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tionWe distinguish two kinds of observers for nonlinear systems whi
h are usedby s
ientists and engineers: empiri
al observers and 
onverging observers.The �rst 
lass of observers are based on some approximation of the non-linear system or approximation of a theoreti
al best estimation. The most
ommon example is of 
ourse the extended Kalman �lter. Although, for linearsystems, the Kalman �lter is a 
onverging observer and an optimal observerfor some quadrati
 
ost fun
tion, the nonlinear version is based on a lineariza-tion of the nonlinear system in a neighborhood of its estimation. Hen
e, theextended Kalman �lter is a good � almost optimal � lo
al observer but it isnot a globally 
onverging observer. Intuitively, if the a priori estimation isfar from the a
tual state value, the linearization around the estimate has nosense (Se
tion 1.2.2).There are a lot of empiri
al observers, based on neural networks, geneti
algorithms, fuzzy logi
, and so on. These observers are also based on an ap-proximation of the pro
ess.An other type of observers are based on the approximation of the exa
tsolution. Indeed, setting the problem as a sto
hasti
 problem, the optimal so-lution is given by the Dun
an-Mortensen-Zakaï (DMZ) equation. The solutionof this nonlinear sto
hasti
 partial di�erential equation is the law of the stateknowing observations. Hen
e, the 
onditional expe
tation of the state know-ing observations 
an be expressed using the solution of the DMZ equation.However, this PDE equation is very 
ompli
ated. There exist some algorithmsin order to 
al
ulate an approximation of the solution, and therefore to ob-tain an approximate observer. For instan
e, some Monte-Carlo methods 
anbe used in order to 
al
ulate the 
onditional density of probability of the 
on-ditional law. In this 
ase, these methods are 
alled parti
le �ltering methods.It 
onsists in the simulation (by Monte-Carlo methods) of several pro
esses,whi
h allows the 
al
ulation of the law of the state. The observation appearsin the DMZ equation as a killing pro
ess. Although this approa
h has some
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al justi�
ations (it 
onverges when a �nite parameter � the numberof parti
les � goes to in�nity), observers based on this approa
h are alwaysapproximative observers.Although these empiri
al observers are not proved to 
onverge, they areused by many engineers for many pro
esses, in
luding some 
riti
al pro
esses.During normal operation, these observers are often very reliable and givesvery good pra
ti
al results.The se
ond 
lass of observers are theoreti
ally 
onverging observers. Inthis book, we mainly dis
uss about high-gain observers. Nevertheless, thereexist also some other 
lasses of 
onverging observers. Most of them only dealwith a small 
lass of nonlinear systems. Most of them have also some badperforman
es in presen
e of noise.In this 
hapter, we will not speak about sliding observers, algebrai
 ob-servers, or �nite dimensional �lters, but we will fo
us on high-gain observers,and their performan
es 
omparing to extended Kalman �lter.Our purpose is to present a uniform framework where nonlinear �ltering,empiri
al observers and exponentially 
onverging observers are 
ompared. Wemainly dis
uss about their similarities, and we propose an observer based onempiri
al observers (as those used by engineers), whi
h is an exponentially
onverging observer.Despite the la
k of theoreti
al justi�
ation, the extended Kalman �lter(EKF) is one of the most famous algorithm used to estimate unknown statevariables from measurements in dynami
al nonlinear systems. It is also usedto estimate unknown 
onstant or slowly varying parameters in linear systemsand sometimes to perform failure dete
tion. In this last 
ase, it is ne
essaryto quantify the e�
ien
y of the EKF with time. This task is usually basedon the innovation pro
ess, whi
h is the integrated di�eren
e between a
tualmeasurements and predi
ted measurements. The innovation pro
ess 
an bemonitored, and a large value of the innovation 
an be used to send an alarmor to swit
h from an old model to a new one. It 
an also be used to estimatethe noise entering into the pro
ess or to estimate the measurement noise.The empiri
al EKF is even used for 
riti
al pro
esses. Therefore, in order toin
rease the performan
e and the reliability of the EKF several engineers andresear
hers already tried to develop an adaptive version. Using innovation andstate estimation, it seems possible to estimate parameters that 
hara
terizethe state of the pro
ess. These parameters 
an then be used to adapt the gainmatrix by online automati
 tuning of some of the 
ovarian
e matri
es used inthe 
omputation of the gain matrix. These kind of adaptive EKF are empiri
albut seem to have ni
e behavior 
ompared to the EKF.Be
ause of the di�
ulty to ensure robustness when adaptive quantity is
ontinuously updated, some authors used an adaptive algorithm based onswit
hing between several models. For instan
e, in [33℄, authors have devel-oped an appli
ation on a highly 
riti
al pro
ess (from robustness point ofview). They proposed to swit
h between two 
ovarian
es matrix Q1 and Q2depending on the state of the pro
ess.



1 Adaptive-gain observers and appli
ations 3There exist many papers dealing with adaptive observers and adaptiveextended Kalman �ltering espe
ially in the GPS and DGPS 
ommunity, see[22, 12, 26℄. In [12℄ for instan
e, authors present an adaptive extended Kalman�lter using innovation in order to adapt Q and R matri
es, exa
tly in the samespirit than in the present 
hapter, ex
ept that they do not give any theoreti
alproof. Nevertheless, the need for this kind of observer is 
learly established.In those papers, adaptation of the �lter is done using empiri
al rules (ge-neti
 algorithms [35℄, neural networks [44℄, statisti
s [33℄...), and no proofs aregiven. But in all 
ases, e�
ien
y of the adaptive observer is highlighted. Letus remark that for neural networks based extended Kalman �lters (N-EKF),the system is splitted into a linear part and a nonlinear part, and the ex-tended Kalman �lter is applied to the nonlinear part, whi
h is approximatedby neurons. The weights of neurons 
an be 
al
ulated using EKF, making thealgorithm adaptive. In this 
ase, some proofs 
an be established, but only ifthe neural network 
an approximate the system.An intuitive theoreti
al justi�
ation of adaptive gain is based on the highgain observer theory. It has been shown from a long time ([17℄) that highgain observers have very ni
e theoreti
al properties. The �rst one is thatthey required to study the observability property of the model. This studyprevents from developing an observer for a non-observable system. But highgain observers are also exponential observers: one 
an prove the 
onvergen
e ofthe high gain observer. In our opinion, the 
onvergen
e property is a minimumrequirement for an observer whi
h is used on some 
riti
al pro
esses, andsometimes as a diagnosti
 tool. Therefore, it is a good idea to adapt the gainof observers in the following way:
• use an EKF when the estimation is 
lose to the true state, be
ause EKFis a good (optimal) lo
al observer (as already stated) and
• use a high-gain observer when large perturbations o

ur, be
ause theseobservers are nonlinear 
onverging observers.In [14, 15, 20℄, the high-gain extended Kalman �lter (HG-EKF) has beenintrodu
ed. Compared with the Luenberger observer, HG-EKF is also an ex-ponentially 
onverging observer, but with the property that it is more e�
ientin the presen
e of noise. Indeed, the high sensitivity of high-gain observers isa well known drawba
k: the high gain ensures 
onvergen
e but also in
reasesnoise e�e
ts. In [8℄, a new algorithm, based on 
lassi
al and high-gain EKF, hasbeen developed. This algorithm is based on a theoreti
al result, whi
h statesthat a time-dependant HG-EKF, whi
h is asymptoti
ally equivalent to a 
las-si
al EKF, may be an exponentially 
onverging observer, if the transition fromHG-EKF to EKF is slow enough. But this result is based on a time-dependantobserver and, in order to make its 
onvergen
e property persistent, it is ne
-essary to use several observers and to swit
h from one to another, dependingon the innovation pro
ess. Although it is an e�
ient observer, as shown in thereferen
e above, but also in [9, 10℄, it is rather 
ompli
ated and CPU inten-sive. Moreover, even if the �nal algorithm 
an be 
onsidered as an adaptive
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olas Boizot and Eri
 Busvellehigh-gain extended Kalman �lter (AG�EKF), its implementation is far from
lassi
al observers as used by engineers.In this 
hapter, we will present a time-independant adaptive-gain extendedKalman �lter. The adaptation of θ will depend on the innovation pro
ess.As usual for the HG-EKF, the parameter θ appears in the Ri

ati equationof the Kalman �lter, and more pre
isely in the matrix Q, denoted Qθ. But inthis new 
ase, the high-gain parameter appears also in the matrix R (denoted
Rθ), as in [12℄ (for a pra
ti
al appli
ation). It is the �rst di�eren
e with resultin [8℄. The se
ond di�eren
e is that θ may in
rease if the innovation is high andde
rease if the innovation is low. This idea is the basis of pra
ti
al appli
ations:it is also the 
ornerstone of the proof of the theorem.Before 
onsidering extended Kalman �ltering, we will present in the nextse
tion some results 
on
erning nonlinear �ltering. A nonlinear �lter is sim-ilar to a nonlinear observer, in the sense that it is supposed to estimate thestate of a system given some measurements. But nonlinear �ltering deals withsto
hasti
 equations. In the deterministi
 
ase, one have in mind that themodel approximates the system, that some unmodelized and unmeasured per-turbations 
an enter 
ontinuously into the system, and that measurements are
orrupted by noise. Therefore, an observer should be robust to these pertur-bations. In the �ltering problem, these perturbations are taken into a

ountin the synthesis of the algorithm. Hen
e, the sto
hasti
 approa
h seems tobe more adapted to the problem, whi
h is better de�ned (and the sto
hasti
problem is 
ompletely solved by the DMZ equation).As we will see however, both approa
hes yields to similar tools. In fa
t,the main di�eren
e between the two theories is the observability property:
• In the sto
hasti
 
ase, the system has not to be observable. A nonlinear�lter 
an be developed even for unobservable systems sin
e it gives only the
onditional law of the state knowing observations. Typi
ally, an observablesystem gives rise to an unimodal law.
• In the deterministi
 
ase, an observer has no sense for a non observablesystem (ex
ept perhaps if the system is globally asymptoti
ally stable inwhi
h 
ase the model itself is a � slow � observer).The "nonlinear �ltering" se
tion may be read even by a reader whi
h isnot spe
ialist in probability. It 
an also be omitted by a reader whi
h is notinterested by the �ltering/observation 
omparison.1.2 Nonlinear �ltering1.2.1 Dun
an-Mortensen-Zakaï equationWe study the observer problem in a sto
hasti
 setting. Let us 
onsider thefollowing sto
hasti
 system
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{

dX (t) = f (X (t) , u)dt+Q
1
2 dW (t)

dY (t) = h (X (t) , u) dt+R
1
2 dV (t)

(1.1)where
• X (t) ∈ R

n, X (0) being a random variable, Y (t) ∈ R
p, and u is a R

d�valued measurable fun
tion,
• W (t) and V (t) are two independent Wiener pro
esses (also independentfrom X (0)).In this 
hapter, we will omit to spe
ify the time variable whenever no
onfusions are possible, writing X instead of X (t).Therefore,

E

[

(

Q
1
2W (t)

)(

Q
1
2W (t)

)′
]

= Q.t(whereM ′ denotes the transpose of a matrixM) so Q is the 
ovarian
e matrixof the state noise, and R is the 
ovarian
e matrix of the measurement noise(the notation Q
1
2 represents the Cholesky de
omposition of Q, also 
alledsquare root of Q).In this se
tion, we denote X (t) a pro
ess or random variable and x (t) itsrealization, that is x (t) = X (t) (ω).

