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2 LE2I, IUT d'Auxerre, Route des plaines de l'Yonne, 89000 Auxerre, Franebusvelle�u-bourgogne.fr1.1 IntrodutionWe distinguish two kinds of observers for nonlinear systems whih are usedby sientists and engineers: empirial observers and onverging observers.The �rst lass of observers are based on some approximation of the non-linear system or approximation of a theoretial best estimation. The mostommon example is of ourse the extended Kalman �lter. Although, for linearsystems, the Kalman �lter is a onverging observer and an optimal observerfor some quadrati ost funtion, the nonlinear version is based on a lineariza-tion of the nonlinear system in a neighborhood of its estimation. Hene, theextended Kalman �lter is a good � almost optimal � loal observer but it isnot a globally onverging observer. Intuitively, if the a priori estimation isfar from the atual state value, the linearization around the estimate has nosense (Setion 1.2.2).There are a lot of empirial observers, based on neural networks, genetialgorithms, fuzzy logi, and so on. These observers are also based on an ap-proximation of the proess.An other type of observers are based on the approximation of the exatsolution. Indeed, setting the problem as a stohasti problem, the optimal so-lution is given by the Dunan-Mortensen-Zakaï (DMZ) equation. The solutionof this nonlinear stohasti partial di�erential equation is the law of the stateknowing observations. Hene, the onditional expetation of the state know-ing observations an be expressed using the solution of the DMZ equation.However, this PDE equation is very ompliated. There exist some algorithmsin order to alulate an approximation of the solution, and therefore to ob-tain an approximate observer. For instane, some Monte-Carlo methods anbe used in order to alulate the onditional density of probability of the on-ditional law. In this ase, these methods are alled partile �ltering methods.It onsists in the simulation (by Monte-Carlo methods) of several proesses,whih allows the alulation of the law of the state. The observation appearsin the DMZ equation as a killing proess. Although this approah has some



2 Niolas Boizot and Eri Busvelletheoretial justi�ations (it onverges when a �nite parameter � the numberof partiles � goes to in�nity), observers based on this approah are alwaysapproximative observers.Although these empirial observers are not proved to onverge, they areused by many engineers for many proesses, inluding some ritial proesses.During normal operation, these observers are often very reliable and givesvery good pratial results.The seond lass of observers are theoretially onverging observers. Inthis book, we mainly disuss about high-gain observers. Nevertheless, thereexist also some other lasses of onverging observers. Most of them only dealwith a small lass of nonlinear systems. Most of them have also some badperformanes in presene of noise.In this hapter, we will not speak about sliding observers, algebrai ob-servers, or �nite dimensional �lters, but we will fous on high-gain observers,and their performanes omparing to extended Kalman �lter.Our purpose is to present a uniform framework where nonlinear �ltering,empirial observers and exponentially onverging observers are ompared. Wemainly disuss about their similarities, and we propose an observer based onempirial observers (as those used by engineers), whih is an exponentiallyonverging observer.Despite the lak of theoretial justi�ation, the extended Kalman �lter(EKF) is one of the most famous algorithm used to estimate unknown statevariables from measurements in dynamial nonlinear systems. It is also usedto estimate unknown onstant or slowly varying parameters in linear systemsand sometimes to perform failure detetion. In this last ase, it is neessaryto quantify the e�ieny of the EKF with time. This task is usually basedon the innovation proess, whih is the integrated di�erene between atualmeasurements and predited measurements. The innovation proess an bemonitored, and a large value of the innovation an be used to send an alarmor to swith from an old model to a new one. It an also be used to estimatethe noise entering into the proess or to estimate the measurement noise.The empirial EKF is even used for ritial proesses. Therefore, in order toinrease the performane and the reliability of the EKF several engineers andresearhers already tried to develop an adaptive version. Using innovation andstate estimation, it seems possible to estimate parameters that haraterizethe state of the proess. These parameters an then be used to adapt the gainmatrix by online automati tuning of some of the ovariane matries used inthe omputation of the gain matrix. These kind of adaptive EKF are empirialbut seem to have nie behavior ompared to the EKF.Beause of the di�ulty to ensure robustness when adaptive quantity isontinuously updated, some authors used an adaptive algorithm based onswithing between several models. For instane, in [33℄, authors have devel-oped an appliation on a highly ritial proess (from robustness point ofview). They proposed to swith between two ovarianes matrix Q1 and Q2depending on the state of the proess.



1 Adaptive-gain observers and appliations 3There exist many papers dealing with adaptive observers and adaptiveextended Kalman �ltering espeially in the GPS and DGPS ommunity, see[22, 12, 26℄. In [12℄ for instane, authors present an adaptive extended Kalman�lter using innovation in order to adapt Q and R matries, exatly in the samespirit than in the present hapter, exept that they do not give any theoretialproof. Nevertheless, the need for this kind of observer is learly established.In those papers, adaptation of the �lter is done using empirial rules (ge-neti algorithms [35℄, neural networks [44℄, statistis [33℄...), and no proofs aregiven. But in all ases, e�ieny of the adaptive observer is highlighted. Letus remark that for neural networks based extended Kalman �lters (N-EKF),the system is splitted into a linear part and a nonlinear part, and the ex-tended Kalman �lter is applied to the nonlinear part, whih is approximatedby neurons. The weights of neurons an be alulated using EKF, making thealgorithm adaptive. In this ase, some proofs an be established, but only ifthe neural network an approximate the system.An intuitive theoretial justi�ation of adaptive gain is based on the highgain observer theory. It has been shown from a long time ([17℄) that highgain observers have very nie theoretial properties. The �rst one is thatthey required to study the observability property of the model. This studyprevents from developing an observer for a non-observable system. But highgain observers are also exponential observers: one an prove the onvergene ofthe high gain observer. In our opinion, the onvergene property is a minimumrequirement for an observer whih is used on some ritial proesses, andsometimes as a diagnosti tool. Therefore, it is a good idea to adapt the gainof observers in the following way:
• use an EKF when the estimation is lose to the true state, beause EKFis a good (optimal) loal observer (as already stated) and
• use a high-gain observer when large perturbations our, beause theseobservers are nonlinear onverging observers.In [14, 15, 20℄, the high-gain extended Kalman �lter (HG-EKF) has beenintrodued. Compared with the Luenberger observer, HG-EKF is also an ex-ponentially onverging observer, but with the property that it is more e�ientin the presene of noise. Indeed, the high sensitivity of high-gain observers isa well known drawbak: the high gain ensures onvergene but also inreasesnoise e�ets. In [8℄, a new algorithm, based on lassial and high-gain EKF, hasbeen developed. This algorithm is based on a theoretial result, whih statesthat a time-dependant HG-EKF, whih is asymptotially equivalent to a las-sial EKF, may be an exponentially onverging observer, if the transition fromHG-EKF to EKF is slow enough. But this result is based on a time-dependantobserver and, in order to make its onvergene property persistent, it is ne-essary to use several observers and to swith from one to another, dependingon the innovation proess. Although it is an e�ient observer, as shown in thereferene above, but also in [9, 10℄, it is rather ompliated and CPU inten-sive. Moreover, even if the �nal algorithm an be onsidered as an adaptive



4 Niolas Boizot and Eri Busvellehigh-gain extended Kalman �lter (AG�EKF), its implementation is far fromlassial observers as used by engineers.In this hapter, we will present a time-independant adaptive-gain extendedKalman �lter. The adaptation of θ will depend on the innovation proess.As usual for the HG-EKF, the parameter θ appears in the Riati equationof the Kalman �lter, and more preisely in the matrix Q, denoted Qθ. But inthis new ase, the high-gain parameter appears also in the matrix R (denoted
Rθ), as in [12℄ (for a pratial appliation). It is the �rst di�erene with resultin [8℄. The seond di�erene is that θ may inrease if the innovation is high andderease if the innovation is low. This idea is the basis of pratial appliations:it is also the ornerstone of the proof of the theorem.Before onsidering extended Kalman �ltering, we will present in the nextsetion some results onerning nonlinear �ltering. A nonlinear �lter is sim-ilar to a nonlinear observer, in the sense that it is supposed to estimate thestate of a system given some measurements. But nonlinear �ltering deals withstohasti equations. In the deterministi ase, one have in mind that themodel approximates the system, that some unmodelized and unmeasured per-turbations an enter ontinuously into the system, and that measurements areorrupted by noise. Therefore, an observer should be robust to these pertur-bations. In the �ltering problem, these perturbations are taken into aountin the synthesis of the algorithm. Hene, the stohasti approah seems tobe more adapted to the problem, whih is better de�ned (and the stohastiproblem is ompletely solved by the DMZ equation).As we will see however, both approahes yields to similar tools. In fat,the main di�erene between the two theories is the observability property:
• In the stohasti ase, the system has not to be observable. A nonlinear�lter an be developed even for unobservable systems sine it gives only theonditional law of the state knowing observations. Typially, an observablesystem gives rise to an unimodal law.
• In the deterministi ase, an observer has no sense for a non observablesystem (exept perhaps if the system is globally asymptotially stable inwhih ase the model itself is a � slow � observer).The "nonlinear �ltering" setion may be read even by a reader whih isnot speialist in probability. It an also be omitted by a reader whih is notinterested by the �ltering/observation omparison.1.2 Nonlinear �ltering1.2.1 Dunan-Mortensen-Zakaï equationWe study the observer problem in a stohasti setting. Let us onsider thefollowing stohasti system



1 Adaptive-gain observers and appliations 5
{

dX (t) = f (X (t) , u)dt+Q
1
2 dW (t)

dY (t) = h (X (t) , u) dt+R
1
2 dV (t)

(1.1)where
• X (t) ∈ R

n, X (0) being a random variable, Y (t) ∈ R
p, and u is a R

d�valued measurable funtion,
• W (t) and V (t) are two independent Wiener proesses (also independentfrom X (0)).In this hapter, we will omit to speify the time variable whenever noonfusions are possible, writing X instead of X (t).Therefore,

E

[

(

Q
1
2W (t)

)(

Q
1
2W (t)

)′
]

= Q.t(whereM ′ denotes the transpose of a matrixM) so Q is the ovariane matrixof the state noise, and R is the ovariane matrix of the measurement noise(the notation Q
1
2 represents the Cholesky deomposition of Q, also alledsquare root of Q).In this setion, we denote X (t) a proess or random variable and x (t) itsrealization, that is x (t) = X (t) (ω).

