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1.1 Introduction

We distinguish two kinds of observers for nonlinear systems which are used
by scientists and engineers: empirical observers and converging observers.

The first class of observers are based on some approximation of the non-
linear system or approximation of a theoretical best estimation. The most
common example is of course the extended Kalman filter. Although, for linear
systems, the Kalman filter is a converging observer and an optimal observer
for some quadratic cost function, the nonlinear version is based on a lineariza-
tion of the nonlinear system in a neighborhood of its estimation. Hence, the
extended Kalman filter is a good — almost optimal — local observer but it is
not a globally converging observer. Intuitively, if the a priori estimation is
far from the actual state value, the linearization around the estimate has no
sense (Section 1.2.2).

There are a lot of empirical observers, based on neural networks, genetic
algorithms, fuzzy logic, and so on. These observers are also based on an ap-
proximation of the process.

An other type of observers are based on the approximation of the exact
solution. Indeed, setting the problem as a stochastic problem, the optimal so-
lution is given by the Duncan-Mortensen-Zakai (DMZ) equation. The solution
of this nonlinear stochastic partial differential equation is the law of the state
knowing observations. Hence, the conditional expectation of the state know-
ing observations can be expressed using the solution of the DMZ equation.
However, this PDE equation is very complicated. There exist some algorithms
in order to calculate an approximation of the solution, and therefore to ob-
tain an approximate observer. For instance, some Monte-Carlo methods can
be used in order to calculate the conditional density of probability of the con-
ditional law. In this case, these methods are called particle filtering methods.
It consists in the simulation (by Monte-Carlo methods) of several processes,
which allows the calculation of the law of the state. The observation appears
in the DMZ equation as a killing process. Although this approach has some
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theoretical justifications (it converges when a finite parameter — the number
of particles — goes to infinity), observers based on this approach are always
approximative observers.

Although these empirical observers are not proved to converge, they are
used by many engineers for many processes, including some critical processes.
During normal operation, these observers are often very reliable and gives
very good practical results.

The second class of observers are theoretically converging observers. In
this book, we mainly discuss about high-gain observers. Nevertheless, there
exist also some other classes of converging observers. Most of them only deal
with a small class of nonlinear systems. Most of them have also some bad
performances in presence of noise.

In this chapter, we will not speak about sliding observers, algebraic ob-
servers, or finite dimensional filters, but we will focus on high-gain observers,
and their performances comparing to extended Kalman filter.

Our purpose is to present a uniform framework where nonlinear filtering,
empirical observers and exponentially converging observers are compared. We
mainly discuss about their similarities, and we propose an observer based on
empirical observers (as those used by engineers), which is an exponentially
converging observer.

Despite the lack of theoretical justification, the extended Kalman filter
(EKF) is one of the most famous algorithm used to estimate unknown state
variables from measurements in dynamical nonlinear systems. It is also used
to estimate unknown constant or slowly varying parameters in linear systems
and sometimes to perform failure detection. In this last case, it is necessary
to quantify the efficiency of the EKF with time. This task is usually based
on the innovation process, which is the integrated difference between actual
measurements and predicted measurements. The innovation process can be
monitored, and a large value of the innovation can be used to send an alarm
or to switch from an old model to a new one. It can also be used to estimate
the noise entering into the process or to estimate the measurement noise.

The empirical EKF is even used for critical processes. Therefore, in order to
increase the performance and the reliability of the EKF several engineers and
researchers already tried to develop an adaptive version. Using innovation and
state estimation, it seems possible to estimate parameters that characterize
the state of the process. These parameters can then be used to adapt the gain
matrix by online automatic tuning of some of the covariance matrices used in
the computation of the gain matrix. These kind of adaptive EKF are empirical
but seem to have nice behavior compared to the EKF.

Because of the difficulty to ensure robustness when adaptive quantity is
continuously updated, some authors used an adaptive algorithm based on
switching between several models. For instance, in [33], authors have devel-
oped an application on a highly critical process (from robustness point of
view). They proposed to switch between two covariances matrix (1 and Qs
depending on the state of the process.
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There exist many papers dealing with adaptive observers and adaptive
extended Kalman filtering especially in the GPS and DGPS community, see
[22, 12, 26]. In [12] for instance, authors present an adaptive extended Kalman
filter using innovation in order to adapt ) and R matrices, exactly in the same
spirit than in the present chapter, except that they do not give any theoretical
proof. Nevertheless, the need for this kind of observer is clearly established.

In those papers, adaptation of the filter is done using empirical rules (ge-
netic algorithms [35], neural networks [44], statistics [33]...), and no proofs are
given. But in all cases, efficiency of the adaptive observer is highlighted. Let
us remark that for neural networks based extended Kalman filters (N-EKF),
the system is splitted into a linear part and a nonlinear part, and the ex-
tended Kalman filter is applied to the nonlinear part, which is approximated
by neurons. The weights of neurons can be calculated using EKF, making the
algorithm adaptive. In this case, some proofs can be established, but only if
the neural network can approximate the system.

An intuitive theoretical justification of adaptive gain is based on the high
gain observer theory. It has been shown from a long time ([17]) that high
gain observers have very nice theoretical properties. The first one is that
they required to study the observability property of the model. This study
prevents from developing an observer for a non-observable system. But high
gain observers are also exponential observers: one can prove the convergence of
the high gain observer. In our opinion, the convergence property is a minimum
requirement for an observer which is used on some critical processes, and
sometimes as a diagnostic tool. Therefore, it is a good idea to adapt the gain
of observers in the following way:

e use an EKF when the estimation is close to the true state, because EKF
is a good (optimal) local observer (as already stated) and

e use a high-gain observer when large perturbations occur, because these
observers are nonlinear converging observers.

In [14, 15, 20], the high-gain extended Kalman filter (HG-EKF) has been
introduced. Compared with the Luenberger observer, HG-EKF is also an ex-
ponentially converging observer, but with the property that it is more efficient
in the presence of noise. Indeed, the high sensitivity of high-gain observers is
a well known drawback: the high gain ensures convergence but also increases
noise effects. In [8], a new algorithm, based on classical and high-gain EKF, has
been developed. This algorithm is based on a theoretical result, which states
that a time-dependant HG-EKF, which is asymptotically equivalent to a clas-
sical EKF, may be an exponentially converging observer, if the transition from
HG-EKF to EKF is slow enough. But this result is based on a time-dependant
observer and, in order to make its convergence property persistent, it is nec-
essary to use several observers and to switch from one to another, depending
on the innovation process. Although it is an efficient observer, as shown in the
reference above, but also in [9, 10], it is rather complicated and CPU inten-
sive. Moreover, even if the final algorithm can be considered as an adaptive
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high-gain extended Kalman filter (AG-EKF), its implementation is far from
classical observers as used by engineers.

In this chapter, we will present a time-independant adaptive-gain extended
Kalman filter. The adaptation of # will depend on the innovation process.

As usual for the HG-EKF, the parameter 6 appears in the Riccati equation
of the Kalman filter, and more precisely in the matrix @), denoted @y. But in
this new case, the high-gain parameter appears also in the matrix R (denoted
Ry), as in [12] (for a practical application). It is the first difference with result
in [8]. The second difference is that # may increase if the innovation is high and
decrease if the innovation is low. This idea is the basis of practical applications:
it is also the cornerstone of the proof of the theorem.

Before considering extended Kalman filtering, we will present in the next
section some results concerning nonlinear filtering. A nonlinear filter is sim-
ilar to a nonlinear observer, in the sense that it is supposed to estimate the
state of a system given some measurements. But nonlinear filtering deals with
stochastic equations. In the deterministic case, one have in mind that the
model approximates the system, that some unmodelized and unmeasured per-
turbations can enter continuously into the system, and that measurements are
corrupted by noise. Therefore, an observer should be robust to these pertur-
bations. In the filtering problem, these perturbations are taken into account
in the synthesis of the algorithm. Hence, the stochastic approach seems to
be more adapted to the problem, which is better defined (and the stochastic
problem is completely solved by the DMZ equation).

As we will see however, both approaches yields to similar tools. In fact,
the main difference between the two theories is the observability property:

e In the stochastic case, the system has not to be observable. A nonlinear
filter can be developed even for unobservable systems since it gives only the
conditional law of the state knowing observations. Typically, an observable
system gives rise to an unimodal law.

e In the deterministic case, an observer has no sense for a non observable
system (except perhaps if the system is globally asymptotically stable in
which case the model itself is a — slow — observer).

The "nonlinear filtering" section may be read even by a reader which is
not specialist in probability. It can also be omitted by a reader which is not
interested by the filtering/observation comparison.

1.2 Nonlinear filtering

1.2.1 Duncan-Mortensen-Zakai equation

We study the observer problem in a stochastic setting. Let us consider the
following stochastic system
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{dX(t)f(X(t),u)dHQédW(t) (L1)
dY (t) = h (X (t),u)dt + RzdV (t) '

where

e X (t) € R*, X(0) being a random variable, Y (¢) € RP, and u is a R%-
valued measurable function,

e W(t) and V (t) are two independent Wiener processes (also independent
from X (0)).

In this chapter, we will omit to specify the time variable whenever no
confusions are possible, writing X instead of X (t).
Therefore,

E [(QéW(t)) (QéW(t))/} — Q1

(where M’ denotes the transpose of a matrix M) so @ is the covariance matrix
of the state noise, and R is the covariance matrix of the measurement noise
(the notation Q= represents the Cholesky decomposition of @, also called
square root of Q).

In this section, we denote X (¢) a process or random variable and x (¢) its
realization, that is z (t) = X (¢) (w).

X (0) is supposed to be an L? (R") random variable independent from W
and V. For simplicity, we will assume that this random variable admits a
density function, denoted p (0, z) = W.

Considering equations in the Ito sense, if f is a Lipschitz function w.r.t.
x with a Lipschitz constant independent of u, then the system (1.1) admits a
unique solution.