X (0) is supposed to be an L2 (Rn) random variable independent from Wand V . For simpli
ity, we will assume that this random variable admits adensity fun
tion, denoted p (0, x) = dP ({X(0)≤x})
dx

.Considering equations in the Ito sense, if f is a Lips
hitz fun
tion w.r.t.
x with a Lips
hitz 
onstant independent of u, then the system (1.1) admits aunique solution.In this sto
hasti
 
ontext, the observer problem is an estimation problem:we want to 
al
ulate the best estimation of X (t) knowing measurements Yfrom 0 to t, denoted by the σ�algebra FY

t . Hen
e, we want to 
al
ulate the
onditional expe
tation E
[

X (t) | FY
t

], or more generally E [

φ(X (t)) | FY
t

]for any test fun
tion φ. Finally, this is equivalent to 
al
ulate the 
onditionallaw of X (t) knowing FY
t .We assume that this law admits a density denoted by p (t, x), i.e. the
onditional law is absolutely 
ontinuous with respe
t to Lebesgue measure(this restri
tive assumption is not ne
essary but it simpli�es some formulas,espe
ially the DMZ equation). Then, p (t, x) is the solution of the well knownDun
an�Mortensen�Zakaï (DMZ) equation. We will not explain this equationhere: it is a sto
hasti
 partial di�erential equation, whi
h has to be regularizedbefore to be used, and whi
h is di�
ult to use for pra
ti
al problems, espe
iallyif n is large (see [37℄ for a 
lear statement of the DMZ equation).The DMZ equation has been used in several ways:

• First, this equation may be simpli�ed in some very spe
ial 
ases. One ofthem is the linear 
ase, where the solution of the DMZ equation is theKalman �ltering equation. There exists also some nonlinear 
ases where
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olas Boizot and Eri
 Busvellethe DMZ equation gives a 
omputable solution, for instan
e for systemswhi
h are linearizable up to a 
hange of 
oordinates, or an immersion.In these 
ases, it is of 
ourse a very good approa
h to build an optimalobserver.
• Se
ond, despite its 
omplexity, the (regularized version) of the DMZ equa-tion 
an be approximately solved, for instan
e using Monte-Carlo methods.In this 
ontext, Monte�Carlo methods are 
alled parti
le methods. Themain idea is to approximate the initial law of X (0), given by its density

p (0, x), by a set of "parti
les", i.e. a set of independent random variables
Xi (0) su
h that

p (0, x) ≃
N

∑

i=1

δXi(0)where δx denotes the Dira
 measure at x. The notation ≃ will be pre
iselyde�ned in Theorem 2.The prin
iple of a parti
le method is then to approa
h the probability lawof X (t) knowing FY
t by a (weighted) sum of Dira
 measures at points Xi (t).When applied to �ltering, this just 
onsists in approa
hing the law of the
urrent state knowing observations by means of a parti
ular weighted sum ofDira
 distributions. This kind of method is well adapted to the 
ase in whi
hthe dimension of the state is large, be
ause in this 
ase one usually uses theMonte-Carlo method to 
ompute the 
onditional expe
tation
E

[

φ(X (t)) | FY
t

]

=

∫

φ(x)p(t, x)dxand this method requires a sample of the law p (t, x) whi
h is given by Xi (t),
i = 1, . . . , N .To 
hara
terize a parti
le method, it is su�
ient to give some rules su
has
• how to 
al
ulate weights of parti
les (e.g. Dira
 measures)
• how to move parti
les Xi (t) in the state spa
eLet us give an example of a parti
le �ltering. As we will see in next se
tion,this algorithm have some similarities with the observer 
onstru
tion (Se
tion1.3.3), although it has been obtained by a totally di�erent way.We will study the nonlinear �ltering problem with linear dis
rete-timeobservation, that is to say, the se
ond equation in (1.1) is repla
ed by

Yk = CX (tk) +R
1
2 V (k) (1.2)where (tk)k∈N

is the sample time and (V (k))k∈N is an independent (w.r.t. Wand X (0)) Gaussian white noise. The limitation to a linear observation fun
-tion is not ne
essary but is a simpli�
ation when one wants to implement this
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ations 7algorithm. The 
hoi
e of dis
rete-time observation simpli�es the mathemat-i
al ba
kground ne
essary to de�ne the DMZ equation. Indeed, in this 
ase,the 
onditional density p (t, x) is given by the dis
rete version of the DMZequation:
p(tk, x) =

1

fY
k−1=yk−1

Yk
(yk)

f
X(t)=x
Yk

(yk)

∫

X

f
X(tk−1)=ξ

X(tk) (x)p(tk−1, ξ)dξ (1.3)where notations
• f

X(t)=x
Yk

(yk) represents the 
onditional density of Yk knowing X (t) = x;
• f

X(s)=ξ
X(t) (x) represents the 
onditional density of X (t) knowing X (s) = ξ;

• fY
k−1=yk−1

Yk
(yk) represents the 
onditional density of Yk knowing Y be-tween time 0 and time tk−1 is equal to (y0, . . . , yk−1) so that for instan
e,

p(t, x) = fY
k=yk

X(t) (x)Equation (1.3) is nothing else than the Bayes formula applied to the prob-lem.Remark 1. We point out that the DMZ equation (1.3) gives an exhaustiveinformation on X (t) knowing all informations available at time t. Hen
e itgives the best possible estimate and, if the system is observable (De�nition1), it is a very good observer.As usual with equations des
ribing evolution of a density of probability,the un�normalized version of the DMZ is more tra
table: (1.3) is equivalentto
q(tk, x) = f

X(t)=x
Yk

(yk)

∫

X

f
X(tk−1)=ξ

X(tk) (x)q(tk−1 , ξ)dξ (1.4)with
p(tk, x) =

q(tk, x)
∫

X
q(tk, ξ)dξThere are several ways to solve the un�normalized DMZ equation usingparti
le methods. The �rst way is to re
ognize the 
omposition/reje
tion the-orem in this formula ([27℄), and therefore to 
onsider this equation as a sim-ulation formula, whi
h is the basis of a Monte-Carlo method. The algorithm
onsists in simulating the pro
ess (by "parti
les" Zi) and killing some of themthanks to measurements (the "bad" parti
les). At a time tk < t ≤ tk+1, thenumber of parti
les whi
h are still alive is a random variable N (k). If thisrandom number is large enough, the 
onditional density is approximated by

p (t, x) ≃

N(k)
∑

i=1

δZi(t) (x)
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 BusvelleThis approa
h 
an not be applied exa
tly as explained here, sin
e N (k)is a de
reasing integer whi
h goes almost surely to 0 (ea
h measurement killparti
les). In order to obtain a more e�
ient algorithm, one usually 
onsidera weighted sum of Dira
 measures.Let us introdu
e 
oe�
ients ai (t) ∈ [0, 1]. These numbers represent thedegree of 
on�den
e in ea
h parti
le, and repla
e binary 
oe�
ients 1 (theparti
le is alive) or 0 (the parti
le is dead). As for the DMZ equation itself,we 
onsider an un�normalized set of 
oe�
ients bi (t) ∈ R
+ su
h that

ai (t) =
bi (t)

∑N
j=1 bi (t)We 
onsider an algorithm P whi
h des
ribes the traje
tory of parti
les

zi (t) and weight 
oe�
ients bi (t). The law trun
ated at n parti
les given by
P is denoted as Pn (t) (dPn (t) = pn (t, x) dx) and de�ned by

Pn (t) =

∑n
i=1 bi (t) δzi(t)
∑n

i=1 bi (t)
=

n
∑

i=1

ai (t) δzi(t)Algorithm 1 Initialization
zi (0) is the realization of a random variable with respe
t tothe initial law p (0);
bi (0) = 1;Loop
zi (tk) is a Gaussian variable with respe
t tofX(tk−1)=zi(tk−1),Yk=yk

X(tk) ;
bi (tk) is de�ned by
bi (tk) = bi (tk−1) f

X(tk−1)=zi(tk−1)
Yk

(yk)Let us remark that this algorithm is easy to implement on a 
omputer, inparti
ular on a parallel 
omputer.Theorem 2. Let us 
onsider the system
{

dX = f (X,u)dt+Q
1
2 dw (t)

Yk = CX (tk) +R
1
2V (k)and P (t) being the 
onditional law of X (t) knowing FY

t . If Pn (t) representsthe law given by the algorithm P with n parti
les, then we have
Pn (t) → P (t) as n→ ∞ weakly almost surelyRemark 2. This theorem is true at t �xed. It is never true for any t. In order toobtain an asymptoti
 result (as in observer theory), it is ne
essary to add some
orrelations between parti
les. This is parti
ularily simple here (see [39℄).



1 Adaptive-gain observers and appli
ations 9In order to illustrate this theorem, we 
onsider a 
ontinuous stirred tankrea
tor (CSTR). The dimensionless form of the model is:
dX1 =

(

−X1 +DA(1 −X1) exp{
X2

1 +X2/γ
}

)

dt+ dW1

dX2 =

(

−X2(1 + β) +HaDa(1 −X1) exp{
X2

1 +X2/γ
} + βu

)

dt+ dW2where W1 and W2 are two independent Wiener pro
esses. X1 is the rea
tant
on
entration and X2 is the temperature into the tank. We suppose that X2is measured in dis
rete time and that we want to 
ontrol X1 using the 
ontrolvariable u. The system 
an also be written in the following generi
 form
X (tk+1) = X (tk) +

∫ tk+1

tk

f(X (s))ds +

∫ tk+1

tk

BdW (s)

Yk = CX (tk) + Vkwith C =
(

0 1
). We suppose thatW is a two-dimensional Wiener pro
ess andthat Vk is a Gaussian pro
ess independent of W and with 
ovarian
e R. Wepropose the following dis
retization s
heme for the 
ontinuous-time equation

X (tk+1) = Φ(tk, tk+1, X (tk)) +
∂Φ(tk, tk+1, X (tk))

∂x
B

√

tk+1 − tkWkwhere Φ(s, t, x) is the solution of
{

dx(t)
dt

= f (x (t))
x (s) = xat time t.The right-hand part of this s
heme is the �rst order development of

Φ(tk, tk+1, X (tk) +

∫ tk+1

tk

BdW (s))whi
h 
omes naturally from the di�usion equation. A 
lassi
al theorem ofprobability, see for instan
e [21℄, shows that this s
heme 
onverges in law tothe solution of the di�usion equation when the step of the dis
retization goesto zero.Our main goal is to estimate the rea
tant 
on
entration X1 and its 
on�-den
e intervals, in order to 
ontrol as well as possible the CSTR.If we solve the equations, we 
an see that for ea
h parti
le z (t) at time tand for ea
h weight b (t), we have, thanks to the algorithm of the theorem
• Corre
tion at time tk
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

























z (tk) = z
(

t−k
)

+ P
(

t−k
)

CT (CP
(

t−k
)

CT +R)−1(yk − Cz
(

t−k
)

)
+

(

P
(

t−k
)

− P
(

t−k
)

CT (CP
(

t−k
)

CT +R)−1CP
(

t−k
))

w̄k
P (tk) = BBT (tk+1 − tk)

b (tk) = b (tk−1)
exp

(

− 1
2 (yk−Cz(t−k ))T (CP

t
−

k

CT +R)−1(yk−Cz(t−k ))
)

√

2π.det(CP(t−k )CT +R) (1.5)where w̄k is a Gaussian white noise.
• predi
tion between tk and tk+1







dz
dt

= f(z (t))
dP
dt

= f∗(ξ (t))P (t) + P (t) f∗(ξ (t))′
db
dt

= 0

(1.6)1.2.2 Extended Kalman �lterThe previous algorithm is CPU-time 
onsuming and rather 
ompli
ated toimplement, espe
ially in the linear 
ase. Indeed, for a linear system, thereexist a very simple and famous solution. Let us 
onsider the following linearsystem:
{

dX = (A (t)X +B (t)u) dt+Q
1
2 dW (t)

dY = C (t)Xdt+R
1
2 dV (t)

(1.7)with X (0) a random variable with Gaussian law N (m0, P0), the DMZ equa-tion redu
es itself to the well-known Kalman �lter. More pre
isely, solvingthe DMZ equation yields to the following result: the 
onditional law of X (t)knowing y (s) from 0 to t (FY
t ) is the Gaussian law N (z (t) , P (t)) where,for an output traje
tory y (t), z (t) and P (t) are the solutions of the �nite-dimensional system of ordinary di�erential equations:

{

dz = (A (t) z +B (t)u) dt+ PC (t)
′
R−1(dy − C (t) z dt)

dP
dt

= A (t)P + PA (t)
′
+Q− PC (t)

′
R−1C (t)P

(1.8)with z (0) = m0 and P (0) = P0. Therefore, z (t) = E
[

X (t) | FY
t

]

