
Descriptive complexity for pictures languages

Étienne Grandjean Frédéric Olive

April 27, 2012

Abstract

This paper deals with descriptive complexity of picture languages of any dimension by syntactical
fragments of existential second-order logic. Two classical classes of picture languages are studied:

- The class of recognizable picture languages, i.e. projections of languages defined by local constraints
(or tilings): it is known as the most robust class extending the class of regular languages to any dimension;

- The class of picture languages recognized on nondeterministic cellular automata in linear time :
cellular automata is the simplest and most natural model of parallel computation and linear time is their
minimal time class allowing synchronization.

We uniformly generalize to any dimension the characterization by Giammarresi et al. [12] of the class
of recognizable picture languages in existential monadic second-order logic.

We state several logical characterizations of the class of picture languages recognized in linear time on
nondeterministic cellular automata. They are the first machine-independent characterizations of complex-
ity classes of cellular automata.

Our characterizations are essentially deduced from normalization results we prove for first-order and
existential second-order logics over pictures. They are obtained in a general and uniform framework that
allows to extend them to other “regular” structures. Finally, we describe some hierarchy results that show
the optimality of our logical characterizations and delineate their limits.

Keywords: Picture languages; locality and tilling; recognizability; linear time; cellular automata; logical characteriza-
tions; existential second-order logic.

Contents
1 Preliminaries 4

2 A logical characterization of recognizable picture languages 6

3 Towards an exact logical characterization of NLINca 15

4 A first normalization of ESO(var d) on coordinate structures 18

5 “Localization” of existentially quantified relations 24

6 Localization of input relations 30

1

Introduction
One goal of descriptive complexity is to establish logical characterizations of natural classes of problems in
finite model theory. Many results in this area involve second-order logic (SO) and its restrictions, monadic
second-order logic (MSO) and existential second-order logic (ESO). Indeed, there are two lines of research
that roughly correspond to either of these restrictions:

a) The formal language current: It starts from the pioneering result by Büchi, Elgot and Trakhtenbrot [1,
7, 21] that states that the class of regular languages equals the class of languages definable in MSO, in short,
REG = MSO. This line of research aims at characterizing in logic the natural classes of algebraically defined
languages (sets of words) or sets of structures (trees, graphs, etc.) defined by finite state recognizability or
local properties such as tilings.

b) The computational complexity current: It originates from another famous result, Fagin’s Theorem [8],
which characterizes the class NP as the class of problems definable in ESO.

For many years, both directions of research have produced plenty of results: see e.g. [6, 18] for de-
scriptive complexity of formal languages and [6, 16, 13, 18] for the one of complexity classes. However,
and this may be surprising, only few connections are known between those two areas of descriptive com-
plexity. Of course, an explanation is that formal language theory has its own purposes that have little to
do with complexity theory. In our opinion, the main reason is that while MSO logic exactly fits the funda-
mental notion of recognizability, as exemplified in the work of Courcelle [2], this logic seems transversal
to computational complexity. We argue this is due to the intrinsic locality that MSO logic inherits from
first-order logic [15, 10]. Typically, whereas MSO, or even existential MSO (EMSO), expresses some NP-
complete graph problems such as 3-colourability, it cannot express some other ones such as Hamiltonicity
(see [22, 3, 18] for instance) or even some tractable graph properties, such as the existence of a perfect match-
ing in a graph. In contrast, the situation is very clear on trees as on words: MSO only captures the class of
“easiest” problems; an extension of Büchi’s Theorem [20] states that a tree language is MSO definable iff it
is recognizable by a finite tree automaton.

Thus, Items a) and b) above seem quite separate for problems on words, trees or graphs. What about
picture languages, that mean sets of d-pictures, i.e., d-dimensional words (or coloured grids)? First, notice
the following results:

1. In a series of papers culminating in [12], Giammarresi et al. have proved that a 2-picture language is
recognizable, i.e. is the projection of a local 2-picture language, iff it is definable in EMSO. In short:
REC2 = EMSO.

2. In fact, the class REC2 contains some NP-complete problems. More generally, one observes that
for each dimension d ≥ 1, RECd can be defined as the class of d-picture languages recognized by
nondeterministic d-dimensional cellular automata in constant time1.

The present paper originates from two questions about word/picture languages:

1. How can we generalize the proof of the above-mentioned theorem of Giammarresi et al. to any
dimension? That is, can we establish the equality RECd = EMSO for any d ≥ 1?

2. Can we obtain logical characterizations of time complexity classes of cellular automata2?

1That means: for such a picture language L, there is some constant integer c such that each computation stops at instant c and p ∈ L
iff it has at least one computation that stops with each cell in an accepting state.

2This originates from a question that J. Mazoyer asked us in 2000 (personal communication): give a logical characterization of the
linear time complexity class of nondeterministic cellular automata.

2

A d-picture language is a set of d-pictures p : [1,n]d → Σ, i.e., d-dimensional Σ-words3. There are two
natural manners to represent a d-picture p as a first-order structure:

• as a pixel structure: on the pixel domain [1,n]d where the sets p−1(a), a ∈ Σ, are encoded by unary
relations (Ua)a∈Σ and the underlying d-dimensional grid is encoded by d successor functions (see
Definition 1.2);

• as a coordinate structure: on the coordinate domain [1,n] where the sets p−1(a) are encoded by d-ary
relations (Ra)a∈Σ; moreover, one uses the natural linear order of the coordinate domain [1,n] and its
associate successor function (see Definition 1.3).

Significantly, these two representations respectively correspond to the two above-mentioned points of
view – formal language theory view vs computational complexity view – as illustrated by our results.

Our results

We establish two kinds of logical characterizations of d-picture languages, for all dimensions d ≥ 1:

1. On pixel structures: RECd = ESO(arity 1) = ESO(var 1) = ESO(∀1,arity 1). That means a d-picture
language is recognizable iff it is definable in monadic ESO (resp. in ESO with 1 first-order variable,
or in monadic ESO with 1 universally quantified first-order variable).

2. On coordinate structures: NLINd
ca = ESO(var d + 1) = ESO(∀d+1,arity d + 1); that means a d-picture

language is recognized by a nondeterministic d-dimensional cellular automaton in linear time (see e.g.
[4]) iff it is definable in ESO with d + 1 distinct first-order variables (resp. ESO with second-order
variables of arity at most d + 1 and a prenex first-order part of prefix ∀d+1).

Items 1 and 2 proceed from normalization results of, respectively, first-order and ESO logics that we prove
over picture languages.

Significance of our results

The normalization equality ESO(arity 1) = ESO(∀1,arity 1) of Item 1 is a consequence of the fact that, on
pixel structures (and, more generally, on structures that consist of bijective functions and unary relations),
any first-order formula is equivalent to a boolean combination of cardinality formulas of the form: “there
exists k distinct elements x such that ψ(x)”, where ψ is a quantifier-free formula with only one variable. The
normalization equality explicitly expresses the local feature of MSO on pictures – using only one first-order
variable. The results of Item 1 can be regarded as an explicitation/simplification (using onlyone first-order
variable) and uniformization of the proof and ideas of the main result of Giammarresi et al. [12, 11]; this
allows us to generalize it to any dimension and, potentially, to other regular structures.

Intuitively, our characterization NLINd
ca = ESO(∀d+1,arity d + 1) of Item 2 naturally reflects a symmetry

property of the time-space diagram of any computation of a nondeterministic d-dimensional cellular automa-
ton: informally, the single first-order variable representing time cannot be distinguished from any of the d
variables that represent the d-dimensional space; in other words, the d +1 variables can be permuted without
this increases the expressive (or computational) power of the formula. This is the sense of the inclusion
ESO(∀d+1,arity d + 1) ⊆ NLINd

ca whose proof is far from trivial.
3More generally, the domain of a d-picture is of the "rectangular" form [1,n1]× . . .× [1,nd]. For simplicity and uniformity of

presentation, we have chosen to present the results of this paper in the particular case of "square" pictures of domain [n]d . Fortunately,
our results also hold with the same proofs for general domains [1,n1]× . . .× [1,nd].

3

1 Preliminaries
In the definitions below and all along the paper, we denote by Σ, Γ some finite alphabets and by d a positive
integer. For any positive integer n, we set [n] := {1, . . . ,n}. We are interested in sets of pictures of any fixed
dimension d.

Definition 1.1 A d-dimensional picture or d-picture on Σ is a function p : [n]d → Σ where n is a positive
integer. The set dom(p)= [n]d is called the domain of picture p and its elements are called points, pixels or
cells of the picture. A set of d-pictures on Σ is called a d-dimensional language, or d-language, on Σ.

Notice that 1-pictures on Σ are nothing but nonempty words on Σ.

1.1 Pictures as model theoretic structures
Along the paper, we will often describe d-languages as sets of models of logical formulas. To allow this
point of view, we must settle on an encoding of d-pictures as model theoretic structures.

For logical aspects of this paper, we refer to the usual definitions and notations in logic and finite model
theory (see [6] or [18], for instance). A signature (or vocabulary) σ is a finite set of relation and function
symbols each of which has a fixed arity. A (finite) structure S of vocabulary σ, or σ-structure, consists of a
finite domain D of cardinality n ≥ 1, and, for any symbol s ∈ σ, an interpretation of s over D, often denoted
by s for simplicity. The tuple of the interpretations of the σ-symbols over D is called the interpretation of σ
over D and, when no confusion results, it is also denoted σ. The cardinality of a structure is the cardinality
of its domain. For any signature σ, we denote by struc(σ) the class of (finite) σ-structures. We write
models(Φ) the set of σ-structures which satisfy some fixed formula Φ. We will often deal with tuples of
objects. We denote them by bold letters.

There are two natural manners to represent a picture by some logical structure: on the domain of its
pixels, or on the domain of its coordinates. This gives rise to the following definitions:

Definition 1.2 Given p : [n]d → Σ, we denote by pixeld(p) the structure

pixeld(p) = ([n]d, (Qs)s∈Σ, (succi)i∈[d], (mini)i∈[d], (maxi)i∈[d]).

Here:

• succ j is the (cyclic) successor function according to the jth dimension of [n]d, mapping each (a1, . . . ,ad) ∈
[n]d on (a(j)

1 , . . . ,a(j)
d) ∈ [n]d, where we set : a(j)

i = ai for i , j and, beside, a(j)
j = a j +1 if a j < n; a(j)

j = 1
otherwise.

In other words, for a ∈ [n]d, succ j(a) is the d-tuple a(j) obtained from a by “increasing” its jth com-
ponent according to the cyclic successor on [n].

• the mini’s, maxi’s and Qs’s are the following unary (monadic) relations:

mini = {a ∈ [n]d : ai = 1}; maxi = {a ∈ [n]d : ai = ni}; Qs = {a ∈ [n]d : p(a) = s}.

Definition 1.3 Given p : [n]d → Σ, we denote by coordd(p) the structure

coordd(p) = 〈[n], (Qs)s∈Σ,<,succ,min,max〉. (1)

Here:

4

• Each Qs is a d-ary relation symbol interpreted as the set of cells of p labelled by an s. In other words:
Qs = {a ∈ [n]d : p(a) = s}.

• <, min, max are predefined relation symbols of respective arities 2, 1, 1, that are interpreted, respec-
tively, as the sets {(i, j) : 1 ≤ i < j ≤ n}, {1} and {n}.

• succ is a unary function symbol interpreted as the cyclic successor. (That is: succ(i) = i + 1 for i < n
and succ(n) = 1.)

For a d-language L, we set pixeld(L) = {pixeld(p) : p ∈ L} and coordd(L) = {coordd(p) : p ∈ L}.

Remark 1.4 Several details are irrelevant in Definitions 1.2 and 1.3, i.e. our results still hold for several
variants, in particular:

- In Definition 1.3, the fact that the linear order < and the equality = are allowed or not and the fact that
min, max are represented by individual constants or unary relations;

- In both definitions, the fact that the successor function(s) is/are cyclic or not and is/are completed or
not by predecessor(s) function(s).
At the opposite, it is essential that, in both definitions:

- The successor(s) is/are represented by function(s) and not by (binary) relation(s);
- The min, max are explicitly represented.

1.2 Logics under consideration
Let us now come to the logics involved in the paper. All formulas considered hereafter belong to rela-
tional Existential Second-Order logic. Given a signature σ, indifferently made of relational and functional
symbols, a relational existential second-order formula of signature σ has the shape Φ ≡ ∃Rϕ(σ,R), where
R = (R1, . . . ,Rk) is a tuple of relational symbols and ϕ is a first-order formula of signature σ∪{R}. We denote
by ESOσ the class thus defined. We will often omit to mention σ for considerations on these logics that do
not depend on the signature. Hence, ESO stands for the class of all formulas belonging to ESOσ for some
σ.

We will pay great attention to several variants of ESO. In particular, we will distinguish formulas of
type Φ ≡ ∃Rϕ(σ,R) according to: the number of distinct first-order variables involved in ϕ, the arity of the
second-order symbols R ∈ R, and the quantifier prefix of some prenex form of ϕ.

With the logic ESOσ(∀d,arity `), we control these three parameters: it is made of formulas of which first-
order part is prenex with a universal quantifier prefix of length d, and where existentially quantified relation
symbols are of arity at most `. In other words, ESOσ(∀d,arity `) collects formulas of shape ∃R∀xθ(σ,R,x)
where θ is quantifier free, x is a d-tuple of first-order variables, and R is a tuple of relation symbols of arity
at most `. Relaxing some constraints of the above definition, we set:

ESOσ(∀d) =
⋃
`>0

ESOσ(∀d,arity `) and ESOσ(arity `) =
⋃
d>0

ESOσ(∀d,arity `).

Finally, we write ESOσ(var d) for the class of formulas that involve at most d first-order variables, thus
focusing on the sole number of distinct first-order variables (possibly quantified several times).

In the following sections, we’ll prove that some logics have the same expressive power, as far as given
sets of structures are concerned. When a normalization of a logic L into a logic L′ is thus relativized to
a specific class S of structures, we write: L = L′ on S. The next definition details the meaning of this
formulation.

5

Definition 1.5 Given a set of structures S and a formula Φ, the set of models of Φ that belong to S is
denoted by modelsS(Φ). Two formula Φ and Φ′ are S-equivalent if modelsS(Φ) = modelsS(Φ′). Given two
logics L and L′, we say that L ⊆ L′ on S if each Φ ∈ L is S-equivalent to some Φ′ ∈ L′. Furthermore, we
write L =L′ on S if both L ⊆ L′ and L′ ⊆ L hold on S.