In this stochastic context, the observer problem is an estimation problem:
we want to calculate the best estimation of X (¢) knowing measurements Y
from 0 to ¢, denoted by the o-algebra F . Hence, we want to calculate the
conditional expectation E [X (t) | Y], or more generally E [¢(X (1)) | F]
for any test function ¢. Finally, this is equivalent to calculate the conditional
law of X (t) knowing FY .

We assume that this law admits a density denoted by p (¢, ), i.e. the
conditional law is absolutely continuous with respect to Lebesgue measure
(this restrictive assumption is not necessary but it simplifies some formulas,
especially the DMZ equation). Then, p (¢, ) is the solution of the well known
Duncan—-Mortensen—Zakai (DMZ) equation. We will not explain this equation
here: it is a stochastic partial differential equation, which has to be regularized
before to be used, and which is difficult to use for practical problems, especially
if n is large (see [37] for a clear statement of the DMZ equation).

The DMZ equation has been used in several ways:

e First, this equation may be simplified in some very special cases. One of
them is the linear case, where the solution of the DMZ equation is the
Kalman filtering equation. There exists also some nonlinear cases where
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the DMZ equation gives a computable solution, for instance for systems
which are linearizable up to a change of coordinates, or an immersion.
In these cases, it is of course a very good approach to build an optimal
observer.

e Second, despite its complexity, the (regularized version) of the DMZ equa-
tion can be approximately solved, for instance using Monte-Carlo methods.
In this context, Monte—Carlo methods are called particle methods. The
main idea is to approximate the initial law of X (0), given by its density
p (0,z), by a set of "particles", i.e. a set of independent random variables
X (0) such that

N
p(0,z) ~ Z 9, (0)
1=1

where §, denotes the Dirac measure at x. The notation ~ will be precisely
defined in Theorem 2.

The principle of a particle method is then to approach the probability law
of X (t) knowing F} by a (weighted) sum of Dirac measures at points X; (¢).
When applied to filtering, this just consists in approaching the law of the
current state knowing observations by means of a particular weighted sum of
Dirac distributions. This kind of method is well adapted to the case in which
the dimension of the state is large, because in this case one usually uses the
Monte-Carlo method to compute the conditional expectation

E[o(X (1) | F¥] = / (@)p(t, 2)dx

and this method requires a sample of the law p (¢,2) which is given by X; (¢),
i=1,...,N.

To characterize a particle method, it is sufficient to give some rules such
as

e how to calculate weights of particles (e.g. Dirac measures)
e how to move particles X; (¢) in the state space

Let us give an example of a particle filtering. As we will see in next section,
this algorithm have some similarities with the observer construction (Section
1.3.3), although it has been obtained by a totally different way.

We will study the nonlinear filtering problem with linear discrete-time
observation, that is to say, the second equation in (1.1) is replaced by

Vi = CX (ty) + R2V (k) (1.2)

where (1), is the sample time and (V' (k))ren is an independent (w.r.t. W
and X (0)) Gaussian white noise. The limitation to a linear observation func-
tion is not necessary but is a simplification when one wants to implement this
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algorithm. The choice of discrete-time observation simplifies the mathemat-
ical background necessary to define the DMZ equation. Indeed, in this case,
the conditional density p(¢,z) is given by the discrete version of the DMZ
equation:

plth,2) = g — ™ fy,c = / Frily V= @)p(te1,€)de (13)

Yk
where notations

° féi(t):m (yx) represents the conditional density of Y; knowing X () = x;

. f))f((f)) 5(:E) represents the conditional density of X (¢) knowing X (s) = &;
k—1 k—1

° fg,/k Y (yx) represents the conditional density of Y; knowing Y be-

tween time 0 and time ¢;_1 is equal to (yo,...,yx—1) so that for instance,
Yk gk
p(ta l‘) = fX(t) Y (1’)

Equation (1.3) is nothing else than the Bayes formula applied to the prob-
lem.

Remark 1. We point out that the DMZ equation (1.3) gives an exhaustive
information on X (¢) knowing all informations available at time ¢. Hence it
gives the best possible estimate and, if the system is observable (Definition
1), it is a very good observer.

As usual with equations describing evolution of a density of probability,
the un-normalized version of the DMZ is more tractable: (1.3) is equivalent
to

altis2) = FYO=( / PO @, 0de (1)

with
Q(tkv l‘)
f& Q(tka f)df

There are several ways to solve the un—normalized DMZ equation using
particle methods. The first way is to recognize the composition/rejection the-
orem in this formula ([27]), and therefore to consider this equation as a sim-
ulation formula, which is the basis of a Monte-Carlo method. The algorithm
consists in simulating the process (by "particles" Z;) and killing some of them
thanks to measurements (the "bad" particles). At a time ¢y < ¢ < tg41, the
number of particles which are still alive is a random variable N (k). If this
random number is large enough, the conditional density is approximated by

p(tka l‘) -

N (k)

~ Z 5Zi(t) (SL')
i=1
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This approach can not be applied exactly as explained here, since N (k)
is a decreasing integer which goes almost surely to 0 (each measurement kill
particles). In order to obtain a more efficient algorithm, one usually consider
a weighted sum of Dirac measures.

Let us introduce coefficients a; (t) € [0,1]. These numbers represent the
degree of confidence in each particle, and replace binary coefficients 1 (the
particle is alive) or 0 (the particle is dead). As for the DMZ equation itself,
we consider an un—normalized set of coefficients b; () € RT such that

a; (t) = ]\b[l 9

Zj:l b; (t)

We consider an algorithm P which describes the trajectory of particles
z; (t) and weight coefficients b; (t). The law truncated at n particles given by
P is denoted as P, (t) (dP, (t) = pn, (t,z) dz) and defined by

_ Z?:l bi (t) 5zq,(t) _ -
AR S IO S

Algorithm 1 Initialization
z; (0) is the realization of a random variable with respect to
the initial law p (0);
bi (O) == 1,‘
Loop

X(tg—1)=zi(tk—1), Y=
f(kl) (tk—1),Ye=vyr .

z; (tx) is a Gaussian variable with respect to X(tn) ;

b; (t) is defined by

bi (tr) = bi (tr—1) fy)fi(tkfl):%(tkfl)(yk)

Let us remark that this algorithm is easy to implement on a computer, in
particular on a parallel computer.

Theorem 2. Let us consider the system

{dX = f(X,u)dt + Qzdw ()
Y, = CX (t) + R2V (k)

and P (t) being the conditional law of X (t) knowing FY . If P, (t) represents
the law given by the algorithm P with n particles, then we have

P, (t) — P(t) as n — oo weakly almost surely

Remark 2. This theorem is true at ¢ fixed. It is never true for any ¢. In order to
obtain an asymptotic result (as in observer theory), it is necessary to add some
correlations between particles. This is particularily simple here (see [39]).
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In order to illustrate this theorem, we consider a continuous stirred tank
reactor (CSTR). The dimensionless form of the model is:

X
dX1 = <X1 + DA(]. — Xl)@XP{ﬁ}) dt + dW1
Xo

Xy — (_X2(1 +0)+ HaDal1 = Xi) exp{

}—l—ﬁu) dt + dWy

where W7 and W5 are two independent Wiener processes. X7 is the reactant
concentration and X5 is the temperature into the tank. We suppose that X,
is measured in discrete time and that we want to control X; using the control
variable u. The system can also be written in the following generic form

tet1

X (i) = X (ty) + / R (s))ds + / BdW (s)

ty ty

Y. = CX (tk) + Vi

with C' = (O 1 ) We suppose that W is a two-dimensional Wiener process and
that Vj is a Gaussian process independent of W and with covariance R. We
propose the following discretization scheme for the continuous-time equation

OD(ty, tyrr, X (t
X (tip1) = P(tp,teg1, X (tr)) + (t kg; ( k))B\/tk+1 — Wi

where @(s,t, x) is the solution of

{ Ll = f(z (1))

x(s)=ux

at time ¢.
The right-hand part of this scheme is the first order development of

tet1
é(tka tk-‘rla X (tk) + / BdW (S))

ty

which comes naturally from the diffusion equation. A classical theorem of
probability, see for instance [21], shows that this scheme converges in law to
the solution of the diffusion equation when the step of the discretization goes
to zero.

Our main goal is to estimate the reactant concentration X; and its confi-
dence intervals, in order to control as well as possible the CSTR.

If we solve the equations, we can see that for each particle z (¢) at time ¢
and for each weight b (), we have, thanks to the algorithm of the theorem

e Correction at time t;,
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z(ty) =2 (t;) + P(t;) CT(CP (t;) CT + R)"Hyr — C= (
+ (P (t;) — P (t;) CT(CP (t;) CT + R)"'CP (t;
P (tx) = BBT (tiy1 — t1)
ex (*%(ykfcz(t,:))T(CPt;CT+R)71(yk*Cz(t;)))

\/2m.det(CP(t; )CT+R)

b (tk) =b (tk—l)

(1.5)
where w;, is a Gaussian white noise.
e prediction between ¢y and tx41
d‘fi—g =f(z(1))
ar = [rE@)P () + P(t) fr(€() (1.6)
&2 =0
dt

1.2.2 Extended Kalman filter

The previous algorithm is CPU-time consuming and rather complicated to
implement, especially in the linear case. Indeed, for a linear system, there
exist a very simple and famous solution. Let us consider the following linear
system:
{dX(A(t)X+B(t)u) dt + Q=dW (t) w7)
dY = C (t) Xdt + R2dV (t) '

with X (0) a random variable with Gaussian law A (my, Fp), the DMZ equa-
tion reduces itself to the well-known Kalman filter. More precisely, solving
the DMZ equation yields to the following result: the conditional law of X (¥)
knowing y (s) from 0 to t (FY) is the Gaussian law A (z (t), P (t)) where,
for an output trajectory y (), z (t) and P (¢) are the solutions of the finite-
dimensional system of ordinary differential equations:

{ dz = (A(t)z+ B(t)u) dt + PC(t) R~} (dy — C (t) zdt) (18)

P = A(t)P+PA({t) +Q—PC(t)) R7IC(t) P

with z (0) = mg and P (0) = Py. Therefore, z (t) = E [X (t) | F}'] () is the
best estimation of X (¢) knowing measurements up to time ¢t. When applied to
a deterministic observable linear system, ) and R being considered as tuning
parameters, the Kalman filter is called the Kalman observer. The observable
property is not crucial in the stochastic case since the conditional law is defined
even for non observable systems. But the observability property implies that
the covariance matrix of the conditional expectation of X (¢) knowing Y (s),
0 < s <tis bounded.

