

Time optimal control problem

$$\begin{cases} \frac{dx(t)}{dt} = f(x(t), u(t)) \\ y(t) = h(x(t)) \end{cases}$$

where $u(t) \in [-1, 1]^p$.

Time optimal control: Minimize T such that $x(T) \in N$, N being the target.

Following Hermes ("discontinuous vector fields and feedback control", SIAM J. Control, 1967), we assume the Brunovsky stability.

Brunovski stability

Definition

A synthesis u(t) is a Filippov synthesis iff any solution $x\left(t\right)$ of

$$\begin{cases} \frac{dx(t)}{dt} = f(x(t), u^*(x(t))) \\ x(0) = \eta \end{cases}$$

in Caratheodory sense (absolutely continuous for a.e. t) is a Filippov solution for a.e. t i.e.

$$\frac{dx(t)}{dt} \in \bigcap_{\delta > 0} \bigcap_{\lambda N = 0} \overline{\text{conv}} f(B(x(t), \delta) \setminus N)$$

Exemple: chemical reaction

Chemical reaction of type

$$A \to B \to C$$

$$\begin{cases} \frac{d}{dt} [A]_t &= -k_1 (T_t) [A]_t \\ \frac{d}{dt} [B]_t &= k_1 (T_t) [A]_t - k_2 (T_t) [B]_t \end{cases}$$

where
$$k_i(T) = A_i e^{-\frac{E_i}{RT}}$$

Problem: Maximize [B] in minimal time.

Temperature control

The synthesis has only regular trajectories. It is obviously a Filippov synthesis.

Heat control

The temperature is a state variable, the control is the heat duty:

$$\frac{dT_t}{dt} = -h\left(T_t\right) Q_t$$

Regular trajectory I

We should verify

$$f\left(x\left(t\right),u^{*}\left(x\left(t\right)\right)\right)\in\bigcap_{\delta>0}\bigcap_{\lambda N=0}\overline{\operatorname{conv}}f\left(B\left(x\left(t\right),\delta\right)\setminus N\right)$$

The main problem concern the Caratheodory solution on the singular arc

$$\gamma_s = \left\{ (y,v); \quad y\left(lphaeta v^{lpha-1}-1
ight) = 1
ight\}$$

with singular control

$$u_s = -\frac{v^2}{h(v)\alpha y}$$

Regular trajectory II

Let x being a point on γ_s and $\delta > 0$ small enough. γ_x cross $B(x,\delta)$ on two open sets $B(x,\delta)\cap\gamma_+$ et $B(x,\delta)\cap\gamma_-$. Hence, any Filippov solution satisfy

$$\begin{cases} \dot{y} = v - \beta v^{\alpha} y + v y \\ \dot{v} = ah(v) u_{+} + (1 - a) h(v) u_{-} = h(v) \left(au_{+} - (1 - a) u_{-} \right) \\ (\dot{y}, \dot{v}) \in T_{x} \gamma_{s} \end{cases}$$

The unique solution is

$$(v - \beta v^{\alpha}y + vy)\frac{d}{dy} + h(v)u_s\frac{d}{dv}$$

Closed loop system

$$\begin{cases} \frac{dx(t)}{dt} = f(x(t), u^*(\widehat{x}(t))) \\ \frac{d\widehat{x}(t)}{dt} = f(x(t), u^*(\widehat{x}(t))) + K_{\theta}(t)(x(t) - \widehat{x}(t)) \\ x(0) = \eta \\ \widehat{x}(0) = \widehat{\eta} \end{cases}$$

Theorem Let u^* be a Filippov synthesis. Let $\varepsilon > 0$ and $N_{\varepsilon} = \{x \in M \; ; \; d\left(x,M\right) < \varepsilon\}$. For θ large enough, the closed loop system reach N_{ε} at time T_{ε} where $|T - T_{\varepsilon}| < \varepsilon$.

Sketch of proof

Proof Set $y(t) = x^*(t) - \hat{x}(t)$ hence

$$|y| \cdot \frac{d|y|}{dt} = \frac{1}{2} \frac{d|y|^2}{dt} = y \cdot \frac{d|y|}{dt} = y \cdot \frac{d|x^*|}{dt} - y \cdot \frac{d|\widehat{x}|}{dt}$$

$$\leq essmax_{\xi^* \in B(x^*, \delta)} \left(y \cdot f_u(\xi^*) \right)$$

$$-essmin_{\widehat{\xi} \in B(\widehat{x}, \delta)} \left(y \cdot \left(f_u(\widehat{\xi}) + K(t) \left(x - \widehat{\xi} \right) \right) \right)$$

$$\leq \cdots$$

until

$$\frac{d|y|}{dt} \le M\left(L\left(t,|y|\right)\right) + ||K||\left(x - \widehat{x}\right)$$

Closed loop behaviour

Closed loop trajectory up to a change of coordinates (rectification):

Target

Singular

« Nonlinear separation principle »

Open loop system

$$\begin{cases} \frac{dx}{dt} = Ax + b(x, u) \\ y = Cx \end{cases}$$

High-gain observer

$$\frac{dz}{dt} = Az + b(z, u(z)) - S(t)^{-1}C'r^{-1}(Cz - y(t))$$

$$\frac{dS}{dt} = -(A + b^*(z, u(z)))'S - S(A + b^*(z, u(z)))$$

$$+C'r^{-1}C - SQ_{\theta}S$$

Globally asymptotically stable control u

Main result

(weakly) g.a.s. closed loop system

$$\frac{dx}{dt} = Ax + b(x, u(z))
\frac{dz}{dt} = Az + b(z, u(z)) - S(t)^{-1}C'r^{-1}(Cz - y(t))
\frac{dS}{dt} = -(A + b^*(z, u(z)))'S - S(A + b^*(z, u(z)))
+ C'r^{-1}C - SQ_{\theta}S$$

in the sense that bounded trajectories are contained in the attracting set of the unique equilibrium point $(x^*, z^*; S^*)$

Sketch of proof I

First step: On the invariant set

$$N = \{(\varepsilon, z, S) ; \varepsilon = x - z = 0\}$$

the system has a triangular form, hense (Vidyasagar, Sontag) we can deduce the local asymptotic stability on N.

Using a Byrnes–Isidori lemma, we can deduce local asymptotic stability on the whole space (from the observer exponential convergence).

Sketch of proof II

Second step: Any positive trajectory $\Lambda^+(x_0, z_0, S_0)$ such that x(t) is bounded, is bounded.

Let Ω be the ω -limit set of Λ^+ (x_0, z_0, S_0) (Lasalle-Lefschetz)

- Ω is not empty
- it is a closed set
- It is a positively invariant set
- $(x^*, z^*; S^*) \in \Omega$

and the first step implies $\Omega = (x^*, z^*; S^*)$

Exemple: a polymerization reactor

CSTR model: six highly nonlinear differential equations describing weight fraction of monomer W_M , of solvent W_S and of initiator W_I , the temperature T and the leading moments of the molecular weight distribution λ_i , i=0,1,2 (but $\lambda_1 \approx W_P = 1 - W_M - W_S$).

Steady state	Conversion rate	Comments
stable	poor	Usually chosed as
		operating point
unstable	medium	
stable	high	risk of solidification
		due to high viscosity

Application story (Royal Dutch Shell ()

- The model can be put globally in an MIMO observability canonical form.
- Characteristic index (Isidori) are computed and a partially linearizing state feedback is designed.
- Global asymptotic stability of the zero-dynamics is proved
- The nonlinear separation principle is applied
- he controller has never been actually applied