X (0) is supposed to be an L2 (Rn) random variable independent from Wand V . For simpliity, we will assume that this random variable admits adensity funtion, denoted p (0, x) = dP ({X(0)≤x})
dx

.Considering equations in the Ito sense, if f is a Lipshitz funtion w.r.t.
x with a Lipshitz onstant independent of u, then the system (1.1) admits aunique solution.In this stohasti ontext, the observer problem is an estimation problem:we want to alulate the best estimation of X (t) knowing measurements Yfrom 0 to t, denoted by the σ�algebra FY

t . Hene, we want to alulate theonditional expetation E
[

X (t) | FY
t

], or more generally E [

φ(X (t)) | FY
t

]for any test funtion φ. Finally, this is equivalent to alulate the onditionallaw of X (t) knowing FY
t .We assume that this law admits a density denoted by p (t, x), i.e. theonditional law is absolutely ontinuous with respet to Lebesgue measure(this restritive assumption is not neessary but it simpli�es some formulas,espeially the DMZ equation). Then, p (t, x) is the solution of the well knownDunan�Mortensen�Zakaï (DMZ) equation. We will not explain this equationhere: it is a stohasti partial di�erential equation, whih has to be regularizedbefore to be used, and whih is di�ult to use for pratial problems, espeiallyif n is large (see [37℄ for a lear statement of the DMZ equation).The DMZ equation has been used in several ways:

• First, this equation may be simpli�ed in some very speial ases. One ofthem is the linear ase, where the solution of the DMZ equation is theKalman �ltering equation. There exists also some nonlinear ases where



6 Niolas Boizot and Eri Busvellethe DMZ equation gives a omputable solution, for instane for systemswhih are linearizable up to a hange of oordinates, or an immersion.In these ases, it is of ourse a very good approah to build an optimalobserver.
• Seond, despite its omplexity, the (regularized version) of the DMZ equa-tion an be approximately solved, for instane using Monte-Carlo methods.In this ontext, Monte�Carlo methods are alled partile methods. Themain idea is to approximate the initial law of X (0), given by its density

p (0, x), by a set of "partiles", i.e. a set of independent random variables
Xi (0) suh that

p (0, x) ≃
N

∑

i=1

δXi(0)where δx denotes the Dira measure at x. The notation ≃ will be preiselyde�ned in Theorem 2.The priniple of a partile method is then to approah the probability lawof X (t) knowing FY
t by a (weighted) sum of Dira measures at points Xi (t).When applied to �ltering, this just onsists in approahing the law of theurrent state knowing observations by means of a partiular weighted sum ofDira distributions. This kind of method is well adapted to the ase in whihthe dimension of the state is large, beause in this ase one usually uses theMonte-Carlo method to ompute the onditional expetation
E

[

φ(X (t)) | FY
t

]

=

∫

φ(x)p(t, x)dxand this method requires a sample of the law p (t, x) whih is given by Xi (t),
i = 1, . . . , N .To haraterize a partile method, it is su�ient to give some rules suhas
• how to alulate weights of partiles (e.g. Dira measures)
• how to move partiles Xi (t) in the state spaeLet us give an example of a partile �ltering. As we will see in next setion,this algorithm have some similarities with the observer onstrution (Setion1.3.3), although it has been obtained by a totally di�erent way.We will study the nonlinear �ltering problem with linear disrete-timeobservation, that is to say, the seond equation in (1.1) is replaed by

Yk = CX (tk) +R
1
2 V (k) (1.2)where (tk)k∈N

is the sample time and (V (k))k∈N is an independent (w.r.t. Wand X (0)) Gaussian white noise. The limitation to a linear observation fun-tion is not neessary but is a simpli�ation when one wants to implement this



1 Adaptive-gain observers and appliations 7algorithm. The hoie of disrete-time observation simpli�es the mathemat-ial bakground neessary to de�ne the DMZ equation. Indeed, in this ase,the onditional density p (t, x) is given by the disrete version of the DMZequation:
p(tk, x) =

1

fY
k−1=yk−1

Yk
(yk)

f
X(t)=x
Yk

(yk)

∫

X

f
X(tk−1)=ξ

X(tk) (x)p(tk−1, ξ)dξ (1.3)where notations
• f

X(t)=x
Yk

(yk) represents the onditional density of Yk knowing X (t) = x;
• f

X(s)=ξ
X(t) (x) represents the onditional density of X (t) knowing X (s) = ξ;

• fY
k−1=yk−1

Yk
(yk) represents the onditional density of Yk knowing Y be-tween time 0 and time tk−1 is equal to (y0, . . . , yk−1) so that for instane,

p(t, x) = fY
k=yk

X(t) (x)Equation (1.3) is nothing else than the Bayes formula applied to the prob-lem.Remark 1. We point out that the DMZ equation (1.3) gives an exhaustiveinformation on X (t) knowing all informations available at time t. Hene itgives the best possible estimate and, if the system is observable (De�nition1), it is a very good observer.As usual with equations desribing evolution of a density of probability,the un�normalized version of the DMZ is more tratable: (1.3) is equivalentto
q(tk, x) = f

X(t)=x
Yk

(yk)

∫

X

f
X(tk−1)=ξ

X(tk) (x)q(tk−1 , ξ)dξ (1.4)with
p(tk, x) =

q(tk, x)
∫

X
q(tk, ξ)dξThere are several ways to solve the un�normalized DMZ equation usingpartile methods. The �rst way is to reognize the omposition/rejetion the-orem in this formula ([27℄), and therefore to onsider this equation as a sim-ulation formula, whih is the basis of a Monte-Carlo method. The algorithmonsists in simulating the proess (by "partiles" Zi) and killing some of themthanks to measurements (the "bad" partiles). At a time tk < t ≤ tk+1, thenumber of partiles whih are still alive is a random variable N (k). If thisrandom number is large enough, the onditional density is approximated by

p (t, x) ≃

N(k)
∑

i=1

δZi(t) (x)



8 Niolas Boizot and Eri BusvelleThis approah an not be applied exatly as explained here, sine N (k)is a dereasing integer whih goes almost surely to 0 (eah measurement killpartiles). In order to obtain a more e�ient algorithm, one usually onsidera weighted sum of Dira measures.Let us introdue oe�ients ai (t) ∈ [0, 1]. These numbers represent thedegree of on�dene in eah partile, and replae binary oe�ients 1 (thepartile is alive) or 0 (the partile is dead). As for the DMZ equation itself,we onsider an un�normalized set of oe�ients bi (t) ∈ R
+ suh that

ai (t) =
bi (t)

∑N
j=1 bi (t)We onsider an algorithm P whih desribes the trajetory of partiles

zi (t) and weight oe�ients bi (t). The law trunated at n partiles given by
P is denoted as Pn (t) (dPn (t) = pn (t, x) dx) and de�ned by

Pn (t) =

∑n
i=1 bi (t) δzi(t)
∑n

i=1 bi (t)
=

n
∑

i=1

ai (t) δzi(t)Algorithm 1 Initialization
zi (0) is the realization of a random variable with respet tothe initial law p (0);
bi (0) = 1;Loop
zi (tk) is a Gaussian variable with respet tofX(tk−1)=zi(tk−1),Yk=yk

X(tk) ;
bi (tk) is de�ned by
bi (tk) = bi (tk−1) f

X(tk−1)=zi(tk−1)
Yk

(yk)Let us remark that this algorithm is easy to implement on a omputer, inpartiular on a parallel omputer.Theorem 2. Let us onsider the system
{

dX = f (X,u)dt+Q
1
2 dw (t)

Yk = CX (tk) +R
1
2V (k)and P (t) being the onditional law of X (t) knowing FY

t . If Pn (t) representsthe law given by the algorithm P with n partiles, then we have
Pn (t) → P (t) as n→ ∞ weakly almost surelyRemark 2. This theorem is true at t �xed. It is never true for any t. In order toobtain an asymptoti result (as in observer theory), it is neessary to add someorrelations between partiles. This is partiularily simple here (see [39℄).



1 Adaptive-gain observers and appliations 9In order to illustrate this theorem, we onsider a ontinuous stirred tankreator (CSTR). The dimensionless form of the model is:
dX1 =

(

−X1 +DA(1 −X1) exp{
X2

1 +X2/γ
}

)

dt+ dW1

dX2 =

(

−X2(1 + β) +HaDa(1 −X1) exp{
X2

1 +X2/γ
} + βu

)

dt+ dW2where W1 and W2 are two independent Wiener proesses. X1 is the reatantonentration and X2 is the temperature into the tank. We suppose that X2is measured in disrete time and that we want to ontrol X1 using the ontrolvariable u. The system an also be written in the following generi form
X (tk+1) = X (tk) +

∫ tk+1

tk

f(X (s))ds +

∫ tk+1

tk

BdW (s)

Yk = CX (tk) + Vkwith C =
(

0 1
). We suppose thatW is a two-dimensional Wiener proess andthat Vk is a Gaussian proess independent of W and with ovariane R. Wepropose the following disretization sheme for the ontinuous-time equation

X (tk+1) = Φ(tk, tk+1, X (tk)) +
∂Φ(tk, tk+1, X (tk))

∂x
B

√

tk+1 − tkWkwhere Φ(s, t, x) is the solution of
{

dx(t)
dt

= f (x (t))
x (s) = xat time t.The right-hand part of this sheme is the �rst order development of