(ω) is thebest estimation of X (t) knowing measurements up to time t. When applied toa deterministi
 observable linear system, Q and R being 
onsidered as tuningparameters, the Kalman �lter is 
alled the Kalman observer. The observableproperty is not 
ru
ial in the sto
hasti
 
ase sin
e the 
onditional law is de�nedeven for non observable systems. But the observability property implies thatthe 
ovarian
e matrix of the 
onditional expe
tation of X (t) knowing Y (s),
0 ≤ s ≤ t is bounded.In the deterministi
 
ase, this property is 
ru
ial. Re
all also that, forlinear systems, observability does not depends from inputs.The Kalman �lter/observer algorithm has been used for long by engineersfor linear systems. For nonlinear systems, engineers introdu
ed and su

ess-fully used the extended Kalman �lter (EKF), either in its sto
hasti
 or its
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ations 11deterministi
 form. The EKF is just the standard Kalman �lter for lineartime-dependant systems, applied to the linearized system along the estimatetraje
tory. The EKF is the heart of our approa
h.Let us 
onsider a nonlinear system
{

dX = f (X,u)dt+Q
1
2 dW (t)

dY = h (X)dt+R
1
2 dV (t)

(1.9)where f and h are smooth Lips
hitz fun
tions, the linear Kalman �lter doesnot apply anymore, and the exa
t solution should be obtained by solving theDMZ equation. But if one want an approximated solution, it is very 
ommonto 
onsider the �rst order approximation of the previous system. The rightway to do this is to 
onsider an a priori solution x̂ (t) of the deterministi
system asso
iated to (1.9) and to use the Kalman �lter to estimate the �rstorder di�eren
e δx (t) = x (t) − x̂ (t) between the a priori solution and theestimated solution. This approa
h yields to the following �rst order Kalman�lter, for a given output traje
tory:






d(δx)
dt

= f∗(x̂, u)δx+ Ph∗ (x̂, u)
′
R−1(y(t) − h (x̂, u))

dP
dt

= f∗ (x̂, u)P + Pf∗ (x̂, u)
′
+Q

−Ph∗ (x̂, u)
′
R−1h∗ (x̂, u)P

(1.10)where f∗ and h∗ are the Ja
obian of f and h w.r.t. x respe
tively. But thisapproa
h has a major weakness: the 
hoi
e of the a priori solution x̂ (t) is notobvious if there is no pre
ise a priori information on the initial state. This isusually the 
ase, espe
ially in the deterministi
 
ase, sin
e the only missinginformation on the system is pre
isely the initial state. Moreover, if one makea bad 
hoi
e of x̂ (t), the �rst order equation has no signi�
ant meaning sin
ethe a
tual state is far from the initial guess. At the opposite, if δx (0) is small(that is the a priori solution is 
losed to the a
tual solution, at least at time
0), then x̂ (t) + δx will be a good approximation of the optimal �lter, whenstate and measurement noises are small ([38℄).To over
ome this di�
ulty, engineers have an attra
tive idea: to repla
ethe a priori solution by the estimated solution at 
urrent time. The mainadvantage of this approa
h is that the estimated solution is supposed to be
losed to the a
tual solution, hen
e the �rst order approximation should besmall and hen
e the linear approximation should be a good approximation.This remark yields to the extended Kalman �lter:







dz
dt

= f(z, u) + Ph∗ (x̂, u)
′
R−1(y(t) − h (z, u))

dP
dt

= f∗ (z, u)P + Pf∗ (z, u)
′
+Q

−Ph∗ (z, u)
′
R−1h∗ (z, u)P

(1.11)where z is the estimated state. Here again, if P0, Q and R are small, this �lteris 
losed to the optimal �lter (see all works of Pi
ard, [38℄ for instan
e).In a deterministi
 
ontext, the extended Kalman �lter is a 
onverginglo
al observer (see [4, 8℄), that is if z (0) ≃ x (0) then z (t) − x (t) −→ 0
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 Busvelleas t −→ +∞ (exponentially). Nevertheless, the extended Kalman �lter hasno global 
onverging properties. Indeed, it is well known that, if the initialguess z (0) is far from x (0), the extended Kalman �lter may not 
onverge.Moreover, the mathemati
al study of (1.11) is di�
ult be
ause it has no 
learmathemati
al meaning: it is not a �rst order approximation of a nonlinearobje
t around a given traje
tory. In other words, the behavior of (1.11) is notintrinsi
 and depends on a 
hoi
e of 
oordinates. Hopefully, this mathemati
aldi�
ulty will give us a way to 
hose a good system of 
oordinates and to provesome 
onvergen
e results, thanks to this 
ru
ial 
hoi
e of 
oordinates.To 
on
lude, the EKF is very e�
ient in a lot of pra
ti
al problems. It isused as a �lter or as an observer in many various systems. From a theoreti
alpoint of view, it is not an optimal �lter (it di�ers from the DMZ equation).Nevertheless, when the system has some observability properties, it has veryni
e lo
al properties: in the sto
hasti
 
ase, it is a good �lter when noises aresmall (see [38℄) and in the deterministi
 
ase, it is a lo
al observer ([4, 8℄).1.2.3 Continuous-dis
rete sto
hasti
 systemsBefore 
onsidering deterministi
 systems and observers, let us re
all a result
on
erning dis
rete measurements. Continuous-dis
rete time are very 
om-mon in pra
tise: the nonlinear di�erential equation des
ribes a me
hani
al,physi
al or 
hemi
al pro
ess. Therefore, it is a 
ontinuous time system. Butmeasurements are usually sampled at times tk. Therefore, the system 
an bewritten
{

dX (t) = f(X (t) , u (t))dt+ dW (t)
yk = h (X (tk)) + V (k)

(1.12)where h is a di�erentiable fun
tion from the state spa
e to R
p.For this system, the EKF has two set of equations: the 
orre
tion stepwhi
h is applied at ea
h measurement time and the predi
tion step whi
h isused to predi
t the system a

ording to the model.Corre
tion step







Z
(

t+k
)

= Z (tk) +G (k) (yk − h (Z (tk)))

G (k) = P (tk)h
∗ (Z (tk))

′ (
h∗ (Z (tk))P (tk) h

∗ (Z (tk))
′
+R

)−1

P
(

t+k
)

= (I −G (k)h∗ (Z (tk)))P (tk)

(1.13)Predi
tion step
{

dZ
dt

= f(Z, u)
dP
dt

= f∗ (Z, u)P + Pf∗ (Z, u)′ +Q
(1.14)These equations presents some similarities with equations (1.5,1.6). As wewill see in the end of Se
tion 1.3.4, if the system is observable, then equations
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ations 13(1.13,1.14) may gives an observer. In the non observable 
ase, one should use(1.5,1.6).Although this kind of model is 
loser to the pra
ti
al 
ase, it is less usedthan 
ontinuous-time systems. The main reason is a pra
ti
al one: the sam-pled time is usually 
hosen small enough w.r.t. time 
onstants of the pro
ess.Therefore, the 
ontinuous EKF 
an be applied. Sometimes (for very fast pro-
esses or for slow measurement devi
es), the sampled time is a 
onstraint and
an not be negle
ted. In this 
ase, 
ontinuous-dis
rete EKF should be applied.1.3 Nonlinear observers1.3.1 Canoni
al form of observabilityFrom now, we study deterministi
 nonlinear systems of the general form
Σ

{

dx
dt

= f(x, u)
y = h(x, u)

(1.15)on a smooth n�dimensional manifold X , y ∈ R
p, u ∈ U, subset of R

d. Wewant to develop an observer. Our approa
h is 
losely related to observationtheory, as explained in the book from Gauthier and Kupka [20℄, whi
h is itselfa summary of the papers [16, 17, 18, 19, 32℄.This theory leads to the 
onsideration of systems under the normal form(1.21), or similar multi-output normal forms. Here, by �observability�, we mean�observability for every �xed input fun
tion u(t)�. For details, see [20℄.In this introdu
tion part, we summarize the main observability results ofthe observation theory developed in [20℄.First of all, the state�output mapping PXΣ,u is the fun
tion x (0) −→
(y (t))t≥0. In this de�nition (and the following ones), we do not speak aboutexplosion times, in order to simplify the notations.De�nition 1. The system (1.15) is said uniformly observable, or just ob-servable, w.r.t. a 
ertain 
lass C of inputs (L∞(U) in most 
ases) if, for ea
h
u(.) ∈ C, the state output mapping PXΣ,u is inje
tive.This �rst de�nition is the natural de�nition of observability. Nevertheless,inje
tivity is not a very tra
table property, sin
e it is not stable (even for stan-dard mappings between �nite dimensional spa
es -example: x→ x3,R → R).Therefore, in order to state results, we need a few other de�nitions. The uni-form in�nitesimal observability make the observable property stable.Let us de�ne the lift of Σ on TX , also 
alled the �rst variation of Σ. Letus 
onsider TXf : TX × U −→ TTX(the tangent bundle of TX) the tangentmapping of f : X × U −→ TX and dXh : TX × U −→ R

p the Ja
obian of
h : X × U −→ R

p. Then
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TΣ

{

dξ
dt

= TXf(ξ, u) = TXfu(ξ)
η = dXh(ξ, u) = dXhu(ξ)

(1.16)The state�output mapping of TΣ is denoted by PTXΣ,u. It is also the�rst order approximation of PXΣ,u denoted TPXΣ,u.De�nition 2. System Σ is said uniformly in�nitesimally observable if, forea
h u(.) ∈ L∞(U), ea
h x0 ∈ X, all the tangent mappings TPXΣ,u|x0 areinje
tive.Remark 3. This de�nition of observability is stable in the sense of dis
retiza-tion: if a system is uniformly in�nitesimally observable, its 
ontinuous�dis
reteversion (1.12) remains uniformly in�nitesimally observable for a sampling timesmall enough. It is not the 
ase for a system whi
h is only observable (see [2℄).The two following de�nitions are an other way to de�ne observability ina stable way. Note that these de�nitions are important for pra
ti
al purpose,sin
e they give a way to prove observability for nonlinear systems.De�nition 3. System Σ is said di�erentially observable (of order k) if for all
jkû, the extension to k-jets mapping3 Φk : x0 → jkŷ; X → R

km is inje
tive.De�nition 4. System Σ is said strongly di�erentially observable (of order k)if for all jku, the extension to k-jets mapping Φk,jku : x0 → jky; X → R
kmis an inje
tive immersion4.Clearly, strong di�erential observability implies di�erential observability,whi
h implies observability for the C∞ 
lass, (and L∞-observability).It is also a 
onsequen
e of the theory that for analyti
 systems, uniformin�nitesimal observability implies observability of the restri
tions of (1.15) tosmall open subsets of X, the union of whi
h is dense in X .The main result 
on
erning observability of systems 1.15 is that, dependingfrom the number of outputs w.r.t. the number of inputs, the property may begeneri
 or not generi
. More pre
isely, we distinguish two 
ases:1. More measurements than 
ontrol inputs (p > d): in that 
ase, observabilityis a generi
 property, and generi
ally, a system 
an be put globally under anormal form similar to (1.21), but the dimension of the state in the normal

3 k-jets jku, of smooth fun
tions u at t = 0 are de�ned as
j

k
u = (u(0), u′(0), ..., u(k−1)(0)).Then, for a smooth fun
tion u and for ea
h x0 ∈ X, the k-jet jky =

(y(0), y′(0), ..., y(k−1)(0)) is well de�ne: this is the k-jets state-output mapping
Φk.