In the deterministic case, this property is crucial. Recall also that, for
linear systems, observability does not depends from inputs.

The Kalman filter /observer algorithm has been used for long by engineers
for linear systems. For nonlinear systems, engineers introduced and success-
fully used the extended Kalman filter (EKF), either in its stochastic or its
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deterministic form. The EKF is just the standard Kalman filter for linear
time-dependant systems, applied to the linearized system along the estimate
trajectory. The EKF is the heart of our approach.

Let us consider a nonlinear system

{dX = f(X,u)di + Q2dW (1) (1.9)

dY = h(X)dt + RzdV (t)

where f and h are smooth Lipschitz functions, the linear Kalman filter does
not apply anymore, and the exact solution should be obtained by solving the
DMZ equation. But if one want an approximated solution, it is very common
to consider the first order approximation of the previous system. The right
way to do this is to consider an a priori solution Z (t) of the deterministic
system associated to (1.9) and to use the Kalman filter to estimate the first
order difference dz (t) = x (t) — Z (t) between the a priori solution and the
estimated solution. This approach yields to the following first order Kalman
filter, for a given output trajectory:

d;; = f*(#,u)dz + Ph* (&, u) R (y(t) = h (,u))
2 = f* (&,u) P+ Pf*(&,u) +Q (1.10)
—Ph* (#,u) R~ h* (2,u) P
where f* and h* are the Jacobian of f and h w.r.t. x respectively. But this
approach has a major weakness: the choice of the a priori solution Z (t) is not
obvious if there is no precise a priori information on the initial state. This is
usually the case, especially in the deterministic case, since the only missing
information on the system is precisely the initial state. Moreover, if one make
a bad choice of & (t), the first order equation has no significant meaning since
the actual state is far from the initial guess. At the opposite, if 6« (0) is small
(that is the a priori solution is closed to the actual solution, at least at time
0), then & (t) + dx will be a good approximation of the optimal filter, when
state and measurement noises are small ([38]).

To overcome this difficulty, engineers have an attractive idea: to replace
the a priori solution by the estimated solution at current time. The main
advantage of this approach is that the estimated solution is supposed to be
closed to the actual solution, hence the first order approximation should be
small and hence the linear approximation should be a good approximation.
This remark yields to the extended Kalman filter:

L = f(zu) + P (3 0) R (y(0) — b (=)
% = f*(z,u) P+ Pf*(z,u) +Q (1.11)
—Ph* (z,u) R™'h* (z,u) P
where z is the estimated state. Here again, if Py, @ and R are small, this filter
is closed to the optimal filter (see all works of Picard, [38] for instance).

In a deterministic context, the extended Kalman filter is a converging
local observer (see [4, 8]), that is if z(0) ~ z(0) then z(t) —z(t) — 0
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as t — +oo (exponentially). Nevertheless, the extended Kalman filter has
no global converging properties. Indeed, it is well known that, if the initial
guess z (0) is far from x (0), the extended Kalman filter may not converge.
Moreover, the mathematical study of (1.11) is difficult because it has no clear
mathematical meaning: it is not a first order approximation of a nonlinear
object around a given trajectory. In other words, the behavior of (1.11) is not
intrinsic and depends on a choice of coordinates. Hopefully, this mathematical
difficulty will give us a way to chose a good system of coordinates and to prove
some convergence results, thanks to this crucial choice of coordinates.

To conclude, the EKF is very efficient in a lot of practical problems. It is
used as a filter or as an observer in many various systems. From a theoretical
point of view, it is not an optimal filter (it differs from the DMZ equation).
Nevertheless, when the system has some observability properties, it has very
nice local properties: in the stochastic case, it is a good filter when noises are
small (see [38]) and in the deterministic case, it is a local observer ([4, §]).

1.2.3 Continuous-discrete stochastic systems

Before considering deterministic systems and observers, let us recall a result
concerning discrete measurements. Continuous-discrete time are very com-
mon in practise: the nonlinear differential equation describes a mechanical,
physical or chemical process. Therefore, it is a continuous time system. But
measurements are usually sampled at times ¢;. Therefore, the system can be
written

{dX (t) = F(X (), u(t))dt + dW (t) (1.12)

yr = h (X (tx)) + V (k)
where h is a differentiable function from the state space to RP.
For this system, the EKF has two set of equations: the correction step
which is applied at each measurement time and the prediction step which is
used to predict the system according to the model.
Correction step

Z(th) = Z () + G (k) (ye = h (Z (tx)))
G (k) =P (t)h* (Z (tx) (h* (Z (t)) P (tx) B* (Z () + R)™' (1.13)
P(tf) = (I -G (k) h* (Z (tx))) P (tx)

Prediction step
dz
& 1.14
{—‘iiff*(z,wmpf*(z,u)’w (19

These equations presents some similarities with equations (1.5,1.6). As we
will see in the end of Section 1.3.4, if the system is observable, then equations
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(1.13,1.14) may gives an observer. In the non observable case, one should use
(1.5,1.6).

Although this kind of model is closer to the practical case, it is less used
than continuous-time systems. The main reason is a practical one: the sam-
pled time is usually chosen small enough w.r.t. time constants of the process.
Therefore, the continuous EKF can be applied. Sometimes (for very fast pro-
cesses or for slow measurement devices), the sampled time is a constraint and
can not be neglected. In this case, continuous-discrete EKF should be applied.

1.3 Nonlinear observers

1.3.1 Canonical form of observability

From now, we study deterministic nonlinear systems of the general form

d_f = f(x,u)

on a smooth n-dimensional manifold X, y € R?, u € U, subset of RY. We
want to develop an observer. Our approach is closely related to observation
theory, as explained in the book from Gauthier and Kupka [20], which is itself
a summary of the papers [16, 17, 18, 19, 32].

This theory leads to the consideration of systems under the normal form
(1.21), or similar multi-output normal forms. Here, by “observability”, we mean
“observability for every fixed input function u(¢)”. For details, see [20].

In this introduction part, we summarize the main observability results of
the observation theory developed in [20].

First of all, the state-output mapping PXx , is the function x (0) —
(¥ (t));>0- In this definition (and the following ones), we do not speak about
explosion times, in order to simplify the notations.

Definition 1. The system (1.15) is said uniformly observable, or just ob-
servable, w.r.t. a certain class C of inputs (L>°(U) in most cases) if, for each
u(.) € C, the state output mapping PXx ,, is injective.

This first definition is the natural definition of observability. Nevertheless,
injectivity is not a very tractable property, since it is not stable (even for stan-
dard mappings between finite dimensional spaces -example: z — 23, R — R).
Therefore, in order to state results, we need a few other definitions. The uni-
form infinitesimal observability make the observable property stable.

Let us define the lift of X' on T'X, also called the first variation of X. Let
us consider T'x f : TX x U — TT X (the tangent bundle of TX) the tangent
mapping of f: X x U — TX and dxh : TX x U — RP the Jacobian of
h:X x U — RP. Then
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9% = T f(&u) = T fu(€)
TE{ % = dj((h(ﬁ,u) = dj:hu(g) (1.16)

The state-output mapping of T2 is denoted by PT X ,. It is also the
first order approximation of PXs , denoted TPXs ,,.

Definition 2. System X is said uniformly infinitesimally observable if, for
each u(.) € L>®(U), each xo € X, all the tangent mappings TPXx ,|xo are
injective.

Remark 3. This definition of observability is stable in the sense of discretiza-
tion: if a system is uniformly infinitesimally observable, its continuous—discrete
version (1.12) remains uniformly infinitesimally observable for a sampling time
small enough. It is not the case for a system which is only observable (see [2]).

The two following definitions are an other way to define observability in
a stable way. Note that these definitions are important for practical purpose,
since they give a way to prove observability for nonlinear systems.

Definition 3. System X' is said differentially observable (of order k) if for all
j*a, the extension to k-jets mapping® Py : xo — j*4; X — R¥™ is injective.

Definition 4. System X is said strongly differentially observable (of order k)
if for all j*u, the extension to k-jets mapping Dy ko = T — jky; X — R
is an injective immersion®.

Clearly, strong differential observability implies differential observability,
which implies observability for the C*° class, (and L*-observability).

It is also a consequence of the theory that for analytic systems, uniform
infinitesimal observability implies observability of the restrictions of (1.15) to
small open subsets of X, the union of which is dense in X.

The main result concerning observability of systems 1.15 is that, depending
from the number of outputs w.r.t. the number of inputs, the property may be
generic or not generic. More precisely, we distinguish two cases:

1. More measurements than control inputs (p > d): in that case, observability
is a generic property, and generically, a system can be put globally under a
normal form similar to (1.21), but the dimension of the state in the normal

3 k-jets j*u, of smooth functions v at t = 0 are defined as
3% u = (u(0),4/(0), ..., u™ " (0)).

Then, for a smooth function u and for each o € X, the k-jet j*y =
(y(0),4'(0), ...,y*~1(0)) is well define: this is the k-jets state-output mapping
Dy,

4 immersion means that all the tangent mappings Ty Py, jkq to this map, have full
rank n at each point
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form is bigger than the dimension of the state of the original system: it is
at most double plus one. Also, the control in the normal form contains a
certain number of derivatives of the control of the initial system. But this
is more or less unimportant for observation problems, where the control,
and hence its derivatives, are known.

Hence, if p > d, and for sufficiently smooth inputs, generic systems are
very good from the point of view of observability.

2. Less or same number of measurements than control inputs (p < d): in
that case observability is a non generic property. It is even a property of
infinite codimension. This high degeneracy leads to the fact that, in the
control affine case, all observable systems can be put locally under normal
forms similar to (1.21) (with a; = 1,i=1,...,n).