In some very rare cases, we will consider the extension of ESO obtained by allowing quantification
over functional symbols. The corresponding logic, ESOF, gathers all formulas of the form ∃R∃fϕ(σ,R, f),
where R (resp. f) is a tuple of relational (resp. functional) symbols and ϕ is any first-order formula of
signature σ∪ {R, f}. The restrictions ESOF(var d) and ESOF(∀d,arity `) of ESOF are defined as for ESO.
The expressive power of these logics is quite high. A σ−NRAM is a nondeterministic Random Access
Machine that takes σ-structures as inputs in the following way: for each s ∈ σ of arity ` and each `-tuple
t ∈ D`, a special register [s, t] contains the value of s(t). Let NTIMEσ(nd) be the class of problems on σ-
structures decidable by a σ−NRAM in time O(nd) where n is the size of the domain D of structures. The
following was proved in [14]:

Theorem 1.6 ([14]) For all d > 0, NTIME(nd) = ESOF(var d).

In the same paper, a normalization of ESOF(var d) was stated:

Proposition 1.7 ([14]) For all d > 0, ESOF(var d) = ESOF(∀d,arity d).

2 A logical characterization of recognizable picture languages
In this section, we define the class of local (resp. recognizable) picture languages and establish the logical
characterizations of the class of picture languages. In order to define a notion of locality based on subpictures
we need to mark the border of each picture.

Definition 2.1 By Γ] we denote the alphabet Γ∪ {]} where] is a special symbol not in Γ. Let p be any d-
picture of domain [n]d on Γ. The bordered d-picture of p, denoted by p], is the d-picture p] : [0,n+1]d→ Γ]

defined by p](a) = p(a) if a ∈ dom(p);] otherwise. Here, “otherwise” means that a is on the border of p],
that is, some component ai of a is 0 or n + 1.

Let us now define our notion of local picture language or tilings language. It is based on some sets of
allowed patterns (called tiles) of the bordered pictures.

Definition 2.2 1. Given a d-picture p and an integer j ∈ [d], two cells a = (ai)i∈[d] and b = (bi)i∈[d] of p
are j-adjacent if they have the same coordinates, except the jth one for which |a j−b j| = 1.

2. A tile for a d-language L on Γ is a pair in (Γ])2.

3. A picture p is j-tiled by a set of tiles ∆ ⊆ (Γ])2 if for any two j-adjacent points a,b ∈ dom(p]):
(p](a), p](b)) ∈ ∆.

4. Given d sets of tiles ∆1, . . . ,∆d ⊆ (Γ])2, a d-picture p is tiled by (∆1,. . . ,∆d) if p is j-tiled by ∆ j for
each j ∈ [d].

5. We denote by L(∆1,. . . ,∆d) the set of d-pictures on Γ that are tiled by (∆1,. . . ,∆d).

6

6. A d-language L on Γ is local if there exist ∆1, . . . ,∆d ⊆ (Γ])2 such that L = L(∆1,. . . ,∆d). We then say
that L is (∆1, . . . ,∆d)-local, or (∆1, . . . ,∆d)-tiled.

Definition 2.3 A d-language L on Σ is recognizable if it is the projection (i.e. homomorphic image) of a
local d-language over an alphabet Γ. It means there exist a surjective function π : Γ→ Σ and a local d-
language Lloc on Γ such that L = {π ◦ p : p ∈ Lloc}. Because of the last item of Definition 2.2, one can also
write: L is recognizable if there exist a surjective function π : Γ→ Σ and d sets ∆1, . . . ,∆d ⊆ (Γ])2 such that
L = {π◦ p : p ∈ L(∆1, . . . ,∆d)}.We write RECd for the class of recognizable d-languages.

Remark 2.4 Our notion of locality is weaker than the one given by Giammarresi and al. [12]. But this
doesn’t affect the meaning of recognizability, which coincides with the one used in [12]. This confirms the
robustness of this latter notion.

A characterization of recognizable languages of dimension 2 by a fragment of existential monadic
second-order logic was proved by Giammarresi et al. [12]. They established:

Theorem 2.5 ([12]) For any 2-language L: L ∈ REC2⇔ pixel2(L) ∈ ESO(arity 1).

In this section, we come back to this result. We simplify its proof, refine the logic it involves, and generalize
its scope to any dimension.

Theorem 2.6 For any d > 0 and any d-language L, the following assertions are equivalent:

1. L ∈ RECd;

2. pixeld(L) ∈ ESO(∀1,arity 1);

3. pixeld(L) ∈ ESO(arity 1).

Proposition 2.9 states the equivalence 1 ⇔ 2. In Proposition 2.14, we establish the normalization
ESO(arity 1) = ESO(∀1,arity 1) on pixel structures, from which the equivalence 2⇔ 3 immediately follows.

2.1 A characterization of REC for pixel encoding
In order to prove Proposition 2.9, it is convenient to first normalize the sentences of ESO(∀1,arity 1). This
is the role of the technical result below, which asserts that on pixel encodings, each such sentence can be
rewritten in a very local form where the first-order part alludes only pairs of adjacent pixels of the bordered
picture.

Lemma 2.7 On pixel structures, any ϕ ∈ ESO(∀1,arity 1) is equivalent to a sentence of the form:

∃U∀x
∧
i∈[d]


mini(x) → mi(x) ∧

maxi(x) → Mi(x) ∧

¬maxi(x) → Ψi(x)

 . (2)

Here, U is a list of monadic relation variables and mi, Mi, Ψi are quantifier-free formulas such that

• atoms of mi and Mi have all the form Q(x);

• atoms of Ψi have all the form Q(x) or Q(succi(x)),

7

where, in both cases, Q ∈ {(Qs)s∈Σ,U}.

Proof. Let be a sentence ϕ ∈ ESO(∀1,arity 1) of signature pixeld,Σ.
Suppression of equalities: Without loss of generality, assume that ϕ is in negative normal form ∃U∀xψ

and that each equality in ψ is of the form

succ
ci1
i1
. . .succ

cik
ik

(x) = x (3)

where the k indices i1, . . . , ik (k > 0) are pairwise distinct, and the exponents ci1 , . . . ,cik are positive integers.
Equation (3) holds in some pixel structure pixeld(p) of domain [n1]× · · · × [nd] for some x (or equivalently,
for all x), iff the dimensions ni of p satisfy the k equalities ni1 = ci1 , . . . ,nik = cik . So, we have to suppress any
equality/inequality of the form ni = c or ni , c, for c ≥ 1, in ϕ. First, notice that the inequality ni , c can be
rewritten as

ni > c∨
∨

j∈[c−1]

ni = j.

So, there remains to suppress any equality/inequality of the form ni = c or ni > c, for c ≥ 1, in ϕ. This can
be done by introducing c new unary relation symbols denoted coord= j

i (x), for j ∈ [c]. Intuitively, coord= j
i (x)

means: “the ith coordinate of point x is j”. Clearly, for any fixed i ∈ [d] and c > 0, the unary relations coord= j
i

are defined by induction on j ∈ [c] with the following formula

δc
i = (mini(x)→ coord=1

i (x)) ∧
∧

j∈[c−1]

(¬maxi(x)→ (coord= j
i (x)→ coord= j+1

i (succi(x)))).

Using those relations, it is rather easy to see that the two formulas

∀x(maxi(x)→ coord=c
i (x)) and ∀x

∧
j∈[c]

(coord= j
i (x)→ coord= j+1

i (succi(x)))

express the assertions ni = c and ni > c, respectively. Hence, the first-order sentence ∀xψ(x) is equivalent to
the ESO(∀1,arity 1)-sentence:

∃coord ∀x(δ(x)∧ψ′(x))

where coord denotes the list of unary relation variables coord= j
i introduced in the required formulas δc

i (x),
the conjunction of which is denoted δ(x), and ψ′(x) is the formula ψ(x) where each "subformula" ni =

c (resp. ni > c) is replaced by the equivalent formula maxi(x)→ coord=c
i (x) (resp.

∧
j∈[c](coord= j

i (x)→
coord= j+1

i (succi(x)))).
So, our sentence ϕ can be assumed to be in prenex conjunctive normal form ∃U∀xψ without equality,

that means ψ is a conjunction of clauses with literals of the form Q(τ(x)) or ¬Q(τ(x)) where Q belongs to
the set of relations {(mini)i∈[d], (maxi)i∈[d], (Qs)s∈Σ,U} and τ is a (possibly empty) composition of function
symbols succi, i ∈ [d]. The idea is to introduce for each atom Q(τ(x)) that occurs in ψ a new unary relation
variable denoted UQ,τ so that the atom UQ,τ(x) is equivalent to (can replace) the atom Q(τ(x)).

The UQ,τ’s are defined inductively by the conjunction of the following equivalences, denoted by basic
and succi-induct:

• basic: UQ,Id(x)→ Q(x),

• succi-induct: UQ,τsucci (x)→ UQ,τ(succi(x))

8

from which the equivalence UQ,τ(x)→ Q(τ(x)) can be deduced as wished.
Let δ(x) denote the conjunction of all the equivalences that define the UQ,τ’s and let ψ′(x) denote the

formula ψ(x) where each atom Q(τ(x)) is replaced by the atom UQ,τ(x). Clearly, the sentence ϕ = ∃U∀xψ(x)
is equivalent to the sentence

ϕ′ = ∃U∃(UQ,τ)′s∀x(ψ′(x)∧δ(x)).

Now, put ϕ′, that means ψ′(x)∧δ(x), in conjunctive normal form. In order to organize and transform the
clauses of ϕ′, some terminology is required about clauses:

• a clause is x-pure (resp. i-cyclic) if it only contains atoms of the form Q(x) (resp. Q(x) or Q(succi(x)))
where Q is a unary relation symbol which is neither any min j nor any max j;

• an i-local clause is of the form ¬maxi(x)→C(x) where C(x) is an i-cyclic clause;

• an i-min (resp. i-max) clause is of the form mini(x)→ C(x) (resp. maxi(x)→ C(x)) where C(x) is an
x-pure clause.

Using those definitions, we observe that

• the clauses of the conjunctive normal form of ψ′(x) are x-pure;

• the succi-induct clauses of δ(x) are i-cyclic;

• each basic implication of δ(x) of the form UQ,Id(x)→ Q(x) or Q(x)→ UQ,Id(x) is a x-pure clause
except in case Q is mini or maxi (i ∈ [d]); clearly, in this case, the implication can be rephrased in one
of the following four forms:

1. mini(x)→C(x),

2. maxi(x)→C(x),

3. ¬mini(x)→C(x),

4. ¬maxi(x)→C(x),

where C(x) is an x-pure clause (literal). Clauses 1 and 2 are i-min and i-max clauses, respectively.
Clause 4 is i-local. Clause 3 can be replaced by the i-local clause ¬maxi(x)→ C(succi(x)); this is
justified by the equivalence (easily proved) of the universally quantified versions of those implications:

∀x(¬mini(x)→C(x))⇔∀x(¬maxi(x)→C(succi(x))).

So, we have shown how to rephrase the first-order part (that is ψ′(x)∧ δ(x)) of ϕ′ as a conjunction of
x-pure clauses, i-cyclic clauses, i-local clauses, i-min clauses and i-max clauses. In fact, all those clauses
are local with the exception of i-cyclic clauses. Recall that an i-cyclic clause C(x,succi(x)) only contains
atoms of the two forms Q(x) or Q(succi(x))) where Q is a unary relation symbol which is neither any min j
nor any max j. Its nonlocality is due to the following fact: if for a d-picture P we have a ∈ maxi for any
pixel a ∈ dom(p), then the pixel succi(a) is not adjacent to a in P since we have succi(a) ∈mini by cyclicity
of the function (permutation) succi. In order to recover locality, let us first replace each i-cyclic clause
C(x,succi(x)) by the equivalent conjunction of the following two clauses:

1. the i-local clause ¬maxi(x)→C(x,succi(x));

9

2. the “nonlocal” clause maxi(x)→C(x,succi(x)).

So, there remains to get rid of the “nonlocal” clause 2. The trick consists in making available in all the points
of any succi-cycle the value of each unary relation Q for the mini point of this cycle. This can be done by
using a new unary relation symbol UQ

min,i(x) defined inductively by the conjunction of the following mini
and i-local clauses

mini(x)→ (UQ
min,i(x)→ Q(x))

¬maxi(x)→ (UQ
min,i(x)→ UQ

min,i(succi(x))).

Clearly, for each point a of any succi-cycle γ, we have the constant value UQ
min,i(a) = Q(b) where b is the

unique point in γ∩mini. A new unary relation symbol UQ
max,i can be defined similarly for maxi. This justifies

that each “nonlocal” clause maxi(x)→C(x,succi(x)) can be replaced by the x-pure clause C′(x) obtained by
substituting in the clause C(x,succi(x)) each atom Q(x) (resp. Q(succi(x))) by UQ

max,i(x) (resp. UQ
min,i(x)).

Let us recapitulate what we have obtained. Our initial sentence ϕ = ∃U∀xψ(x) of ESO(∀1,arity 1) is
logically equivalent to a sentence of the form ϕ” = ∃U′∀xΨ(x) where

• U′ is the union of the set of ESO unary symbols of ϕ′, that are U and the UQ,τ’s, and of the UQ
min,i’s

and UQ
max,i’s we have just introduced;

• Ψ(x) is a conjunction of x-pure clauses, i-min clauses, i-max clauses and i-local clauses.

Now, it is easy to transform the conjunction of clauses Ψ(x) into the conjunction of formulas required:∧
i∈[d]

[(mini(x)→ Ψmin
i (x))∧ (maxi(x)→ Ψmax

i (x))∧ (¬maxi(x)→ Ψi(x))].

More precisely, for each i ∈ [d],

• the conjunction of the i-min clauses (resp. the i-max clauses) and the x-pure clauses of Ψ(x) is trivially
transformed into the required form mini(x)→ Ψmin

i (x) (resp. maxi(x)→ Ψmax
i (x));

• the conjunction of the i-local clauses and the x-pure clauses of Ψ(x) is similarly transformed into the
required form (¬maxi(x)→ Ψi(x)).