4 immersion means that all the tangent mappings Tx0Φk,jk û to this map, have fullrank n at ea
h point
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ations 15form is bigger than the dimension of the state of the original system: it isat most double plus one. Also, the 
ontrol in the normal form 
ontains a
ertain number of derivatives of the 
ontrol of the initial system. But thisis more or less unimportant for observation problems, where the 
ontrol,and hen
e its derivatives, are known.Hen
e, if p > d, and for su�
iently smooth inputs, generi
 systems arevery good from the point of view of observability.2. Less or same number of measurements than 
ontrol inputs (p ≤ d): inthat 
ase observability is a non generi
 property. It is even a property ofin�nite 
odimension. This high degenera
y leads to the fa
t that, in the
ontrol a�ne 
ase, all observable systems 
an be put lo
ally under normalforms similar to (1.21) (with ai = 1, i = 1, ..., n).In the analyti
 
ase p = 1, d ≥ 1, we 
an be more pre
ise. If (1.15) isuniformly in�nitesimally observable, then lo
ally almost everywhere on
X , the system (1.15) 
an be put in the form



































y = h(x1, u)
dx1

dt
= f1(x1, x2, u)

dx2

dt
= f2(x1, x2, x3, u)...

dxn−1

dt
= fn−1(x1, x2, .., xn, u)

dxn

dt
= fn(x1, x2, ..., xn, u)

(1.17)with
∂h

∂x1
and ∂fi

∂xi+1
, i = 1, .., n− 1 (1.18)does not vanishes on Vx × U .In the 
ontrol a�ne 
ase, where (1.15) 
an be written:

ẋ = f(x) +

d
∑

i=1

gi(x)ui (1.19)
y = h(x)then the 
anoni
al form of observability is



































y = x1
dx1

dt
= x2 +

∑p
i=1 g1,i(x1)ui

dx2

dt
= x3 +

∑p
i=1 g2,i(x1, x2)ui...

dxn−1

dt
= xn +

∑p
i=1 gn−1,i(x1, x2, .., xn−1)ui

dxn

dt
= ψ(x) +

∑p
i=1 gn,i(x1, x2, .., xn−1, xn)ui

(1.20)These two results are very important sin
e they allow us to restri
t ourstudy to systems of the form (1.17) and (1.20) (and also be
ause of 
ourse,these results are based on a 
onstru
tive di�eomorphism).
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 Busvelle1.3.2 High-gain extended Kalman �lterWe des
ribe observers for nonlinear systems in 
anoni
al form of observabil-ity (1.20 and 1.21 below), on R
n. The 
ontrol spa
e Uadm, is supposed tobe a 
losed subset of R

d. In this se
tion, the observation is assumed to besingle-valued: it is a u�dependant linear form on R
n. This hypothesis is notne
essary and our observers 
onstru
tions also applies for multi�output sys-tems. From an observability point of view, the multi�output 
ase is a littlebit more 
ompli
ated sin
e 
anoni
al form of observability are less natural.But from the observer point of view, ex
ept in se
tion 1.3.4, the problem isexa
tly the same, sin
e we simply apply some kind of EKF.We 
onsider systems of the form

{

dx
dt

= A(u)x+ b(x, u)
y = C(u)x

(1.21)where A(u) , C(u) are matri
es:
A(u) =

















0 a2 (u) 0 · · · 0

a3 (u)
. . . ...... . . . . . . 0

an (u)
0 · · · 0

















(1.22)
C(u) = (a1(u), 0, ...., 0) (1.23)and where ai(.), i = 1, ..., n, are positive smooth fun
tions, bounded fromabove and below:
0 < am ≤ ai(u) ≤ aMAlso, b(x, u) is a smooth, u−dependant ve
tor �eld, depending triangularlyon x and 
ompa
tly supported:

b (x, u) =











b (x1, u)
b (x1, x2, u)...

b (x1, . . . , xn, u)











(1.24)These assumptions look very strong, but as we already seen, under eithergeneri
ity hypotheses or observability hypotheses, for the purpose of synthe-sis of observers, it is su�
ient to restri
t to these systems, under the normalform (1.21) (or similar multi-output normal forms), and meeting these as-sumptions. In fa
t, this form generalizes the 
anoni
al form of observability(1.20) for 
ontrol a�ne systems. We 
all (1.21) (together with (1.22�1.23))the generalized 
anoni
al form of observability. There are several reasons tostudy (1.21) rather than (1.20):
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• It is sometimes easiest to put the system into this form, using intuitivetransformations, rather than a more restri
tive normal form, the last trans-formation being based on Lie derivatives. This point will be illustrated inthe appli
ation se
tions;
• Sin
e we want to apply an EKF whi
h use the model to �lter noises, anda high�gain approa
h to kill the nonlinear part of the system, it is betterto leave the largest part of the nonlinear system in A rather to put it in

b. This te
hni
al point will be developed later;
• Last but not least, our observer 
onstru
tion still work for these systems.However, this form does not in
lude the 
anoni
al form of observability forsystems (1.15) when the 
ontrol is not a�ne. For those systems, there exista 
hange of 
oordinates that put the equivalent system (1.17) into a systemof the generalized 
anoni
al form of observability (1.21) [10, 23℄. For this, wejust need to suppose that u admits a time derivative almost everywhere.Consider a system (1.17) on R

n, and set:
z = Φu(x) = (h(x, u), Lfh(x, u), ..., L

n−1
f h(x, u)). (1.25)Let K ⊂ R

n be any �xed open relatively 
ompa
t subset. We deal withsemi-traje
tories of Σ that remain in K, only. It follows from (1.18) that, forall u ∈ U, Φu is an inje
tive immersion (this is easily 
he
ked by indu
tion onthe 
omponents of Φu). Therefore, Φu is a u�dependent di�eomorphism from
K onto its image. Consider the image of the system (1.17) restri
ted to K bythe time dependant di�eomorphism Φu. It is of the form:

{

dξ
dt

= Aξ + g(ξ, u, du
dt

)
y = ξ1

(1.26)where A is the antishift matrix, and where g is smooth and depends in atriangular way of ξ.Even if some te
hni
al di�
ulties remains in the general theoreti
al 
ase(see [10℄ for a pre
ise result), it is 
lear that the new system is of the form(1.21) ex
ept that we use expli
itly du
dt
, 
onsidered as a new input.Thanks to this result, our observers (Se
tions 1.3.2, 1.3.3 and 1.3.4) appliesto general uniformly in�nitesimally observable systems.Let us 
ome ba
k to the system (1.21) and its properties. The assumption

0 < am ≤ ai(u) ≤ aM is not more restri
tive than ai(u) 6= 05. It just impliesobservability of systems in the normal form (1.21), by the following reasoning:
5 Modulo a trivial 
hange of variables, and the fa
t that the ai being smooth,restri
ting to a 
ompa
t subset of the set of values of 
ontrol implies that we 
an�nd the am and aM .



18 Ni
olas Boizot and Eri
 Busvelle1. If the output y(t) is known, the input being also known, the fa
t that
a1(u) is nonzero implies that we 
an 
ompute x1(t) from y(t),2. The fa
t that a2(u) 6= 0 implies that we 
an 
ompute x2(t) from theknowledge of x1(t),3. By indu
tion, we 
an re
onstru
t the whole state x(t) from the knowledgeof y(t).The 
ompa
t support of b 
an be trivially a
hieved, by multiplying bya 
ut-o� fun
tion, 
ompa
tly supported, leaving the original ve
tor �eld bun
hanged on an arbitrarily large 
ompa
t subset of Rn. Let us mention thatthis restri
tion to 
ompa
t sets (unavoidable in a general observation theory),has not so important 
onsequen
es: for instan
e, the high gain observers 
anbe used in general for global dynami
 output stabilization (again, see [20℄).The following results have been proved in [13, 14, 20℄.We 
onsider the equations of the extended Kalman �lter (1.11), in whi
hthe 
ovarian
e matrix Q depends on a real parameter θ, θ ≥ 1, in the followingway:

Qθ = θ∆−1Q∆−1where
∆ =



















1 0 0 · · · 0

0 1
θ

0
...

0 0 1
θ2

. . . ...... . . . . . . 0
0 · · · · · · 0 1

θn−1

















The EKF be
ome the high-gain extended Kalman �lter (HG-EKF):






dz
dt

= A(u)z + b(z, u) + PC′R−1(y (t) − Cz)
dP
dt

= (A(u) + b∗(z, u))P + P (A (u) + b∗ (z, u))′

+Qθ − PC′R−1CP
(1.27)If θ = 1, the HG-EKF is equivalent to the EKF. If θ is large, Qθ is alarge symmetri
 de�nite positive (s.d.p.) matrix and sin
e it appears in theRi

ati equation in a positive way, P will be
omes large (in the s.d.p. sense).Therefore, the gain of the observer, namely PC′R−1, will be large. This iswhy the observer (1.27) is 
alled high-gain extended Kalman �lter.This observer has some very ni
e properties. From a pra
ti
al point of view,sin
e it is based on extended Kalman �ltering approa
h, it is well designed for�ltering noise using the model. Moreover, the HG-EKF is applied to a systemwritten in the 
anoni
al form of observability. As a matter of fa
t, it 
learlyimproves the 
onvergen
e of the observer, both in simulation and in pra
ti
alsituations. Moreover, the parameter θ has a 
lear meaning and 
an be used to
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ations 19tune e�
iently the observer: if the observer is too slow, θ should be in
reased,and if the noise is not enough �ltered, θ should be de
reased.This last point has also been validated from a theoreti
al point of view:the estimation error has arbitrarily large exponential de
ay, depending on θ.This holds whatever the initial error is, (that is, this is a global result). Thetheorem is the following:Theorem 3. For θ large enough and for all T > 0, the HG-EKF (1.27) sat-is�es for t > T
θ

‖z (t) − x (t)‖ ≤ θn−1k (T )

∥

∥

∥

∥

z

(

T

θ

)

− x

(

T

θ

)∥

∥

∥

∥

e−(θω(T )−µ(T ))(t−T
θ )for some positive 
ontinuous fun
tions k (T ), ω (T ) and µ (T ).Remark 4. In a sto
hasti
 setting, the HG-EKG is a nonlinear �lter withbounded varian
e ([13℄).1.3.3 High-gain and non high-gain extended Kalman �lterThe EKF is a lo
al 
onverging observer, and has very good properties w.r.t.noise. It is 
lose to the Kalman �lter, whi
h is an optimal solution to estimatethe unknown state.The HG-EKF is a globally 
onverging observer. Moreover, it 
onvergesexponentially as fast as wanted, depending on the 
hoi
e of the parameter θ.The EKF 
annot be used to estimate the state from a poor a priori es-timation, or when large unmodelized perturbations o

urs. The HG-EKF isdesigned to do this. This is the basis of the observer 
onstru
tion proposed inthis se
tion. More pre
isely, let us re
all that:1. if one sets θ to 1 in system (1.27) then one obtains the 
lassi
al extendedKalman �lter, whi
h is a lo
al optimal observer (in the sense explainedabove)2. if θ is large enough then one obtains a high-gain observer, whi
h is a globalexponential observer.The �rst appli
ation of this remark was presented in [8℄: we just added theequation

dθ

dt
= λ (1 − θ) (1.28)to the system (1.27). If θ (0) = θ0 is large enough (and the parameter λsmall enough) then we obtain an observer whi
h is a high-gain observer forsmall time and whi
h 
onverges asymptoti
ally to a 
lassi
al extended Kalman�lter. Hen
e we 
an expe
t its 
onvergen
e sin
e the observer should 
onvergeexponentially to the state (high-gain observer property) and then stays in aneighborhood of the state (sin
e extended Kalman �lter is a lo
al observer).
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isely, the observer 
an bewritten (where Qθ has be de�ned in the previous se
tion):














dz
dt

= A(u)z + b(z, u) + PC′R−1(y (t) − Cz)
dP
dt

= (A(u) + b(z, u))P + P (A (u) + b∗ (z, u))′

+Qθ − PC′R−1CP
dθ
dτ

= λ(1 − θ)

(1.29)and the theorem says that the asymptoti
 behavior of the observer is the oneof the extended Kalman �lter, the �short term behavior� is the one of theHG-EKF. More pre
isely, let us denote ε (t) = z (t) − x (t):Theorem 4. For all 0 ≤ λ ≤ λ0, (λ0 small enough), for all θ (0) = θ0 largeenough, depending on λ, for all S (0) = S0 ≥ c Id, for all K ⊂ R
n, K a
ompa
t subset, for all z0 su
h that ε (0) = z0 − x (0) ∈ K, the followingestimation holds, for all τ ≥ 0 :

||ε(τ)||2 ≤ R (λ, c) e−a τ ||ε0||
2Λ(θ0, τ, λ), (1.30)