In the analytic case p = 1, d > 1, we can be more precise. If (1.15) is
uniformly infinitesimally observable, then locally almost everywhere on
X, the system (1.15) can be put in the form

y = h(z1,u)
dxy =f
= J1(Z1,Z2,U
i ( )
dt

- f2($1;$2;$37u)

(1.17)
dr,_1
((ijt :fn_1($1,$2,--,l‘n,u)
% = fn(xla L2y ey Ty U’)
with o 5
—— and fi i=1,..,n—1 (1.18)
81'1 &mﬂ
does not vanishes on V, x U.
In the control affine case, where (1.15) can be written:
d
= f(z)+ Zgl(x)ul (1.19)
i=1
y = h(z)
then the canonical form of observability is
y=2x1
L = xo 4+ 307 gri(an)us
G =a3+ S gai(we, w2)us
. (1.20)
% =Tn+ D b Gn-1,i(T1, T2, .y 1)Uy

d;:_tn = w(m) + Zf:l gn,i(xla Z2,.; Tp—1, zn)uz

These two results are very important since they allow us to restrict our
study to systems of the form (1.17) and (1.20) (and also because of course,
these results are based on a constructive diffeomorphism).
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1.3.2 High-gain extended Kalman filter

We describe observers for nonlinear systems in canonical form of observabil-
ity (1.20 and 1.21 below), on R™. The control space Uadm, is supposed to
be a closed subset of R?. In this section, the observation is assumed to be
single-valued: it is a u—dependant linear form on R™. This hypothesis is not
necessary and our observers constructions also applies for multi—output sys-
tems. From an observability point of view, the multi—output case is a little
bit more complicated since canonical form of observability are less natural.
But from the observer point of view, except in section 1.3.4, the problem is
exactly the same, since we simply apply some kind of EKF.
We consider systems of the form

9z — A(u)z + bz, u)
(B 2y
where A(u) , C(u) are matrices:
Oaz(uw) O -~ 0O
as (u) :
Au) = : o (1.22)
an (u)
0 0
C(u) = (a1(u),0,....,0) (1.23)

and where a;(.), ¢ = 1,...,n, are positive smooth functions, bounded from
above and below:
0 < am < ai(u) <apm

Also, b(x, u) is a smooth, u—dependant vector field, depending triangularly
on x and compactly supported:

) b(zy,u)
b(z,u) = (ml,:m,U) (1.24)

b(z1,...,Tn,u)

These assumptions look very strong, but as we already seen, under either
genericity hypotheses or observability hypotheses, for the purpose of synthe-
sis of observers, it is sufficient to restrict to these systems, under the normal
form (1.21) (or similar multi-output normal forms), and meeting these as-
sumptions. In fact, this form generalizes the canonical form of observability
(1.20) for control affine systems. We call (1.21) (together with (1.22-1.23))
the generalized canonical form of observability. There are several reasons to
study (1.21) rather than (1.20):
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e It is sometimes easiest to put the system into this form, using intuitive
transformations, rather than a more restrictive normal form, the last trans-
formation being based on Lie derivatives. This point will be illustrated in
the application sections;

e Since we want to apply an EKF which use the model to filter noises, and
a high—gain approach to kill the nonlinear part of the system, it is better
to leave the largest part of the nonlinear system in A rather to put it in
b. This technical point will be developed later;

e Last but not least, our observer construction still work for these systems.

However, this form does not include the canonical form of observability for
systems (1.15) when the control is not affine. For those systems, there exist
a change of coordinates that put the equivalent system (1.17) into a system
of the generalized canonical form of observability (1.21) [10, 23]. For this, we
just need to suppose that v admits a time derivative almost everywhere.

Consider a system (1.17) on R™, and set:
z =&, () = (h(z,u), Lyh(z,u), ..., L?ilh(:ﬂ, u)). (1.25)

Let K C R™ be any fixed open relatively compact subset. We deal with
semi-trajectories of X' that remain in K, only. It follows from (1.18) that, for
all u € U, &, is an injective immersion (this is easily checked by induction on
the components of @,,). Therefore, @, is a u—dependent diffeomorphism from
K onto its image. Consider the image of the system (1.17) restricted to K by
the time dependant diffeomorphism &,,. It is of the form:

L = AC+g(&,u, )
{ Ui d (1.26)

where A is the antishift matrix, and where ¢ is smooth and depends in a
triangular way of &.

Even if some technical difficulties remains in the general theoretical case
(see [10] for a precise result), it is clear that the new system is of the form
(1.21) except that we use explicitly fl—?, considered as a new input.

Thanks to this result, our observers (Sections 1.3.2, 1.3.3 and 1.3.4) applies
to general uniformly infinitesimally observable systems.

Let us come back to the system (1.21) and its properties. The assumption
0 < am < a;(u) < ap is not more restrictive than a;(u) # 0°. It just implies
observability of systems in the normal form (1.21), by the following reasoning;:

5 Modulo a trivial change of variables, and the fact that the a; being smooth,
restricting to a compact subset of the set of values of control implies that we can
find the a,, and ans.
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1. If the output y(t) is known, the input being also known, the fact that
a1 (u) is nonzero implies that we can compute z1(¢) from y(¢),

2. The fact that az(u) # 0 implies that we can compute z3(t) from the
knowledge of 1 (¢),

3. By induction, we can reconstruct the whole state x(¢) from the knowledge
of y(t).

The compact support of b can be trivially achieved, by multiplying by
a cut-off function, compactly supported, leaving the original vector field b
unchanged on an arbitrarily large compact subset of R™. Let us mention that
this restriction to compact sets (unavoidable in a general observation theory),
has not so important consequences: for instance, the high gain observers can
be used in general for global dynamic output stabilization (again, see [20]).

The following results have been proved in [13, 14, 20].

We consider the equations of the extended Kalman filter (1.11), in which
the covariance matrix () depends on a real parameter 6, § > 1, in the following
way:

Qo =0A71'QA™!

where
10 0 - 0
04 0
A=lo0 %
0
0--- --- ()GT{1

The EKF become the high-gain extended Kalman filter (HG-EKF):

92 = A(u)z +b(z,u) + PC'R™!(y (t) — Cz)
42 = (A(u) + b*(z,u)) P + P(A (u) + b* (z,u))’ (1.27)
+Qo¢ — PC'R™'CP

If & = 1, the HG-EKF is equivalent to the EKF. If 6 is large, Qg is a
large symmetric definite positive (s.d.p.) matrix and since it appears in the
Riccati equation in a positive way, P will becomes large (in the s.d.p. sense).
Therefore, the gain of the observer, namely PC’R~!, will be large. This is
why the observer (1.27) is called high-gain extended Kalman filter.

This observer has some very nice properties. From a practical point of view,
since it is based on extended Kalman filtering approach, it is well designed for
filtering noise using the model. Moreover, the HG-EKF is applied to a system
written in the canonical form of observability. As a matter of fact, it clearly
improves the convergence of the observer, both in simulation and in practical
situations. Moreover, the parameter § has a clear meaning and can be used to
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tune efficiently the observer: if the observer is too slow, 6 should be increased,
and if the noise is not enough filtered, 6 should be decreased.

This last point has also been validated from a theoretical point of view:
the estimation error has arbitrarily large exponential decay, depending on 6.
This holds whatever the initial error is, (that is, this is a global result). The
theorem is the following;:

Theorem 3. For 0 large enough and for all T > 0, the HG-EKF (1.27) sat-

isfies for t > %
T T
(7))

for some positive continuous functions k (T'), w (T) and p (T).

(1) = (0 < 0"k (T) e (PN (=5)

Remark 4. In a stochastic setting, the HG-EKG is a nonlinear filter with
bounded variance ([13]).

1.3.3 High-gain and non high-gain extended Kalman filter

The EKF is a local converging observer, and has very good properties w.r.t.
noise. It is close to the Kalman filter, which is an optimal solution to estimate
the unknown state.

The HG-EKF is a globally converging observer. Moreover, it converges
exponentially as fast as wanted, depending on the choice of the parameter 6.

The EKF cannot be used to estimate the state from a poor a priori es-
timation, or when large unmodelized perturbations occurs. The HG-EKF is
designed to do this. This is the basis of the observer construction proposed in
this section. More precisely, let us recall that:

1. if one sets @ to 1 in system (1.27) then one obtains the classical extended
Kalman filter, which is a local optimal observer (in the sense explained
above)

2. if @ is large enough then one obtains a high-gain observer, which is a global
exponential observer.

The first application of this remark was presented in [8]: we just added the

equation
do

dt
to the system (1.27). If 6 (0) = 6 is large enough (and the parameter A
small enough) then we obtain an observer which is a high-gain observer for
small time and which converges asymptotically to a classical extended Kalman
filter. Hence we can expect its convergence since the observer should converge
exponentially to the state (high-gain observer property) and then stays in a
neighborhood of the state (since extended Kalman filter is a local observer).

A(1—0) (1.28)
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Indeed this result has been proved in [8]. More precisely, the observer can be
written (where Qg has be defined in the previous section):

ﬁ = A(u)z + b(z,u) + PC'"R™(y (t) — Cz)

L= (4 + 0 )P PAMW D ) (g
+Qy — PC'R™'CP '

46 = XN1-0)

and the theorem says that the asymptotic behavior of the observer is the one
of the extended Kalman filter, the "short term behavior” is the one of the
HG-EKF. More precisely, let us denote € (t) = z (t) — z (¢):

Theorem 4. For all 0 < X\ < Xg, (Ao small enough), for all 6 (0) = 0y large
enough, depending on X\, for all S(0) = Sy > ¢ Id, for all K C R", K a
compact subset, for all zy such that €(0) = 29 — 2 (0) € K, the following
estimation holds, for all 7> 0 :

le(m)II* < R (A, ¢) e Tlleol [ A(0o, 7, ), (1.30)

A(GOa T, )‘)7 = 002(n_1)+%€_%90(1_67%—)5
Moreover the short term estimate
le(m)I]> < 0(r)*" DR (Ao, ) e (0T =e2)7)g(0)]|%. (1.31)

holds for all 0 < 7 < T and for all 6y large enough. R (X, c) is a decreasing
function of ¢, and a, a1 and as are three positive constants.