This completes the proof. �

Remark 2.8 The normal form of the formula obtained in Lemma 2.7 guarantees its local feature. In partic-
ular, notice that any successor symbol succi can only apply to arguments assumed to be not in maxi. That
means we get the same normal form if the cyclic successor functions succi, i ∈ [d], are replaced by successor
functions for which succi(a) = a (instead of a(i)) if a ∈ maxi.

Proposition 2.9 For any d > 0 and any d-language L on Σ: L ∈ RECd ⇔ pixeld(L) ∈ ESO(∀1,arity 1).

Proof. ⇒ A picture belongs to L if there exists a tiling of its domain whose projection coincides with
its content. In the logic involved in the proposition, the “arity 1” corresponds to formulating the existence of
the tiling, while the “∀1” is the syntactic resource needed to express that the tiling behaves as expected. Let
us detail these considerations.

10

By Definition 2.2, there exist an alphabet Γ (which can be assumed disjoint from Σ), a surjective function
π : Γ→ Σ and d subsets ∆1, . . . ,∆d ⊆ (Γ])2 such that

L = {π◦ p′ : p′ ∈ L(∆1, . . . ,∆d)} (4)

The belonging of a picture p′ : [n]d → Γ to L(∆1, . . . ,∆d) is easily expressed on pixeld(p′) with a first-
order formula that asserts, for each dimension i ∈ [d], that for any pixel x of p′, the couple (x,succi(x)) can
be tiled with some element of ∆i. Namely,

p′ ∈ L(∆1, . . . ,∆d) iff pixeld(p′) |= ∀xψ∆1,...,∆d (x), where:

ψ∆1,...,∆d (x) =
∧
i∈[d]



mini(x)→
∨

(],s)∈∆i

Qs(x) ∧

¬maxi(x)→
∨

(s,s′)∈∆i

(
Qs(x)∧Qs′ (succi(x))

)
∧

maxi(x)→
∨

(s,])∈∆i

Qs(x)


.

Now, by (4), a picture p : [n]d→ Σ belongs to L iff it results from a π-renaming of a picture p′ ∈ L(∆1, . . . ,∆d).
It means there exists a Γ-labeling of p (that is, a tuple (Qs)s∈Γ of subsets of [n]d) corresponding to a picture
of L(∆1, . . . ,∆d) (i.e. fulfilling ∀xψ∆1,...,∆d (x, (Qs)s∈Γ)) and from which the actual Σ-labeling of p (that is, the
subsets (Qs)s∈Σ) is obtained via π. More precisely:

p ∈ L iff pixeld(p) |= ΘL, where:

ΘL = (∃Qs)s∈Γ ∀x : ψ∆1,...,∆d (x) ∧
∧
s∈Σ

Qs(x)→
[⊕

s′∈π−1(s)

Qs′ (x)∧
∧

s′∈Γ\π−1(s)

¬Qs′ (x)
] .

Here,
⊕

denotes the exclusive disjunction. Notice that since Σ∩Γ = ∅, the tuples (Qs)s∈Σ and (Qs)s∈Γ are
also disjoint. Since ΘL clearly belongs to ESO(∀1,arity 1), the proof is complete.

⇐ Consider L such that pixeld(L) ∈ ESO(∀1,arity 1). Lemma 2.7 ensures that pixeld(L) is characterized
by a sentence of the form:

∃U∀x
∧
i∈[d]


mini(x) → mi(x) ∧

maxi(x) → Mi(x) ∧

¬maxi(x) → Ψi(x)

 . (5)

Here, U is a list of monadic relation variables and mi, Mi, Ψi are quantifier-free formulas such that atoms of
mi and Mi have all the form Q(x) and atoms of Ψi have all the form Q(x) or Q(succi(x)), wih Q ∈ {(Qs)s∈Σ,U}.

We have to prove that L is the projection of some local d-language Lloc on some alphabet Γ, that is a
(∆1,. . . , ∆d)-tiled language for some ∆1,. . . , ∆d ⊆ Γ2. Let U1, . . . ,Uk denote the list of (distinct) elements
of the set {(Qs)s∈Σ,U} of unary relation symbols of ϕ, so that the first ones U1, . . . ,Um are the Qs’s (here,
mini and maxi symbols are excluded). The trick is to put each subformula mi(x), Mi(x) and Ψi(x) of ϕ into
its complete disjunctive normal form with respect to U1, . . . ,Uk. Typically, each subformula Ψi(x) whose
atoms are of the form U j(x) or U j(succi(x)), for some j ∈ [k], is transformed into the following “complete
disjunctive normal form”:∨

(ε,ε′)∈∆i

∧
j∈[k]

ε jU j(x)∧
∧
j∈[k]

ε′jU j(succi(x))

 . (6)

Here, the following conventions are adopted:

11

• ε = (ε1, . . . , εk) ∈ {0,1}k and similarly for ε′;

• for any atom α and any bit ε j ∈ {0,1}, ε jα denotes the literal α if ε j = 1, the literal ¬α otherwise.

For ε ∈ {0,1}k, we denote by Θε(x) the “complete conjunction”
∧

j∈[k] ε jU j(x). Intuitively, Θε(x) is a
complete description of x and the set

Γ =
⋃

i∈[m]

{0i−110m−i}× {0,1}k−m

is the set of possible colors (remember that the Qs’s that are the U j’s for j ∈ [m] form a partition of the
domain). The complete disjunctive normal form (6) of Ψi(x) can be written into the suggestive form∨

(ε,ε′)∈∆i

(
Θε(x)∧Θε′ (succi(x))

)
.

If each subformula mi(x) and Mi(x) of ϕ is similarly put into complete disjunctive normal form, that is∨
(],ε)∈∆i Θε(x) and

∨
(ε,])∈∆i Θε(x), respectively (there is no ambiguity in our implicit definition of the ∆i’s,

since] < Γ), then the above sentence (5) equivalent to ϕ becomes the following equivalent sentence:

ϕ′ = ∃U∀x
∧
i∈[d]



mini(x) →
∨

(],ε)∈∆i

Θε(x) ∧

maxi(x) →
∨

(ε,])∈∆i

Θε(x) ∧

¬maxi(x) →
∨

(ε,ε′)∈∆i

(Θε(x)∧Θε′ (succi(x)))


Finally, let Lloc denote the d-language over Γ defined by the first-order sentence ϕloc obtained by replacing
each Θε by the new unary relation symbol Qε in the first-order part of ϕ′. In other words, pixeld(Lloc) is
defined by the following first-order sentence:

ϕloc = ∀x
∧
i∈[d]



mini(x) →
∨

(],ε)∈∆i

Qε(x) ∧

maxi(x) →
∨

(ε,])∈∆i

Qε(x) ∧

¬maxi(x) →
∨

(ε,ε′)∈∆i

(Qε(x)∧Qε′ (succi(x)))


Hence, Lloc = L(∆1, . . . ,∆d). That is, Lloc is indeed local and the corresponding sets of tiles are the ∆i’s of the
previous formula. It is now easy to see that our initial d-language L is the projection of the local language
Lloc by the projection π : Γ→ Σ defined as follows: π(ε) = s iff εi = 1 for i ∈ [m] and Ui is Qs. This completes
the proof. �

2.2 A normalization of ESO(arity 1) on pixels
Let’s now come to the last step of the proof of Theorem 2.6. A key point of this step is a quantifier elimination
result for first-order logic, proved by Durand and Grandjean. Its statement needs two new definitions.

Definition 2.10 A bijective structure is a finite structure of the form S = (dom(S), f1, . . . , fd,U1, . . . ,Um),
where the fi’s are unary bijective functions and the Ui’s are unary relations.

12

Definition 2.11 A cardinality formula is a first-order formula of the form ∃≥k xψ(x), where k ≥ 1 and ψ(x)
is a quantifier-free formula with only one variable x. The quantifier ∃≥k x means “there exists at least k
elements x”.

The following normalization of first-order logic on bijective structures was proved in [5].

Proposition 2.12 ([5]) On bijective structures, each first-order sentence is equivalent to a boolean combi-
nation of cardinality formulas.

Actually, this result was proved for a slightly more restrictive notion of bijective structure, but the above
generalisation is straightforward. Clearly, a pixel structure is a bijective structure. Therefore:

Corollary 2.13 On pixel structures, each first-order sentence is equivalent to a boolean combination of
cardinality formulas.

This allows to prove the following proposition.

Proposition 2.14 ESO(arity 1) ⊆ ESO(∀1,arity 1) on pixel structures, for any d > 0.

Proof. In a pixel structure, each function symbol succi is interpreted as a cyclic successor, hence, as a
bijective function. So, a pixel structure is a bijective structure and, by Corollary 2.13, it can be written as
a boolean combination of sentences of the form ψ≥k = ∃≥k x ψ(x) (for k ≥ 1) where ψ(x) is a quantifier-free
formula with the single variable x. Therefore, it is easily seen that proving the proposition amounts to show
that each sentence of the form ψ≥k or ¬ψ≥k can be translated in ESO(∀1,arity 1) on pixel structures. This is
done as follows:

For a given sentence ∃≥k x ψ(x), we introduce k new unary relations U=0, U=1, . . . , U=k−1 and U≥k, with
the intended meaning:

A pixel a ∈ [n]d belongs to U= j (resp. U≥k) iff there are exactly j (resp. at least k) pixels b ∈ [n]d

lexicographically smaller than or equal to a such that pixeld(p) |= ψ(b).

Then we have to compel these relation symbols to fit their expected interpretations, by means of a first-order
formula with a single universally quantified variable. First, we demand the relations to be pairwise disjoint:

(1)
∧

i< j<k

(
¬U=i(x)∨¬U= j(x)

)
∧

∧
i<k

(
¬U=i(x)∨¬U≥k(x)

)
.

Then, we temporarily denote by ≤lex the lexicographic order on [n]d inherited from the natural order
on [n], and by succlex, minlex, maxlex its associated successor function and unary relations corresponding
to extremal elements. Then the sets described above can be defined inductively by the conjunction of the
following six formulas:

(2) (minlex(x)∧¬ψ(x))→ U=0(x)

(3) (minlex(x)∧ψ(x))→ U=1(x)

(4)
∧
i<k

(
¬maxlex(x)∧U=i(x)∧¬ψ(succlex(x))

)
→ U=i(succlex(x))

13

(5)
∧

i<k−1

(
¬maxlex(x)∧U=i(x)∧ψ(succlex(x))

)
→ U=i+1(succlex(x))

(6)
(
¬maxlex(x)∧U=k−1(x)∧ψ(succlex(x))

)
→ U≥k(succlex(x))

(7)
(
¬maxlex(x)∧U≥k(x)

)
→ U≥k(succlex(x)).

Hence, under the hypothesis (1)∧ . . .∧ (7), the sentences ψ≥k and ¬ψ≥k are equivalent, respectively, to

∀x(maxlex(x)→ U≥k(x)) and ∀x(maxlex(x)→¬U≥k(x)).

To complete the proof, it remains to get rid of the symbols succlex, minlex and maxlex that are not allowed
in our language. It is done by referring to these symbols implicitly rather than explicitly. For instance, since
succlex(x) = succisucci+1 . . .succd(x), for each non maximal x ∈ [n]d, i.e., distinct from (n, . . . ,n), and for
the smallest i ∈ [d] such that

∧
j>i max j(x), each formula ϕ involving succlex(x) actually corresponds to the

conjunction:

∧
i∈[d]

(¬maxi(x)∧
∧

i< j≤d

max j(x))→ ϕi

 ,
where ϕi is obtained from ϕ by the substitution succlex(x) succisucci+1 . . .succd(x). Similar arguments
allow to get rid of minlex and maxlex. �

Remark 2.15 In this proof, two crucial features of a structure of type pixeld(p) are involved:

• its bijective nature, that allows to rewrite first-order formulas as cardinality formulas with a single
first-order variable;

• the regularity of its predefined arithmetics (the functions succi defined on each dimension), that en-
dows pixeld(p) with a grid structure: it enables us to implicitly define a linear order of the whole
domain dom(p) by means of first-order formulas with a single variable, which in turn allows to ex-
press cardinality formulas by “cumulative’” arguments, via the sets U=i.

Proposition 2.14 straightforwardly generalizes to the numerous structures that fulfill these two properties.

To conclude this section, let us mention that we can rather easily derive from Theorem 2.6 the following
additional characterization of RECd:

Corollary 2.16 For any d > 0 and any d-language L,

L ∈ RECd ⇔ pixeld(L) ∈ ESO(var 1).

3 Towards an exact logical characterization of NLINca

3.1 Some definitions
Besides the notion of recognizable picture language, the main concept studied in this paper is the classi-
cal notion of linear time complexity on nondeterministic cellular automata of any dimension (see [4] for

14

instance). For simplicity of notation, we only present here the notion of one-way d-dimensional cellular
automaton, instead of the more usual notion of two-way d-dimensional cellular automaton, but it is known
that in the nondeterministic case, the two linear-time complexity classes so defined coincide [4]. There is
some technicalities in our definition of the transition function of such an automaton here below: this is due
to the need to distinguish the different positions of the pixels of a picture w.r.t. its border.

Definition 3.1 A pixel x = (x1, . . . , xd) ∈ [n]d is in position a = (a1, . . . ,ad) ∈ {0,1}d in a picture p : [n]d → Γ

or in the domain [n]d if, for all i ∈ [d], ai = max{b ∈ {0,1} : xi + b ≤ n}.

We are going to define the transition function on a pixel x of a picture p according to some “neighbor-
hood” denoted pa,x (it is a sub picture of p) whose domain, denoted Doma, depends on the position a of the
pixel in the picture.

Definition 3.2 For each a = (a1, . . . ,ad) ∈ {0,1}d, let us define the a-domain as Doma = [0,a1]× · · ·× [0,ad].
The a-neighborhood of some pixel x ∈ [n]d in position a in a picture p : [n]d → Γ is the picture pa,x :

Doma→ Γ defined as pa,x(b) = p(x + b), where x + b denotes the sum of the vectors x and b.
We denote by neighba(Γ) the set of all possible a-neighborhoods on an alphabet Γ, that is the set of

functions ν : Doma→ Γ.

5

x

z t

y

3

4

5

2

1

1 2 3 4

Figure 1: pixels x, y, z and t are, respectively, in position (1,1), (0,1), (1,0), (0,0). Whence their associated neighbor-
hoods, that appear as colored cases on the figure.