Λ(θ0, τ, λ), = θ0
2(n−1)+ a

λ e−
a
λ
θ0(1−e

−λτ ),Moreover the short term estimate
||ε(τ)||2 ≤ θ(τ)2(n−1)R (λ0, c) e

−(a1θ(T )−a2)τ ||ε(0)||2. (1.31)holds for all 0 ≤ τ ≤ T and for all θ0 large enough. R (λ, c) is a de
reasingfun
tion of c, and a, a1 and a2 are three positive 
onstants.Remark 5. (1.31) means that, provided that λ is smaller than a 
ertain 
on-stant λ0, and θ0 is large in front of λ, the estimation error goes exponentiallyto zero, and 
an be made arbitrarily small in arbitrary short time. More-over, in (1.30), the fun
tion Λ(θ0, τ, λ) being a de
reasing fun
tion of τ, forall τ > 0, λ > 0, Λ(θ0, τ, λ) 
an be made arbitrarily small, in
reasing θ0,hen
e the observer is an exponential observer. Therefore, the observer is anexponential observer but the asymptoti
 rate of 
onvergen
e does not dependon θ(t) (be
ause θ (t) ≃ 1), hen
e this observer does not 
onverge as fast aswe want after a given time τ .The main drawba
k of this observer, as presented here, is that it 
onvergeexponentially for any initial 
ondition only in the beginning, in order to esti-mate the initial state of the system: if a large perturbation o

urs after time
τ , this observer will have the same behavior as an EKF (sin
e θ (t) ≃ 1 for tlarger that τ).In order to 
onstru
t a persistent observer, we should take into a

ountthis property and 
onstru
t a time-dependant observer. The simplest way is touse several observers of the form (1.29), ea
h one initialized at di�erent times,and using some delays between ea
h initialization. Thus we obtain several
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ations 21estimations of the state, given by ea
h one of the observers: the �nal estimationis the one 
orresponding to the observer that minimizes the innovation pro
ess.The whole 
onstru
tion is 
learly explained in [8, 9℄ and we will re
all thealgorithm:We 
onsider a one parameter family {Oτ , τ ≥ 0} of observers of type(1.29), indexed by the time, ea
h of them starting from S0, θ0, at the 
urrenttime τ. In fa
t, in pra
ti
e, it will be su�
ient to 
onsider, at time τ, a slippingwindow of time, [τ −T, τ [, and a �nite set of observers {Oti , τ −T ≤ ti ≤ τ},with ti = τ − i T
N
, i = 1, ..., N.As usual, we 
all the term I(τ) = ŷ(τ) − y(τ), (the di�eren
e at time τbetween the estimate output and the real output), the �innovation�. Here, forea
h observer Oti ,we have an innovation Iti(τ).Our suggestion is to take as the estimate of the state, the estimation givenby the observer Oti that minimizes the absolute value of the innovation.This is a very natural 
hoi
e, a

ording to probability theory (Se
tion 1.2).The innovation pro
ess will also have an important role in Se
tion 1.3.4, butwe will 
onsider its integral over small past time, whi
h is another possible
hoi
e here.Let us analyze what will be the e�e
t of this pro
edure in a deterministi
setting: after the transient part and if no unmodelized perturbation o

urs,the best estimation is given by the oldest observer. Indeed, the oldest observerhas 
onverged and moreover, it is 
lose to a 
lassi
al EKF and therefore, it ismore robust to measurement noise. But if a large perturbation o

urs, makinga jump on the state, the oldest (EKF) observer will no more 
onverge. Theyoungest observer, whi
h is a HG-EKF, will 
onverge sin
e it is in transienttime (it's life time is less than τ). After an (arbitrary) short transient, theyoungest observer will then give the best estimate and hen
e the smallestinnovation.This analysis is validated by our experien
e and we 
an even use theseremarks to dete
t jumps, whi
h 
orrespond to abnormal operations or sensorfailures.Another remark is that this approa
h may be 
ompared to a parti
le �l-tering method where the a posteriori estimation of the state is the maximumlikelihood one. There exist several di�eren
es between these two algorithmsand in fa
t, their use depends as usual on the observability study. If the sys-tem is not observable, a �ltering approa
h should be used. If the system isobservable, an observer 
an be used.1.3.4 Adaptive gain extended Kalman �lterHere, we present a mu
h simple observer. In pla
e of equation (1.28), weintrodu
e the equation
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dθ

dt
= F (θ, I) (1.32)where

I =

∫ t

t−T

‖y(s) − ȳt−T (s)‖2 ds = ‖y − ȳt−T ‖
2
L2(t−T,t) (1.33)is the innovation from time t−T to 
urrent time t. More pre
isely, in (1.33), yrepresents the output, but ȳt−T represents the predi
tion of the output fromthe state estimation at time t − T (given by the observer, z (t− T )). Hen
e

ȳt−T (s) is the solution at time s of






dξ
dτ

= A(u)ξ (τ) + b(ξ (τ) , u)
ξ (t− T ) = Z (t− T )
ȳt−T (τ) = C (u) ξ (τ)

T is a tuning parameter, representing the length of the window used to
al
ulate the innovation. In the following theorem, the fun
tion F will be
hosen in the form
F (θ, I) = λ (1 − θ) +K (θmax − θ) I (1.34)In fa
t, F 
an be 
hosen in a more general form. We will give a version of Fthat is better adapted in the presen
e of noise in the appli
ation part of this
hapter (Se
tion 1.5). Intuitively, the role of the fun
tion F is:

• to let θ de
rease if the innovation is small, be
ause in this 
ase the observerhas already 
onverged and a Kalman-like observer will be su�
ient to
orre
tly estimate the state
• to let θ in
rease if the innovation is too large, be
ause in this 
ase, theobserver gives a bad estimation of the state and θ has to be large enoughin order to ensure 
onvergen
e, thanks to the exponential property of high-gain observers.Finally, the adaptive extended Kalman �lter 
an be written































dZ

dt
= A(u)Z + b(Z, u) + S−1C′R−1

θ (CZ − y(t))

dS

dt
= −(A(u) + b(Z, u))′S − S(A (u) + b∗ (Z, u))

+C′R−1
θ C − SQθS

dθ

dt
= λ (1 − θ) +K (θmax − θ) I

(1.35)We de�ne Qθ and Rθ from Q and R thanks to the matrix
∆ =



















1 0 0 · · · 0

0 1
θ

0
...

0 0 1
θ2

. . . ...... . . . . . . 0
0 · · · · · · 0 1

θn−1


















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ations 23by Qθ = θ∆−1Q∆−1 and Rθ = θ−1R. Let us remark that this 
hange of
oordinates is di�erent from the previous one (high-gain extended Kalman�lters of Se
tion 1.3.2 and Se
tion 1.3.3).Our main result is the following:Theorem 5. Let us 
onsider a system in the 
anoni
al form of observability.We 
onsider the adaptive-gain extended Kalman �lter (1.35). Let us supposethat λ, K and θmax (in (1.34)) are three 
onstant parameters su
h that λ issmall enough, K is large enough, and θmax is large enough. Then, (1.35) isan exponentially 
onverging observer.The proof is based on the following 
ru
ial lemma:Lemma 1. Let x0
1, x0

2 ∈ R
n. Let us 
onsider the outputs y1 (t) and y2 (t)with initial 
onditions respe
tively x0

1 and x0
2. The following 
ondition (
alledpersistant observability) holds:

∀T > 0 ∀u ∈ L1
b (Uadm) ∃λT > 0

∥

∥x0
1 − x0

2

∥

∥ ≤
1

λT

∫ T

0

‖y1 (τ) − y2 (τ)‖ dτThe main di�eren
e between the previous observer is the fa
t that now,the matrix R depends on θ, whi
h was not ne
essary when θ was only ade
reasing parameter. The behavior of this adaptive�gain extended Kalman�lter is illustrated on a DC�motor, in Se
tion 1.5.We point out that this AG-EKF is a very promising tool: it is a smallmodi�
ation of already existing adaptive�gain EKF proposed by engineersto improve the performan
e of EKF during abnormal operations. We pro-pose the same approa
h in a theoreti
al framework, ensuring the exponential
onvergen
e of the algorithm.1.3.5 Observer for 
ontinuous�dis
rete systemsAs already explain in Se
tion 1.2.2, pra
ti
al problems may often be writtenin 
ontinuous-dis
rete form (1.12). There exist also some observability results
on
erning these systems. Let us suppose, for simpli
ity, that the samplingtime is 
onstant, i.e. tk = k∆t.A generalized 
anoni
al form of observability for these systems is the nat-ural extension of the generalized 
anoni
al form of observability (1.21)
{

dx
dt

= A(u)x+ b(x, u)
yk = C (u)x (tk)

(1.36)were A, b and C are de�ned as in (1.22), (1.24) and (1.23) and satis�es thesame hypothesis. In the a�ne 
ontrol 
ase (1.20), with a dis
rete observation,
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 Busvellethe 
hange of 
oordinates is the same as in the 
ontinuous 
ase. In fa
t, (1.21)and (1.36) are exa
tly equivalent with yk = y (tk).The HG�EKF for 
ontinuous�dis
rete systems has the (not surprising)form:Corre
tion step






z
(

t+k
)

= z (tk) +G (k) (yk − C (u) z (tk))

G (k) = P (tk)C (u)
′ (
C (u)P (tk)C (u)

′
+ 1

∆t
R

)−1

P
(

t+k
)

= (I −G (k)C (u))P (tk)

(1.37)Predi
tion step
{

dz
dt

= A(u)x+ b(x, u)
dP
dt

= (A(u) + b∗(z, u))P + P (A (u) + b∗ (z, u))′ +Qθ
(1.38)Then we have:Theorem 6. ([14℄) Under same assumptions as in 
ontinuous 
ase and for

∆t small enough, there is an interval [θ0, θ1] su
h that for any θ ∈ [θ0, θ1],the 
ontinuous�dis
rete high�gain extended Kalman �lter (1.37�1.38) is anexponential observer.Generi
ity and observability have also been studied for 
ontinuous�dis
retesystems. One 
an expe
t that same results hold when sampling time is smallenough. Roughly speaking, it is more or less true. There exist 
ontinuous�dis
rete versions of theorems from Se
tion 1.3.1 in the 
ontinuous�dis
rete
ase ([1, 2℄).1.3.6 A "weak" separation prin
ipleIn this se
tion, we just want to give an important appli
ation 
on
erninghigh-gain observers and parti
ularly the high-gain extended Kalman �lter.Usually, observers are used in order to 
ontrol nonlinear systems with astate-feedba
k 
ontrol law. This 
ontrol law u (x) is 
al
ulated in order toa
hieve a good performan
e and, at least, to ensure the stability of the 
losedloop system. An observer is developed in order to estimate the state (whi
h isnot 
ompletely measured, in most appli
ations) and the 
ontrol law appliedto the pro
ess is u (z) (where z is the estimation of x given by the observer)6.Therefore, the 
losed loop system 
onsist in a 
ontrol law and an observer,and both are developed independently.
6 If a �lter has been developped, then one should apply the more a

urate 
ontrollaw u (t) = E

[

u (X (t)) | FY
t

] whi
h is usually di�erent from u (z) where z =

E
[

X (t) | FY
t

].
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ase, the "separation prin
iple" stated that, if anoptimal state-feedba
k 
ontrol law is applied with an optimal observer, theresult is optimal. It is a very strong "superposition" result whi
h is false fornonlinear systems.Nevertheless, we 
an expe
t to prove a weaker version of the linear sepa-ration prin
iple.Let us 
onsider again our system 1.21. Let us suppose that there exist apositively invariant 
ompa
t subset of R
n for any 
ontrol law u (t).Theorem 7. If u (x) is a state feedba
k whi
h make the system 1.21 globallyasymptoti
ally stable, then the system















dx
dt

= A (u (z))x+ b (x, u (z))
dz
dτ

= A(u)z + b(z, u)− S(t)−1C′R−1(Cz − y(t))
dS
dτ

= −(A(u) + b∗(z, u))′S − S(A(u) + b∗(z, u))
+C′R−1C − SQθSis globally asymptoti
ally stable for θ large enough.Hen
e, this theorem show that the state-feedba
k 
ontrol law 
an be re-pla
ed by an observer based 
ontrol law and that the stability is preserved.Remark 6. It has to be point out that this result is not true for the adaptive-gain extended Kalman �lter (with these hypothesis) be
ause it is ne
essary tohave an exponentially 
onverging observer with an arbitrary fast 
onvergen
e.1.4 Identi�ability and identi�
ation1.4.1 De�nitionsThe problem of identi�
ation is a generalization of the observation problem:very often, pra
ti
al 
ontrol systems depend on some fun
tions, (with physi
almeaning), that are not well known, and that have to be determined on thebasis of experiments. Systems under 
onsideration have the following form