Remark 5. (1.31) means that, provided that A is smaller than a certain con-
stant Ag, and 6 is large in front of A, the estimation error goes exponentially
to zero, and can be made arbitrarily small in arbitrary short time. More-
over, in (1.30), the function A(6y, 7, A) being a decreasing function of 7, for
all 7 > 0, A\ > 0, A(6p, 7, A\) can be made arbitrarily small, increasing 6,
hence the observer is an exponential observer. Therefore, the observer is an
exponential observer but the asymptotic rate of convergence does not depend
on O(t) (because 6 (t) ~ 1), hence this observer does not converge as fast as
we want after a given time 7.

The main drawback of this observer, as presented here, is that it converge
exponentially for any initial condition only in the beginning, in order to esti-
mate the initial state of the system: if a large perturbation occurs after time
7, this observer will have the same behavior as an EKF (since 6 (t) ~ 1 for ¢
larger that 7).

In order to construct a persistent observer, we should take into account
this property and construct a time-dependant observer. The simplest way is to
use several observers of the form (1.29), each one initialized at different times,
and using some delays between each initialization. Thus we obtain several
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estimations of the state, given by each one of the observers: the final estimation
is the one corresponding to the observer that minimizes the innovation process.
The whole construction is clearly explained in [8, 9] and we will recall the
algorithm:

We consider a one parameter family {O,,7 > 0} of observers of type
(1.29), indexed by the time, each of them starting from Sy, o, at the current
time 7. In fact, in practice, it will be sufficient to consider, at time 7, a slipping
window of time, [ — T, 7], and a finite set of observers {O,, 7 —T <t; <7},
with t; =7 —i%,i=1,..,N.

As usual, we call the term I(7) = g(7) — y(7), (the difference at time 7
between the estimate output and the real output), the "innovation”. Here, for
each observer Oy, ,we have an innovation I, (7).

Our suggestion is to take as the estimate of the state, the estimation given
by the observer Oy, that minimizes the absolute value of the innovation.

This is a very natural choice, according to probability theory (Section 1.2).
The innovation process will also have an important role in Section 1.3.4, but
we will consider its integral over small past time, which is another possible
choice here.

Let us analyze what will be the effect of this procedure in a deterministic
setting: after the transient part and if no unmodelized perturbation occurs,
the best estimation is given by the oldest observer. Indeed, the oldest observer
has converged and moreover, it is close to a classical EKF and therefore, it is
more robust to measurement noise. But if a large perturbation occurs, making
a jump on the state, the oldest (EKF) observer will no more converge. The
youngest observer, which is a HG-EKF, will converge since it is in transient
time (it’s life time is less than 7). After an (arbitrary) short transient, the
youngest observer will then give the best estimate and hence the smallest
innovation.

This analysis is validated by our experience and we can even use these
remarks to detect jumps, which correspond to abnormal operations or sensor
failures.

Another remark is that this approach may be compared to a particle fil-
tering method where the a posteriori estimation of the state is the maximum
likelihood one. There exist several differences between these two algorithms
and in fact, their use depends as usual on the observability study. If the sys-
tem is not observable, a filtering approach should be used. If the system is
observable, an observer can be used.

1.3.4 Adaptive gain extended Kalman filter

Here, we present a much simple observer. In place of equation (1.28), we
introduce the equation
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do
— =F(0,T 1.32
= F(6,T) (1.32)
where .
7= / ; ly(s) = Ge-r ()1 * ds = lly = Ge-rll72(1—10) (1.33)
t7

is the innovation from time ¢ — 7" to current time ¢. More precisely, in (1.33), y
represents the output, but 7;_r represents the prediction of the output from
the state estimation at time ¢ — T (given by the observer, z (¢t — T")). Hence
ge—7(s) is the solution at time s of

& = AW (1) +b(E (1) u)
Et-T)=2Z(t-T)
o1 (1) = C(u) € (7)

T is a tuning parameter, representing the length of the window used to
calculate the innovation. In the following theorem, the function F will be
chosen in the form

FO,I)=A(1—0)+ K (fax — 0) T (1.34)

In fact, F' can be chosen in a more general form. We will give a version of F'
that is better adapted in the presence of noise in the application part of this
chapter (Section 1.5). Intuitively, the role of the function F is:

e to let # decrease if the innovation is small, because in this case the observer
has already converged and a Kalman-like observer will be sufficient to
correctly estimate the state

e to let 6 increase if the innovation is too large, because in this case, the
observer gives a bad estimation of the state and 6 has to be large enough
in order to ensure convergence, thanks to the exponential property of high-
gain observers.

Finally, the adaptive extended Kalman filter can be written
7

Zi_é = A(u)Z +b(Z,u) + S~ C'Ry N (CZ —y(t)

o = (AW +5(Z,w))'S = S(A(u) +b" (Z, u))

(1.35)
+C'R,'C — 5QoS

% =A1-0)+ K (Omax —0)
We define @y and Ry from ) and R thanks to the matrix
10 0 - 0
03 0
A=lo0 %
. 0
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by Qo = A QA" and Ry = 0~ 'R. Let us remark that this change of
coordinates is different from the previous one (high-gain extended Kalman
filters of Section 1.3.2 and Section 1.3.3).

Our main result is the following:

Theorem 5. Let us consider a system in the canonical form of observability.
We consider the adaptive-gain extended Kalman filter (1.35). Let us suppose
that A\, K and Omax (in (1.34)) are three constant parameters such that \ is
small enough, K is large enough, and 0.« is large enough. Then, (1.85) is
an exponentially converging observer.

The proof is based on the following crucial lemma:

Lemma 1. Let 20, 23 € R"™. Let us consider the outputs y1 (t) and y (t)

with initial conditions respectively x9 and x3. The following condition (called
persistant observability) holds:

VT >0 Vu€ L Upam) Ar >0

1 (T
2% — @3] < +— / ly2 (1) = 2 (7) [ d7
T Jo

The main difference between the previous observer is the fact that now,
the matrix R depends on 6, which was not necessary when 6 was only a
decreasing parameter. The behavior of this adaptive—gain extended Kalman
filter is illustrated on a DC—motor, in Section 1.5.

We point out that this AG-EKF is a very promising tool: it is a small
modification of already existing adaptive—gain EKF proposed by engineers
to improve the performance of EKF during abnormal operations. We pro-
pose the same approach in a theoretical framework, ensuring the exponential
convergence of the algorithm.

1.3.5 Observer for continuous—discrete systems

As already explain in Section 1.2.2, practical problems may often be written
in continuous-discrete form (1.12). There exist also some observability results
concerning these systems. Let us suppose, for simplicity, that the sampling
time is constant, i.e. t = k At.

A generalized canonical form of observability for these systems is the nat-
ural extension of the generalized canonical form of observability (1.21)

9z — A(u)z + b(z, u)
{ s ) (1.36)

were A, b and C are defined as in (1.22), (1.24) and (1.23) and satisfies the
same hypothesis. In the affine control case (1.20), with a discrete observation,
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the change of coordinates is the same as in the continuous case. In fact, (1.21)
and (1.36) are exactly equivalent with y, =y (t).

The HG-EKF for continuous—discrete systems has the (not surprising)
form:

Correction step

2 (1) = =(00) + G () (o 1
G (k) = P () C (u) (C(w) P(t)C(u) + R)” (1.37)
P () = (I-G(i)C(u) P

Prediction step

{ 4z — A(u)x + b(z,u) (1.38)

2E _ (Au) + b (2 w)P + P(A (u) 15 (5, 0) + Qo
Then we have:

Theorem 6. ([14]) Under same assumptions as in continuous case and for
At small enough, there is an interval [0y, 61] such that for any 6 € [0y, 01],
the continuous—discrete high—gain extended Kalman filter (1.37-1.88) is an
exponential observer.

Genericity and observability have also been studied for continuous—discrete
systems. One can expect that same results hold when sampling time is small
enough. Roughly speaking, it is more or less true. There exist continuous—
discrete versions of theorems from Section 1.3.1 in the continuous—discrete
case ([1, 2]).

1.3.6 A "weak" separation principle

In this section, we just want to give an important application concerning
high-gain observers and particularly the high-gain extended Kalman filter.

Usually, observers are used in order to control nonlinear systems with a
state-feedback control law. This control law w (z) is calculated in order to
achieve a good performance and, at least, to ensure the stability of the closed
loop system. An observer is developed in order to estimate the state (which is
not completely measured, in most applications) and the control law applied
to the process is u (2) (where z is the estimation of z given by the observer)®.

Therefore, the closed loop system consist in a control law and an observer,
and both are developed independently.

6 If a filter has been developped, then one should apply the more accurate control
law u(t) = E [u(X (t)) | '] which is usually different from u (z) where z =
E[X(t)| FY].
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In the linear-quadratic case, the "separation principle" stated that, if an
optimal state-feedback control law is applied with an optimal observer, the
result is optimal. It is a very strong "superposition" result which is false for
nonlinear systems.

Nevertheless, we can expect to prove a weaker version of the linear sepa-
ration principle.

Let us consider again our system 1.21. Let us suppose that there exist a
positively invariant compact subset of R™ for any control law u (t).

Theorem 7. If u (x) is a state feedback which make the system 1.21 globally
asymptotically stable, then the system

e _ A (u ()2 +b (2, u(2))

g—g = A(u)z + b(z,u) — S(t)"*C'"R™Y(Cz — y(t))

I (A(w) + (2 0)'S — S(A(W) + b (2.u)
+C'R71C - SQyS

is globally asymptotically stable for 6 large enough.

Hence, this theorem show that the state-feedback control law can be re-
placed by an observer based control law and that the stability is preserved.

Remark 6. It has to be point out that this result is not true for the adaptive-
gain extended Kalman filter (with these hypothesis) because it is necessary to
have an exponentially converging observer with an arbitrary fast convergence.