Φ(tk, tk+1, X (tk) +

∫ tk+1

tk

BdW (s))whih omes naturally from the di�usion equation. A lassial theorem ofprobability, see for instane [21℄, shows that this sheme onverges in law tothe solution of the di�usion equation when the step of the disretization goesto zero.Our main goal is to estimate the reatant onentration X1 and its on�-dene intervals, in order to ontrol as well as possible the CSTR.If we solve the equations, we an see that for eah partile z (t) at time tand for eah weight b (t), we have, thanks to the algorithm of the theorem
• Corretion at time tk



10 Niolas Boizot and Eri Busvelle


























z (tk) = z
(

t−k
)

+ P
(

t−k
)

CT (CP
(

t−k
)

CT +R)−1(yk − Cz
(

t−k
)

)
+

(

P
(

t−k
)

− P
(

t−k
)

CT (CP
(

t−k
)

CT +R)−1CP
(

t−k
))

w̄k
P (tk) = BBT (tk+1 − tk)

b (tk) = b (tk−1)
exp

(

− 1
2 (yk−Cz(t−k ))T (CP

t
−

k

CT +R)−1(yk−Cz(t−k ))
)

√

2π.det(CP(t−k )CT +R) (1.5)where w̄k is a Gaussian white noise.
• predition between tk and tk+1







dz
dt

= f(z (t))
dP
dt

= f∗(ξ (t))P (t) + P (t) f∗(ξ (t))′
db
dt

= 0

(1.6)1.2.2 Extended Kalman �lterThe previous algorithm is CPU-time onsuming and rather ompliated toimplement, espeially in the linear ase. Indeed, for a linear system, thereexist a very simple and famous solution. Let us onsider the following linearsystem:
{

dX = (A (t)X +B (t)u) dt+Q
1
2 dW (t)

dY = C (t)Xdt+R
1
2 dV (t)

(1.7)with X (0) a random variable with Gaussian law N (m0, P0), the DMZ equa-tion redues itself to the well-known Kalman �lter. More preisely, solvingthe DMZ equation yields to the following result: the onditional law of X (t)knowing y (s) from 0 to t (FY
t ) is the Gaussian law N (z (t) , P (t)) where,for an output trajetory y (t), z (t) and P (t) are the solutions of the �nite-dimensional system of ordinary di�erential equations:

{

dz = (A (t) z +B (t)u) dt+ PC (t)
′
R−1(dy − C (t) z dt)

dP
dt

= A (t)P + PA (t)
′
+Q− PC (t)

′
R−1C (t)P

(1.8)with z (0) = m0 and P (0) = P0. Therefore, z (t) = E
[

X (t) | FY
t

]

(ω) is thebest estimation of X (t) knowing measurements up to time t. When applied toa deterministi observable linear system, Q and R being onsidered as tuningparameters, the Kalman �lter is alled the Kalman observer. The observableproperty is not ruial in the stohasti ase sine the onditional law is de�nedeven for non observable systems. But the observability property implies thatthe ovariane matrix of the onditional expetation of X (t) knowing Y (s),
0 ≤ s ≤ t is bounded.In the deterministi ase, this property is ruial. Reall also that, forlinear systems, observability does not depends from inputs.The Kalman �lter/observer algorithm has been used for long by engineersfor linear systems. For nonlinear systems, engineers introdued and suess-fully used the extended Kalman �lter (EKF), either in its stohasti or its



1 Adaptive-gain observers and appliations 11deterministi form. The EKF is just the standard Kalman �lter for lineartime-dependant systems, applied to the linearized system along the estimatetrajetory. The EKF is the heart of our approah.Let us onsider a nonlinear system
{

dX = f (X,u)dt+Q
1
2 dW (t)

dY = h (X)dt+R
1
2 dV (t)

(1.9)where f and h are smooth Lipshitz funtions, the linear Kalman �lter doesnot apply anymore, and the exat solution should be obtained by solving theDMZ equation. But if one want an approximated solution, it is very ommonto onsider the �rst order approximation of the previous system. The rightway to do this is to onsider an a priori solution x̂ (t) of the deterministisystem assoiated to (1.9) and to use the Kalman �lter to estimate the �rstorder di�erene δx (t) = x (t) − x̂ (t) between the a priori solution and theestimated solution. This approah yields to the following �rst order Kalman�lter, for a given output trajetory:






d(δx)
dt

= f∗(x̂, u)δx+ Ph∗ (x̂, u)
′
R−1(y(t) − h (x̂, u))

dP
dt

= f∗ (x̂, u)P + Pf∗ (x̂, u)
′
+Q

−Ph∗ (x̂, u)
′
R−1h∗ (x̂, u)P

(1.10)where f∗ and h∗ are the Jaobian of f and h w.r.t. x respetively. But thisapproah has a major weakness: the hoie of the a priori solution x̂ (t) is notobvious if there is no preise a priori information on the initial state. This isusually the ase, espeially in the deterministi ase, sine the only missinginformation on the system is preisely the initial state. Moreover, if one makea bad hoie of x̂ (t), the �rst order equation has no signi�ant meaning sinethe atual state is far from the initial guess. At the opposite, if δx (0) is small(that is the a priori solution is losed to the atual solution, at least at time
0), then x̂ (t) + δx will be a good approximation of the optimal �lter, whenstate and measurement noises are small ([38℄).To overome this di�ulty, engineers have an attrative idea: to replaethe a priori solution by the estimated solution at urrent time. The mainadvantage of this approah is that the estimated solution is supposed to belosed to the atual solution, hene the �rst order approximation should besmall and hene the linear approximation should be a good approximation.This remark yields to the extended Kalman �lter:







dz
dt

= f(z, u) + Ph∗ (x̂, u)
′
R−1(y(t) − h (z, u))

dP
dt

= f∗ (z, u)P + Pf∗ (z, u)
′
+Q

−Ph∗ (z, u)
′
R−1h∗ (z, u)P

(1.11)where z is the estimated state. Here again, if P0, Q and R are small, this �lteris losed to the optimal �lter (see all works of Piard, [38℄ for instane).In a deterministi ontext, the extended Kalman �lter is a onvergingloal observer (see [4, 8℄), that is if z (0) ≃ x (0) then z (t) − x (t) −→ 0



12 Niolas Boizot and Eri Busvelleas t −→ +∞ (exponentially). Nevertheless, the extended Kalman �lter hasno global onverging properties. Indeed, it is well known that, if the initialguess z (0) is far from x (0), the extended Kalman �lter may not onverge.Moreover, the mathematial study of (1.11) is di�ult beause it has no learmathematial meaning: it is not a �rst order approximation of a nonlinearobjet around a given trajetory. In other words, the behavior of (1.11) is notintrinsi and depends on a hoie of oordinates. Hopefully, this mathematialdi�ulty will give us a way to hose a good system of oordinates and to provesome onvergene results, thanks to this ruial hoie of oordinates.To onlude, the EKF is very e�ient in a lot of pratial problems. It isused as a �lter or as an observer in many various systems. From a theoretialpoint of view, it is not an optimal �lter (it di�ers from the DMZ equation).Nevertheless, when the system has some observability properties, it has verynie loal properties: in the stohasti ase, it is a good �lter when noises aresmall (see [38℄) and in the deterministi ase, it is a loal observer ([4, 8℄).1.2.3 Continuous-disrete stohasti systemsBefore onsidering deterministi systems and observers, let us reall a resultonerning disrete measurements. Continuous-disrete time are very om-mon in pratise: the nonlinear di�erential equation desribes a mehanial,physial or hemial proess. Therefore, it is a ontinuous time system. Butmeasurements are usually sampled at times tk. Therefore, the system an bewritten
{

dX (t) = f(X (t) , u (t))dt+ dW (t)
yk = h (X (tk)) + V (k)

(1.12)where h is a di�erentiable funtion from the state spae to R
p.For this system, the EKF has two set of equations: the orretion stepwhih is applied at eah measurement time and the predition step whih isused to predit the system aording to the model.Corretion step







Z
(

t+k
)

= Z (tk) +G (k) (yk − h (Z (tk)))

G (k) = P (tk)h
∗ (Z (tk))

′ (
h∗ (Z (tk))P (tk) h

∗ (Z (tk))
′
+R

)−1

P
(

t+k
)

= (I −G (k)h∗ (Z (tk)))P (tk)

(1.13)Predition step
{

dZ
dt

= f(Z, u)
dP
dt

= f∗ (Z, u)P + Pf∗ (Z, u)′ +Q
(1.14)These equations presents some similarities with equations (1.5,1.6). As wewill see in the end of Setion 1.3.4, if the system is observable, then equations



1 Adaptive-gain observers and appliations 13(1.13,1.14) may gives an observer. In the non observable ase, one should use(1.5,1.6).Although this kind of model is loser to the pratial ase, it is less usedthan ontinuous-time systems. The main reason is a pratial one: the sam-pled time is usually hosen small enough w.r.t. time onstants of the proess.Therefore, the ontinuous EKF an be applied. Sometimes (for very fast pro-esses or for slow measurement devies), the sampled time is a onstraint andan not be negleted. In this ase, ontinuous-disrete EKF should be applied.1.3 Nonlinear observers1.3.1 Canonial form of observabilityFrom now, we study deterministi nonlinear systems of the general form
Σ

{

dx
dt

= f(x, u)
y = h(x, u)

(1.15)on a smooth n�dimensional manifold X , y ∈ R
p, u ∈ U, subset of R

d. Wewant to develop an observer. Our approah is losely related to observationtheory, as explained in the book from Gauthier and Kupka [20℄, whih is itselfa summary of the papers [16, 17, 18, 19, 32℄.This theory leads to the onsideration of systems under the normal form(1.21), or similar multi-output normal forms. Here, by �observability�, we mean�observability for every �xed input funtion u(t)�. For details, see [20℄.In this introdution part, we summarize the main observability results ofthe observation theory developed in [20℄.First of all, the state�output mapping PXΣ,u is the funtion x (0) −→
(y (t))t≥0. In this de�nition (and the following ones), we do not speak aboutexplosion times, in order to simplify the notations.De�nition 1. The system (1.15) is said uniformly observable, or just ob-servable, w.r.t. a ertain lass C of inputs (L∞(U) in most ases) if, for eah
u(.) ∈ C, the state output mapping PXΣ,u is injetive.This �rst de�nition is the natural de�nition of observability. Nevertheless,injetivity is not a very tratable property, sine it is not stable (even for stan-dard mappings between �nite dimensional spaes -example: x→ x3,R → R).Therefore, in order to state results, we need a few other de�nitions. The uni-form in�nitesimal observability make the observable property stable.Let us de�ne the lift of Σ on TX , also alled the �rst variation of Σ. Letus onsider TXf : TX × U −→ TTX(the tangent bundle of TX) the tangentmapping of f : X × U −→ TX and dXh : TX × U −→ R

p the Jaobian of
h : X × U −→ R

p. Then
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TΣ

{

dξ
dt

= TXf(ξ, u) = TXfu(ξ)
η = dXh(ξ, u) = dXhu(ξ)

