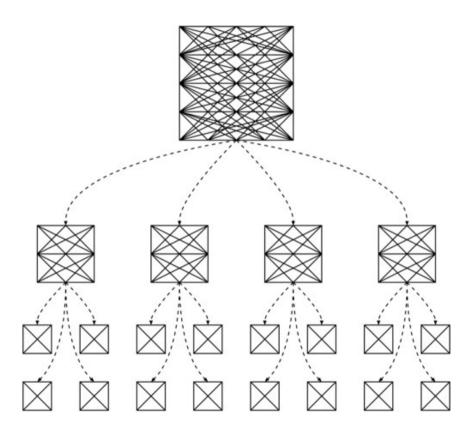


Exact Uniformly Distributed Idempotent Version

- Approximate version:
 - Space: $O(1/\epsilon^{(d+1)/2})$.
 - Query time: $O(1/\epsilon^{(d-1)/2})$.
- Set $\varepsilon = 1/n^{2/(d+1)}$:
 - Space: O(n).
 - Query: $O(n^{1-2/(d+1)})$.
- The $\varepsilon n = O(n^{1-2/(d+1)})$ remaining points are counted one by one.

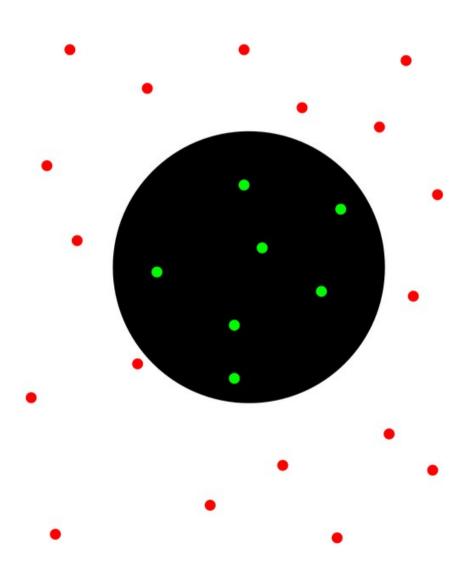
- Works in the *semigroup arithmetic model*.
- Uniform distribution.
- Matches the best lower bound up to logarithmic terms (Brönnimann, Chazelle, Pach, 1993).
- Same assumptions as the lower bound.

Halfbox Quadtree



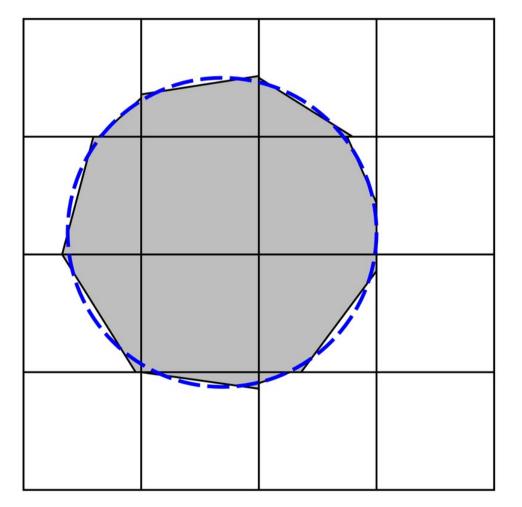
- One halfspace data structure for each quadtree box.
- Generators: intersection of quadtree boxes and halfspaces (*halfboxes*).
- Powerful building blocks!
- Smaller boxes take less space, as ε is constant.
- Storage space is O(log(1/ε)/ε^d).

Spherical Range Searching



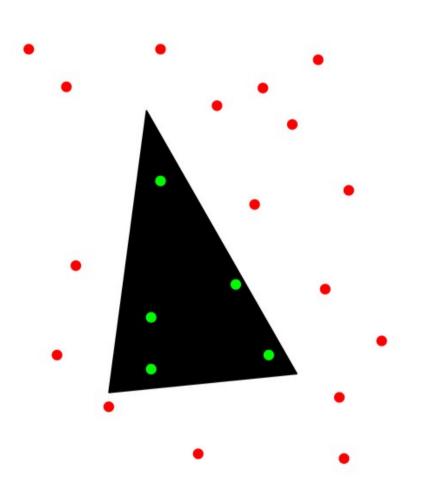
- Ranges are *d*-dimensional spheres.
- Exact version:
 - Project the points onto a (*d*+1)-dimensional paraboloid.
 - Use halfspace range searching.
- Approximate version:
 - Use the halfbox quadtree.

Spherical Range Searching



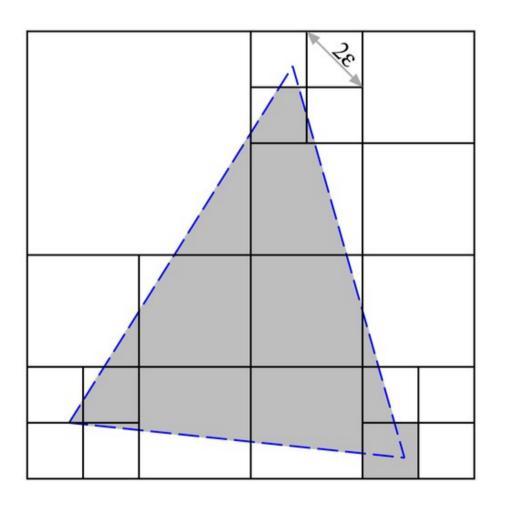
- Approximate the range with halfboxes.
- Only $O(1/\epsilon^{(d-1)/2})$ halfboxes are necessary.
- Use the halfbox quadtree to query each halfbox in O(1) time.
 - Query time: $O(1/\epsilon^{(d-1)/2})$.
 - Space: $O(\log(1/\epsilon)/\epsilon^d)$.

Simplex Range Searching



- Ranges are *d*-dimensional simplices: intersection of *d* halfspaces.
- Exact version solved similarly to halfspace range searching: (Matoušek, 1993)
 - Query time: $O(n^{1-1/d})$.
 - Space: O(n).

Simplex Range Searching



- Use the halfbox quadtree.
- Recurse when you hit a (*d*-2)-face.
- Otherwise, subtract all disjoint (*d*-1)-faces.
- Group version:
 - Query time: O($1/\epsilon^{d-2}$ + log($1/\epsilon$)).

- Space: O(log(1/ ϵ)/ ϵ^{d}).

Conclusions

- The absolute error model is better suited for several applications.
- Data structures are simpler than exact and other approximate data structures.
- Halfspace range searching is extremely fast.
- In the idempotent version, halfspace range searching requires little space (with slower query time).
- The halfbox quadtree is efficient for various shapes of ranges.

Future Research

- Improved data structures? Lower bounds?
- How much space is required to achieve O(1) query time for different shapes of ranges?
- Which other problems are interesting in the absolute error model?
- Which other models of computation? (Data stream model, for example.)
- Better understanding of the connection between exact, relative approximation, and absolute approximation.