1.4 Identifiability and identification

1.4.1 Definitions

The problem of identification is a generalization of the observation problem:
very often, practical control systems depend on some functions, (with physical
meaning), that are not well known, and that have to be determined on the
basis of experiments. Systems under consideration have the following form

d_? = f(z,u, ¢ (2,u))
{ dy = h(z,u, ¢ (z,u)) (1.39)

If = denotes the state of the system, if ¢(x,u) is the unknown function,
and y(t) is the observed data, the identification problem is the problem of
reconstructing the piece of the graph of ¢(.),visited during the experiment.
That is, for an experiment of duration 7', we want to determine the trajectories
(x(t),u(t), e(z(t),u(t)), for all t € [0,T], using only the observed data {y(¢),
t € [0,T]}. We say that a system is identifiable if this is possible, whatever
the experiment.
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An identifier is a device performing this task. We will be interested with
“on-line identifiers” only, i.e. identifiers that estimate the graph of ¢ simulta-
neously to the experiment.

The two problems, of observation and identification, are of course strongly
connected for two reasons:

1. we do not suppose that z (0) is known. Hence, the identification problem
include an observation problem: we want to estimate both z (¢) and ¢(.).
It is the main difference with the right-inversion problem, also known as
the input identification problem.

2. identification requires an identifiability study, and this study is closely
related to observability study. Moreover, our main tools to perform iden-
tification are based on (high—gain) observers.

Let us explain the second point, in the uncontrolled case. We consider
smooth (C* or C*°, depending on the context) systems of the form X

de __
A (140
where the state © = z(t) lies in a n—dimensional analytic manifold” X,

x (0) = xo, the observation y is RP—valued, and f, h are respectively a smooth
(parametrized) vector field and a smooth function. The function ¢ is an un-
known function of the state. Each trajectory is supposed to be defined on
some interval [0, T, o[-

e If the number of outputs is three ore more, then, identifiability is a generic
property,

e If there is only one or two outputs, then, identifiability is a nongeneric
property, so strong that it can be characterized by four very rigid normal
forms.

Our goal is to estimate both state variable  and unknown function ¢ :
X — I, I being a compact interval of R (the theory, developed in [10], clearly
has extensions to higher dimension). More precisely, we want to reconstruct
the piece of the graph of ¢ visited during experiment.

Let us recall some definitions and results from this last paper. For this
introduction, we will only consider uncontrolled systems such as (1.40). Some
results can be extended to controlled systems.

Let 2 = X x L™ [I], where

L™ [I] ={¢:[0,T3] — I, ¢ measurable}

Then we can define the input/output mapping

7 analytic manifold stands for analytic connected paracompact Hausdorf manifold
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P : 2 — L [Rdﬂ
(0,2 () — y ()
Definition 5. X is said to be identifiable if P is injective.

As for observability, we define an infinitesimal version of identifiability. Let
us consider the first variation of the system (1.40) (where ¢ () = p oz (1)):

g—? = f(x,¢)
TY0opcomy 5 =Tof (x,0)E+dpf (z,8)n

and the input/output mapping of T

Prs.ueg t TogX x L®[R] — L [R%]
(o, (1)) — 9()

Definition 6. X is said to be infinitesimally identifiable if Prx .,,p s injec-
tive for any (xo, 9 () € £2 i.e. ker (Prx 24,6) = {0} for any (zo, @ (+)).

Both identifiability and infinitesimal identifiability mean injectivity of
some mapping. Clearly injectivity depends on the domain. Therefore, it seems
that these notions are not well defined. In fact these notions do not depend
on the domain. Indeed, if an analytic system X' is not (infinitesimally) iden-
tifiable because there exists a L> function which make the system not (in-
finitesimally) identifiable, then there exist an analytic function which make
the system not (infinitesimally) identifiable.

We consider again a system X of the form (1.40). In [10], we have shown
that identifiability is a generic property if and only if the number of obser-
vation p is greater or equal to 3. On the contrary, if p is equal to 1 or 2,
identifiability is a very restrictive hypothesis (infinite codimension) and we
have completely classified infinitesimally identifiable systems by giving cer-
tain geometric properties that are equivalent to the normal forms presented
in Theorems 8 and 9 [10] below.

These theorems are the basis of our identifier construction: since every
identifiable systems may be put, up to a change of coordinates, in one of these
canonical form of identifiability, then it is sufficient to develop an identifier
for these forms (exactly as observers for observable systems).

Theorem 8. (p = 1) If X is uniformly infinitesimally identifiable, then, there
is a subanalytic closed subset Z of X, of codimension 1 at least, such that for
any xo € X\Z, there is a coordinate neighborhood (x1,...,xn, Viy), Vi, C
X\Z in which X (restricted to V,,) can be written:
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1 =X
0
21 dnor = 2 and %w(%s@) #0 (1.41)
Yy =T

Theorem 9. (p = 2) If X is uniformly infinitesimally identifiable, then, there
is an open-dense semi-analytic subset U of X x I, such that each point (2o, ¢o)
of U, has a neighborhood V,, x I, and coordinates x on Vy, such that the

system X restricted to Vi, x I,,, denoted by DILVANG T has one of the three

following normal forms:

e type 1 normal form:

291

with 9 £ 0.
©
o type 2 normal form:

Y1
T

292

with §& # 0, 52 £ 0,

) OT2r41
e type 3 normal form:

Tor_3 = Tor_1
1.'27"71 = ?/1(997 90) 1.'27"

Y1 =T Y2 = T2
.fl = I3 ig = T4

Tog—3 = Tok—1 Tok—2 = T2k
Fok—1 = for—1(21, ..., T2k+1)

T2k = T2k+1

Tp—1 = Tp

Tn = fn(xa (P)
=1 Y2 = T2
=13 Ty =14

Tor—2 = Tar
= FQT(l‘l, ceey
IE2T+171/)(=’E, 50))
Torp1 = Forga(z1,.. .,
I27‘+27w($a 90))

Tp—1 : Fn—1($,¢($,w))
Tn = Fn(x,go)

OF, _
L

(1.42)

(1.43)
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1 =1 Y2 = X2
.fl = I3 $2 = T4

223 : : (1.44)
Tp—3 = Tn_1 Tp_2 = Tn

Tp—1 = fn—1($790) Tn = fn(xa@)

with %(fn,l, fn) #0.

Theorem 10. (p > 3) If X is an infinitesimally identifiable generic system,
then there is a connected open dense subset Z of X such that for any xo €
X\Z, there exist a smooth C*® —function F and a (gj, 7, ... ,Q(Q"))fdependant
embedding @y sen) () such that outside Z, trajectories of Xy, , are mapped
via @y sea into trajectories of the following system

dz

T A2
2=z
23+ dzon _
4 Tdt T *2n+l
% =F (Zla e 722n+15g5 s 7@(2n+1))
y==
where z;, 1 =1,...,2n+ 1 has dimension p — 1, and with
-1
{ T =0y e () (1.45)
¢ =V(z,9)

(9 is a selected output).

1.4.2 Identifiers

As explained before, we have to build an identifier for each canonical form
of identifiability. The basic idea is the same for all these forms, and leads to
the use of the nonlinear observers developed previously: we assume, along the
tr(aj)ectories visited, a local model for . For instance, a simple local model is:
o*) = 0.

This does not mean, at the end, that we will identify ¢ as a polynomial
in ¢: the question is not that this polynomial models the function ¢ globally
as a function of ¢, but only locally, on reasonable time intervals (reasonable
w.r.t. the performances of the observer that we will use).

This idea is just an extension of the classical way to identify constant or

slowly varying parameters m. In this case, one use to add the parameter in the

state variables and to add the equation %—T = 0. Therefore, the local model is

a constant polynomial. In our case, such local model is too constrained (since
© is not supposed to vary slowly), so we add a polynomial local model.
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Let us consider a system X' in the identifiability normal form 1.41. Adding
the local model for ¢, we get the system:

y =1, (1.46)
T = €2, ---7$'n—1 = Tn,
in - Q’(x,(pl), (lbl = ©2, "'7()bk‘—1 = Pk, Sbk = 0)
ov .
—— # 0 (never vanishes). (1.47)
dp1

This is a system on R"** which is not controlled (however, for the con-
siderations that follow, ¥ could depend on a control u), and this system is
under the normal form (1.17, 1.18).

Therefore, we may apply high gain Luenberger observer, or we may apply
the trick in Section 1.3.2. Then, for instance, the observer of Sections 1.3.2,
1.3.3 and 1.3.4 may be applied to this system. It will provide estimations of
x(t), p(t), that is, just an estimation of the piece of the graph of ¢ visited
during the experiment.

The cases of normal forms (1.42), (1.43), (1.44), corresponding to Type 1
to 3 systems can be treated in a similar way to the single-output case, with
some more or less easy adaptations of the methods of the previous sections.
This exercise is left to the reader.

An application of this technique in a difficult case (the local polynomial
model does not apply) is presented in Section 1.6. Some important remarks
and practical considerations are discussed in this section.

1.5 Series-connected DC motor

In this first application we present (in simulation) the design of the adaptive-
gain extended Kalman filter (AG-EKF, see Section 1.3.4) for a single input
single output (SISO) system, namely a series-connected DC motor.

Basically, an electric motor converts electrical energy into mechanical en-
ergy. In a DC motor, the stator (also denoted field) is composed of an electro-
magnet, or a permanent magnet, that immerses the rotor in a magnetic field.
The rotor (also denoted armature) is made of an electromagnet that once sup-
plied with current creates a second magnetic field. Movement is then caused
by the attraction/repelling behavior of magnets. As far as the magnetic field
created by the stator remain fixed the rotor windings are connected to a com-
mutator. The direction of the current flowing through the armature coils is
then switched during the rotation and the polarity of the armature magnetic
field is reversed. Successive commutations then maintain the rotating motion
of the machine. A DC motor whose field circuit and armature circuit are con-
nected in series, and therefore fed by the same power supply, is referred to as
a series-connected DC motor [34].
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1.5.1 Mathematical model

Fig. 1.1. Series-connected DC motor equivalent circuit representation

The model of the series-connected DC motor is obtained from the equiv-
alent circuit representation shown in Figure 1.1. We denote Iy the current
flowing through the field part of the circuit (between points A and C) and I,
the current through the armature circuit (between points C and B). When the
shaft of the motor is turned by an external force, the motor acts as a generator
and produces an electromotive force. In the case of the DC motor, this force
will act against the current applied to the circuit and is then denoted back or
counter electromotive force (BEMF or CEMF). The electrical balance leads
to )

Lf]f + Rf[f =Vac

for the field circuit, and to
Lo, + RyI, =Vep — E

where Ly and Ry are the inductance and the resistance of the field circuit,
L, and R, are the inductance and the resistance of the armature circuit, and
FE denotes the Back EMF. Kirchoff’s laws give us the relations

I=1,=1I
V =Vac+Vea

which gives for the total electrical balance

LI+RI=V -—FE

where L = Ly + L, and R = Ry + R,. We now denote ¢ the field flux, we
have ¢ = f(Iy) = f(I), and E = K,,$w, where K,, is a constant and w, is
the rotational speed of the shaft.