(1.16)The state�output mapping of TΣ is denoted by PTXΣ,u. It is also the�rst order approximation of PXΣ,u denoted TPXΣ,u.De�nition 2. System Σ is said uniformly in�nitesimally observable if, foreah u(.) ∈ L∞(U), eah x0 ∈ X, all the tangent mappings TPXΣ,u|x0 areinjetive.Remark 3. This de�nition of observability is stable in the sense of disretiza-tion: if a system is uniformly in�nitesimally observable, its ontinuous�disreteversion (1.12) remains uniformly in�nitesimally observable for a sampling timesmall enough. It is not the ase for a system whih is only observable (see [2℄).The two following de�nitions are an other way to de�ne observability ina stable way. Note that these de�nitions are important for pratial purpose,sine they give a way to prove observability for nonlinear systems.De�nition 3. System Σ is said di�erentially observable (of order k) if for all
jkû, the extension to k-jets mapping3 Φk : x0 → jkŷ; X → R

km is injetive.De�nition 4. System Σ is said strongly di�erentially observable (of order k)if for all jku, the extension to k-jets mapping Φk,jku : x0 → jky; X → R
kmis an injetive immersion4.Clearly, strong di�erential observability implies di�erential observability,whih implies observability for the C∞ lass, (and L∞-observability).It is also a onsequene of the theory that for analyti systems, uniformin�nitesimal observability implies observability of the restritions of (1.15) tosmall open subsets of X, the union of whih is dense in X .The main result onerning observability of systems 1.15 is that, dependingfrom the number of outputs w.r.t. the number of inputs, the property may begeneri or not generi. More preisely, we distinguish two ases:1. More measurements than ontrol inputs (p > d): in that ase, observabilityis a generi property, and generially, a system an be put globally under anormal form similar to (1.21), but the dimension of the state in the normal

3 k-jets jku, of smooth funtions u at t = 0 are de�ned as
j

k
u = (u(0), u′(0), ..., u(k−1)(0)).Then, for a smooth funtion u and for eah x0 ∈ X, the k-jet jky =

(y(0), y′(0), ..., y(k−1)(0)) is well de�ne: this is the k-jets state-output mapping
Φk.

4 immersion means that all the tangent mappings Tx0Φk,jk û to this map, have fullrank n at eah point



1 Adaptive-gain observers and appliations 15form is bigger than the dimension of the state of the original system: it isat most double plus one. Also, the ontrol in the normal form ontains aertain number of derivatives of the ontrol of the initial system. But thisis more or less unimportant for observation problems, where the ontrol,and hene its derivatives, are known.Hene, if p > d, and for su�iently smooth inputs, generi systems arevery good from the point of view of observability.2. Less or same number of measurements than ontrol inputs (p ≤ d): inthat ase observability is a non generi property. It is even a property ofin�nite odimension. This high degeneray leads to the fat that, in theontrol a�ne ase, all observable systems an be put loally under normalforms similar to (1.21) (with ai = 1, i = 1, ..., n).In the analyti ase p = 1, d ≥ 1, we an be more preise. If (1.15) isuniformly in�nitesimally observable, then loally almost everywhere on
X , the system (1.15) an be put in the form



































y = h(x1, u)
dx1

dt
= f1(x1, x2, u)

dx2

dt
= f2(x1, x2, x3, u)...

dxn−1

dt
= fn−1(x1, x2, .., xn, u)

dxn

dt
= fn(x1, x2, ..., xn, u)

(1.17)with
∂h

∂x1
and ∂fi

∂xi+1
, i = 1, .., n− 1 (1.18)does not vanishes on Vx × U .In the ontrol a�ne ase, where (1.15) an be written:

ẋ = f(x) +

d
∑

i=1

gi(x)ui (1.19)
y = h(x)then the anonial form of observability is



































y = x1
dx1

dt
= x2 +

∑p
i=1 g1,i(x1)ui

dx2

dt
= x3 +

∑p
i=1 g2,i(x1, x2)ui...

dxn−1

dt
= xn +

∑p
i=1 gn−1,i(x1, x2, .., xn−1)ui

dxn

dt
= ψ(x) +

∑p
i=1 gn,i(x1, x2, .., xn−1, xn)ui

(1.20)These two results are very important sine they allow us to restrit ourstudy to systems of the form (1.17) and (1.20) (and also beause of ourse,these results are based on a onstrutive di�eomorphism).



16 Niolas Boizot and Eri Busvelle1.3.2 High-gain extended Kalman �lterWe desribe observers for nonlinear systems in anonial form of observabil-ity (1.20 and 1.21 below), on R
n. The ontrol spae Uadm, is supposed tobe a losed subset of R

d. In this setion, the observation is assumed to besingle-valued: it is a u�dependant linear form on R
n. This hypothesis is notneessary and our observers onstrutions also applies for multi�output sys-tems. From an observability point of view, the multi�output ase is a littlebit more ompliated sine anonial form of observability are less natural.But from the observer point of view, exept in setion 1.3.4, the problem isexatly the same, sine we simply apply some kind of EKF.We onsider systems of the form

{

dx
dt

= A(u)x+ b(x, u)
y = C(u)x

(1.21)where A(u) , C(u) are matries:
A(u) =

















0 a2 (u) 0 · · · 0

a3 (u)
. . . ...... . . . . . . 0

an (u)
0 · · · 0

















(1.22)
C(u) = (a1(u), 0, ...., 0) (1.23)and where ai(.), i = 1, ..., n, are positive smooth funtions, bounded fromabove and below:
0 < am ≤ ai(u) ≤ aMAlso, b(x, u) is a smooth, u−dependant vetor �eld, depending triangularlyon x and ompatly supported:

b (x, u) =











b (x1, u)
b (x1, x2, u)...

b (x1, . . . , xn, u)











(1.24)These assumptions look very strong, but as we already seen, under eithergeneriity hypotheses or observability hypotheses, for the purpose of synthe-sis of observers, it is su�ient to restrit to these systems, under the normalform (1.21) (or similar multi-output normal forms), and meeting these as-sumptions. In fat, this form generalizes the anonial form of observability(1.20) for ontrol a�ne systems. We all (1.21) (together with (1.22�1.23))the generalized anonial form of observability. There are several reasons tostudy (1.21) rather than (1.20):



1 Adaptive-gain observers and appliations 17
• It is sometimes easiest to put the system into this form, using intuitivetransformations, rather than a more restritive normal form, the last trans-formation being based on Lie derivatives. This point will be illustrated inthe appliation setions;
• Sine we want to apply an EKF whih use the model to �lter noises, anda high�gain approah to kill the nonlinear part of the system, it is betterto leave the largest part of the nonlinear system in A rather to put it in

b. This tehnial point will be developed later;
• Last but not least, our observer onstrution still work for these systems.However, this form does not inlude the anonial form of observability forsystems (1.15) when the ontrol is not a�ne. For those systems, there exista hange of oordinates that put the equivalent system (1.17) into a systemof the generalized anonial form of observability (1.21) [10, 23℄. For this, wejust need to suppose that u admits a time derivative almost everywhere.Consider a system (1.17) on R

n, and set:
z = Φu(x) = (h(x, u), Lfh(x, u), ..., L

n−1
f h(x, u)). (1.25)Let K ⊂ R

n be any �xed open relatively ompat subset. We deal withsemi-trajetories of Σ that remain in K, only. It follows from (1.18) that, forall u ∈ U, Φu is an injetive immersion (this is easily heked by indution onthe omponents of Φu). Therefore, Φu is a u�dependent di�eomorphism from
K onto its image. Consider the image of the system (1.17) restrited to K bythe time dependant di�eomorphism Φu. It is of the form:

{

dξ
dt

= Aξ + g(ξ, u, du
dt

)
y = ξ1

(1.26)where A is the antishift matrix, and where g is smooth and depends in atriangular way of ξ.Even if some tehnial di�ulties remains in the general theoretial ase(see [10℄ for a preise result), it is lear that the new system is of the form(1.21) exept that we use expliitly du
dt
, onsidered as a new input.Thanks to this result, our observers (Setions 1.3.2, 1.3.3 and 1.3.4) appliesto general uniformly in�nitesimally observable systems.Let us ome bak to the system (1.21) and its properties. The assumption

0 < am ≤ ai(u) ≤ aM is not more restritive than ai(u) 6= 05. It just impliesobservability of systems in the normal form (1.21), by the following reasoning:
5 Modulo a trivial hange of variables, and the fat that the ai being smooth,restriting to a ompat subset of the set of values of ontrol implies that we an�nd the am and aM .



18 Niolas Boizot and Eri Busvelle1. If the output y(t) is known, the input being also known, the fat that
a1(u) is nonzero implies that we an ompute x1(t) from y(t),2. The fat that a2(u) 6= 0 implies that we an ompute x2(t) from theknowledge of x1(t),3. By indution, we an reonstrut the whole state x(t) from the knowledgeof y(t).The ompat support of b an be trivially ahieved, by multiplying bya ut-o� funtion, ompatly supported, leaving the original vetor �eld bunhanged on an arbitrarily large ompat subset of Rn. Let us mention thatthis restrition to ompat sets (unavoidable in a general observation theory),has not so important onsequenes: for instane, the high gain observers anbe used in general for global dynami output stabilization (again, see [20℄).The following results have been proved in [13, 14, 20℄.We onsider the equations of the extended Kalman �lter (1.11), in whihthe ovariane matrix Q depends on a real parameter θ, θ ≥ 1, in the followingway:

Qθ = θ∆−1Q∆−1where
∆ =



















1 0 0 · · · 0

0 1
θ

0
...