Definition 3.3 A one-way nondeterministic d-dimensional cellular automaton (d-automaton, for short) over
an alphabet Σ is a tupleA = (Σ,Γ, δ,F), where

• the finite alphabet Γ called the set of states of A includes the input alphabet Σ and the set F of
accepting states: Σ,F ⊆ Γ;

• δ is the (nondeterministic) transition function ofA: it is a family of a-transition functions δ= (δa)a∈{0,1}d

of the form δa : neighba(Γ)→P(Γ).

Let us now define a computation.

Definition 3.4 LetA = (Σ,Γ, δ,F) be a d-automaton and p, p′ : [n]d→ Γ be two d-pictures on Γ. We say that
p′ is a successor of p forA, denoted by p′ ∈A(p), if for each position a ∈ {0,1}d and each point x of position
a in [n]d, p′(x) ∈ δa(pa,x). The set of jth-successors of p forA, denoted byA j(p), is defined inductively:

A0(p) = {p} and, for j ≥ 0,A j+1(p) =
⋃

p′∈A j(p)

A(p′).

15

Definition 3.5 A computation of a d-automaton A on an input d-picture p : [n]d → Γ is a sequence p1, p2,
p3, . . . of d-pictures such that p1 = p and pi+1 ∈ A(pi) for each i. The picture pi, i ≥ 1, is called the ith

configuration of the computation. A computation is accepting if it is finite – it has the form p1, p2, . . . , pk for
some k – and the cell of minimal coordinates, 1d = (1, . . . ,1), of its last configuration is in an accepting state:
pk(1d) ∈ F.

Remark 3.6 Note that the space used by a d-automaton is exactly the space (set of cells) occupied by its
input d-picture.

Definition 3.7 LetA = (Σ,Γ, δ,F) be a d-automaton and let T :N→N be such that T (n) > n. A d-picture p
on Σ is accepted byA in time T (n) ifA admits an accepting computation of length T (n) on p. That means,
there exists a computation p = p1, p2, . . . , pT (n) ∈ A

T (n)−1(p) ofA on p such that pT (n)(1d) ∈ F.
A d-language L on Σ is accepted, or recognized, by A in time T (n) if it is the set of d-pictures accepted

byA in time T (n). That is L = {p : ∃p′ ∈ AT (n)−1(p) such that p′(1d) ∈ F}.
If T (n) = cn + c′, for some integers c,c′, then L is said to be recognized in linear time and we write

L ∈ NLINd
ca.

The time bound T (n) > n of the above definition is necessary and sufficient to allow the information of
any pixel of p to be communicated to the pixel of minimal coordinates, 1d.

Remark 3.8 The nondeterministic linear time class NLINd
ca is very robust, i.e. is not modified by many

changes in the definition of the automaton or in its time bound. In particular, the constants c,c′ defining the
bound T (n) = cn + c′ can be fixed arbitrarily, provided T (n) > n. For example, the class NLINd

ca does not
change if we take the minimal time T (n) = n + 1, called real time.

3.2 A partial characterization of NLINca

With Theorem 2.6, we stated a logical characterization of REC, the class of recognizable picture languages.
The four forthcomming sections (including the present one) are devoted to the second central result of this
paper: a logical characterization of NLINca. To be precise, we will soon establish:

Theorem 3.9 For any d > 0 and any d-language L,

L ∈ NLINd
ca⇔ coordd(L) ∈ ESO(var d + 1).

There are many such logical characterizations of complexity classes. In most cases, the easier implication
is the right-to-left one. This is not the case in the present characterization: proving that an ESO(var d + 1)-
sentence can be evaluated, over a coordinate structure taken as input, in linear time by a cellular automaton,
appears to be a difficult task. This is mainly due to the “local” behaviour of cellular automata, which seems
unadapted to the evaluation of an ESO(var d + 1)-formula over a picture. Indeed, such a formula possibly
connects pixels of the picture that may be arbitrarily far away from each others, and dealing with pixels that
do not belong to a same neighborhood is seemingly out of the ability of our computational device.

In order to prove the right-to-left implication of Theorem 3.9, we will first have to normalize the logic
under consideration, in such a way that the formulas to be evaluated are rewritten under a form that can be
“handled” by a cellular automaton. We will tackle this normalization in forthcomming sections. For now,
let us establish the easy part of the theorem, with Proposition 3.10 below.

16

Proposition 3.10 For any d > 0 and any d-language L,

L ∈ NLINd
ca⇒ coordd(L) ∈ ESO(var d + 1).

Proof. Let L ∈ NLINd
ca. By Remark 3.8, let us assume without loss of generality that L is recognized by a

d-automaton A = (Σ,Γ, δ,F) in time n + 1. The sentence in ESO(var d + 1) that we construct is of the form
∃(Rs)s∈Γ∀x∀t ψ(x, t), where ψ(x, t) is a quantifier-free formula such that:

• ψ uses a list of exactly d + 1 first-order variables x = (x1, . . . , xd) and t. Intuitively, the d first ones
represent the coordinates of any point in dom(p) = [n]d and the last one represents any of the first n
instants t ∈ [n] of the computation (the last instant n + 1 is not explicitly represented);

• ψ uses, for each state s ∈ Γ, a relation symbol Rs of arity d + 1. Intuitively, Rs(a1, . . . ,ad, t) holds, for
any a = (a1, . . . ,ad) ∈ [n]d and any t ∈ [n], iff the state of cell a at instant t is s.

ψ(x, t) is the conjunction ψ(x, t) = init(x, t)∧ step(x, t)∧ end(x, t) of three formulas whose intuitive meaning
is the following.

• ∀x∀t init(x, t) describes the first configuration of A, i.e. at initial instant 1, that is the input picture
p1 = p;

• ∀x∀t step(x, t) describes the computation between the instants t and t + 1, for t ∈ [n−1], i.e. describes
the (t + 1)th configuration pt+1 from the tth one pt, i.e. says pt+1 ∈ A(pt) ;

• ∀x∀t end(x, t) expresses that the nth configuration pn leads to a (last) (n + 1)th configuration pn+1 ∈

A(pn) which is accepting, i.e. with an accepting state in cell 1d: pn+1(1d) ∈ F.

Let us give explicitly these three formulas. The first one is straightforward:

init(x, t) ≡min(t)→
{ ∧

s∈Σ

(
Rs(x, t)↔ Qs(x)

)
∧

∧
s∈Γ\Σ

¬Rs(x, t)
}

The second formula is

step(x, t) ≡
∧

a∈{0,1}d

∧
ν∈neighba(Γ)


¬max(t)∧Pa(x) ∧∧
b∈Doma

Rν(b)(x + b, t)

→
⊕

s∈δa(ν)

Rs(x,succ(t)).

Here,
⊕

denotes the exclusive disjunction. Furthermore:

• Pa(x) abbreviates the following formula that means that pixel x is in position a = (a1, . . . ,ad) ∈ {0,1}d

in [n]d: Pa(x) =
∧

i∈[d]σ(ai)max(xi), where σ(1) is defined as ¬ and σ(0) is defined as nothing;

• For b = (b1, . . . ,bd) ∈ {0,1}d, x + b abbreviates the tuple of terms (t1, . . . , td) where, for each i, the term
ti is xi if bi = 0 and is succ(xi) otherwise.

It is easy to verify that the formula ∀x step(x, t) means pt+1 ∈ A(pt).
Here is the last formula.

end(x, t) ≡max(t)∧
∧
i∈[d]

min(xi)

→
(t = x1→

∨
ν∈N0

Rν(0d)(x, t)
)
∧

(
t , x1→

∨
ν∈N1

∧
b∈{0,1}d

Rν(b)(x + b, t)
)

17

In this formula, the sets N0 and N1 are defined as follows:

N0 = {ν ∈ neighb0d (Γ) : δ0d (ν)∩F , ∅};
N1 = {ν ∈ neighb1d (Γ) : δ1d (ν)∩F , ∅}.

Let us explain the meaning of the formula end(x, t). Under the hypothesis max(t)∧
∧

i∈[d]min(xi), the
condition t = x1 (resp. t , x1) is equivalent to n = 1 (resp. n > 1). In either case, n = 1 or n > 1, the
disjunction

∨
ν∈N0 (resp.

∨
ν∈N1) expresses there exists pn+1 ∈ A(pn) such that pn+1(1d) ∈ F.

Hence, we have proved that for any d-picture p on Σ, the structure coordd(p) satisfies the ESO(var d+1)-
sentence ∃(Rs)s∈Γ∀x∀t ψ(x, t) if and only if some configuration in An(p) is accepting, i.e. A accepts p in
time n + 1, or, by definition, p ∈ L. Hence, L ∈ ESO(var d + 1), as required. �

Remark 3.11 One notices that the obtained formula even belongs to ESO(∀d+1,arity d + 1). Actually, we
prove in the next section that the logics ESO(var d + 1) and ESO(∀d+1,arity d + 1) coincide on coordinate
structures.

The respective roles of time and space are seemingly dissymmetric in the sentence we have just con-
structed to express an accepting computation of a d-automaton. However, the proof and the meaning of the
converse implication L ∈ NLINd

ca⇐ coordd(L) ∈ ESO(var d + 1) presented afterwards, show that in fact the
d dimensions of space are – or can be made – symmetrical w.r.t. time.

4 A first normalization of ESO(var d) on coordinate structures
We now go into the normalization of ESO(var d) announced after the statement of Theorem 3.9. As a first
step, the present section establishes Theorem 4.1, which asserts the equivalence of the logics ESO(var d)
and ESO(∀d,arity d) over coordinate encodings of (d−1)-languages:

Theorem 4.1 ESO(var d) = ESO(∀d,arity d) on coordd−1 for any d > 1. Furthermore, this equality can be
easily generalized as: ESO(var d′) = ESO(∀d′ ,arity d′) on coordd−1 for any d′ ≥ d > 1.

This theorem will result from the forthcoming Proposition 4.2 and Proposition 4.4. The former states
that each formula of ESO(var d) can be written in such a way that its first-order part is prenex, universal,
with no more than d universal quantifiers. With the latter, we rewrite each formula of ESO(∀d) in such a
way that any guessed relation symbol R of the formula fulfills arity (R) ≤ d.

4.1 Skolemization
Proposition 4.2 For any d > 0, ESO(var d) ⊆ ESO(∀d) on coordinate structures.

Proof. The proof amounts to establishing that each ESO(var d)-formula is equivalent to an ESO(∀d)-
formula on any coordinate structure. Clearly, we can assume without loss of generality that the initial
ESO(var d)-formula is first-order. So let’s consider a first-order formula ϕ written with at most d variables.
We first aim at writing ϕ under prenex form, without introducing new first-order variables. This entails
introducing second-order variables existentially quantified. More precisely, the rewriting procedure is based
on a depth-first traversal of the tree decomposition of ϕ. Each internal node of this tree corresponds to some
subformula of ϕ of arity k – say θ(x1, . . . , xk) –, and gives rise to a new relation symbol Rθ of the same arity.
This relation is forced to encode the set {x s.t. θ(x)} via a formula defθ(Rθ) defined as follows:

18

• If θ ≡ Qyθ′(x,y) where Q is a quantifier, then defθ(Rθ) ≡ ∀x : Rθ(x)↔ Qyθ′(x,y)

• If θ ≡ θ′(x)◦ θ”(x) for some connective ◦, then defθ(Rθ) ≡ ∀x : Rθ(x)↔ (θ′(x)◦ θ”(x)).

If θ has no free variables, the relation symbol Rθ is choosen with arity 1 and its definition is written either
∀x : Rθ(x)↔ Qyθ(y) or ∀x : Rθ(x)↔ (θ′ ◦ θ”), according to the form of θ. Here, x is any variable of ϕ distinct
from y. Each time a node θ(x) has been visited, the corresponding Rθ and defθ are generated and ϕ is updated
by the substitution θ(x) Rθ(x). Then, the procedure is run recursively on the formula so obtained.

Let us illustrate this procedure by running it on the first-order formula with three variables:

ϕ ≡ ∃x (∀y∃zU(x,y,z)∨∃y D(x,y))→∀y (D(y,y)∨∃xU(x,y, x)) . (7)

We merely display the definition formulas generated by the procedure, along with the relation symbols
R1, . . . ,R9 corresponding to the nine internal nodes of ϕ. The successive updates of ϕ are implicit.

def1(R1) ≡ ∀x,y : R1(x,y) ↔ ∃zU(x,y,z)
def2(R2) ≡ ∀x : R2(x) ↔ ∀yR1(x,y)
def3(R3) ≡ ∀x : R3(x) ↔ ∃y D(x,y)
def4(R4) ≡ ∀x : R4(x) ↔ (R2(x)∨R3(x))
def5(R5) ≡ ∀y : R5(y) ↔ ∃xR4(x)
def6(R6) ≡ ∀y : R6(y) ↔ ∃xU(x,y, x)
def7(R7) ≡ ∀y : R7(y) ↔ (D(y,y)∨R6(y))
def8(R8) ≡ ∀x : R8(x) ↔ ∀yR7(y)
def9(R9) ≡ ∀x : R9(x) ↔ (R5(x)→ R8(x))

Now, our initial formula can be rewritten:

ϕ ≡ ∃R1, . . . ,R9 :

 ∧
1≤i≤9

defi(Ri)

 ∧∀x R9(x). (8)

Notice that for each i, either defi is prenex and universal, or it has the form ∀u : α(u)↔ Qvβ(u,v). It is
easily seen that this last form is equivalent to the conjunction:

∀uQv
(
α(u)→ β(u,v)

)
∧ ∀uQ∗v

(
β(u,v)→ α(u)

)
,

where Q∗ is ∀ if Q is ∃ and vice versa. Therefore, following Equation (8), ϕ can now be written as a
conjunction of prenex formulas, each of which involves no more than three variables and has a quantifier
prefix of the shape ∀x or ∀x∃y. In order to write this conjunction under prenex form without adding new first-
order variables, we have to “replace” existential quantifiers by universal ones. Afterward ϕ, as a conjunction
of formulas of the type ∀x,y,zθ, could be written under the requisite shape. We show below how to deal
with this specific formula. The general case is strictly similar.