The second equation of the model is given by the mechanical balance of
the shaft of the motor using the well known Newton’s law. We consider that
the only forces applied to the shaft are the electromechanical torque T, the
viscous friction torque and the load torque T, leading to
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Jo, =T, — Bw, — T,

where J denotes the rotor inertia, and B the viscous friction coefficient. The
electromechanical torque is given by T, = K.®I with K, denoting a constant
parameter. We consider that the motor is operated below saturation: the
field flux can be expressed by the linear expression @ = Lqfl where L,y
denotes the mutual inductance between the field and the rotating armature
coils. To conclude with the modeling of the DC motor we suppose the ideal
hypothesis of 100% efficiency in the energy conversion expressed by K =
K,, = K., and for notation simplicity we write L,y instead of K L,s. The
voltage is the input of the system wu(t) and the current I is the measured
output. We finally obtain the following SISO model for the series-connected

DC motor
LI\ ([ u—RI—Lyjw.I
JC:«JT N LafI2 — Bw, - T, (148)
y=1

This model will be used to simulate the DC motor by mean of a Mat-
lab/Simulink S-function.

1.5.2 Observability canonical form

Before implementing the observer in order to reconstruct the state vector of
this system we test (quite easily) its observability property. We use the differ-
entiation approach that is we verify the differential observability (Definition
3) which implies observability.

e I(t) is known with time, then [ = (1/L)(u — R.I — Lojw,I) is known and
as far as u(t), R, and L, are known then w, can be computed

e now that w,(¢) is known, W, = (1/J)(LasI? — Bw, —T,) can be computed
and because of the knowledge we have of I(t), Lqf, B,and J, T, can be
estimated

We deduce from this that a third variable may be added to the state
vector in order to reconstruct both the state of the system and the load
torque applied to the shaft of the motor. We assume that the load torque is
constant over time. Sudden changes of the load torque will then be considered
as unmodeled perturbations. The observer we use is the adaptive-gain Kalman
filter as described in Section 1.3.4 because it has the classical EKF structure
when no perturbations occur and the structure of a HG-EKF when the system
faces a perturbation. Estimation of the load torque is made possible by the
addition of the equation T, = 0 to (1.48) (see remarks in Section 1.4.2). We
now need to find the coordinate transformation that puts this systems into
the observability canonical form.

From the equation y = I, we choose z; = I and then
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1
Z1 = Z(u(t) — RI — Loylw,)
which by setting zo = Iw, becomes
. Laf 1
Z1 = — T 29 + z(u(t) — Rz1) = aa(u)za + b1(21,u) (1.49)

we now compute the time derivative of zo

. 1 B L L t R
2y = Twy + Iy = —=ToI — = Tw, + ”jﬂfﬁid1+ﬂlm

J T J L L et

when I > 0 and consequently z; > 0 which sounds as a reasonable assumption
as far as I is the current of the circuit which is equal to zero only when there
is no power supplied to the engine (and therefore nothing to observe), we set
Wy = z—f, and by setting z3 = T, I this equation becomes

i 1 B Loy Los 23 wu(t)zs R

R T } 23— Taz—j + DA az(u)zg + ba(z1, 22, 1)
(1.50)

and identical remark as above lead us to the expression T, = Z* and recalling

that T, = 0 we obtain

Loy 2223 u(t)zs R
— —za=b 1.51
L = L = L 3(21, 22, 23,0) ( )

Thus the application from R*t x R x R — R*t x R x R defined by

(Lw,,T,) — (I,Iw,,IT,) with (21, 22,23) — (zl,i—f,i—?) as its inverse, is

Zy=—

a change of coordinates that puts the system (1.48) into the observer canon-
ical form defined by (1.49), (1.50) and (1.51). It is necessary to compute the

Y
*

coefficients of the matrix b .

1.5.3 Observer implementation

We now recall the equations of the AG-EKF
dz

= AWZ (0 + PORGCZ - )
= = P(A@W) +0°(Zu)) + (A () + b (Z,u)
—PC'R;'CP + Qg

= X1 = 5(T)).(1 = 0) + K.5(Z).(Omaz — 0)

(1.52)

g

dt
where Rg = 07'R and Qy = 0AQA with Ay = diag (9,92, - ,9"), s(Z) =
[1 + e*ﬁ(z’m)] ! and
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t
T= [ ) =P ds =y = gierliary (159
t—

In fact, these equations are a slight modification of (1.34): the function
F has been modified in order to take into account noise effects, as we will
explain below.

The simulation of the DC motor is straightforward, we then only com-
ment the implementation of the observer. A Matlab/Simulink bloc diagram
representing the DC machine and the observer is shown in Figure 1.2 (this
figure is incomplete as far as one would surely want to plot errors between
real and estimated states). As it may be seen from the simulink bloc diagram
shown in Figure 1.3 the observer is decomposed into three parts: two level 1
S-functions and a transport delay bloc. As written on the diagram, the right-
most S-function is dedicated to the computation of the three main equations
of the observer which are equations (1.52). This bloc has three type of inputs:
the measured output of the observed system, the input delivered to the ob-
served system and the innovation. The innovation is computed using a distinct
S-function because unlike the main equations that may be processed contin-
uously (or quasi-continuously), a discrete S-function is needed to compute
the innovation. This choice was made because:

>

Input noise 120 Input Output noise Current |

v

Load tarque
values

Level 1 S-functian
DC matar

In1
out1 1<
In2

Out1

v

Observer subsystem
Load targue AEKF

Load targue
noise

Fig. 1.2. Simulation and observation of the DC motor

{1 ) Cutput of the DC motor: |

{2 Jinput of the DC motor: ¥

BuboDCSeries

Estimated
state

Level 1 S-function
ohserver 3 main
equations

Ly Sserieslnnov

level 1 S-function
Transport Computation of the
Delay Innovation

Fig. 1.3. Observer subsystem

Estimated
State
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e the computation of the integral is made by mean of a fixed step trapezoidal
method

e we have to keep memory of the input and the output trajectories over a
time interval [0; T'] where T is the delay of (1.53) which is easily done with
a fixed step process.

The codes to implement those different functions may be downloaded from
http:/ /www.u-bourgogne.fr/monge/e.busvelle/springer/ or obtained from the
authors if the link happens to be disabled.

1.5.4 Simulation parameters and observer tuning

The parameters used to simulate the DC engine, motivated by measures made
on areal system, are L = 1.22 H, Res = 5.4183 {2, L,y = 0.0683 N.m.Wb‘l.Afl,
J =0.0044 kg.m?, and B = 0.0026 N.m.s '.rad~".

We now need to set the observer parameters d, Dt, R, @, 0naz, A, K, 5,
and m. Before explaining how those parameters may be tuned, we want to
stress that the last four ones do not need to be reseted for each new observer.
Those parameters appear in the last equation in (1.52) and drive the evolution
of the parameter . The values A = K = 500, # = 2000, and m = m1 + mo
where m; = 0.005 (mo will be specific to each new process) may be kept
each time a new observer is implemented. The procedure used to tune the
parameters R, ), 0,4, is inspired by the one proposed in [9, part. 5.2.2].

1. As a first step, we determine the (symmetric positive definite) matrices
R and @Q by using an EKF. This observer can be obtained from the AG-EKF
when the parameters of the adaptation function are set to 0 and 6(0) = 1.
Large perturbations are not considered and the observer is initialized to the
proper (or previously estimated) values of the state vector.

2. As a second step, we set the R and ) matrices to the values previously
found and use a HG-EKF in order to tune . As above the observer needed is
obtained from the AG-EKF when the parameters of the adaptation function
are set to 0. Then 0(0) is the value that is tuned. Here we will try to find a
value for the high-gain parameter that allows fast and reasonable convergence
(with respect to noise amplification) when large unmodeled perturbations are
applied to the system. 6,,,,, is then taken equal to the value estimated at this
step.

3. As a last step we now set the parameters of the adaptation function. We
remark that when m = 0 then s(0) = 0.5. Thus we need to shift the sigmoid
function to the right if we want s(0) to be close to zero. Choosing y; as small as
we want and solving the equation s(0) = y; allows to obtain the parameter m.
This solution is easily computed provided that the parameter § is known. As
the sigmoid function is centered on (0, 0.5) when m = 0, the computation of 8
is made by setting a length [ for the transition part and solving the nonlinear
equation (with m = 0): s(I/2) — s(—=1/2) = (1 — y1) — y1. Of course, another
approach is to graphically define 8 and m from trial and error. Figure 1.4
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) adjust_sig E]|E|E|
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Fig. 1.4. estimation of 8 and m, by trial and error

shows a simple Matlab GUT implemented to ease this latter method (the result
displayed is for the values of 3 and m; given above). The code of this GUI is
also available from http://www.u-bourgogne.fr/monge/e.busvelle/springer/.

Now that the transition part is small, we want the gain to increase and
decrease quickly. If we suppose that 6(¢) = 1 and that we want it to reach
Opmas within a time 7 then the equation § = % = K.(Omaz — 1) allows
the computation of K. As far as the equation used to compute K is only an
approximation, a bigger value (e.g. twice the computed value) may be used.
Finally, a reasonable choice for the last parameter remaining is A = K.