{

dx
dt

= f (x, u, ϕ (x, u))
y = h (x, u, ϕ (x, u))

(1.39)If x denotes the state of the system, if ϕ(x, u) is the unknown fun
tion,and y(t) is the observed data, the identi�
ation problem is the problem ofre
onstru
ting the pie
e of the graph of ϕ(.),visited during the experiment.That is, for an experiment of duration T, we want to determine the traje
tories
(x(t), u (t) , ϕ(x(t), u(t)), for all t ∈ [0, T ], using only the observed data {y(t),
t ∈ [0, T ]}. We say that a system is identi�able if this is possible, whateverthe experiment.
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e performing this task. We will be interested with�on-line identi�ers� only, i.e. identi�ers that estimate the graph of ϕ simulta-neously to the experiment.The two problems, of observation and identi�
ation, are of 
ourse strongly
onne
ted for two reasons:1. we do not suppose that x (0) is known. Hen
e, the identi�
ation problemin
lude an observation problem: we want to estimate both x (t) and ϕ(.).It is the main di�eren
e with the right-inversion problem, also known asthe input identi�
ation problem.2. identi�
ation requires an identi�ability study, and this study is 
loselyrelated to observability study. Moreover, our main tools to perform iden-ti�
ation are based on (high�gain) observers.Let us explain the se
ond point, in the un
ontrolled 
ase. We 
onsidersmooth (Cω or C∞, depending on the 
ontext) systems of the form Σ

Σ

{

dx
dt

= f (x, ϕ (x))
y = h (x, ϕ (x))

(1.40)where the state x = x (t) lies in a n�dimensional analyti
 manifold7 X ,
x (0) = x0, the observation y is R

p�valued, and f , h are respe
tively a smooth(parametrized) ve
tor �eld and a smooth fun
tion. The fun
tion ϕ is an un-known fun
tion of the state. Ea
h traje
tory is supposed to be de�ned onsome interval [0, Tx0,ϕ[.
• If the number of outputs is three ore more, then, identi�ability is a generi
property,
• If there is only one or two outputs, then, identi�ability is a nongeneri
property, so strong that it 
an be 
hara
terized by four very rigid normalforms.Our goal is to estimate both state variable x and unknown fun
tion ϕ :
X −→ I, I being a 
ompa
t interval of R (the theory, developed in [10℄, 
learlyhas extensions to higher dimension). More pre
isely, we want to re
onstru
tthe pie
e of the graph of ϕ visited during experiment.Let us re
all some de�nitions and results from this last paper. For thisintrodu
tion, we will only 
onsider un
ontrolled systems su
h as (1.40). Someresults 
an be extended to 
ontrolled systems.Let Ω = X × L∞ [I], where

L∞ [I] = {ϕ̂ : [0, Tϕ̂] 7→ I, ϕ̂ measurable}Then we 
an de�ne the input/output mapping
7 analyti
 manifold stands for analyti
 
onne
ted para
ompa
t Hausdorf manifold



1 Adaptive-gain observers and appli
ations 27
PΣ : Ω −→ L∞

[

R
dy

]

(x0, ϕ̂ (·)) −→ y (·)De�nition 5. Σ is said to be identi�able if PΣ is inje
tive.As for observability, we de�ne an in�nitesimal version of identi�ability. Letus 
onsider the �rst variation of the system (1.40) (where ϕ̂ (t) = ϕ ◦ x (t)):
TΣx0,ϕ̂,ξ0,η







dx
dt

= f (x, ϕ̂)
dξ
dt

= Txf (x, ϕ̂) ξ + dϕf (x, ϕ̂) η
ŷ = dxh (x, ϕ̂) ξ + dϕh (x, ϕ̂) ηand the input/output mapping of TΣ

PTΣ,x0,ϕ̂ : Tx0X × L∞ [R] −→ L∞
[

R
dy

]

(ξ0, η (·)) −→ ŷ (·)De�nition 6. Σ is said to be in�nitesimally identi�able if PTΣ,,x0,ϕ̂ is inje
-tive for any (x0, ϕ̂ (·)) ∈ Ω i.e. ker (PTΣ,x0,ϕ̂) = {0} for any (x0, ϕ̂ (·)).Both identi�ability and in�nitesimal identi�ability mean inje
tivity ofsome mapping. Clearly inje
tivity depends on the domain. Therefore, it seemsthat these notions are not well de�ned. In fa
t these notions do not dependon the domain. Indeed, if an analyti
 system Σ is not (in�nitesimally) iden-ti�able be
ause there exists a L∞ fun
tion whi
h make the system not (in-�nitesimally) identi�able, then there exist an analyti
 fun
tion whi
h makethe system not (in�nitesimally) identi�able.We 
onsider again a system Σ of the form (1.40). In [10℄, we have shownthat identi�ability is a generi
 property if and only if the number of obser-vation p is greater or equal to 3. On the 
ontrary, if p is equal to 1 or 2,identi�ability is a very restri
tive hypothesis (in�nite 
odimension) and wehave 
ompletely 
lassi�ed in�nitesimally identi�able systems by giving 
er-tain geometri
 properties that are equivalent to the normal forms presentedin Theorems 8 and 9 [10℄ below.These theorems are the basis of our identi�er 
onstru
tion: sin
e everyidenti�able systems may be put, up to a 
hange of 
oordinates, in one of these
anoni
al form of identi�ability, then it is su�
ient to develop an identi�erfor these forms (exa
tly as observers for observable systems).Theorem 8. (p = 1) If Σ is uniformly in�nitesimally identi�able, then, thereis a subanalyti
 
losed subset Z of X, of 
odimension 1 at least, su
h that forany x0 ∈ X\Z, there is a 
oordinate neighborhood (x1, . . . , xn, Vx0), Vx0 ⊂
X\Z in whi
h Σ (restri
ted to Vx0) 
an be written:
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Σ1



























ẋ1 = x2...
ẋn−1 = xn
ẋn = ψ(x, ϕ)
y = x1

and ∂

∂ϕ
ψ(x, ϕ) 6= 0 (1.41)Theorem 9. (p = 2) If Σ is uniformly in�nitesimally identi�able, then, thereis an open-dense semi-analyti
 subset Ũ of X×I, su
h that ea
h point (x0, ϕ0)of Ũ , has a neighborhood Vx0 × Iϕ0 , and 
oordinates x on Vx0 su
h that thesystem Σ restri
ted to Vx0 × Iϕ0 , denoted by Σ|Vx0×Iϕ0

, has one of the threefollowing normal forms:
• type 1 normal form:

Σ2,1































































y1 = x1 y2 = x2

ẋ1 = x3 ẋ2 = x4... ...
ẋ2k−3 = x2k−1 ẋ2k−2 = x2k

ẋ2k−1 = f2k−1(x1, ..., x2k+1)
ẋ2k = x2k+1...
ẋn−1 = xn
ẋn = fn(x, ϕ)

(1.42)
with ∂fn

∂ϕ
6= 0.

• type 2 normal form:
Σ2,2















































































y1 = x1 y2 = x2

ẋ1 = x3 ẋ2 = x4... ...
ẋ2r−3 = x2r−1 ẋ2r−2 = x2r

ẋ2r−1 = ψ(x, ϕ) ẋ2r = F2r(x1, . . . ,
x2r+1, ψ(x, ϕ))

ẋ2r+1 = F2r+1(x1, . . . ,
x2r+2, ψ(x, ϕ))...

ẋn−1 = Fn−1(x, ψ(x, ϕ))
ẋn = Fn(x, ϕ)

(1.43)
with ∂ψ

∂ϕ
6= 0, ∂F2r

∂x2r+1
6= 0, ...., ∂Fn−1

∂xn
6= 0

• type 3 normal form:
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Σ2,3



























y1 = x1

ẋ1 = x3...
ẋn−3 = xn−1

ẋn−1 = fn−1(x, ϕ)

y2 = x2

ẋ2 = x4...
ẋn−2 = xn
ẋn = fn(x, ϕ)

(1.44)with ∂
∂ϕ

(fn−1, fn) 6= 0.Theorem 10. (p ≥ 3) If Σ is an in�nitesimally identi�able generi
 system,then there is a 
onne
ted open dense subset Z of X su
h that for any x0 ∈
X\Z, there exist a smooth C∞�fun
tion F and a (

y̌, y̌′, . . . , y̌(2n)
)�dependantembedding Φy̌,...,y̌(2n) (x) su
h that outside Z, traje
tories of Σx0,ϕ are mappedvia Φy̌,...,y̌(2n) into traje
tories of the following system

Σ3+



































dz1
dt

= z2
dz2
dt

= z3...
dz2n

dt
= z2n+1

dz2n+1

dt
= F

(

z1, . . . , z2n+1, y̌, . . . , y̌
(2n+1)

)

ȳ = z1where zi, i = 1, . . . , 2n+ 1 has dimension p− 1, and with
{

x = Φ−1
y̌,...,y̌(2n) (z)

ϕ = Ψ (x, y̌)
(1.45)(y̌ is a sele
ted output).1.4.2 Identi�ersAs explained before, we have to build an identi�er for ea
h 
anoni
al formof identi�ability. The basi
 idea is the same for all these forms, and leads tothe use of the nonlinear observers developed previously: we assume, along thetraje
tories visited, a lo
al model for ϕ. For instan
e, a simple lo
al model is:

ϕ(k) = 0.This does not mean, at the end, that we will identify ϕ as a polynomialin t: the question is not that this polynomial models the fun
tion ϕ globallyas a fun
tion of t, but only lo
ally, on reasonable time intervals (reasonablew.r.t. the performan
es of the observer that we will use).This idea is just an extension of the 
lassi
al way to identify 
onstant orslowly varying parametersm. In this 
ase, one use to add the parameter in thestate variables and to add the equation dm
dt

= 0. Therefore, the lo
al model isa 
onstant polynomial. In our 
ase, su
h lo
al model is too 
onstrained (sin
e
ϕ is not supposed to vary slowly), so we add a polynomial lo
al model.
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onsider a system Σ in the identi�ability normal form 1.41. Addingthe lo
al model for ϕ, we get the system:
y = x1, (1.46)
ẋ1 = x2, ..., ẋn−1 = xn,