To get rid of existential quantifiers occuring in (some of) the defi’s, we will invoke the arithmetical
symbols of the signature of ϕ. Remember that the conjuncts that are not still universal all have the form
∀x∃yθ(x,y), where x and y are tuples of first-order variables of respective arities k and 1. The predefined
arithmetics included in coordinate signatures allow to defining, for any such conjonct, a relation of arity k+1
that witnesses the existence of some y fulfilling θ(x,y) for a given x. This idea is completed as follows: Let
W be a new (k + 1)-ary relation symbol associated with ∃yθ(x,y). We want the assertion W(x,y) to signify
that there exists z ≤ y such that θ(x,z) holds. This interpretation is achieved thanks to the following formula:

∀x∀y
{

min(y)→ (W(x,y)↔ θ(x,y))
∧ W(x,succ(y))↔ (θ(x,succ(y))∨W(x,y))

}

19

We denote by W = witness(∃yθ) this last formula. When it is satisfied, the assertion ∀x∃yθ(x,y) is clearly
equivalent to ∀x∀y : max(y)→W(x,y).

For instance, the above formula def1(R1) gives rise to the non-universal formula def1
1(R1) ≡ ∀x,y∃z :

R1(x,y)→ U(x,y,z). This shoud be managed as follows: A ternary relation symbol W1 is introduced (i.e.,
existentially quantified) and compelled to fit its intended interpretation via the formula: W1 = witness(δ1),
where δ1 ≡ ∃z : R1(x,y)→ U(x,y,z). Afterwards, the formula def1

1(R1) is replaced by ∀x,y,z : max(z)→
W1(x,y,z). When this task has been achieved for each non universal formula defi, the formula displayed
in (8) becomes:

∃(Ri)i∈I ∃(W j) j∈J :

∧
j∈J

W j = witness(δ j)

 ∧
∧

i∈I

defi

 ∧ ∀x R`(x).

Here, I = {1, . . . ,9}, J = {1,3,5,6} (the j ∈ J correspond to formulas def j that are non-universal), ` = 9, and
δ j is the existential part of the (old) formula def j. Clearly, this formula can be written in ESO(∀d) for d = 3.
�

4.2 Arity vs number of first-order variables
We prove here a normalization of the logic ESO(∀d), similar to that of Proposition 1.7. This proof involves
the following easy fact:

Fact 4.3 Suppose we are given a family of functions (fi : Xi→ Y)i∈I and a family of relations (Ri ⊆ Xi)i∈I,
indexed by the same finite set I. The following assertions are equivalent:

(i) ∀i, j ∈ I, ∀x ∈ Xi, ∀y ∈ X j: fi(x) = f j(y)⇒ Ri(x) = R j(y) ;

(ii) ∃R ⊆ Y such that ∀i ∈ I, ∀x ∈ Y: Ri(x) = R(fi(x)).

Proof. (ii)⇒ (i) is clear. For the converse implication, we define R on each fi〈Xi〉 by: ∀x ∈ Xi, R(fi(x)) =

Ri(x). The hyptothesis (i) guarantees the coherence of this definition. To complete it, we set R(x) = 0 for
every x ∈ Y \

⋃
i∈I fi〈Xi〉. This relation R clearly witnesses to condition (ii). �

Proposition 4.4 ESO(∀d) ⊆ ESO(∀d,arity d) on coordd−1 for any d > 1.

Proof. Given Φ ∈ ESO(∀d), we want to build a formula in ESOσ(∀d,arity d) equivalent to Φ on coordd−1.
To fix ideas, let us assume that Φ has the very simple shape:

Φ ≡ ∃R∀x1, . . . , xdϕ(x,R,σ), (9)

where R is a single k-ary relation symbol for some k > d, and ϕ is a quantifier free formula. The formula to
be built must have the form:

Ψ ≡ ∃ρ∀x1, . . . , xdψ(x,ρ,σ),

where ρ is a tuple of d-ary relation symbols and ψ is quantifier free.

The substitution of d-ary symbols for R rests in the limitation of the number of first-order variables in
Φ: each atomic formula involving R has the form R(t1, . . . , tk) where the ti’s are terms built on x1, . . . , xd.
Therefore, although R is k-ary, in each of its occurrences it behaves as a d-ary symbol, dealing with the

20

sole variables x1, . . . , xd. Hence, the key is to create a d-ary symbol for each occurrence of R in Φ or, more
precisely, for each k-tuple of terms (t1, . . . , tk) involved in a R-atomic formula.

More formally, let us denote by T(Φ) the set of terms occuring in Φ, and by TR(Φ) the set of tuples of
terms involved in a R-atomic subformula of Φ. That is, each element of TR(Φ) is a k-tuple

t(x) = (t1(x1, . . . , xd), . . . , tk(x1, . . . , xd)) ∈ T(Φ)k

such that the formula R(t(x)) appears in Φ. For each t(x) ∈ TR(Φ), consider a new d-ary relation symbol
Rt(x). Now, consider a σ-stucture S of domain [n], and denote by 〈S ,R〉 some expansion of S to σ∪ {R}.
(That is, we denote by R both the relationnal symbol and its interpretation on [n].) Furthermore, fix the
S -interpretation of each Rt(x), for t(x) ∈ TR(Φ), by

∀x ∈ [n]d : Rt(x)(x) = R(t(x)), (10)

and denote by R the tuple (Rt(x))t(x)∈TR(Φ) thus defined. Then clearly:

〈S ,R〉 |= ∀xϕ(x,R,σ)⇔ 〈S ,R〉 |= ∀xϕ̃(x,R,σ), (11)

where ϕ̃ is obtained from ϕ by substituing the formula Rt(x)(x) for each occurrence of the formula R(t(x)).
Before continuing with this proof, let’s illustrate the previous definitions with a simple example.

Example. Assume Φ is the following ESO(∀2)-formula:

∃R∀x,yϕ(x,y,R), where ϕ ≡ R(x,y, x)∧¬R(y, x,y).

According to the notations used so far, we have:

d = 2, k = 3, T(Φ) = {x,y} and TR(Φ) = {(x,y, x), (y, x,y)}.

The binary relation symbols associated to terms t(x,y) ∈ TR(Φ) are denoted R(x,y,x) and R(y,x,y). The formula
ϕ̃ obtained from ϕ, following (11), is written:

ϕ̃ ≡ R(x,y,x)(x,y)∧¬R(y,x,y)(x,y).

If, for any interpretation of R on [n], we fix the interpretations of R(x,y,x) and R(y,x,y) as in (10):

∀a,b < n : R(x,y,x)(a,b)⇔ R(a,b,a) and R(y,x,y)(a,b)⇔ R(b,a,b),

then it is easily seen that:

〈S ,R〉 |= ∀x,yϕ(x,y,R,σ)⇔ 〈S ,R〉 |= ∀x,yϕ̃(x,y,R(x,y,x),R(y,x,y),σ).

/
Let’s come back to the proof of Proposition 4.4. Equations (10) and (11) yield:

S |= ∃R∀xϕ(x,R,σ)⇒ S |= ∃R∀xϕ̃(x,R,σ), (12)

where R is a tuple of d-ary relation symbols indexed by TR(Φ), say (Rt)t∈TR(Φ). Unfortunately, the con-
verse implication does not hold in general. For instance, one can check in Example 4.2 above, that the
formula ∃R(x,y,x)∃R(y,x,y)∀x∀y ϕ̃ has a model, while ∃R∀x∀yϕ doesn’t have. To get the right-to-left impli-
cation in (12), we have to strengthen the hypothesis with some assertion that compels the tuple (Rt)t∈TR(Φ)
to be, in some sense, the d-ary representation of some k-ary relation. All in all, we confront the following

21

question: Given a σ-structure S , a set T ⊂ T(Φ)k and a family (Rt)t∈T of d-ary relations over the domain [n]
of S , what are the conditions on (Rt)t∈T that ensure

∃R ⊆ [n]k such that ∀t ∈ T,∀a ∈ [n]d : Rt(a) = R(t(a)) (13)

Each k-tuple t ∈ T defines a function from [n]d to [n]k, via the process of interpretation of terms.4

Therefore, if we set, in the statement of Fact 4.3:

Xi = [n]d for each i, Y = [n]k and (fi)i∈I = (t)t∈T ,

we get the equivalence of (13) with the following assertion:

∀t, t′ ∈ T, ∀a,a′ ∈ [n]d : t(a) = t′(a′)⇒ Rt(a) = Rt′ (a′),

which is logically translated into the formula:∧
t,t′∈T

∀x,x′ : t(x) = t′(x′)→
(
Rt(x)↔ Rt′ (x′)

)
, (14)

where x, x′ are d-tuples of first-order variables.

In order to express condition (14) in the required formalism, it remains to reduce the number of quan-
tifiers (remember our logic allows only d universal first-order quantifiers). Since the conjunction and the
universal quantifier commute, we just have to tackle the case of a single conjunct

∀x,x′ : t(x) = t′(x′)→
(
Rt(x)↔ Rt′ (x′)

)
. (15)

To process, we invoke the specificity of coordinate encodings, which has not been involved in our reasonning
so far. Since succ is the only function symbol in the underlying signature σ, all the terms under consideration
have the form succi(u) for some i ∈ N and some first-order variable u. Hence, the equality t(x) = t′(x′) is
actualy a conjunction of k atomic formulas of the type succa(x) = succb(y), with x ∈ x, y ∈ x′ and a,b ≥ 0.
Assume, to fix ideas, that a ≥ b. Since the successor function is not cyclic, we have:

succa(x) = succb(y)⇔
(
x = succa−b(y)∨ succa(x) = succb(y) = max

)
.

Furthermore, succa(x) = max ⇔
∨

i≤a x = predi(max), and hence the equality t(x) = t′(x′) can finally be
written as a conjunction of k formulas ϕ`, each of which involves exactly two variables and has the form

x = succi(y)∨
∨
i≤a

∨
j≤b

(
x = predi(max)∧ y = pred j(max)

)
.

Writing the conjunction
∧
`≤k ϕ` under disjunctive normal form, we get a formula of the type:

∨
i≤m

∧
j≤k θi j

where each θi j has either the form x = succi(y) or x = predi(max). Thus, we can rewrite the formula displayed
in (15) as:

∀x,x′ :

∨
i≤m

∧
j≤k

θi j

→ (
Rt(x)↔ Rt′ (x′)

)
.

4For instance, the triple of terms t = (succ3 x, x,succ2y) maps each couple (a,b) ∈ [n]2 onto the triple (a + 3,a,b + 2) ∈ [n]3, where +

is the addition modulo n.

22

Or also, as:

∧
i≤m

∀x,x′
∧

j≤k

θi j→
(
Rt(x)↔ Rt′ (x′)

) . (16)

We saw that each θi j has either the form x = succi(y) or x = predi(max). Hence, we can eliminate one
variable for each θi j by rewriting each subformula ∀x,x′

(∧
j≤k θi j→ (Rt(x)↔ Rt′ (x′))

)
as ∀x,x′ψi, where

ψi j is the formula Rt(x)↔ Rt′ (x′) in which:

• each variable x such that x = succi(y) occurs in
∧

j≤k θi j is replaced by succi(y) ;

• each variable x such that x = predi(max) occurs in
∧

j≤k θi j is replaced by predi(max).

The reader will easily verify that this reasonning can be generalized. Thus, each conjunct of (14) can
be rewritten with only d universal first-order variables. These rewritings result in a new first-order formula
k2d-Rep, of signature σ∪{Rt, t ∈ T }, equivalent to (14) and with quantifier prefix ∀x, where x is a d-tuple of
first-order variables. Clearly, the starting formula Φ ∈ ESO(∀d,arity k) considered in (9):

Φ ≡ ∃R∀x1, . . . , xdϕ(x,R,σ)

is equivalent on picture encodings to the following Ψ ∈ ESO(∀d,arity d):

Ψ ≡ ∃(Rt)t∈TR(Φ) : k2d-Rep((Rt)t,σ) ∧∀xϕ̃(x, (Rt)t,σ),

where ϕ̃ is obtained from ϕ by replacing each R(t(x)) by Rt(x). This is the sought after formula. It remains
to check that this procedure can be extended to any number of relation symbols existentially quantified in Φ.
This is immediate. �

Theorem 4.1 immediatly proceeds from Propositions 4.2 and 4.4 above. We will remember that:

Each ESO(var d)-formula of signature σ can be writen:

Φ ≡ ∃R∀x
∧∨

±


min(succi(x)), max(succi(x)),
succi(x) = succ j(y),
Qa(succi1 (x j1), . . . ,succip (x jp),
R(succi1 (x j1), . . . ,succip (x jp)

 (17)

where Qa ∈ σ, R ∈ R and x, y and the xi’s are all components of x.

5 “Localization” of existentially quantified relations
This section is dedicated to the proof of the normalization of ESO(∀d,arity d) on coordinate encodings of
(d−1)-pictures, for d ≥ 2. Our purpose is to rewrite ESO(∀d,arity d)-formulas into equivalent formulas that
fulfill the “sorted” or “local” property mentioned after the statement of Theorem 3.9. Before formalizing
our notion of sorted formulas, let us detail what is its intended meaning. We want to deal with pixels of
time-space diagram of the computation that are adjacents, that is, that are both connected and differ (by one)
by at most one dimension. Two such pixels are represented by d-tuples of the form x and x(i), that is:

• their components are in the same order (elsewhere they could be disconnected);

23

• there is at most one occurrence of succ (elsewhere, they would differ of more than one dimension).

These requirements (and a little more) are formalized in the following definition.

Definition 5.1 Let k,d be two integers such that d ≥ k ≥ 1. A sentence over coordinate structures for k-
pictures is in ESO(∀d,arity d,sorted) if it is of the form ∃R∀xψ(x) where

• R is a list of relation symbols of arity d;

• ψ is a quantifier-free formula whose list of first-order variables is x = (x1, . . . , xd);

• each atom of ψ is of one of the following forms:

(i) Qs(x1, . . . , xk), for s ∈ Σ,

(ii) R(x) or R(x(i)) where R ∈ R, i ∈ [d], and x(i) is the tuple x where xi is replaced by succ(xi),

(iii) min(xi) or max(xi), for i ∈ [d].

We prove the normalization ESO(∀d,arity d) = ESO(∀d,arity d,sorted) for (d − 1)-pictures (i.e., for k =

d−1). In the present section, we deal with Condition (ii) of the above definition (see Proposition 5.9). In Sub-
section 5.1, we eliminate equalities and inequalities. At this point, we get a normalization of ESO(∀d,arity d)
into the so-called “half-sorted logic”, denoted by ESO(∀d,arity d,half-sorted). It remains to manage the in-
put relation symbols; this is done in Section 6, where we tackle Condition (i).