0 0 1
θ2

. . . ...... . . . . . . 0
0 · · · · · · 0 1

θn−1

















The EKF beome the high-gain extended Kalman �lter (HG-EKF):






dz
dt

= A(u)z + b(z, u) + PC′R−1(y (t) − Cz)
dP
dt

= (A(u) + b∗(z, u))P + P (A (u) + b∗ (z, u))′

+Qθ − PC′R−1CP
(1.27)If θ = 1, the HG-EKF is equivalent to the EKF. If θ is large, Qθ is alarge symmetri de�nite positive (s.d.p.) matrix and sine it appears in theRiati equation in a positive way, P will beomes large (in the s.d.p. sense).Therefore, the gain of the observer, namely PC′R−1, will be large. This iswhy the observer (1.27) is alled high-gain extended Kalman �lter.This observer has some very nie properties. From a pratial point of view,sine it is based on extended Kalman �ltering approah, it is well designed for�ltering noise using the model. Moreover, the HG-EKF is applied to a systemwritten in the anonial form of observability. As a matter of fat, it learlyimproves the onvergene of the observer, both in simulation and in pratialsituations. Moreover, the parameter θ has a lear meaning and an be used to



1 Adaptive-gain observers and appliations 19tune e�iently the observer: if the observer is too slow, θ should be inreased,and if the noise is not enough �ltered, θ should be dereased.This last point has also been validated from a theoretial point of view:the estimation error has arbitrarily large exponential deay, depending on θ.This holds whatever the initial error is, (that is, this is a global result). Thetheorem is the following:Theorem 3. For θ large enough and for all T > 0, the HG-EKF (1.27) sat-is�es for t > T
θ

‖z (t) − x (t)‖ ≤ θn−1k (T )

∥

∥

∥

∥

z

(

T

θ

)

− x

(

T

θ

)∥

∥

∥

∥

e−(θω(T )−µ(T ))(t−T
θ )for some positive ontinuous funtions k (T ), ω (T ) and µ (T ).Remark 4. In a stohasti setting, the HG-EKG is a nonlinear �lter withbounded variane ([13℄).1.3.3 High-gain and non high-gain extended Kalman �lterThe EKF is a loal onverging observer, and has very good properties w.r.t.noise. It is lose to the Kalman �lter, whih is an optimal solution to estimatethe unknown state.The HG-EKF is a globally onverging observer. Moreover, it onvergesexponentially as fast as wanted, depending on the hoie of the parameter θ.The EKF annot be used to estimate the state from a poor a priori es-timation, or when large unmodelized perturbations ours. The HG-EKF isdesigned to do this. This is the basis of the observer onstrution proposed inthis setion. More preisely, let us reall that:1. if one sets θ to 1 in system (1.27) then one obtains the lassial extendedKalman �lter, whih is a loal optimal observer (in the sense explainedabove)2. if θ is large enough then one obtains a high-gain observer, whih is a globalexponential observer.The �rst appliation of this remark was presented in [8℄: we just added theequation

dθ

dt
= λ (1 − θ) (1.28)to the system (1.27). If θ (0) = θ0 is large enough (and the parameter λsmall enough) then we obtain an observer whih is a high-gain observer forsmall time and whih onverges asymptotially to a lassial extended Kalman�lter. Hene we an expet its onvergene sine the observer should onvergeexponentially to the state (high-gain observer property) and then stays in aneighborhood of the state (sine extended Kalman �lter is a loal observer).



20 Niolas Boizot and Eri BusvelleIndeed this result has been proved in [8℄. More preisely, the observer an bewritten (where Qθ has be de�ned in the previous setion):














dz
dt

= A(u)z + b(z, u) + PC′R−1(y (t) − Cz)
dP
dt

= (A(u) + b(z, u))P + P (A (u) + b∗ (z, u))′

+Qθ − PC′R−1CP
dθ
dτ

= λ(1 − θ)

(1.29)and the theorem says that the asymptoti behavior of the observer is the oneof the extended Kalman �lter, the �short term behavior� is the one of theHG-EKF. More preisely, let us denote ε (t) = z (t) − x (t):Theorem 4. For all 0 ≤ λ ≤ λ0, (λ0 small enough), for all θ (0) = θ0 largeenough, depending on λ, for all S (0) = S0 ≥ c Id, for all K ⊂ R
n, K aompat subset, for all z0 suh that ε (0) = z0 − x (0) ∈ K, the followingestimation holds, for all τ ≥ 0 :

||ε(τ)||2 ≤ R (λ, c) e−a τ ||ε0||
2Λ(θ0, τ, λ), (1.30)

Λ(θ0, τ, λ), = θ0
2(n−1)+ a

λ e−
a
λ
θ0(1−e

−λτ ),Moreover the short term estimate
||ε(τ)||2 ≤ θ(τ)2(n−1)R (λ0, c) e

−(a1θ(T )−a2)τ ||ε(0)||2. (1.31)holds for all 0 ≤ τ ≤ T and for all θ0 large enough. R (λ, c) is a dereasingfuntion of c, and a, a1 and a2 are three positive onstants.Remark 5. (1.31) means that, provided that λ is smaller than a ertain on-stant λ0, and θ0 is large in front of λ, the estimation error goes exponentiallyto zero, and an be made arbitrarily small in arbitrary short time. More-over, in (1.30), the funtion Λ(θ0, τ, λ) being a dereasing funtion of τ, forall τ > 0, λ > 0, Λ(θ0, τ, λ) an be made arbitrarily small, inreasing θ0,hene the observer is an exponential observer. Therefore, the observer is anexponential observer but the asymptoti rate of onvergene does not dependon θ(t) (beause θ (t) ≃ 1), hene this observer does not onverge as fast aswe want after a given time τ .The main drawbak of this observer, as presented here, is that it onvergeexponentially for any initial ondition only in the beginning, in order to esti-mate the initial state of the system: if a large perturbation ours after time
τ , this observer will have the same behavior as an EKF (sine θ (t) ≃ 1 for tlarger that τ).In order to onstrut a persistent observer, we should take into aountthis property and onstrut a time-dependant observer. The simplest way is touse several observers of the form (1.29), eah one initialized at di�erent times,and using some delays between eah initialization. Thus we obtain several



1 Adaptive-gain observers and appliations 21estimations of the state, given by eah one of the observers: the �nal estimationis the one orresponding to the observer that minimizes the innovation proess.The whole onstrution is learly explained in [8, 9℄ and we will reall thealgorithm:We onsider a one parameter family {Oτ , τ ≥ 0} of observers of type(1.29), indexed by the time, eah of them starting from S0, θ0, at the urrenttime τ. In fat, in pratie, it will be su�ient to onsider, at time τ, a slippingwindow of time, [τ −T, τ [, and a �nite set of observers {Oti , τ −T ≤ ti ≤ τ},with ti = τ − i T
N
, i = 1, ..., N.As usual, we all the term I(τ) = ŷ(τ) − y(τ), (the di�erene at time τbetween the estimate output and the real output), the �innovation�. Here, foreah observer Oti ,we have an innovation Iti(τ).Our suggestion is to take as the estimate of the state, the estimation givenby the observer Oti that minimizes the absolute value of the innovation.This is a very natural hoie, aording to probability theory (Setion 1.2).The innovation proess will also have an important role in Setion 1.3.4, butwe will onsider its integral over small past time, whih is another possiblehoie here.Let us analyze what will be the e�et of this proedure in a deterministisetting: after the transient part and if no unmodelized perturbation ours,the best estimation is given by the oldest observer. Indeed, the oldest observerhas onverged and moreover, it is lose to a lassial EKF and therefore, it ismore robust to measurement noise. But if a large perturbation ours, makinga jump on the state, the oldest (EKF) observer will no more onverge. Theyoungest observer, whih is a HG-EKF, will onverge sine it is in transienttime (it's life time is less than τ). After an (arbitrary) short transient, theyoungest observer will then give the best estimate and hene the smallestinnovation.This analysis is validated by our experiene and we an even use theseremarks to detet jumps, whih orrespond to abnormal operations or sensorfailures.Another remark is that this approah may be ompared to a partile �l-tering method where the a posteriori estimation of the state is the maximumlikelihood one. There exist several di�erenes between these two algorithmsand in fat, their use depends as usual on the observability study. If the sys-tem is not observable, a �ltering approah should be used. If the system isobservable, an observer an be used.1.3.4 Adaptive gain extended Kalman �lterHere, we present a muh simple observer. In plae of equation (1.28), weintrodue the equation
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dθ

dt
= F (θ, I) (1.32)where

I =

∫ t

t−T

‖y(s) − ȳt−T (s)‖2 ds = ‖y − ȳt−T ‖
2
L2(t−T,t) (1.33)is the innovation from time t−T to urrent time t. More preisely, in (1.33), yrepresents the output, but ȳt−T represents the predition of the output fromthe state estimation at time t − T (given by the observer, z (t− T )). Hene

ȳt−T (s) is the solution at time s of






dξ
dτ

= A(u)ξ (τ) + b(ξ (τ) , u)
ξ (t− T ) = Z (t− T )
ȳt−T (τ) = C (u) ξ (τ)

T is a tuning parameter, representing the length of the window used toalulate the innovation. In the following theorem, the funtion F will behosen in the form
F (θ, I) = λ (1 − θ) +K (θmax − θ) I (1.34)In fat, F an be hosen in a more general form. We will give a version of Fthat is better adapted in the presene of noise in the appliation part of thishapter (Setion 1.5). Intuitively, the role of the funtion F is:

• to let θ derease if the innovation is small, beause in this ase the observerhas already onverged and a Kalman-like observer will be su�ient toorretly estimate the state
• to let θ inrease if the innovation is too large, beause in this ase, theobserver gives a bad estimation of the state and θ has to be large enoughin order to ensure onvergene, thanks to the exponential property of high-gain observers.Finally, the adaptive extended Kalman �lter an be written































dZ

dt
= A(u)Z + b(Z, u) + S−1C′R−1

θ (CZ − y(t))

dS

dt
= −(A(u) + b(Z, u))′S − S(A (u) + b∗ (Z, u))

+C′R−1
θ C − SQθS

dθ

dt
= λ (1 − θ) +K (θmax − θ) I

(1.35)We de�ne Qθ and Rθ from Q and R thanks to the matrix
∆ =



















1 0 0 · · · 0

0 1
θ

0
...