ẋn = Ψ(x, ϕ1), ϕ̇1 = ϕ2, ..., ϕ̇k−1 = ϕk, ϕ̇k = 0,

∂Ψ

∂ϕ1
6= 0 (never vanishes). (1.47)This is a system on R

n+k, whi
h is not 
ontrolled (however, for the 
on-siderations that follow, Ψ 
ould depend on a 
ontrol u), and this system isunder the normal form (1.17, 1.18).Therefore, we may apply high gain Luenberger observer, or we may applythe tri
k in Se
tion 1.3.2. Then, for instan
e, the observer of Se
tions 1.3.2,1.3.3 and 1.3.4 may be applied to this system. It will provide estimations of
x(t), ϕ(t), that is, just an estimation of the pie
e of the graph of ϕ visitedduring the experiment.The 
ases of normal forms (1.42), (1.43), (1.44), 
orresponding to Type 1to 3 systems 
an be treated in a similar way to the single-output 
ase, withsome more or less easy adaptations of the methods of the previous se
tions.This exer
ise is left to the reader.An appli
ation of this te
hnique in a di�
ult 
ase (the lo
al polynomialmodel does not apply) is presented in Se
tion 1.6. Some important remarksand pra
ti
al 
onsiderations are dis
ussed in this se
tion.1.5 Series-
onne
ted DC motorIn this �rst appli
ation we present (in simulation) the design of the adaptive-gain extended Kalman �lter (AG�EKF, see Se
tion 1.3.4) for a single inputsingle output (SISO) system, namely a series-
onne
ted DC motor.Basi
ally, an ele
tri
 motor 
onverts ele
tri
al energy into me
hani
al en-ergy. In a DC motor, the stator (also denoted �eld) is 
omposed of an ele
tro-magnet, or a permanent magnet, that immerses the rotor in a magneti
 �eld.The rotor (also denoted armature) is made of an ele
tromagnet that on
e sup-plied with 
urrent 
reates a se
ond magneti
 �eld. Movement is then 
ausedby the attra
tion/repelling behavior of magnets. As far as the magneti
 �eld
reated by the stator remain �xed the rotor windings are 
onne
ted to a 
om-mutator. The dire
tion of the 
urrent �owing through the armature 
oils isthen swit
hed during the rotation and the polarity of the armature magneti
�eld is reversed. Su

essive 
ommutations then maintain the rotating motionof the ma
hine. A DC motor whose �eld 
ir
uit and armature 
ir
uit are 
on-ne
ted in series, and therefore fed by the same power supply, is referred to asa series-
onne
ted DC motor [34℄.
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al model
Fig. 1.1. Series-
onne
ted DC motor equivalent 
ir
uit representationThe model of the series-
onne
ted DC motor is obtained from the equiv-alent 
ir
uit representation shown in Figure 1.1. We denote If the 
urrent�owing through the �eld part of the 
ir
uit (between points A and C) and Iathe 
urrent through the armature 
ir
uit (between points C and B). When theshaft of the motor is turned by an external for
e, the motor a
ts as a generatorand produ
es an ele
tromotive for
e. In the 
ase of the DC motor, this for
ewill a
t against the 
urrent applied to the 
ir
uit and is then denoted ba
k or
ounter ele
tromotive for
e (BEMF or CEMF). The ele
tri
al balan
e leadsto

Lf İf +RfIf = VACfor the �eld 
ir
uit, and to
Laİa +RaIa = VCB − Ewhere Lf and Rf are the indu
tan
e and the resistan
e of the �eld 
ir
uit,

La and Ra are the indu
tan
e and the resistan
e of the armature 
ir
uit, and
E denotes the Ba
k EMF. Kir
ho�'s laws give us the relations

{

I = Ia = If
V = VAC + VCBwhi
h gives for the total ele
tri
al balan
e

Lİ +RI = V − Ewhere L = Lf + La and R = Rf + Ra. We now denote Φ the �eld �ux, wehave Φ = f(If ) = f(I), and E = KmΦωr where Km is a 
onstant and ωr isthe rotational speed of the shaft.The se
ond equation of the model is given by the me
hani
al balan
e ofthe shaft of the motor using the well known Newton's law. We 
onsider thatthe only for
es applied to the shaft are the ele
trome
hani
al torque Te, thevis
ous fri
tion torque and the load torque Ta leading to
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Jω̇r = Te −Bωr − Tawhere J denotes the rotor inertia, and B the vis
ous fri
tion 
oe�
ient. Theele
trome
hani
al torque is given by Te = KeΦI with Ke denoting a 
onstantparameter. We 
onsider that the motor is operated below saturation: the�eld �ux 
an be expressed by the linear expression Φ = LafI where Lafdenotes the mutual indu
tan
e between the �eld and the rotating armature
oils. To 
on
lude with the modeling of the DC motor we suppose the idealhypothesis of 100% e�
ien
y in the energy 
onversion expressed by K =

Km = Ke, and for notation simpli
ity we write Laf instead of KLaf . Thevoltage is the input of the system u(t) and the 
urrent I is the measuredoutput. We �nally obtain the following SISO model for the series-
onne
tedDC motor
(

Lİ
˙Jωr

)

=

(

u−RI − LafωrI
LafI

2 −Bωr − Ta

)

y = I

(1.48)This model will be used to simulate the DC motor by mean of a Mat-lab/Simulink S-fun
tion.1.5.2 Observability 
anoni
al formBefore implementing the observer in order to re
onstru
t the state ve
tor ofthis system we test (quite easily) its observability property. We use the di�er-entiation approa
h that is we verify the di�erential observability (De�nition3) whi
h implies observability.
• I(t) is known with time, then İ = (1/L)(u−R.I −LafωrI) is known andas far as u(t), R, and Laf are known then ωr 
an be 
omputed
• now that ωr(t) is known, ω̇r = (1/J)(LafI

2 −Bωr−Ta) 
an be 
omputedand be
ause of the knowledge we have of I(t), Laf , B,and J , Ta 
an beestimatedWe dedu
e from this that a third variable may be added to the stateve
tor in order to re
onstru
t both the state of the system and the loadtorque applied to the shaft of the motor. We assume that the load torque is
onstant over time. Sudden 
hanges of the load torque will then be 
onsideredas unmodeled perturbations. The observer we use is the adaptive-gain Kalman�lter as des
ribed in Se
tion 1.3.4 be
ause it has the 
lassi
al EKF stru
turewhen no perturbations o

ur and the stru
ture of a HG�EKF when the systemfa
es a perturbation. Estimation of the load torque is made possible by theaddition of the equation Ṫa = 0 to (1.48) (see remarks in Se
tion 1.4.2). Wenow need to �nd the 
oordinate transformation that puts this systems intothe observability 
anoni
al form.From the equation y = I, we 
hoose z1 = I and then
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ż1 =

1

L
(u(t) −RI − LafIωr)whi
h by setting z2 = Iωr be
omes

ż1 = −
Laf
L
z2 +

1

L
(u(t) −Rz1) = α2(u)z2 + b1(z1, u) (1.49)we now 
ompute the time derivative of z2

ż2 = İωr + Iω̇r = −
1

J
TaI −

B

J
Iωr +

Laf
J
I3 −

Laf
L
ω2
rI +

u(t)

L
ωr −

R

L
ωrIwhen I > 0 and 
onsequently z1 > 0 whi
h sounds as a reasonable assumptionas far as I is the 
urrent of the 
ir
uit whi
h is equal to zero only when thereis no power supplied to the engine (and therefore nothing to observe), we set

ωr = z2
z1
, and by setting z3 = TaI this equation be
omes

ż2 = −
1

J
z3−

B

J
z2 +

Laf
J
z3
1 −

Laf
L

z2
2

z1
+
u(t)

L

z2
z1

−
R

L
z2 = α3(u)z3 + b2(z1, z2, u)(1.50)and identi
al remark as above lead us to the expression Ta = z3

z1
and re
allingthat Ṫa = 0 we obtain

ż3 = −
Laf
L

z2z3
z1

+
u(t)

L

z3
z1

−
R

L
z3 = b3(z1, z2, z3, u) (1.51)Thus the appli
ation from R

∗+ × R × R → R
∗+ × R × R de�ned by

(I, ωr, Ta) → (I, Iωr, ITa) with (z1, z2, z3) →
(

z1,
z2
z1
, z3
z1

) as its inverse, isa 
hange of 
oordinates that puts the system (1.48) into the observer 
anon-i
al form de�ned by (1.49), (1.50) and (1.51). It is ne
essary to 
ompute the
oe�
ients of the matrix b∗ .1.5.3 Observer implementationWe now re
all the equations of the AG�EKF






























dZ

dt
= A(u)Z + b(Z, u) + PC′R−1

θ (CZ − y(t))

dS

dt
= P (A(u) + b∗(Z, u))′ + (A (u) + b∗ (Z, u))

−PC′R−1
θ CP +Qθ

dθ

dt
= λ(1 − s(I)).(1 − θ) +K.s(I).(θmax − θ)

(1.52)where Rθ = θ−1R and Qθ = θ∆Q∆ with ∆θ = diag
(

θ, θ2, . . . , θn
), s(I) =

[

1 + e−β(I−m)
]−1 and
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I =

∫ t

t−T

‖y(s) − ȳt−T (s)‖2 ds = ‖y − ȳt−T ‖
2
L2(t−T,t) (1.53)In fa
t, these equations are a slight modi�
ation of (1.34): the fun
tion

F has been modi�ed in order to take into a

ount noise e�e
ts, as we willexplain below.The simulation of the DC motor is straightforward, we then only 
om-ment the implementation of the observer. A Matlab/Simulink blo
 diagramrepresenting the DC ma
hine and the observer is shown in Figure 1.2 (this�gure is in
omplete as far as one would surely want to plot errors betweenreal and estimated states). As it may be seen from the simulink blo
 diagramshown in Figure 1.3 the observer is de
omposed into three parts: two level 1S-fun
tions and a transport delay blo
. As written on the diagram, the right-most S-fun
tion is dedi
ated to the 
omputation of the three main equationsof the observer whi
h are equations (1.52). This blo
 has three type of inputs:the measured output of the observed system, the input delivered to the ob-served system and the innovation. The innovation is 
omputed using a distin
tS-fun
tion be
ause unlike the main equations that may be pro
essed 
ontin-uously (or quasi-
ontinuously), a dis
rete S-fun
tion is needed to 
omputethe innovation. This 
hoi
e was made be
ause:

Fig. 1.2. Simulation and observation of the DC motor
Fig. 1.3. Observer subsystem
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• the 
omputation of the integral is made by mean of a �xed step trapezoidalmethod
• we have to keep memory of the input and the output traje
tories over atime interval [0;T ] where T is the delay of (1.53) whi
h is easily done witha �xed step pro
ess.The 
odes to implement those di�erent fun
tions may be downloaded fromhttp://www.u-bourgogne.fr/monge/e.busvelle/springer/ or obtained from theauthors if the link happens to be disabled.1.5.4 Simulation parameters and observer tuningThe parameters used to simulate the DC engine, motivated by measures madeon a real system, are L = 1.22H ,Res = 5.4183Ω,Laf = 0.0683N.m.Wb−1.A

−1 ,
J = 0.0044 kg.m2, and B = 0.0026N.m.s−1.rad−1.We now need to set the observer parameters d, Dt, R, Q, θmax, λ, K, β,and m. Before explaining how those parameters may be tuned, we want tostress that the last four ones do not need to be reseted for ea
h new observer.Those parameters appear in the last equation in (1.52) and drive the evolutionof the parameter θ. The values λ = K = 500, β = 2000, and m = m1 +m2where m1 = 0.005 (m2 will be spe
i�
 to ea
h new pro
ess) may be keptea
h time a new observer is implemented. The pro
edure used to tune theparameters R, Q, θmax is inspired by the one proposed in [9, part. 5.2.2℄.1. As a �rst step, we determine the (symmetri
 positive de�nite) matri
es
R and Q by using an EKF. This observer 
an be obtained from the AG�EKFwhen the parameters of the adaptation fun
tion are set to 0 and θ(0) = 1.Large perturbations are not 
onsidered and the observer is initialized to theproper (or previously estimated) values of the state ve
tor.2. As a se
ond step, we set the R and Q matri
es to the values previouslyfound and use a HG-EKF in order to tune θ. As above the observer needed isobtained from the AG�EKF when the parameters of the adaptation fun
tionare set to 0. Then θ(0) is the value that is tuned. Here we will try to �nd avalue for the high-gain parameter that allows fast and reasonable 
onvergen
e(with respe
t to noise ampli�
ation) when large unmodeled perturbations areapplied to the system. θmax is then taken equal to the value estimated at thisstep.3. As a last step we now set the parameters of the adaptation fun
tion. Weremark that when m = 0 then s(0) = 0.5. Thus we need to shift the sigmoidfun
tion to the right if we want s(0) to be 
lose to zero. Choosing y1 as small aswe want and solving the equation s(0) = y1 allows to obtain the parameterm.This solution is easily 
omputed provided that the parameter β is known. Asthe sigmoid fun
tion is 
entered on (0, 0.5) when m = 0, the 
omputation of βis made by setting a length l for the transition part and solving the nonlinearequation (with m = 0): s(l/2) − s(−l/2) = (1 − y1) − y1. Of 
ourse, anotherapproa
h is to graphi
ally de�ne β and m from trial and error. Figure 1.4
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Fig. 1.4. estimation of β and m1 by trial and errorshows a simple Matlab GUI implemented to ease this latter method (the resultdisplayed is for the values of β and m1 given above). The 
ode of this GUI isalso available from http://www.u-bourgogne.fr/monge/e.busvelle/springer/.Now that the transition part is small, we want the gain to in
rease andde
rease qui
kly. If we suppose that θ(t) = 1 and that we want it to rea
h
θmax within a time τ then the equation θ̇ = θmax−1