To lighten the presentation of the forthcomming results, we first introduce some notations about tuples
and permutations.

Definition 5.2 Let n,d > 0 and x ∈ [n]d.

• We denote by [x]i the ith component of x. E.g. (5,7,2)2 = 7.

• We say that x is non decreasing, and we write x↑, when [x]1 ≤ · · · ≤ [x]d.

• S(d) stands for the set of permutations of {1, . . . ,d}. Given α1, . . . ,αd ∈ {1, . . . ,d}, we denote by α1 . . .αd
the permutation α ∈ S(d) that maps each i on αi. Conversely, for α ∈ S(d) we set αi := α(i). By T (d)
we denote the set of transpositions over {1, . . . ,d}.

• If α ∈ S(d) and x = (x1, . . . , xd), we denote by xα the d-tuple (xα1 , . . . , xαd). It is less ambiguous to
define xα by the assertion:

for any i ∈ {1, . . . ,d}, [xα]i = [x]α(i).

Thus, if β also belongs to S(d), we get [(xα)β]i = [xα]β(i) = [x]αβ(i). Whence the identity: (xα)β = xαβ.
In particular, (xα)α−1 = x.

• For α ∈ S(d) and n > 0, we set [α] = {x ∈ [n]d s.t. xα↑}. In particular, denoting by id the identity on
{1, . . . ,d}, we get x ∈ [id] iff x↑. Therefore, x ∈ [α] iff xα ∈ [id]. Clearly, [n]d =

⋃
α∈S(d)[α].

• For any i in {1, . . . ,d}, x(i) denotes the tuple obtained from x by replacing its ith component by its own
successor. That is, if x = (x1, . . . , xd) then

x(i) = (x1, . . . , xi−1,succ(xi), xi+1, . . . , xd).

As previously, the arrangement of x(i) according to some permutation α is denoted by (x(i))α.

24

Example. Consider x = (5,3,7,2) in [9]4 and α = 4213, β = 1432 in S(4). Then xα = (2,3,5,7) is non-
decreasing while xβ = (5,2,7,3) is not. Besides, x(3) = (5,3,8,2) while (xα)(3) = (2,3,6,7) and (x(3))α =

(2,3,5,8) = (xα)(4). /

With these notations, the request described at the beginning of the section can be rephrased as follows:
we want to normalize ESO(∀d,arity d)-formulas in such a way that each atomic subformula R(t1(x), . . . , tp(x))
built with a guessed relation symbol R has either the form R(x) or the form R(x(i)).

Fact 5.3 On coordd−1,5 any formula Φ = ∃R∀xϕ(x,R,σ) ∈ ESO(∀d,arity d) of signature σ can be written
in such a way that:

(a) In each atomic subformula R(t1, . . . , tp) of ϕ, Var(ti)∩Var(t j) = ∅ for every 1 ≤ i < j ≤ p.

(b) Each R in R has arity d exactly.

Proof. The proof of (a) is quite immediate. We illustrate it with an example: assume that Φ involves the
subformula R(succ2x1, x2,succ x1,succ3x2) for some R ∈ σ∪ {R}. Then clearly, Φ is equivalent, on picture-
structures, to:

∃R∃A∀x : ϕ̃(x,R,A,σ) ∧ (x1 = succ x3∧ x4 = succ3x2)→ (A(x2, x3)↔ R(x1, x2, x3, x4))

where ϕ̃ is obtained from ϕ by substituting the formula A(x2,succ(x1)) to each occurrence of the atom
R(succ2x1, x2,succ x1,succ3x2).

In order to prove (b), assume for simplicity that R reduces to the single relational symbol R of arity
p < d. The idea is to add d− p dummy arguments to R. Clearly, Φ is equivalent to the formula:

∃R : ϕ̃∧∀x
∧

p<i≤d R(x1, . . . , xi, . . . , xd)↔ R(x1, . . . ,succ(xi), . . . , xd),

where ϕ̃ is obtained from ϕ by replacing each atomic subformula R(t1, . . . , tp) by R(t1, . . . , tp, xi1 , . . . , xid−p).
Here, xi1 , . . . , xid−p is the complete list of distinct variables among x that do not occur in t1, . . . , tp. �

Remark 5.4 The proof of Fact 5.3 allows enhancing its statement: each atomic subformula of ϕ̃ that in-
volves an input symbol Qa, for some a ∈ Σ, has the form Qa(xα1 , . . . , xαd−1) where α is an injection from
{1, . . . ,d−1} into {1, . . . ,d}.

Fact 5.5 On coordd−1, any formula Φ = ∃R∀xϕ(x,R,σ) ∈ ESO(∀d,arity d) of signature σ can be written
in such a way that each atomic subformula over R of ϕ has one of the two forms: R(x(i)) or R(xπ), where
π ∈ S(d).

Proof. We prove the result for d = 3. The general case is similar. Let ` be the maximal value of an i ∈ N
such that succi(x) occurs in Φ, for any x ∈ x. For each R ∈ R, we introduce new d-ary relation symbols Ri, j,k
for every i, j,k ≤ `. We want to force the following interpretations of the Ri, j,k’s:

Ri, j,k(u1,u2,u3) = R(succiu1,succ ju2,succku3).

This is done inductively, with the formulas:

• ∀x : R0,0,0(x1, x2, x3)↔ R(x1, x2, x3)

5We denote by coordd−1 the sets of coordinate encodings of (d−1)-pictures.

25

• ∀x :
∧
i<`

∧
j,k≤`

(Ri+1, j,k(x1, x2, x3)↔ Ri, j,k(succ(x1), x2, x3))

• ∀x :
∧
j<`

∧
i,k≤`

(Ri, j+1,k(x1, x2, x3)↔ Ri, j,k(x1,succ(x2), x3))

• ∀x :
∧
k<`

∧
i, j≤`

(Ri, j,k+1(x1, x2, x3)↔ Ri, j,k(x1, x2,succ(x3)))

Factorizing the quantifications and using notations of Definition 5.2, the conjunction of these formulas can
be written:

∀x



R0,0,0(x)↔ R(x)∧∧
i<`

∧
j,k≤`

(Ri+1, j,k(x)↔ Ri, j,k(x(1)))∧∧
j<`

∧
i,k≤`

(Ri, j+1,k(x)↔ Ri, j,k(x(2)))∧∧
k<`

∧
i, j≤`

(Ri, j,k+1(x)↔ Ri, j,k(x(3)))


Let us denotes by decomp(R, (Ri, j,k)i, j,k≤`) this last formula. It clearly fulfills the condition of the statement.
Now, consider the formula

∃R∃((Ri, j,k)i, j,k≤`))R∈R :
∧
R∈R

decomp(R, (Ri, j,k)i, j,k≤`) ∧ ∀xϕ̃, (18)

where ϕ̃ is obtained from ϕ by the substitutions

R(succixα1 ,succ jxα2 ,succk xα3) Ri, j,k(xα1 , xα2 , xα3).

Then, the formula (18) is equivalent to Φ and also fits the requirements of Fact 5.5. It is the rewriting of Φ

announced. �

As a result of Fact 5.3, Remark 5.4 and Fact 5.5, each ESO(∀d,arity d)-formula of signature σ has a
conjonctive normal form of the shape:

Φ ≡ ∃R∀x
∧∨

±


min(succi(x)), max(succi(x)),
succi(x) = succ j(y),
Qa(xι), R(xβ), R(x(i))


Furthermore, the trick used in the proof of Fact 5.5 also allows writing atoms involving min, max or equali-
ties, under the form max(x), min(x) and x = y for some x,y ∈ x.

It remains to prove that we can get rid of the atomic formulas R(xβ), where β , id. This part is rather
technical, so we provide some preliminary explanations before stating the logical framework which allows
the normalization. In order to get rid of each literal of the form R(xβ), we will divide the set R ⊆ [n]d in d!
relations Rβ ⊆ [n]d, each corresponding to a given permutation β of {1, . . . ,d}.

Definition 5.6 For R ⊆ [n]d and for each α ∈ S(d), we define a d-ary relation Rα on [n] by: Rα = {x ∈
[id] s.t. R(xα−1)}. Alternatively, Rα can be defined by: Rα = {xα : x ∈ R∩ [α]}.

26

Thus, Definition 5.6 associates with each R ⊆ [n]d a family (Rα)α∈S(d) of relations, each of which is
entirely contained in the set [id]. This family is intended to represent R through its d! fragments according
to the partition [n]d =

⋃
α∈S(d)[α]. Namely, each Rα encodes the fragment R∩ [α] over [id].

Actually,
⋃
α∈S(d)[α] is not really a partition, since the [α]’s can overlap. Hence, Definition 5.6 induces

some connexions between the relations Rα: if some x is both in [α] and in [β], or equivalently, if xα = xβ,
then x ∈ R∩ [α] iff x ∈ R∩ [β] and hence, by Definition 5.6: Rα(xα) = Rβ(xβ). We will keep in mind :

∀α,β ∈ S(d),∀x ∈ [n]d : xα = xβ⇒ Rα(xα) = Rβ(xβ). (19)

The following lemma states that condition (19) ensures that the Rα’s issue from a single relation R,
according to Definition 5.6. Besides, a new formulation of the condition is given in Item 3 of the lemma,
that will better fit our syntactical restrictions.

Lemma 5.7 Let (Rα)α∈S(d) be a family of d-ary relations on [n] such that Rα ⊆ [id] for each α. The following
are equivalent:

1. ∃R ⊆ [n]d such that Rα = {x ∈ [id] s.t. R(xα−1)} for each α ∈ S(d) ;

2. ∀α,β ∈ S(d), ∀x ∈ [n]d: xα = xβ⇒ Rα(xα) = Rβ(xβ) ;

3. ∀α ∈ S(d), ∀τ ∈ T (d), ∀x ∈ [n]d: x = xτ⇒ Rα(x) = Rατ(x).

(Recall T (d) denotes the set of transpositions over {1, . . . ,d}.)

Proof. 1⇒ 2: See Equation (19).

2⇒ 1: For (Rα)α∈S(d) fulfilling 2, consider the relation R ⊆ [n]d defined by:

R(x) iff Rα(xα) for some α such that xα↑ . (20)

This definition is well formed, since for any α,β ∈ S(d) and any x ∈ [n]d such that both xα↑ and xβ↑ hold, we
have xα = xβ and thus, by 2, Rα(xα) = Rβ(xβ). Now, let α ∈ S(d). For any x ∈ [id] we have (xα−1)α↑ (since
(xα−1)α = x) and hence, by (20), Rα(x) = Rα((xα−1)α) = R(xα−1). Besides, Rα(x) = 0 for any x < [id], since
Rα ⊆ [id]. Thus Rα is obtained from R as required in 1.

2⇒ 3: Let α ∈S(d), τ ∈T (d) and x ∈ [n]d such that x = xτ. Set y = xα−1 . Then, yα = x = xτ = (yα)τ = yατ.
Therefore we get by 2: Rα(yα) = Rατ(yατ), and hence: Rα(x) = Rατ(x).

3⇒ 2: Let α,β ∈ S(d) and x ∈ [n]d such that xα = xβ. For y = xα, the equality xα = xβ can be written
y = yα−1β. It means that the permutation α−1β exchanges integers that index equal components of y. It is
easily seen that this property can be required for each transposition occuring in a decomposition of α−1β
on T (d). That is, there exist some transpositions τ1, . . . , τk ∈ T (d) such that α−1β = τ1 . . . τk and y = yτ1 =

yτ1τ2 = · · · = yτ1...τk . Then, applying 3 to these successive tuples, we get: Rα(y) = Rατ1 (yτ1) = Rατ1τ2 (yτ1τ2) =

· · · = Rατ1...τk (yτ1...τk). Hence Rα(y) = Rβ(yα−1β), that is Rα(xα) = Rβ(xβ), as required. �

Lemma 5.8 Let R and (Rα)α∈S(d) be defined as in Definition 5.6. Let α,β ∈ S(d) and i ∈ {1, . . . ,d}. For any
x ∈ [α]:

1. R(xβ) is equivalent to Rβ−1α(xα).

27

2. R(x(i)) is equivalent to:(
xi = xαd ∧Rατ

α−1(i),d
((xα)(d))

)
∨

∨
i≤k<d

(
xi = xαk < xαk+1 ∧Rατ

α−1(i),k
((xα)(k))

)
.

Proof. 1. We have seen that R(x) holds iff Rγ(xγ) holds for any γ ∈ S(d) such that xγ↑. Thus we get, for a
given β ∈ S(d): R(xβ) iff Rγ((xβ)γ) holds for any γ ∈ S(d) such that (xβ)γ↑. That is, since (xβ)γ = xβγ:

R(xβ) iff Rγ(xβγ) holds for any γ ∈ S(d) such that xβγ↑. (21)

In particular, xβγ↑ iff xβγ = xα, since x ∈ [α]. Thus, γ = β−1α is one of the permutations such that xβγ↑. Thus,
replacing γ by β−1α in Equation (21), we get the sought result.

2. From x(i) = (x1, . . . ,succ(xi), . . . , xd) we get:

(x(i))α = (xα1 , . . . , xα j−1 , succ(xi), xα j+1 , . . . , xαd)

where j = α−1(i). Since xα1 ≤ · · · ≤ xαd , the above tuple (x(i))α is almost increasingly ordered. More precisely,
there exists k ∈ {1, . . . ,d} such that:

xα1 ≤ · · · ≤ xα j−1 ≤ xi = xα j+1 = · · · = xαk ≤ xαk+1 ≤ · · · ≤ xαd ,

where j = α−1(i). Clearly, the largest such k is characterized by: (k = d) or (k < d and xi = xαk < xαk+1). Or
equivalently, by:

(xi = xαd) or (k < d and xi = xαk < xαk+1). (22)

If we denote by τ j,k the transposition over {1, . . . ,d} which permutes j and k, the definition of k yields that
the tuple

(x(i))ατ j,k = (xα1 , . . . , xα j−1 , xαk , xα j+1 , . . . , xαk−1 , succ(xi) , xαk+1 , . . . , xαd)

is non decreasing. Hence, R(x(i)) = Rατ j,k ((x(i))ατ j,k). Besides, since xαk = xi, the tuple (x(i))ατ j,k above can
also be written:

(x(i))ατ j,k = (xα1 , . . . , xα j−1 , xi , xα j+1 , . . . , xαk−1 , succ(xαk) , xαk+1 , . . . , xαd).

