

Approximate Range Searching in the Absolute
Error Model

Guilherme D. da Fonseca

CAPES BEX1319027

http://www.cs.umd.edu/~fonseca

Advisor: David M. Mount

University of Maryland

WADS 2007

http://www.cs.umd.edu/~fonseca

Contents

● Preliminaries

● Halfspace ranges

– Semigroup version

– Idempotent version

– Exact version
● Halfbox quadtree

– Spherical ranges

– Simplex ranges

Preliminaries ■□□□□□ Halfspaces □□□□□ Halfbox Quadtree □□□□□ Conclusions □□

Range Searching – Exact Version

P: Set of n points in
d-dimensional space.

w: Weight function.

R : Set of ranges (regions of
the space).

● Preprocess P, in a way
that, given R ∈ R , we can
efficiently compute:

Preliminaries ■■□□□□ Halfspaces □□□□□ Halfbox Quadtree □□□□□ Conclusions □□

Semigroups, Groups and Idempotence

● In the most general version, the
weights are drawn from a
commutative semigroup.

Other properties may be useful:

➢ Group: We can use subtraction.

➢ Idempotence: For every x, we
have x+x=x:

– maximum,

– Boolean or.

Preliminaries ■■■□□□ Halfspaces □□□□□ Halfbox Quadtree □□□□□ Conclusions □□

Generators

● Generators represent sets
of points whose sum is
precomputed.

● A query is processed by
summing generators.

Preliminaries ■■■■□□ Halfspaces □□□□□ Halfbox Quadtree □□□□□ Conclusions □□

➢ Large generators:
● Low query time,
● High storage.

➢ Small generators:
● High query time,
● Low storage.

The Absolute Error Model

● Absolute error model:
points within distance ε
from the boundary may
be counted or not

● All data points lie inside
the unit hypercube [0,1]d.

● Relative error model:
fuzzy boundary is
proportional to the
diameter of the range
(Arya, Mount, 2000).

Preliminaries ■■■■■□ Halfspaces □□□□□ Halfbox Quadtree □□□□□ Conclusions □□

Our Results

● The first work on approximate range searching in
the absolute error model for fixed dimensions.

● Our data structures are simple and amenable to
efficient implementation.

● We exploit idempotence to achieve better
performance.

● Optimal “data structure” for exact idempotent
halfspace range searching.

● Introduction of the versatile halfbox quadtree.

Preliminaries ■■■■■■ Halfspaces □□□□□ Halfbox Quadtree □□□□□ Conclusions □□

Halfspace Ranges

● Ranges are d-dimensional
halfspaces.

● Exact (Matoušek, 1993):

– Query time: O(n1-1/d).

– Space: O(n).

– Polylogarithmic query
time takes nd space.

● Approximate:

– Query time: O(1).

– Space: O(1/εd).

Preliminaries ■■■■■■ Halfspaces ■□□□□ Halfbox Quadtree □□□□□ Conclusions □□

Halfspace Ranges Structure

● We can ε-approximate all
halfspaces inside the unit
cube with O(1/εd) halfspaces.

● Store the results in a table.

● Naive preprocessing takes
O(n/εd) or O(n+1/ε2d) time.

● We show how to use
Õ(n+1/εd) preprocessing
time.

Preliminaries ■■■■■■ Halfspaces ■■□□□ Halfbox Quadtree □□□□□ Conclusions □□

Idempotent Version

● Idempotent semigroup:
x+x=x, for all x.

● Generators can overlap.

● Use large spherical
generators.

– Space: O(1/ε(d+1)/2).

– Query time: O(1/ε(d-1)/2).

– Trade-off: O(m) space,
O(1/mεd) query time.

Preliminaries ■■■■■■ Halfspaces ■■■□□ Halfbox Quadtree □□□□□ Conclusions □□

Exact Uniformly Distributed Idempotent Version

● Approximate version:

– Space: O(1/ε(d+1)/2).