0 0 1
θ2

. . . ...... . . . . . . 0
0 · · · · · · 0 1

θn−1





















1 Adaptive-gain observers and appliations 23by Qθ = θ∆−1Q∆−1 and Rθ = θ−1R. Let us remark that this hange ofoordinates is di�erent from the previous one (high-gain extended Kalman�lters of Setion 1.3.2 and Setion 1.3.3).Our main result is the following:Theorem 5. Let us onsider a system in the anonial form of observability.We onsider the adaptive-gain extended Kalman �lter (1.35). Let us supposethat λ, K and θmax (in (1.34)) are three onstant parameters suh that λ issmall enough, K is large enough, and θmax is large enough. Then, (1.35) isan exponentially onverging observer.The proof is based on the following ruial lemma:Lemma 1. Let x0
1, x0

2 ∈ R
n. Let us onsider the outputs y1 (t) and y2 (t)with initial onditions respetively x0

1 and x0
2. The following ondition (alledpersistant observability) holds:

∀T > 0 ∀u ∈ L1
b (Uadm) ∃λT > 0

∥

∥x0
1 − x0

2

∥

∥ ≤
1

λT

∫ T

0

‖y1 (τ) − y2 (τ)‖ dτThe main di�erene between the previous observer is the fat that now,the matrix R depends on θ, whih was not neessary when θ was only adereasing parameter. The behavior of this adaptive�gain extended Kalman�lter is illustrated on a DC�motor, in Setion 1.5.We point out that this AG-EKF is a very promising tool: it is a smallmodi�ation of already existing adaptive�gain EKF proposed by engineersto improve the performane of EKF during abnormal operations. We pro-pose the same approah in a theoretial framework, ensuring the exponentialonvergene of the algorithm.1.3.5 Observer for ontinuous�disrete systemsAs already explain in Setion 1.2.2, pratial problems may often be writtenin ontinuous-disrete form (1.12). There exist also some observability resultsonerning these systems. Let us suppose, for simpliity, that the samplingtime is onstant, i.e. tk = k∆t.A generalized anonial form of observability for these systems is the nat-ural extension of the generalized anonial form of observability (1.21)
{

dx
dt

= A(u)x+ b(x, u)
yk = C (u)x (tk)

(1.36)were A, b and C are de�ned as in (1.22), (1.24) and (1.23) and satis�es thesame hypothesis. In the a�ne ontrol ase (1.20), with a disrete observation,



24 Niolas Boizot and Eri Busvellethe hange of oordinates is the same as in the ontinuous ase. In fat, (1.21)and (1.36) are exatly equivalent with yk = y (tk).The HG�EKF for ontinuous�disrete systems has the (not surprising)form:Corretion step






z
(

t+k
)

= z (tk) +G (k) (yk − C (u) z (tk))

G (k) = P (tk)C (u)
′ (
C (u)P (tk)C (u)

′
+ 1

∆t
R

)−1

P
(

t+k
)

= (I −G (k)C (u))P (tk)

(1.37)Predition step
{

dz
dt

= A(u)x+ b(x, u)
dP
dt

= (A(u) + b∗(z, u))P + P (A (u) + b∗ (z, u))′ +Qθ
(1.38)Then we have:Theorem 6. ([14℄) Under same assumptions as in ontinuous ase and for

∆t small enough, there is an interval [θ0, θ1] suh that for any θ ∈ [θ0, θ1],the ontinuous�disrete high�gain extended Kalman �lter (1.37�1.38) is anexponential observer.Generiity and observability have also been studied for ontinuous�disretesystems. One an expet that same results hold when sampling time is smallenough. Roughly speaking, it is more or less true. There exist ontinuous�disrete versions of theorems from Setion 1.3.1 in the ontinuous�disretease ([1, 2℄).1.3.6 A "weak" separation prinipleIn this setion, we just want to give an important appliation onerninghigh-gain observers and partiularly the high-gain extended Kalman �lter.Usually, observers are used in order to ontrol nonlinear systems with astate-feedbak ontrol law. This ontrol law u (x) is alulated in order toahieve a good performane and, at least, to ensure the stability of the losedloop system. An observer is developed in order to estimate the state (whih isnot ompletely measured, in most appliations) and the ontrol law appliedto the proess is u (z) (where z is the estimation of x given by the observer)6.Therefore, the losed loop system onsist in a ontrol law and an observer,and both are developed independently.
6 If a �lter has been developped, then one should apply the more aurate ontrollaw u (t) = E

[

u (X (t)) | FY
t

] whih is usually di�erent from u (z) where z =

E
[

X (t) | FY
t

].



1 Adaptive-gain observers and appliations 25In the linear-quadrati ase, the "separation priniple" stated that, if anoptimal state-feedbak ontrol law is applied with an optimal observer, theresult is optimal. It is a very strong "superposition" result whih is false fornonlinear systems.Nevertheless, we an expet to prove a weaker version of the linear sepa-ration priniple.Let us onsider again our system 1.21. Let us suppose that there exist apositively invariant ompat subset of R
n for any ontrol law u (t).Theorem 7. If u (x) is a state feedbak whih make the system 1.21 globallyasymptotially stable, then the system















dx
dt

= A (u (z))x+ b (x, u (z))
dz
dτ

= A(u)z + b(z, u)− S(t)−1C′R−1(Cz − y(t))
dS
dτ

= −(A(u) + b∗(z, u))′S − S(A(u) + b∗(z, u))
+C′R−1C − SQθSis globally asymptotially stable for θ large enough.Hene, this theorem show that the state-feedbak ontrol law an be re-plaed by an observer based ontrol law and that the stability is preserved.Remark 6. It has to be point out that this result is not true for the adaptive-gain extended Kalman �lter (with these hypothesis) beause it is neessary tohave an exponentially onverging observer with an arbitrary fast onvergene.1.4 Identi�ability and identi�ation1.4.1 De�nitionsThe problem of identi�ation is a generalization of the observation problem:very often, pratial ontrol systems depend on some funtions, (with physialmeaning), that are not well known, and that have to be determined on thebasis of experiments. Systems under onsideration have the following form

{

dx
dt

= f (x, u, ϕ (x, u))
y = h (x, u, ϕ (x, u))

(1.39)If x denotes the state of the system, if ϕ(x, u) is the unknown funtion,and y(t) is the observed data, the identi�ation problem is the problem ofreonstruting the piee of the graph of ϕ(.),visited during the experiment.That is, for an experiment of duration T, we want to determine the trajetories
(x(t), u (t) , ϕ(x(t), u(t)), for all t ∈ [0, T ], using only the observed data {y(t),
t ∈ [0, T ]}. We say that a system is identi�able if this is possible, whateverthe experiment.



26 Niolas Boizot and Eri BusvelleAn identi�er is a devie performing this task. We will be interested with�on-line identi�ers� only, i.e. identi�ers that estimate the graph of ϕ simulta-neously to the experiment.The two problems, of observation and identi�ation, are of ourse stronglyonneted for two reasons:1. we do not suppose that x (0) is known. Hene, the identi�ation probleminlude an observation problem: we want to estimate both x (t) and ϕ(.).It is the main di�erene with the right-inversion problem, also known asthe input identi�ation problem.2. identi�ation requires an identi�ability study, and this study is loselyrelated to observability study. Moreover, our main tools to perform iden-ti�ation are based on (high�gain) observers.Let us explain the seond point, in the unontrolled ase. We onsidersmooth (Cω or C∞, depending on the ontext) systems of the form Σ

Σ

{

dx
dt

= f (x, ϕ (x))
y = h (x, ϕ (x))

(1.40)where the state x = x (t) lies in a n�dimensional analyti manifold7 X ,
x (0) = x0, the observation y is R

p�valued, and f , h are respetively a smooth(parametrized) vetor �eld and a smooth funtion. The funtion ϕ is an un-known funtion of the state. Eah trajetory is supposed to be de�ned onsome interval [0, Tx0,ϕ[.
• If the number of outputs is three ore more, then, identi�ability is a generiproperty,
• If there is only one or two outputs, then, identi�ability is a nongeneriproperty, so strong that it an be haraterized by four very rigid normalforms.Our goal is to estimate both state variable x and unknown funtion ϕ :
X −→ I, I being a ompat interval of R (the theory, developed in [10℄, learlyhas extensions to higher dimension). More preisely, we want to reonstrutthe piee of the graph of ϕ visited during experiment.Let us reall some de�nitions and results from this last paper. For thisintrodution, we will only onsider unontrolled systems suh as (1.40). Someresults an be extended to ontrolled systems.Let Ω = X × L∞ [I], where

L∞ [I] = {ϕ̂ : [0, Tϕ̂] 7→ I, ϕ̂ measurable}Then we an de�ne the input/output mapping
7 analyti manifold stands for analyti onneted paraompat Hausdorf manifold
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PΣ : Ω −→ L∞

[

R
dy

]

(x0, ϕ̂ (·)) −→ y (·)De�nition 5. Σ is said to be identi�able if PΣ is injetive.As for observability, we de�ne an in�nitesimal version of identi�ability. Letus onsider the �rst variation of the system (1.40) (where ϕ̂ (t) = ϕ ◦ x (t)):
TΣx0,ϕ̂,ξ0,η







dx
dt

= f (x, ϕ̂)
dξ
dt

= Txf (x, ϕ̂) ξ + dϕf (x, ϕ̂) η
ŷ = dxh (x, ϕ̂) ξ + dϕh (x, ϕ̂) ηand the input/output mapping of TΣ