That is: (x(i))ατ j,k = (xα)(k). Therefore: R(x(i)) = Rατ j,k ((xα)(k)). Reminding that j = α−1(i), we can finally
state: there exists a sole k ∈ {i, . . . ,d} defined by (22), and for this k we have: R(x(i)) = Rατ

α−1(i),k
((xα)(k)). The

conclusion easily proceeds. �

Proposition 5.9 For d > 1, ESO(∀d,arity d) ⊆ ESO(∀d,arity d,half-sorted) on coordd−1.

Proof. To simplify, assume we want to translate in ESO(∀d,arity d,half-sorted) some ESO(∀d,arity d)-
formula of the very simple shape: Φ ≡ ∃R∀xϕ(x,R), where R is a (single) d-ary relation symbol, x is a
d-tuple of first-order variables, and ϕ is a quantifier-free formula. Since the sets [α], α ∈ S(d), cover
the domain [n], we obtain an equivalent rewriting of Φ with the following artificial relativization: Φ ≡

∃R∀x
∧
α∈S(d) (x ∈ [α]→ ϕ). Furthermore, all atomic subformulas of ϕ built on R can be assumed of the

form R(xβ) or R(x(i)), thanks to Fact 5.5.
To get rid of these literals, we substitute to R a tuple of relations (Rα)α∈S(d) that encode R on the sets [α].

Recall we proved in Lemma 5.7 that this substitution is legal as soon as Rα ⊆ [id] and Rα(x) = Rατ(x) for all

28

α ∈ S(d), τ ∈ T (d) and every x ∈ [n]d such that xτ = x. Then, Lemma 5.8 gives the translation of R-atomic
formulas into formulas expressed in term of the Rα’s. All in all, we get the equivalence of the initial formula
Φ to the following:

∃(Rα)α∈S(d)



∀x
∧

α∈S(d)

(Rα(x)→ x ∈ [id])∧

∀x
∧

α∈S(d)

∧
τ∈T (d)

(xτ = x→ (Rα(x)↔ Rατ(x)))∧

∀x
∧

α∈S(d)

(
x ∈ [α]→ ϕα(x, (Rγ)γ∈S(d))

)


(23)

where each ϕα is obtained from ϕ by the substitutions:

• R(xβ) Rβ−1α(xα)

• R(x(i))


(
xi = xαd ∧Rατ

α−1(i),d
((xα)(d))

)
∨∨

i≤k<d

(
xi = xαk < xαk+1 ∧Rατ

α−1(i),k
((xα)(k))

) 
The first two conjuncts of (23) ensure that the family (Rα)α∈S(d) encodes a relation R (see Lemma 5.7) ; the
third interprets assertions of the form R(xβ) and R(x(i)) according to the modalities described in Lemma 5.8.
Because of permutability of the conjunction and the universal quantifier, this third conjunct can be rewritten:

∧
α∈S(d)

∀x : x ∈ [α]→ ϕα(x, (Rγ)γ∈S(d)) (24)

For a fixed conjunct in (24), i.e. for a fixed α, all atomic subformulas of ϕα built on the Rγ’s have the
form Rγ(xα) or Rγ((xα)(i)) for some γ ∈ S(d) and some i ∈ {1, . . . ,d}. Hence, the substitution of variables x/xα
allows to write such a conjunct as: ∀x : x ∈ [id]→ ϕ̃α where ϕ̃α ≡ ϕα(x/xα) only involves (Rγ)-subformulas
of the form Rγ(x) or Rγ(x(k)) for some γ ∈ S(d) and k ∈ {1, . . . ,d}. Finally, the initial formula Φ is proved
equivalent to:

∃(Rα)α∈S(d)



∀x
∧

α∈S(d)

(Rα(x)→ x ∈ [id])∧

∀x
∧

α∈S(d)

∧
τ∈T (d)

(xτ = x→ (Rα(x)↔ Rατ(x)))∧

∀x
∧

α∈S(d)

(
x ∈ [id]→ ϕ̃α(x, (Rγ)γ∈S(d))

)


that fulfills the requirement of Proposition 5.9. �

5.1 Getting rid of arithmetic
Does mean introducing new second order variables of arity 2, we can assume that our formula Φ ∈ESOσ(∀d,arity d)
– where each relation symbol of arity d ≤ 2 occurs in normalised (i.e. sorted) form – involves no comparison
(equality, inequality) relation. We obtain that in two successive steps.

29

First, if Φ involves inequalities < and >, then it is equivalent to the following formula Φ′ without in-
equalities (but with equalities) and two new binary relation symbols ≺ and �:

Φ′ ≡ ∃ ≺ ∃ �: Φ̃ ∧∀x1, x2


(x1 = x2∨ x1 ≺ x2) → (¬max(x2)→ x1 ≺ succ(x2)) ∧

(x1 = x2∨ x1 � x2) → (¬max(x1)→ succ(x1) � x2) ∧

x1 ≺ x2 → (¬(x1 � x2)∧¬(x1 = x2)) ∧

x1 � x2 → ¬(x1 = x2)


where Φ̃ is obtained from Φ by the substitutions u < v u ≺ v (resp. u > v u � v). This is justified
as follows: the first two conjuncts of the subformula ∀x1∀x2{· · · } express that x1 < x2 ⇒ x1 ≺ x2 (resp.
x1 > x2 ⇒ x1 � x2). The third and fourth conjuncts express that the three relations ≺,� and = are totally
disjoint. That implies that ≺ and � have their exact meaning. Notice also that the occurrences of ≺ and �
preserve the sorted property.

Secondly, if Φ involves equalities (without any inequality), it is equivalent to the following formula Φ′,
written without the symbol "=" but with the new binary symbol ≈:

Φ′ ≡ ∃ ≈: Φ̃ ∧ ∀x1, x2Ψ

where Φ̃ is obtained from Φ by replacing each equality u = v by u ≈ v, and Ψ is the conjunction of the
following formulas:

• min(x1)→ (min(x2)↔ x1 ≈ x2);

• min(x2)→ (min(x1)↔ x1 ≈ x2);

• (¬max(x1)∧¬max(x2))→ (x1 ≈ x2↔ succ(x1) ≈ succ(x2)).

Notice that this transformation preserves sorted property. The results obtained until now can be recapitulated
as follows:

On (d−1)-pictures, each ESOσ(∀d,arity d)-formula can be written under the form:

Φ ≡ ∃R∀x
∧∨

±

{
min(x), max(x),
Q(xι), R(x), R(x(i))

}
(25)

Here, R (resp. Q) is a list of relation symbols of arity d (resp. d−1), x ∈ x, Q ∈ (Qs)s∈Σ, R ∈R, ι ∈ I(d),
i ∈ [d].

6 Localization of input relations
Let’s come back to the normalization of the formula Φ of Equation (28). For simplicity, assume that it has
the restricted form Φ ≡ ∃R∀xϕ(x,R,Q,σ), with only one relation symbol Q of arity d−1.

We aim at defining a tuple of relations (Qα)α∈I(d), in such a way that Qα(x) = Q(xα) for each x. Clearly,
such relations will allow to write Φ under the desired form, by replacing each subformula Q(xα) by the
sorted translation: Qα(x). The difficulty is to express this definition with our syntactical restrictions, that is,
without involving any xα with α , id.

Notice that the strategy used in Section 5 to “sort” atomic subformulas R(xα) build on any existentially
quantified d-ary relation R is no more avalaible, since it means suppressing R in favour of some new exis-
tentially quantified relations. Of course, we can’t operate like this with the input relation Q. To give an hint
of the method used in this section, let us consider an easy example.

30

An easy case Consider the case where d = 2. We deal with two first-order variables x and y and we only
accept atoms of the form Q(x), R(x,y), R(succ(x),y) and R(x,succ(y)) for any input unary relation Q and any
guessed binary relation R. How can we tackle occurences of some atom Q(y) in the formula ? A natural idea
is to define a new binary relation Q2 in such a way that Q2(x,y) = Q(y) holds for any x,y. (We denote it Q2
to refer both to Q and to the projection of (x,y) on its second component.) Hence, we set:

Q2 = {(x,y) : Q(y)}.

Thus, any atom Q(y) could be replaced by the sorted atom Q2(x,y). But the logical definition of Q2 with our
syntactical constraints compels to introduce an additional binary relation T that will be used as a buffer to
transport the information Q(y) into the expression Q2(x,y). We set

T = {(x,y) : Q(x + y)}.

Clearly, T is inductively defined from Q by the assertions T (x,0) = Q(x) and T (x+1,y) = T (x,y+1). Besides,
Q2 is defined from T by Q2(0,y) = T (0,y) and Q2(x,y) = Q2(x + 1,y). All these assertions can be rephrazed
in our logical framework, with the following formulas:

∀x,y
{

min(y) → (T (x,y)↔ Q(x)) ∧
(¬max(x)∧¬max(y)) → T (succ(x),y)↔ T (x,succ(y))

}

∀x,y
{

min(x)→ (Q2(x,y)↔ T (x,y)) ∧
Q2(x,y)↔ Q2(succ(x),y)

}
Now, it remains to insert this defining formulas in the initial formula Φ to be normalized, and to replace
each occurrence of Q(y) by Q2(x,y). Of course, such a construction has to be carried on for each input unary
relation Q.

The general case Given i, j ∈ {1, . . . ,d} and α ∈ S(d), we denote by (i j) the transposition that exchanges i
and j, and by α(i j) the composition of α and (i j). It is well-known that each permutation α can be written as a
product of transpositions, α = (u1v1)(u2v2) . . . (upvp). It is easily seen that this product can be chosen in such
a way that vi = ui+1 for any i. This is because if some sequence (ab)(cd) with b , c occurs, it can be replaced
by (ca)(ab)(bc)(cd), and a well chosen iteration of such rewritings yields the desired decomposition. This
can be further refined, by fixing at d one element of the first transposition involved in the decomposition and
by prohibiting useless sequence as (ab)(ba). Finally, each α ∈ S(d) can be written

α = (du1)(u1u2) . . . (uk−2uk−1)(uk−1uk), (26)

where ui, ui+1 and ui+2 are pairwise distinct elements of {1, . . . ,d} for any i. We call alternated factorization
of α such a decomposition.

A permutation α admits of several alternated factorizations, and we want to single out one of them for
each α, in order to allow an inductive reasoning build on this particular decomposition. There is no canonical
way to perform this task. In the following lemma, we roughly describe one possible choice, that implicitely
refers to the graph Gd on domain S(d) whose edges correspond to those pairs of permutations (α,β) such
that β = α(i j) for some i, j ∈ {1, . . . ,d}.

Lemma 6.1 There exists an oriented tree Td covering S(d) that is rooted at id and such that each Td-path
starting at id, say idα1 . . .αp, corresponds to an alternated factorization of αp.

31

Proof. Trees Td for d ≥ 2 are defined inductively. For d = 2, there is a unique such tree: (12)→ (21) =

(12)(21). So, assume we are given Td−1 and carry on the construction of Td as follows:

(a) First, view each permutation α = α1 . . .αd−1 ∈ S(d− 1) as a permutation of {2, . . . ,d} by renaming αi as
αi + 1. That is, replace α = α1 . . .αd−1 by α+ = (α1 + 1) . . . (αd−1 + 1).

(b) Then, replace each such α+ by β = β1 . . .βd ∈ S(d) defined by: β1 = 1 and βi = [α+]i−1 = αi−1 + 1 for
i > 1. Thus, Td−1 now covers the set of permutations β ∈ S(d) that fulfill [β]1 = 1.

(c) For each node β thus obtained, create a new node labelled by the composition of β with the transposition
(1d) – that is by the permutation β(1d) – and create an edge β→ β(1d).

(d) Finally, link each such node β(1d) to d−2 new nodes β(1d)(di), for i = 2, . . . ,d−1.

In Fig 2, we display the steps of the construction of T4 from T2. Letters (a), . . . , (d) in the figure refer to the
above items. The correction of the method on this example is clear. We leave it to the reader to verify that it
generalises to any d. �

(b)

4312 4132 4231 4213 4123 4321

1342 1432 1234 1243 1423 1324

(c)

2314 3412 2134 3142 2431 3241 2413 3214 2143 3124 2341 3421

4312 4132 4231 4213 4123 4321

1342 1432 1234 1243 1423 1324

(d)

1342 1432 1234 1243 1423 1324

342 432 234 243 423 324

231 321 123 132 312 213

321 123 132 312

123 132

23 32

12 21

(a)

(a)

(b)

(c)

(d)

Figure 2: Construction of T4 from T2. The result is an oriented tree rooted at id, spanning S(4), whose all pathes from
id are alternated.

This lemma allows us to choose, for each α ∈ S(d), one alternated factorization of α: it is the de-
composition (di1)(i1i2) . . . (ik−1ik) corresponding to the unique path from id to α in Td. We denote by
id.di1.i1i2.ik−1ik this particular factorization. And when this path until α can be continued in Td to
some permutation α(ikik+1), we denote by α.ikik+1 this last permutation. For instance, in the example dis-
played in Fig 2, we can write 2143 = 4123.13 and 3124 = 4123.14 while 4321 = 4123(24) cannot be written
4123.24. Notice furthermore that the integers ik and ik+1 are ordered in the notation α.ikik+1 (unlike in the
notation α(ikik+1)): we place in first position the integer ik involved in the last transposition leading to α
(with ik = d if α = id). All in all, the reader is invited to keep in mind the numerous presuppositions attached
to the notation α.uv: the statement β = α.uv means:

32

• β = α(uv) ;

• (α,β) is an edge of Td ;

• either α = id and u = d, or α = γ.tu for some γ ∈ S(d) and some t , u in {1, . . . ,d}.

Let us now come to a straightforward remark connecting d-tuples to alternated factorizations. First recall
that for x = (x1, . . . , xd), i ∈ {1, . . . ,d} and α,β ∈ S(d), we denoted by [x]i the ith component of x, we defined
xα as the d-tuple (xα1 , . . . , xαd), and we noticed that (xα)β = xαβ. (See Definition 5.2.)

