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Range Searching – Exact Version

P: Set of n points in 
d-dimensional space.

w: Weight function.

R : Set of ranges (regions of 
the space).

● Preprocess P, in a way 
that, given R ∈ R , we can 
efficiently compute:
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Semigroups, Groups and Idempotence

● In the most general version, the 
weights are drawn from a 
commutative semigroup.

Other properties may be useful:

➢ Group: We can use subtraction.

➢ Idempotence: For every x, we 
have x+x=x:

– maximum,

– Boolean or.
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Generators

● Generators represent sets 
of points whose sum is 
precomputed.

● A query is processed by 
summing generators.
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➢ Large generators:
● Low query time,
● High storage.

➢ Small generators:
● High query time,
● Low storage.



  

The Absolute Error Model

● Absolute error model: 
points within distance ε 
from the boundary may 
be counted or not

● All data points lie inside 
the unit hypercube [0,1]d.

● Relative error model: 
fuzzy boundary is 
proportional to the 
diameter of the range 
(Arya, Mount, 2000).
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Our Results

● The first work on approximate range searching in 
the absolute error model for fixed dimensions.

● Our data structures are simple and amenable to 
efficient implementation.

● We exploit idempotence to achieve better 
performance.

● Optimal “data structure” for exact idempotent 
halfspace range searching.

● Introduction of the versatile halfbox quadtree.
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Halfspace Ranges

● Ranges are d-dimensional 
halfspaces.

● Exact (Matoušek, 1993):

– Query time: O(n1-1/d).

– Space: O(n).

– Polylogarithmic query 
time takes nd space.

● Approximate:

– Query time: O(1).

– Space: O(1/εd).
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Halfspace Ranges Structure

● We can ε-approximate all 
halfspaces inside the unit 
cube with O(1/εd) halfspaces.

● Store the results in a table.

● Naive preprocessing takes  
O(n/εd) or O(n+1/ε2d) time.

● We show how to use
Õ(n+1/εd) preprocessing 
time.
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Idempotent Version

● Idempotent semigroup: 
x+x=x, for all x.

● Generators can overlap.

● Use large spherical 
generators.

– Space: O(1/ε(d+1)/2).

– Query time: O(1/ε(d-1)/2).

– Trade-off: O(m) space, 
O(1/mεd) query time.
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Exact Uniformly Distributed Idempotent Version

● Approximate version:

– Space: O(1/ε(d+1)/2).

– Query time: O(1/ε(d-1)/2).
● Set ε = 1/n2/(d+1):

– Space: O(n).

– Query: O(n1 – 2/(d+1)).
● The εn = O(n1 – 2/(d+1)) 

remaining points are 
counted one by one.
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Exact Uniformly Distributed Idempotent Version

● Approximate version:

– Space: O(1/ε(d+1)/2).

– Query time: O(1/ε(d-1)/2).
● Set ε = 1/n2/(d+1):

– Space: O(n).

– Query: O(n1 – 2/(d+1)).
● The εn = O(n1 – 2/(d+1)) 

remaining points are 
counted one by one.

● Works in the semigroup 
arithmetic model.

● Uniform distribution.

● Matches the best lower 
bound up to logarithmic 
terms (Brönnimann, 
Chazelle, Pach, 1993).

● Same assumptions as the 
lower bound.
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Halfbox Quadtree

● One halfspace data structure 
for each quadtree box.

● Generators: intersection of 
quadtree boxes and 
halfspaces (halfboxes).

● Powerful building blocks!

● Smaller boxes take less 
space, as ε is constant.

● Storage space is 
O(log(1/ε)/εd).

Preliminaries  ■■■■■■          Halfspaces  ■■■■■          Halfbox Quadtree ■□□□□          Conclusions □□



  

Spherical Range Searching

● Ranges are d-dimensional 
spheres.

● Exact version:

– Project the points onto a
(d+1)-dimensional 
paraboloid.

– Use halfspace range 
searching.

● Approximate version:

– Use the halfbox 
quadtree.
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Spherical Range Searching

● Approximate the range 
with halfboxes.

● Only O(1/ε(d-1)/2) halfboxes 
are necessary.

● Use the halfbox quadtree 
to query each halfbox in 
O(1) time.

– Query time: O(1/ε(d-1)/2).

– Space: O(log(1/ε)/εd).
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Simplex Range Searching

● Ranges are d-dimensional 
simplices: intersection of d 
halfspaces.

● Exact version solved 
similarly to halfspace range 
searching:
(Matoušek, 1993)

– Query time: O(n1-1/d).

– Space: O(n).
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Simplex Range Searching

● Use the halfbox quadtree.

● Recurse when you hit a 
(d-2)-face.

● Otherwise, subtract all 
disjoint (d-1)-faces.

● Group version:

– Query time:
O(1/εd-2 + log(1/ε)).

– Space:
O(log(1/ε)/εd).
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Conclusions

● The absolute error model is better suited for several 
applications.

● Data structures are simpler than exact and other 
approximate data structures.

● Halfspace range searching is extremely fast.

● In the idempotent version, halfspace range searching 
requires little space (with slower query time).

● The halfbox quadtree is efficient for various shapes of 
ranges.
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Future Research

● Improved data structures? Lower bounds?

● How much space is required to achieve O(1) query 
time for different shapes of ranges?

● Which other problems are interesting in the absolute 
error model?

● Which other models of computation? (Data stream 
model, for example.)

● Better understanding of the connection between exact, 
relative approximation, and absolute approximation.
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