PTΣ,x0,ϕ̂ : Tx0X × L∞ [R] −→ L∞
[

R
dy

]

(ξ0, η (·)) −→ ŷ (·)De�nition 6. Σ is said to be in�nitesimally identi�able if PTΣ,,x0,ϕ̂ is inje-tive for any (x0, ϕ̂ (·)) ∈ Ω i.e. ker (PTΣ,x0,ϕ̂) = {0} for any (x0, ϕ̂ (·)).Both identi�ability and in�nitesimal identi�ability mean injetivity ofsome mapping. Clearly injetivity depends on the domain. Therefore, it seemsthat these notions are not well de�ned. In fat these notions do not dependon the domain. Indeed, if an analyti system Σ is not (in�nitesimally) iden-ti�able beause there exists a L∞ funtion whih make the system not (in-�nitesimally) identi�able, then there exist an analyti funtion whih makethe system not (in�nitesimally) identi�able.We onsider again a system Σ of the form (1.40). In [10℄, we have shownthat identi�ability is a generi property if and only if the number of obser-vation p is greater or equal to 3. On the ontrary, if p is equal to 1 or 2,identi�ability is a very restritive hypothesis (in�nite odimension) and wehave ompletely lassi�ed in�nitesimally identi�able systems by giving er-tain geometri properties that are equivalent to the normal forms presentedin Theorems 8 and 9 [10℄ below.These theorems are the basis of our identi�er onstrution: sine everyidenti�able systems may be put, up to a hange of oordinates, in one of theseanonial form of identi�ability, then it is su�ient to develop an identi�erfor these forms (exatly as observers for observable systems).Theorem 8. (p = 1) If Σ is uniformly in�nitesimally identi�able, then, thereis a subanalyti losed subset Z of X, of odimension 1 at least, suh that forany x0 ∈ X\Z, there is a oordinate neighborhood (x1, . . . , xn, Vx0), Vx0 ⊂
X\Z in whih Σ (restrited to Vx0) an be written:
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Σ1



























ẋ1 = x2...
ẋn−1 = xn
ẋn = ψ(x, ϕ)
y = x1

and ∂

∂ϕ
ψ(x, ϕ) 6= 0 (1.41)Theorem 9. (p = 2) If Σ is uniformly in�nitesimally identi�able, then, thereis an open-dense semi-analyti subset Ũ of X×I, suh that eah point (x0, ϕ0)of Ũ , has a neighborhood Vx0 × Iϕ0 , and oordinates x on Vx0 suh that thesystem Σ restrited to Vx0 × Iϕ0 , denoted by Σ|Vx0×Iϕ0

, has one of the threefollowing normal forms:
• type 1 normal form:

Σ2,1































































y1 = x1 y2 = x2

ẋ1 = x3 ẋ2 = x4... ...
ẋ2k−3 = x2k−1 ẋ2k−2 = x2k

ẋ2k−1 = f2k−1(x1, ..., x2k+1)
ẋ2k = x2k+1...
ẋn−1 = xn
ẋn = fn(x, ϕ)

(1.42)
with ∂fn

∂ϕ
6= 0.

• type 2 normal form:
Σ2,2















































































y1 = x1 y2 = x2

ẋ1 = x3 ẋ2 = x4... ...
ẋ2r−3 = x2r−1 ẋ2r−2 = x2r

ẋ2r−1 = ψ(x, ϕ) ẋ2r = F2r(x1, . . . ,
x2r+1, ψ(x, ϕ))

ẋ2r+1 = F2r+1(x1, . . . ,
x2r+2, ψ(x, ϕ))...

ẋn−1 = Fn−1(x, ψ(x, ϕ))
ẋn = Fn(x, ϕ)

(1.43)
with ∂ψ

∂ϕ
6= 0, ∂F2r

∂x2r+1
6= 0, ...., ∂Fn−1

∂xn
6= 0

• type 3 normal form:
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Σ2,3



























y1 = x1

ẋ1 = x3...
ẋn−3 = xn−1

ẋn−1 = fn−1(x, ϕ)

y2 = x2

ẋ2 = x4...
ẋn−2 = xn
ẋn = fn(x, ϕ)

(1.44)with ∂
∂ϕ

(fn−1, fn) 6= 0.Theorem 10. (p ≥ 3) If Σ is an in�nitesimally identi�able generi system,then there is a onneted open dense subset Z of X suh that for any x0 ∈
X\Z, there exist a smooth C∞�funtion F and a (

y̌, y̌′, . . . , y̌(2n)
)�dependantembedding Φy̌,...,y̌(2n) (x) suh that outside Z, trajetories of Σx0,ϕ are mappedvia Φy̌,...,y̌(2n) into trajetories of the following system

Σ3+



































dz1
dt

= z2
dz2
dt

= z3...
dz2n

dt
= z2n+1

dz2n+1

dt
= F

(

z1, . . . , z2n+1, y̌, . . . , y̌
(2n+1)

)

ȳ = z1where zi, i = 1, . . . , 2n+ 1 has dimension p− 1, and with
{

x = Φ−1
y̌,...,y̌(2n) (z)

ϕ = Ψ (x, y̌)
(1.45)(y̌ is a seleted output).1.4.2 Identi�ersAs explained before, we have to build an identi�er for eah anonial formof identi�ability. The basi idea is the same for all these forms, and leads tothe use of the nonlinear observers developed previously: we assume, along thetrajetories visited, a loal model for ϕ. For instane, a simple loal model is:

ϕ(k) = 0.This does not mean, at the end, that we will identify ϕ as a polynomialin t: the question is not that this polynomial models the funtion ϕ globallyas a funtion of t, but only loally, on reasonable time intervals (reasonablew.r.t. the performanes of the observer that we will use).This idea is just an extension of the lassial way to identify onstant orslowly varying parametersm. In this ase, one use to add the parameter in thestate variables and to add the equation dm
dt

= 0. Therefore, the loal model isa onstant polynomial. In our ase, suh loal model is too onstrained (sine
ϕ is not supposed to vary slowly), so we add a polynomial loal model.



30 Niolas Boizot and Eri BusvelleLet us onsider a system Σ in the identi�ability normal form 1.41. Addingthe loal model for ϕ, we get the system:
y = x1, (1.46)
ẋ1 = x2, ..., ẋn−1 = xn,

ẋn = Ψ(x, ϕ1), ϕ̇1 = ϕ2, ..., ϕ̇k−1 = ϕk, ϕ̇k = 0,

∂Ψ

∂ϕ1
6= 0 (never vanishes). (1.47)This is a system on R

n+k, whih is not ontrolled (however, for the on-siderations that follow, Ψ ould depend on a ontrol u), and this system isunder the normal form (1.17, 1.18).Therefore, we may apply high gain Luenberger observer, or we may applythe trik in Setion 1.3.2. Then, for instane, the observer of Setions 1.3.2,1.3.3 and 1.3.4 may be applied to this system. It will provide estimations of
x(t), ϕ(t), that is, just an estimation of the piee of the graph of ϕ visitedduring the experiment.The ases of normal forms (1.42), (1.43), (1.44), orresponding to Type 1to 3 systems an be treated in a similar way to the single-output ase, withsome more or less easy adaptations of the methods of the previous setions.This exerise is left to the reader.An appliation of this tehnique in a di�ult ase (the loal polynomialmodel does not apply) is presented in Setion 1.6. Some important remarksand pratial onsiderations are disussed in this setion.1.5 Series-onneted DC motorIn this �rst appliation we present (in simulation) the design of the adaptive-gain extended Kalman �lter (AG�EKF, see Setion 1.3.4) for a single inputsingle output (SISO) system, namely a series-onneted DC motor.Basially, an eletri motor onverts eletrial energy into mehanial en-ergy. In a DC motor, the stator (also denoted �eld) is omposed of an eletro-magnet, or a permanent magnet, that immerses the rotor in a magneti �eld.The rotor (also denoted armature) is made of an eletromagnet that one sup-plied with urrent reates a seond magneti �eld. Movement is then ausedby the attration/repelling behavior of magnets. As far as the magneti �eldreated by the stator remain �xed the rotor windings are onneted to a om-mutator. The diretion of the urrent �owing through the armature oils isthen swithed during the rotation and the polarity of the armature magneti�eld is reversed. Suessive ommutations then maintain the rotating motionof the mahine. A DC motor whose �eld iruit and armature iruit are on-neted in series, and therefore fed by the same power supply, is referred to asa series-onneted DC motor [34℄.