Fact 6.2 For any x ∈ [n]d, α ∈ S(d), and i, j ∈ {1, . . . ,d}:

(a) xα.i j = (xα)(i j).

(b) [xα.i j] j = [x]d.

Proof. (a) From α.i j = α(i j) and xαβ = (xα)β. (b) By induction on α: if α = id, then necessarily i = d and
[xid.d j] j = [x]d clearly holds. Otherwise, [xα.i j] j = [(xα)i j] j = [xα]i = [x]d, by induction hypothesis. �

Given a d-tuple x = (x1, . . . , xd) of first-order variables, we denote by x− the (d−1)-tuple obtained from
x by erasing its last component. That is,

(x1, . . . , xd−1, xd)− := (x1, . . . , xd−1).

In particular, for α ∈S(d), we denote by x−α the (d−1)-tuple (xα1 , . . . , xαd−1). Each (d−1)-tuple build upon the
d variables x1, . . . , xd can clearly be written x−α for some α ∈ S(d). Therefore, the occurence of a non-sorted
atom in Φ has the form Q(x−α) for some Q ∈ (Qa)a∈Σ and some α ∈ S(d), and the purpose of this section
amounts to rewrite each such occurence Q(x−α) as Q′(x) for some well chosen relation Q′.

Definition 6.3 Given a (d−1)-ary relation Q and two family of d-ary relations, (Tα)α∈S(d) and (Qα)α∈S(d),
we say that (Tα,Qα)α∈S(d) is a d-simulation of Q if the following axioms hold, for any α ∈ S(d) and any
i, j ≤ d such that α.i j is defined, and for any d-tuple x of variables:

(A1) Tid(x) = Q(x−) if [x]d = 0.

(A2) Tα.i j(x) = Tα.i j(x(i j)).

(A3) Tα(x) = Tα.i j(x) if [x]i = 0.

(A4) Qid(x) = Q(x−).

(A5) Qα.i j(x) = Tα.i j(x) if [x] j = 0.

(A6) Qα.i j(x) doesn’t depend on [x] j.

Lemma 6.4 Let (Tα,Qα)α∈S(d) be a d-simulation of some (d − 1)-ary predicate Q. For any x ∈ [n]d and
α ∈ S(d): Qα(xα) = Q(x−).

33

Proof. Let us first prove that for any x ∈ [n]d and α ∈ S(d):

[x]d = 0⇒ Tα(xα) = Q(x−). (27)

We procced by induction on α. If α = id, (27) follows from (A1). Given a non-identique permutation
α.i j, we have:

Tα.i j(xα.i j) = Tα.i j((xα)(i j)) by Fact 6.2-(a).
= Tα.i j(xα) by (A2).

But [xα]i = [(xα)(i j)] j = [xα.i j] j and hence, by Fact 6.2-(b): [xα]i = [x]d = 0. Therefore we can resume the
above sequence of equalities with:

Tα.i j(xα.i j) = Tα(xα) by (A3) since [xα]i = 0.
= Q(x−) by induction hypothesis.

This completes the proof of (27)

Let us now prove the equality Qα(xα) = Q(x−). If α = id, the result comes from (A4). For a non-identique
permutation α.i j, we have to prove Qα.i j(xα.i j) = Q(x−) for any tuple x ∈ [n]d. First notice that we can restrict,
without loss of generality, to the case where [x]d = 0. Indeed, we can otherwise consider the tuple y obtained
from x by setting [x]d to 0. (That is, y only differs from x by its dth component, which is null.) Clearly,
y− = x−. Besides, the jth component of xα.i j is [x]d, from Fact 6.2-(b). Similarly, the jth component of yα.i j
is [y]d. Hence, the tuples xα.i j and yα.i j coincide on each component of rank distinct from j. Therefore
Qα.i j(xα.i j) = Qα.i j(yα.i j) by (A6) and we get: Qα.i j(xα.i j) = Q(x−) iff Qα.i j(yα.i j) = Q(y−). Thus, we can
assume [x]d = 0. It follows [xα.i j] j = [x]d = 0, by Fact 6.2-(b), and hence:

Qα.i j(xα.i j) = Tα.i j(xα.i j) by (A5), since [xα.i j] j = 0.
= Q(x−) by (27), since [x]d = 0.

The proof is complete. �

Lemma 6.5 Let Q be a (d−1)-ary relation and (Tα)α∈S(d), (Qα)α∈S(d) be two tuple of d-ary relations satis-
fying, for each d-tuple x = (x1, . . . , xd):

(F1) min(xd)→
(
Tid(x)↔ Q(x−)

)
.

(F2)
(
¬max(xi)∧¬max(x j)

)
→

(
Tα.i j(x(i))↔ Tα.i j(x(j))

)
.

(F3) min(xi)→
(
Tα(x)↔ Tα.i j(x)

)
.

(F4) Qid(x)↔ Q(x−).

(F5) min(x j)→
(
Qα.i j(x)↔ Tα.i j(x)

)
.

(F6) Qα.i j(x)↔ Qα.i j(x(j)).

Then (Tα,Qα)α∈S(d) is a d-simulation of Q. Furthermore, each Q admits such a d-simulation fulfilling
(F1). . . (F6)

34

Proof. Clearly, the formula (Fi) is a mere transcription of the axiom (Ai) for each i , 2. We have to prove
that (F2) implies (A2). Formula (F2) yields that Tα.i j(x) has the same value on tuples of the form

x = (u, x + c,v,y− c,w),

for any c ≤ min{n− 1− x,y}, where x + c (resp. y− c) is the component of rank i (resp. j) of x. (That is:
u ∈ [n]i−1, v ∈ [n] j−i−1 and w ∈ [n]d− j.) In other words, the value of Tα.i j(x) depends on [x]i + [x] j rather than
on the precise values of these two components. As a consequence, for any u ∈ [n]i−1, v ∈ [n] j−i−1, w ∈ [n]d− j

and any x,y ∈ [n]:

Tα.i j(u, x,v,y,w) = Tα.i j(u,y,v, x,w).

This is Axiom (A2).

It remains to prove that such relations (Tα)α∈S(d) and (Qα)α∈S(d) exist for every Q. To see this, assume
we are given a (d−1)-ary relation Q and define the Qα’s and the Tα’s as follows:

• Qα(x) = Q(x−
α−1) for any x ∈ [n]d ;

• Tid(x) = Qid(x) for any x ∈ [n]d ;

• Tα.i j(u, x,v,y,w) = Qα.i j(u, x + y,v,0,w) for any x,y ∈ [n], u ∈ [n]i−1, v ∈ [n] j−i−1 and w ∈ [n]d− j.

We leave it to the reader to check that the sequence (Tα,Qα)α∈S(d) satisfies the formulas (F1), . . . , (F6) (and
hence, is a d-simulation of Q). �

Proposition 6.6 For any d > 0, ESO(∀d,arity d,half-sorted) ⊆ ESO(∀d,arity d,sorted) on coordd−1.

Theorem 4.1, Proposition 5.9 and Proposition 6.6 can now be collected in the following result:

Theorem 6.7 ESO(var d) = ESO(∀d,arity d,sorted) on coordd−1 for any d > 1.

Remark 6.8 All in all, our normalization process can be summarized as follows:

On (d−1)-pictures, each ESO(var d)-formula can be written under the form:

Φ ≡ ∃R∀x
∧∨

±

{
min(xi), max(xi),
Q(x1, . . . , xd−1), R(x), R(x(i))

}
(28)

Here, R (resp. Q) is a list of relation symbols of arity d (resp. d − 1), x = (x1, . . . , xd), i ∈
[d], Q ∈ (Qs)s∈Σ, R ∈ R. (Recall that for x = (x1, . . . , xd), x(i) is meant to denote the tuple
(x1, . . . , xi−1,succ(xi), xi+1, . . . , xd).) Moreover, we can assume that the successor function only applies
to arguments that are not maximal, or alternatively, that succ(n) = n, that means that the interpretation
of the successor function symbol is the noncyclic successor instead of the cyclic one.

Theorem 3.9 straightforwardly proceeds from Theorem 6.7 completed by Remark 6.8, Proposition 3.10,
and from the proposition below:

Proposition 6.9 For any d > 0 and any d-language L,

coordd(L) ∈ ESO(∀d+1,arity d + 1,sorted)⇒ L ∈ NLINd
ca.

35

Proof. Assume coordd(L) ∈ ESO(∀d+1,arity d + 1,sorted). Without loss of generality and according to
Remark 6.8, we can assume that coordd(L) is defined by an ESO(∀d+1,arity d + 1,sorted) sentence of the
form Φ ≡ ∃R∀x∀t ψ(x, t) where x = (x1, . . . , xd) and

ψ(x, t) ≡
∧∨

±

{
min(xi), max(xi), min(t), max(t),
Q(x), R(x, t), R(x(i), t), R(x,succ(t))

}
.

for i ∈ [d], Q ∈ (Qs)s∈Σ and R ∈ R. Moreover, the succ symbol is interpreted as the noncyclic successor
function.

The key point is that sentence Φ can be checked in O(n) steps (for an input picture of domain [n]d) by a
local and parallel nondeterministic process. More precisely, it is easy to construct a d-automaton which uses
the following informal but intuitive algorithm to check whether coordd(p) |= Φ, for any picture p : [n]d→ Σ:

For t = 1,2, . . . ,n, check in parallel whether the truth value of atoms R(a, t) (for all a ∈ [n]d) are
compatible:

• with each other;

• with the “previous” values of atoms R(a, t−1) (when t > 1);

• with the values of the input atoms Q(a).

If the answer is “yes” then accept, otherwise reject.

The process is correct because at each moment the cellular automaton at cell a ∈ [n]d has only to
consider the fixed number of information bits that the point a = (a1, . . . ,ad) and its d neighbor points
a(i) = (a1, . . . ,ai−1,succ(ai),ai+1, . . . ,ad) hold. Each of the n iterations of the loop (for t from 1 to n) is
performed in constant time, hence the total time is O(n). �

Conclusion
Finally, notice that Theorem 3.9 characterizing the linear time complexity class of nondeterministic cel-
lular automata is very similar to the following result by the authors [14] about time complexity O(nd) of
nondeterministic RAM’s (for any d ≥ 1):

NTIMEram(nd) = ESOF(var d) = ESOF(∀d,arity d).

The main difference is that this last result involves the existential second-order logic with functions (ESOF)
instead of or in addition to relations, and holds in all kinds of structures without restriction: pictures, struc-
tures of any arity, etc. It is interesting and maybe surprising to notice that, in those results, the time degree d
of a RAM computation plays the same role as the dimension d +1 of the time-space diagram of a linear time
bounded computation for a d-dimensional cellular automaton.

Both results confirm the robustness of the time complexity classes NTIMEram(nd) and NLINd
ca. They

stress the significance of the RAM’s as a sequential model, and of the cellular automata as a parallel model.

36

References
[1] J. R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math.,

6:66–92, 1960.

[2] B. Courcelle and J. Engelfriet. Graph structure and monadic second-order logic, a language theoretic
approach. Cambridge University Press, to appear in 2012.

[3] M. de Rougemont. Second-order and inductive definability on finite structures. Zeitschrift für Mathe-
matische Logik und Grundlagen der Mathematik, 33:47–63, 1987.

[4] M. Delorme and J. Mazoyer. Cellular automata: A parallel model. Springer, 373 pages, Mathematics
and Its Applications, 1998.

[5] A. Durand and E. Grandjean. First-order queries on structures of bounded degree are computable with
constant delay. ACM Trans. Comput. Log., 8(4), 2007.

[6] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1995.

[7] C.C. Elgot. Decision problem of finite automata design and related arithmetics. Trans. Amer. Math.
Society, 98:21–51, 1961.

[8] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In R. M. Karp, editor,
Complexity of Computation, SIAM-AMS Proceedings, pages 43–73, 1974.

[9] J. Flum, E. Grädel, and T. Wilke, editors. Logic and Automata: History and Perspectives [in Honor of
Wolfgang Thomas], volume 2 of Texts in Logic and Games. Amsterdam University Press, 2008.

[10] H. Gaifman. On local and nonlocal properties. In J. Stern, editor, Logic Colloquium ’81, pages 105–
135. North Holland, 1982.

[11] D. Giammarresi and A. Restivo. Two-dimensional languages, in: Handbook of Theoretical Computer
Science, volume 3- Beyond words, chapter 4, pages 215–267. Springer-Verlag New York, 1997.

[12] D. Giammarresi, A. Restivo, S. Seibert, and W. Thomas. Monadic second-order logic over rectangular
pictures and recognizability by tiling systems. Information and Computation, 125(1):32 – 45, 1996.

[13] E. Grädel, Ph. G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Y. Vardi, Y. Venema, and S.Weinstein.
Finite Model Theory and Its Applications. Texts in Theoretical Computer Science. Springer, 2007.

[14] E. Grandjean and F. Olive. Graph properties checkable in linear time in the number of vertices. Journal
of Computer and System Sciences, 68:546–597, 2004.

[15] W. Hanf. Model-theoretic methods in the study of elementary logic. In J. Addison, L. Henkin, and
A. Tarski, editors, The Theory of Models, pages 132–145. North Holland, 1965.

[16] N. Immerman. Descriptive Complexity. Graduate Texts in Computer Science. Springer, 1999.

[17] M. Latteux and D. Simplot. Recognizable picture languages and domino tiling. Internal Report IT-94-
264, Laboratoire d’Informatique Fondamentale de Lille, Université de Lille, France, 1994.

[18] L. Libkin. Elements of Finite Model Theory. Springer, 2004.

37

[19] O. Matz and N. Schweikardt. Expressive power of monadic logics on words, trees, pictures, and graphs.
In Flum et al. [9], pages 531–552.

[20] J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an application to felgota
decision problem of Second-Order logic. Mathematical Systems Theory, 2(1):57–81, March 1968.

[21] B.A. Trakhtenbrot. Finite automata and the logic of one-place predicates. Siberian Math. J., 3:103–
131, 1962. English translation in: AMS Transl. 59 (1966) 23–55.

[22] G. Turán. On the definability of properties of finite graphs. Discrete Mathematics, 49:291–302, 1984.

38

	Preliminaries
	A logical characterization of recognizable picture languages
	Towards an exact logical characterization of NLINca
	A first normalization of ESO(var d) on coordinate structures
	"Localization" of existentially quantified relations
	Localization of input relations

