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Range Searching — Exact Version

P. Set of n points in
d-dimensional space.

w: Weight function.

R . Set of ranges (regions of
the space).

* Preprocess P, in a way
that, given R € 8, we can
efficiently compute:
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Semigroups, Groups and Ildempotence

* In the most general version, the
weights are drawn from a
commutative semigroup.

Other properties may be useful:
- Group: We can use subtraction.

- ldempotence: For every z, we
have z+x=x:

- maximum,

— Boolean or.
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Generators

« Generators represent sets
of points whose sum is
a precomputed.

* A query is processed by
summing generators.

» Large generators:
e Low query time,
« High storage.

» Small generators:
« High query time,
 Low storage.
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The Absolute Error Model

 Absolute error model:
" : points within distance ¢
from the boundary may
" be counted or not

« All data points lie inside
the unit hypercube [0,1]".

* Relative error model.
. fuzzy boundary is
proportional to the
diameter of the range
(Arya, Mount, 2000).
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Our Results

* The first work on approximate range searching in
the absolute error model for fixed dimensions.

« QOur data structures are simple and amenable to
efficient implementation.

* \We exploit idempotence to achieve better
performance.

e Optimal “data structure” for exact idempotent
halfspace range searching.

 Introduction of the versatile halfbox quadtree.
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Halfspace Ranges

« Ranges are d-dimensional
halfspaces.

« Exact (Matousek, 1993):
- Query time: O(n"").
- Space: O(n).

- Polylogarithmic query
time takes n“ space.

* Approximate:
- Query time: O(1).
- Space: O(1/¢").
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Halfspace Ranges Structure
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We can e-approximate all
halfspaces inside the unit
cube with O(1/¢%) halfspaces.

Store the results in a table.

Naive preprocessing takes
O(n/e?) or O(n+1/e**) time.

\/_Ve show how to use
O(n+1/e") preprocessing
time.
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|dempotent Version

* |dempotent semigroup:
x+x=x, for all .

» Generators can overlap.

» Use large spherical
generators.

- Space: O(1/e!"V=),
- Query time: O(1/e“"4).

- Trade-off: O(m) space,
O(1/me®) query time.
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Exact Uniformly Distributed Idempotent Version

* Approximate version:

- Space: O(1/e"*V=),

- Query time: O(1/e“"),
e Set e =1/n?"":

- Space: O(n).

- Query: O(n' M),

e The en = O(n'~#*")
remaining points are
counted one by one.
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Exact Uniformly Distributed Idempotent Version

* Approximate version:  Works in the semigroup
~ Space: O(1/g/172) arithmetic model.
- Query time: O(1/e/"72), » Uniform distribution.
e Set e = 1/p2@. * Matches the best lower
' bound up to logarithmic
- Space: O(n). terms (Brénnimann,
— Query: O(n'~ @), Chazelle, Pach, 1993).
e The en = O(n'~2*") « Same assumptions as the
lower bound.

remaining points are
counted one by one.
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Halfbox Quadtree

* One halfspace data structure
for each quadtree box.

 Generators: intersection of
guadtree boxes and
halfspaces (halfboxes).

» Powerful building blocks!

 Smaller boxes take less
space, as ¢ is constant.

e Storage space is
O(log(1/e)/e™).
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Spherical Range Searching

s . « Ranges are d-dimensional
spheres.

e Exact version:

- Project the points onto a
(d+1)-dimensional
® paraboloid.

- Use halfspace range
searching.

* Approximate version:

. - Use the halfbox
quadtree.
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Spherical Range Searching

* Approximate the range

/,ﬁ" with halfboxes.

« Only O(1/£“"%) halfboxes
are necessary.

 Use the halfbox quadtree

to query each halfbox in
7 O(1) time.

- Query time: O(1/e“"4),
- Space: O(log(1/g)/e?).
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Simplex Range Searching

« Ranges are d-dimensional
’ ’ ¢ simplices: intersection of d
halfspaces.

» Exact version solved
similarly to halfspace range

searching:
. (MatousSek, 1993)

’ - Query time: O(n"").
’ - Space: O(n).
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Simplex Range Searching

» Use the halfbox quadtree.

\ .
Y  Recurse when you hit a

- (d-2)-face.

/ \ » Otherwise, subtract all
disjoint (d-1)-faces.

/ \ « Group version:

- : - Query time:
A \ O(1/e*2 + log(1/e)).

=
—
‘—I-—._.___

- Space:
O(log(1/e)/e?).
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Conclusions

« The absolute error model is better suited for several
applications.

e Data structures are simpler than exact and other
approximate data structures.

» Halfspace range searching is extremely fast.

* |n the idempotent version, halfspace range searching
requires little space (with slower query time).

* The halfbox quadtree is efficient for various shapes of
ranges.
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Future Research

* Improved data structures? Lower bounds?

 How much space is required to achieve O(1) query
time for different shapes of ranges?

* Which other problems are interesting in the absolute
error model?

* Which other models of computation? (Data stream
model, for example.)

» Better understanding of the connection between exact,
relative approximation, and absolute approximation.