The parameter T', the length of the window on which innovation is com-
puted, is related to the rise time of the system when it is facing perturbations:
it has to be sufficiently big so as to give an account of perturbations that occur
on the system. The sample time Dt of the discrete S-function should ideally
be chosen as small as possible, leading to a significant increase of the amount
of time and of the memory needed to compute the innovation (we need to keep
track of - +1 system outputs and - system inputs). Dt = T//3 or Dt = T//4
seems to be reasonable, fewer values will of course give more flexibility to the
system.

Because of measurement noise the innovation will never be equal to zero
and therefore the observer will stay in a high-gain mode. To avoid this prob-
lem, the parameter m is rewritten m = mj + mo where m; is the previously
computed quantity and mo will represent the influence of the noise on the



1 Adaptive-gain observers and applications 37

system. As a result, when Z < my we will have s(Z) < y; and 6 won’t in-
crease. We denote by o the standard deviation of the output noise, which can
be estimated from output measurements, and then mo = T.02 where T is the
delay used in the definition of the innovation. Figure 1.5 shows the output
of the simulated DC motor (with addition of noise) and that ¢ = 0.7 is a
reasonable value for the standard deviation.

System output

Time

Fig. 1.5. Estimation of the standard deviation

Finally all those steps allow us to set the parameters to R = 1, Q =
[1,0,0;0,5,0;0,0,5], Omar = 3, A = K = 500, § = 2000, T = 0.1, Dt = 0.01,
and m = 0.005 4 0.049.

1.5.5 Simulation results

Figures 1.6 and 1.7 shows the performance of the designed observer, all the
observers identify the values taken by the load torque but with different be-
haviors. The EKF rejects noise but converges slowly when the system faces
unmodeled perturbations. We may add that in order to speed up a little bit
the EKF the @ matrix was set to [25,0,0;0,25,0;0,0,50] in this special case,
it was kept to the value given in the previous chapter for all the other simu-
lations.

The HG-EKF is on the contrary very sensitive to measurement noise but
is very fast regarding convergence when a perturbation arises.

The AG-EKF presents both the advantages of the two previous filters,
namely noise rejection and speed of convergence under perturbations. We
observe that the adaptive-gain observer is a little bit slower than the fixed
high-gain one. This is due to the delay induced by the computation of inno-
vation, in fact the value chosen for Dt will have an impact on this delay as far
as the behavior of § (increasing toward 6,4, or decreasing toward 1) will only
change with the innovation. In all the parameters tuned for this last observer
one will have a major impact, this is ms. Indeed if it is set to a too big value
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then # won’t increase every time it is needed what does not constitutes a
major drawback because the EKF rejects noise (this is true provided that ms
is not such as big that it totally prevent 6 from increasing). On the contrary,
if mg is too small then @ will increase when it is not needed (only because of
the noise) having the only effect to amplify noise. However as it can be seen
from Figure 1.5, o and therefore ms is not difficult to estimate from output
measurements. To illustrate this comment Figure 1.8 shows the evolution of 6
for two different values of ms (the value 0.049 corresponds to the simulations
which results are shown above).
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1.6 Electronical neuron circuit

With this second application we illustrate how observers can assist system
modeling and, in the case considered here, prototype assessment (as in Section
1.4). Identifiability study of this model has been presented in [5].

The modelization of neurons is extensively studied in neuroscience re-
search. A large quantity of models of isolated neuron cells or of neuron cells
networks are available in the literature each one of them presenting variable
degrees in their accuracy. The model we use here, a modification of the model
proposed by Fitzhugh, Nagumo & al. in the early 1960’s, is a simplification of
the one of a single isolated biological neuron proposed by Hodgkin and Huxley
[24]. Historical informations on the development of this model can be found
in [28].

1.6.1 The modified Fitzhugh-Nagumo model (MFHN)

From the biological point of view this model is composed of two variables,
V' representing the membrane voltage and W that represents the recovery
variable

y VS
{.V—V =W (1.54)

W=e(g(V)-W—n)

where ¢ and 7 are constant parameters and g is the piecewise linear function

CBVifV >0
Q(V)_{awfvg

where o and 3 are constant parameters.
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This model was implemented as an analogue circuit at LE2I laboratory
(university of Burgundy), the exact description of this circuit is given in [6].
The analyze of this physical system is made by mean of an observer based
approach, real data being available.

1.6.2 Identifiability and observability

From the analogue circuit point of view, V' corresponds to a voltage and W to a
current therefore both of them can be measured. Although in the case of a real
biological system it will only be possible to measure V', the membrane voltage.
Thus we will consider that only V' is actually measured. The objective of this
study is the identification of the function g (i.e. the part of its graph visited
during the experiment) and the study of the identifiability property of the
system constitutes a first step. In Section 1.4, we described an identifiability
normal form for single output uncontrolled systems (normal forms for systems
with more than one output are also given)

.fl = i)

By = @ (1.55)
Ty = w(xag)
y = 1

We now want to find a change of coordinates that allow the MFHN equa-
tions to match this normal form. This coordinate transformation is easily
found: set z1 =V and zo = V.

i =V
=% .

o=V -VVZ_-W (1.56)
= (1= a})zs e (g(w1) =21+ 5 + 22— 1)
=1(z,9)

Since € # 0, the system is clearly identifiable. We see that if the parameter
7 is unknown we have the possibility to redefine the unknown function g as
g(z1) = g(z1) — n with no change in the normal form.

In order to identify the function g, we extend the state vector by making
g a state variable. As it is clear that g is not constant over time we model it
as a local polynomial of time

g(V(t) = g(t) =ap+ art+ ... + ant”

which imply that dv;:if(lt) = 0. The model is completed by the addition of n

new state variables corresponding to the n first derivatives of g with respect
to time (for a total of n 4+ 1 new variables). It appears that when the system




1 Adaptive-gain observers and applications 41

defined by (1.56) is extended in that manner it is in the observability canonical
form. However there exist a much more simpler way to obtain the canonical
form that is not to do any change of variables. This latter form is the one
we will consider so as to avoid change of variables while implementing the
observer

v 0-100..00 v V-
W 00 ec0..00|[ W —e(W )
d ho 0001..00 ho 0
— h =]10000..00 h
a 1 1 + 0
hn—1 0 00O0..01 hp_1 0
hn 00 000O0O0 hn 0
where h; = dg(t) for i = 0,...,n and with £ = ¢.

One couldd think that the ch01ce of a local representation for the function
g (here a polynomial of time) and the transformation of the model into the
canonical observability form suffices to prove identifiability. It is in fact not
the case. This subtle difference has been well illustrated in [9, part 6] where
the authors exhibit the example

= o)
{yzw(x) vek

indeed, keeping the notations used above for the function g and setting n = 1,
then the change of coordinates (z, ho, h1) — (21, 22, 23) = (z + ho, ho + h1, h1)
leads to an observability canonical form. However the authors showed that
this system is not identifiable !

1.6.3 Implementation

The high-gain extended Kalman filter is adapted to the problem of identi-
fication of the unknown function g. The implementation of this observer is
much more easy to carry on than the previous one: only one S-function is
needed. Even if our objective is to use real data get from the analogue circuit
mentioned above we use a continuous S-function. This is motivated by the
fact that our data’s sample time is smaller than the average time step used by
the software to compute the continuous solutions (but a continuous—discrete
observer (1.37)-(1.38) will be another possible choice). The corresponding
Matlab/Simulink diagram is shown Figure 1.9.

Codes may be downloaded (together with a set of data) from http://www.u-
bourgogne.fr/monge/e.busvelle/springer/.



42 Nicolas Boizot and Eric Busvelle

|:|_

real data

kalran?

Estirnated state
Get Wit) v, VG

W)

High-gain
Kalrman filter

Membrane WValtage

Get G{t)

Fig. 1.9. Identification from real data

1.6.4 Results

A first series of simulations of the MFHN model are done in order to tune
the three parameters n, @), and 6. The parameters for the MFHN model
are set to o = 0.5, § = 1.96, ¢ = 0.2966, n = 0.20531 V(0) = 1.0656,
and W(0) = 2.6903. Since we are using an observer that only has a high-
gain behavior, @ is set to the identity matrix Id(34y)x(34n)- The high-gain
parameter 6 is then chosen to ensure an accurate identification of the function.
Several simulations shows that § = 1 (corresponding to an extended Kalman
filter) does not lead to the identification of the function. The identification is
made possible when 6 € [5;10], and is very accurate when 6 > 10. Figure 1.10
shows identification results for four different values of the high-gain parameter
when the data fed to the observer are simulated. No noise have been added
during those simulations and then even if § = 15 gives the best result, the
trade-off between speed of convergence and sensibility to noise lead us to
choose a smaller value.

The values for V' got from the analogue circuit are shown Figure 1.11 and
the result of the identification (with § = 10 and n = 1) is shown Figure
1.12(a). We see that the unknown function is identified as a loop and from
the shape of the data used, we expect four of them.

We isolated the first values given by the observer in order to obtain the
clearer graphic Figure 1.12(b) in which we highlighted the overshoot due to
the inaccurate initialization of the observer. After this overshoot the observer
converges to the values taken by the unknown function and while V' < 0
the estimation is quite good. When V becomes positive the estimation is
not that accurate anymore. Two reasons can be pointed out to explain this
phenomenon: the real data do not correspond exactly to the output the theo-
retic model would give for the same set of parameters (which is analogous to
modeling errors) and the fact that the function we want to identify is not dif-
ferentiable in 0, a very specific property that is not reflected by our polynomial
approximation.

We rewrite the model used to perform the identification so as to take this
into consideration
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Fig. 1.10. Identification of g from simulations (without noise addition)
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Ty =Ty Ty = 15(%@’3)

&= = [
ar=az = [P (1.57)
dp=ag f2=  [s
G3= 0 fBs= 0

The results of this new identification are shown Figure 1.13(a-b). This new

estimation is very accurate after a few cycles. Small errors both for the positive
and negative values of V are still visible, they can also be spotted when we
trace the values taken by & and ¢ against time as in Figure 1.14. Those errors
are due to the fact that real data differ from the ideal mathematical model.
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