τ
= K.(θmax − 1) allowsthe 
omputation of K. As far as the equation used to 
ompute K is only anapproximation, a bigger value (e.g. twi
e the 
omputed value) may be used.Finally, a reasonable 
hoi
e for the last parameter remaining is λ = K.The parameter T , the length of the window on whi
h innovation is 
om-puted, is related to the rise time of the system when it is fa
ing perturbations:it has to be su�
iently big so as to give an a

ount of perturbations that o

uron the system. The sample time Dt of the dis
rete S-fun
tion should ideallybe 
hosen as small as possible, leading to a signi�
ant in
rease of the amountof time and of the memory needed to 
ompute the innovation (we need to keeptra
k of T

Dt
+1 system outputs and T

Dt
system inputs). Dt = T/3 or Dt = T/4seems to be reasonable, fewer values will of 
ourse give more �exibility to thesystem.Be
ause of measurement noise the innovation will never be equal to zeroand therefore the observer will stay in a high-gain mode. To avoid this prob-lem, the parameter m is rewritten m = m1 +m2 where m1 is the previously
omputed quantity and m2 will represent the in�uen
e of the noise on the
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ations 37system. As a result, when I ≤ m2 we will have s(I) ≤ y1 and θ won't in-
rease. We denote by σ the standard deviation of the output noise, whi
h 
anbe estimated from output measurements, and then m2 = T.σ2 where T is thedelay used in the de�nition of the innovation. Figure 1.5 shows the outputof the simulated DC motor (with addition of noise) and that σ = 0.7 is areasonable value for the standard deviation.
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Fig. 1.5. Estimation of the standard deviationFinally all those steps allow us to set the parameters to R = 1, Q =
[1, 0, 0; 0, 5, 0; 0, 0, 5], θmax = 3, λ = K = 500, β = 2000, T = 0.1, Dt = 0.01,and m = 0.005 + 0.049.1.5.5 Simulation resultsFigures 1.6 and 1.7 shows the performan
e of the designed observer, all theobservers identify the values taken by the load torque but with di�erent be-haviors. The EKF reje
ts noise but 
onverges slowly when the system fa
esunmodeled perturbations. We may add that in order to speed up a little bitthe EKF the Q matrix was set to [25, 0, 0; 0, 25, 0; 0, 0, 50] in this spe
ial 
ase,it was kept to the value given in the previous 
hapter for all the other simu-lations.The HG�EKF is on the 
ontrary very sensitive to measurement noise butis very fast regarding 
onvergen
e when a perturbation arises.The AG�EKF presents both the advantages of the two previous �lters,namely noise reje
tion and speed of 
onvergen
e under perturbations. Weobserve that the adaptive-gain observer is a little bit slower than the �xedhigh-gain one. This is due to the delay indu
ed by the 
omputation of inno-vation, in fa
t the value 
hosen for Dt will have an impa
t on this delay as faras the behavior of θ (in
reasing toward θmax or de
reasing toward 1) will only
hange with the innovation. In all the parameters tuned for this last observerone will have a major impa
t, this is m2. Indeed if it is set to a too big value
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rease every time it is needed what does not 
onstitutes amajor drawba
k be
ause the EKF reje
ts noise (this is true provided that m2is not su
h as big that it totally prevent θ from in
reasing). On the 
ontrary,if m2 is too small then θ will in
rease when it is not needed (only be
ause ofthe noise) having the only e�e
t to amplify noise. However as it 
an be seenfrom Figure 1.5, σ and therefore m2 is not di�
ult to estimate from outputmeasurements. To illustrate this 
omment Figure 1.8 shows the evolution of θfor two di�erent values of m2 (the value 0.049 
orresponds to the simulationswhi
h results are shown above).
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Fig. 1.8. Di�erent values of m21.6 Ele
troni
al neuron 
ir
uitWith this se
ond appli
ation we illustrate how observers 
an assist systemmodeling and, in the 
ase 
onsidered here, prototype assessment (as in Se
tion1.4). Identi�ability study of this model has been presented in [5℄.The modelization of neurons is extensively studied in neuros
ien
e re-sear
h. A large quantity of models of isolated neuron 
ells or of neuron 
ellsnetworks are available in the literature ea
h one of them presenting variabledegrees in their a

ura
y. The model we use here, a modi�
ation of the modelproposed by Fitzhugh, Nagumo & al. in the early 1960's, is a simpli�
ation ofthe one of a single isolated biologi
al neuron proposed by Hodgkin and Huxley[24℄. Histori
al informations on the development of this model 
an be foundin [28℄.1.6.1 The modi�ed Fitzhugh-Nagumo model (MFHN)From the biologi
al point of view this model is 
omposed of two variables,
V representing the membrane voltage and W that represents the re
overyvariable

{

V̇ = V − V :3

3 −W

Ẇ = ǫ (g(V ) −W − η)
(1.54)where ǫ and η are 
onstant parameters and g is the pie
ewise linear fun
tion

g(V ) =

{

βV if V > 0
αV if V ≤ 0where α and β are 
onstant parameters.
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ir
uit at LE2I laboratory(university of Burgundy), the exa
t des
ription of this 
ir
uit is given in [6℄.The analyze of this physi
al system is made by mean of an observer basedapproa
h, real data being available.1.6.2 Identi�ability and observabilityFrom the analogue 
ir
uit point of view, V 
orresponds to a voltage andW to a
urrent therefore both of them 
an be measured. Although in the 
ase of a realbiologi
al system it will only be possible to measure V , the membrane voltage.Thus we will 
onsider that only V is a
tually measured. The obje
tive of thisstudy is the identi�
ation of the fun
tion g (i.e. the part of its graph visitedduring the experiment) and the study of the identi�ability property of thesystem 
onstitutes a �rst step. In Se
tion 1.4, we des
ribed an identi�abilitynormal form for single output un
ontrolled systems (normal forms for systemswith more than one output are also given)


























ẋ1 = x2...
˙xn−1 = xn
ẋn = ψ(x, g)
y = x1

(1.55)We now want to �nd a 
hange of 
oordinates that allow the MFHN equa-tions to mat
h this normal form. This 
oordinate transformation is easilyfound: set x1 = V and x2 = V̇ .


























ẋ1 = V̇
= x2

ẋ2 = V̇ − V̇ V 2 − Ẇ

= (1 − x2
1)x2 − ǫ

(

g(x1) − x1 +
x3
1

3 + x2 − η
)

= ψ(x, g)

(1.56)Sin
e ǫ 6= 0, the system is 
learly identi�able. We see that if the parameter
η is unknown we have the possibility to rede�ne the unknown fun
tion g as
g(x1) = g(x1) − η with no 
hange in the normal form.In order to identify the fun
tion g, we extend the state ve
tor by making
g a state variable. As it is 
lear that g is not 
onstant over time we model itas a lo
al polynomial of time

g(V (t)) = g(t) = a0 + a1t+ ...+ ant
nwhi
h imply that dn+1g(t)

dtn+1 = 0. The model is 
ompleted by the addition of nnew state variables 
orresponding to the n �rst derivatives of g with respe
tto time (for a total of n+ 1 new variables). It appears that when the system
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ations 41de�ned by (1.56) is extended in that manner it is in the observability 
anoni
alform. However there exist a mu
h more simpler way to obtain the 
anoni
alform that is not to do any 
hange of variables. This latter form is the onewe will 
onsider so as to avoid 
hange of variables while implementing theobserver
d

dt
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




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
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


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








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















0 −1 0 0 ... 0 0
0 0 ǫ 0 ... 0 0
0 0 0 1 ... 0 0
0 0 0 0 ... 0 0
... ... ... ... ... ... ...
0 0 0 0 ... 0 1
0 0 0 0 0 0 0
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
















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








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



V
W
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...
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



















+





















V − V 3

3
−ǫ(W − η)

0
0
...
0
0



















where hi = d
i
g(t)

dt
i for i = 0, ..., n and with d0g

dt
= g.One 
ould think that the 
hoi
e of a lo
al representation for the fun
tion

g (here a polynomial of time) and the transformation of the model into the
anoni
al observability form su�
es to prove identi�ability. It is in fa
t notthe 
ase. This subtle di�eren
e has been well illustrated in [9, part 6℄ wherethe authors exhibit the example
{

ẋ = ϕ(x)
y = x+ ϕ(x)

x ∈ Rindeed, keeping the notations used above for the fun
tion g and setting n = 1,then the 
hange of 
oordinates (x, h0, h1) → (z1, z2, z3) = (x+h0, h0 +h1, h1)leads to an observability 
anoni
al form. However the authors showed thatthis system is not identi�able !1.6.3 ImplementationThe high-gain extended Kalman �lter is adapted to the problem of identi-�
ation of the unknown fun
tion g. The implementation of this observer ismu
h more easy to 
arry on than the previous one: only one S-fun
tion isneeded. Even if our obje
tive is to use real data get from the analogue 
ir
uitmentioned above we use a 
ontinuous S-fun
tion. This is motivated by thefa
t that our data's sample time is smaller than the average time step used bythe software to 
ompute the 
ontinuous solutions (but a 
ontinuous�dis
reteobserver (1.37)�(1.38) will be another possible 
hoi
e). The 
orrespondingMatlab/Simulink diagram is shown Figure 1.9.Codes may be downloaded (together with a set of data) from http://www.u-bourgogne.fr/monge/e.busvelle/springer/.
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Fig. 1.9. Identi�
ation from real data1.6.4 ResultsA �rst series of simulations of the MFHN model are done in order to tunethe three parameters n, Q, and θ. The parameters for the MFHN modelare set to α = 0.5, β = 1.96, ǫ = 0.2966, η = 0.20531 V (0) = 1.0656,and W (0) = 2.6903. Sin
e we are using an observer that only has a high-gain behavior, Q is set to the identity matrix Id(3+n)×(3+n). The high-gainparameter θ is then 
hosen to ensure an a

urate identi�
ation of the fun
tion.Several simulations shows that θ = 1 (
orresponding to an extended Kalman�lter) does not lead to the identi�
ation of the fun
tion. The identi�
ation ismade possible when θ ∈ [5; 10], and is very a

urate when θ > 10. Figure 1.10shows identi�
ation results for four di�erent values of the high-gain parameterwhen the data fed to the observer are simulated. No noise have been addedduring those simulations and then even if θ = 15 gives the best result, thetrade-o� between speed of 
onvergen
e and sensibility to noise lead us to
hoose a smaller value.The values for V got from the analogue 
ir
uit are shown Figure 1.11 andthe result of the identi�
ation (with θ = 10 and n = 1) is shown Figure1.12(a). We see that the unknown fun
tion is identi�ed as a loop and fromthe shape of the data used, we expe
t four of them.We isolated the �rst values given by the observer in order to obtain the
learer graphi
 Figure 1.12(b) in whi
h we highlighted the overshoot due tothe ina

urate initialization of the observer. After this overshoot the observer
onverges to the values taken by the unknown fun
tion and while V < 0the estimation is quite good. When V be
omes positive the estimation isnot that a

urate anymore. Two reasons 
an be pointed out to explain thisphenomenon: the real data do not 
orrespond exa
tly to the output the theo-reti
 model would give for the same set of parameters (whi
h is analogous tomodeling errors) and the fa
t that the fun
tion we want to identify is not dif-ferentiable in 0, a very spe
i�
 property that is not re�e
ted by our polynomialapproximation.We rewrite the model used to perform the identi�
ation so as to take thisinto 
onsideration
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

























ẋ1 = x2 ẋ2 = ψ̄(x, α̂, β̂)

˙̂α = α1
˙̂
β = β1

α̇1 = α2 β̇1 = β2

α̇2 = α3 β̇2 = β3

α̇3 = 0 β̇3 = 0

(1.57)The results of this new identi�
ation are shown Figure 1.13(a-b). This newestimation is very a

urate after a few 
y
les. Small errors both for the positiveand negative values of V are still visible, they 
an also be spotted when wetra
e the values taken by α̂ and β̂ against time as in Figure 1.14. Those errorsare due to the fa
t that real data di�er from the ideal mathemati
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