– Query time: O(1/ε(d-1)/2).
● Set ε = 1/n2/(d+1):

– Space: O(n).

– Query: O(n1 – 2/(d+1)).
● The εn = O(n1 – 2/(d+1))

remaining points are
counted one by one.

Preliminaries ■■■■■■ Halfspaces ■■■■□ Halfbox Quadtree □□□□□ Conclusions □□

Exact Uniformly Distributed Idempotent Version

● Approximate version:

– Space: O(1/ε(d+1)/2).

– Query time: O(1/ε(d-1)/2).
● Set ε = 1/n2/(d+1):

– Space: O(n).

– Query: O(n1 – 2/(d+1)).
● The εn = O(n1 – 2/(d+1))

remaining points are
counted one by one.

● Works in the semigroup
arithmetic model.

● Uniform distribution.

● Matches the best lower
bound up to logarithmic
terms (Brönnimann,
Chazelle, Pach, 1993).

● Same assumptions as the
lower bound.

Preliminaries ■■■■■■ Halfspaces ■■■■■ Halfbox Quadtree □□□□□ Conclusions □□

Halfbox Quadtree

● One halfspace data structure
for each quadtree box.

● Generators: intersection of
quadtree boxes and
halfspaces (halfboxes).

● Powerful building blocks!

● Smaller boxes take less
space, as ε is constant.

● Storage space is
O(log(1/ε)/εd).

Preliminaries ■■■■■■ Halfspaces ■■■■■ Halfbox Quadtree ■□□□□ Conclusions □□

Spherical Range Searching

● Ranges are d-dimensional
spheres.

● Exact version:

– Project the points onto a
(d+1)-dimensional
paraboloid.

– Use halfspace range
searching.

● Approximate version:

– Use the halfbox
quadtree.

Preliminaries ■■■■■■ Halfspaces ■■■■■ Halfbox Quadtree ■■□□□ Conclusions □□

Spherical Range Searching

● Approximate the range
with halfboxes.

● Only O(1/ε(d-1)/2) halfboxes
are necessary.

● Use the halfbox quadtree
to query each halfbox in
O(1) time.

– Query time: O(1/ε(d-1)/2).

– Space: O(log(1/ε)/εd).

Preliminaries ■■■■■■ Halfspaces ■■■■■ Halfbox Quadtree ■■■□□ Conclusions □□

Simplex Range Searching

● Ranges are d-dimensional
simplices: intersection of d
halfspaces.

● Exact version solved
similarly to halfspace range
searching:
(Matoušek, 1993)

– Query time: O(n1-1/d).

– Space: O(n).

Preliminaries ■■■■■■ Halfspaces ■■■■■ Halfbox Quadtree ■■■■□ Conclusions □□

Simplex Range Searching

● Use the halfbox quadtree.

● Recurse when you hit a
(d-2)-face.

● Otherwise, subtract all
disjoint (d-1)-faces.

● Group version:

– Query time:
O(1/εd-2 + log(1/ε)).

– Space:
O(log(1/ε)/εd).

Preliminaries ■■■■■■ Halfspaces ■■■■■ Halfbox Quadtree ■■■■■ Conclusions □□

Conclusions

● The absolute error model is better suited for several
applications.

● Data structures are simpler than exact and other
approximate data structures.

● Halfspace range searching is extremely fast.

● In the idempotent version, halfspace range searching
requires little space (with slower query time).

● The halfbox quadtree is efficient for various shapes of
ranges.

Preliminaries ■■■■■■ Halfspaces ■■■■■ Halfbox Quadtree □□□□□ Conclusions ■□

Future Research

● Improved data structures? Lower bounds?

● How much space is required to achieve O(1) query
time for different shapes of ranges?

● Which other problems are interesting in the absolute
error model?

● Which other models of computation? (Data stream
model, for example.)

● Better understanding of the connection between exact,
relative approximation, and absolute approximation.

Preliminaries ■■■■■■ Halfspaces ■■■■■ Halfbox Quadtree □□□□□ Conclusions ■■