1 Adaptive-gain observers and appliations 311.5.1 Mathematial model
Fig. 1.1. Series-onneted DC motor equivalent iruit representationThe model of the series-onneted DC motor is obtained from the equiv-alent iruit representation shown in Figure 1.1. We denote If the urrent�owing through the �eld part of the iruit (between points A and C) and Iathe urrent through the armature iruit (between points C and B). When theshaft of the motor is turned by an external fore, the motor ats as a generatorand produes an eletromotive fore. In the ase of the DC motor, this forewill at against the urrent applied to the iruit and is then denoted bak orounter eletromotive fore (BEMF or CEMF). The eletrial balane leadsto

Lf İf +RfIf = VACfor the �eld iruit, and to
Laİa +RaIa = VCB − Ewhere Lf and Rf are the indutane and the resistane of the �eld iruit,

La and Ra are the indutane and the resistane of the armature iruit, and
E denotes the Bak EMF. Kirho�'s laws give us the relations

{

I = Ia = If
V = VAC + VCBwhih gives for the total eletrial balane

Lİ +RI = V − Ewhere L = Lf + La and R = Rf + Ra. We now denote Φ the �eld �ux, wehave Φ = f(If ) = f(I), and E = KmΦωr where Km is a onstant and ωr isthe rotational speed of the shaft.The seond equation of the model is given by the mehanial balane ofthe shaft of the motor using the well known Newton's law. We onsider thatthe only fores applied to the shaft are the eletromehanial torque Te, thevisous frition torque and the load torque Ta leading to
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Jω̇r = Te −Bωr − Tawhere J denotes the rotor inertia, and B the visous frition oe�ient. Theeletromehanial torque is given by Te = KeΦI with Ke denoting a onstantparameter. We onsider that the motor is operated below saturation: the�eld �ux an be expressed by the linear expression Φ = LafI where Lafdenotes the mutual indutane between the �eld and the rotating armatureoils. To onlude with the modeling of the DC motor we suppose the idealhypothesis of 100% e�ieny in the energy onversion expressed by K =

Km = Ke, and for notation simpliity we write Laf instead of KLaf . Thevoltage is the input of the system u(t) and the urrent I is the measuredoutput. We �nally obtain the following SISO model for the series-onnetedDC motor
(

Lİ
˙Jωr

)

=

(

u−RI − LafωrI
LafI

2 −Bωr − Ta

)

y = I

(1.48)This model will be used to simulate the DC motor by mean of a Mat-lab/Simulink S-funtion.1.5.2 Observability anonial formBefore implementing the observer in order to reonstrut the state vetor ofthis system we test (quite easily) its observability property. We use the di�er-entiation approah that is we verify the di�erential observability (De�nition3) whih implies observability.
• I(t) is known with time, then İ = (1/L)(u−R.I −LafωrI) is known andas far as u(t), R, and Laf are known then ωr an be omputed
• now that ωr(t) is known, ω̇r = (1/J)(LafI

2 −Bωr−Ta) an be omputedand beause of the knowledge we have of I(t), Laf , B,and J , Ta an beestimatedWe dedue from this that a third variable may be added to the statevetor in order to reonstrut both the state of the system and the loadtorque applied to the shaft of the motor. We assume that the load torque isonstant over time. Sudden hanges of the load torque will then be onsideredas unmodeled perturbations. The observer we use is the adaptive-gain Kalman�lter as desribed in Setion 1.3.4 beause it has the lassial EKF struturewhen no perturbations our and the struture of a HG�EKF when the systemfaes a perturbation. Estimation of the load torque is made possible by theaddition of the equation Ṫa = 0 to (1.48) (see remarks in Setion 1.4.2). Wenow need to �nd the oordinate transformation that puts this systems intothe observability anonial form.From the equation y = I, we hoose z1 = I and then
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ż1 =

1

L
(u(t) −RI − LafIωr)whih by setting z2 = Iωr beomes

ż1 = −
Laf
L
z2 +

1

L
(u(t) −Rz1) = α2(u)z2 + b1(z1, u) (1.49)we now ompute the time derivative of z2

ż2 = İωr + Iω̇r = −
1

J
TaI −

B

J
Iωr +

Laf
J
I3 −

Laf
L
ω2
rI +

u(t)

L
ωr −

R

L
ωrIwhen I > 0 and onsequently z1 > 0 whih sounds as a reasonable assumptionas far as I is the urrent of the iruit whih is equal to zero only when thereis no power supplied to the engine (and therefore nothing to observe), we set

ωr = z2
z1
, and by setting z3 = TaI this equation beomes

ż2 = −
1

J
z3−

B

J
z2 +

Laf
J
z3
1 −

Laf
L

z2
2

z1
+
u(t)

L

z2
z1

−
R

L
z2 = α3(u)z3 + b2(z1, z2, u)(1.50)and idential remark as above lead us to the expression Ta = z3

z1
and reallingthat Ṫa = 0 we obtain

ż3 = −
Laf
L

z2z3
z1

+
u(t)

L

z3
z1

−
R

L
z3 = b3(z1, z2, z3, u) (1.51)Thus the appliation from R

∗+ × R × R → R
∗+ × R × R de�ned by

(I, ωr, Ta) → (I, Iωr, ITa) with (z1, z2, z3) →
(

z1,
z2
z1
, z3
z1

) as its inverse, isa hange of oordinates that puts the system (1.48) into the observer anon-ial form de�ned by (1.49), (1.50) and (1.51). It is neessary to ompute theoe�ients of the matrix b∗ .1.5.3 Observer implementationWe now reall the equations of the AG�EKF






























dZ

dt
= A(u)Z + b(Z, u) + PC′R−1

θ (CZ − y(t))

dS

dt
= P (A(u) + b∗(Z, u))′ + (A (u) + b∗ (Z, u))

−PC′R−1
θ CP +Qθ

dθ

dt
= λ(1 − s(I)).(1 − θ) +K.s(I).(θmax − θ)

(1.52)where Rθ = θ−1R and Qθ = θ∆Q∆ with ∆θ = diag
(

θ, θ2, . . . , θn
), s(I) =

[

1 + e−β(I−m)
]−1 and
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I =

∫ t

t−T

‖y(s) − ȳt−T (s)‖2 ds = ‖y − ȳt−T ‖
2
L2(t−T,t) (1.53)In fat, these equations are a slight modi�ation of (1.34): the funtion

F has been modi�ed in order to take into aount noise e�ets, as we willexplain below.The simulation of the DC motor is straightforward, we then only om-ment the implementation of the observer. A Matlab/Simulink blo diagramrepresenting the DC mahine and the observer is shown in Figure 1.2 (this�gure is inomplete as far as one would surely want to plot errors betweenreal and estimated states). As it may be seen from the simulink blo diagramshown in Figure 1.3 the observer is deomposed into three parts: two level 1S-funtions and a transport delay blo. As written on the diagram, the right-most S-funtion is dediated to the omputation of the three main equationsof the observer whih are equations (1.52). This blo has three type of inputs:the measured output of the observed system, the input delivered to the ob-served system and the innovation. The innovation is omputed using a distintS-funtion beause unlike the main equations that may be proessed ontin-uously (or quasi-ontinuously), a disrete S-funtion is needed to omputethe innovation. This hoie was made beause:

Fig. 1.2. Simulation and observation of the DC motor
Fig. 1.3. Observer subsystem
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• the omputation of the integral is made by mean of a �xed step trapezoidalmethod
• we have to keep memory of the input and the output trajetories over atime interval [0;T ] where T is the delay of (1.53) whih is easily done witha �xed step proess.The odes to implement those di�erent funtions may be downloaded fromhttp://www.u-bourgogne.fr/monge/e.busvelle/springer/ or obtained from theauthors if the link happens to be disabled.1.5.4 Simulation parameters and observer tuningThe parameters used to simulate the DC engine, motivated by measures madeon a real system, are L = 1.22H ,Res = 5.4183Ω,Laf = 0.0683N.m.Wb−1.A

−1 ,
J = 0.0044 kg.m2, and B = 0.0026N.m.s−1.rad−1.We now need to set the observer parameters d, Dt, R, Q, θmax, λ, K, β,and m. Before explaining how those parameters may be tuned, we want tostress that the last four ones do not need to be reseted for eah new observer.Those parameters appear in the last equation in (1.52) and drive the evolutionof the parameter θ. The values λ = K = 500, β = 2000, and m = m1 +m2where m1 = 0.005 (m2 will be spei� to eah new proess) may be kepteah time a new observer is implemented. The proedure used to tune theparameters R, Q, θmax is inspired by the one proposed in [9, part. 5.2.2℄.1. As a �rst step, we determine the (symmetri positive de�nite) matries
R and Q by using an EKF. This observer an be obtained from the AG�EKFwhen the parameters of the adaptation funtion are set to 0 and θ(0) = 1.Large perturbations are not onsidered and the observer is initialized to theproper (or previously estimated) values of the state vetor.2. As a seond step, we set the R and Q matries to the values previouslyfound and use a HG-EKF in order to tune θ. As above the observer needed isobtained from the AG�EKF when the parameters of the adaptation funtionare set to 0. Then θ(0) is the value that is tuned. Here we will try to �nd avalue for the high-gain parameter that allows fast and reasonable onvergene(with respet to noise ampli�ation) when large unmodeled perturbations areapplied to the system. θmax is then taken equal to the value estimated at thisstep.3. As a last step we now set the parameters of the adaptation funtion. Weremark that when m = 0 then s(0) = 0.5. Thus we need to shift the sigmoidfuntion to the right if we want s(0) to be lose to zero. Choosing y1 as small aswe want and solving the equation s(0) = y1 allows to obtain the parameterm.This solution is easily omputed provided that the parameter β is known. Asthe sigmoid funtion is entered on (0, 0.5) when m = 0, the omputation of βis made by setting a length l for the transition part and solving the nonlinearequation (with m = 0): s(l/2) − s(−l/2) = (1 − y1) − y1. Of ourse, anotherapproah is to graphially de�ne β and m from trial and error. Figure 1.4
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Fig. 1.4. estimation of β and m1 by trial and errorshows a simple Matlab GUI implemented to ease this latter method (the resultdisplayed is for the values of β and m1 given above). The ode of this GUI isalso available from http://www.u-bourgogne.fr/monge/e.busvelle/springer/.Now that the transition part is small, we want the gain to inrease andderease quikly. If we suppose that θ(t) = 1 and that we want it to reah
θmax within a time τ then the equation θ̇ = θmax−1

τ
= K.(θmax − 1) allowsthe omputation of K. As far as the equation used to ompute K is only anapproximation, a bigger value (e.g. twie the omputed value) may be used.Finally, a reasonable hoie for the last parameter remaining is λ = K.The parameter T , the length of the window on whih innovation is om-puted, is related to the rise time of the system when it is faing perturbations:it has to be su�iently big so as to give an aount of perturbations that ouron the system. The sample time Dt of the disrete S-funtion should ideallybe hosen as small as possible, leading to a signi�ant inrease of the amountof time and of the memory needed to ompute the innovation (we need to keeptrak of T

Dt
+1 system outputs and T

Dt
system inputs). Dt = T/3 or Dt = T/4seems to be reasonable, fewer values will of ourse give more �exibility to thesystem.Beause of measurement noise the innovation will never be equal to zeroand therefore the observer will stay in a high-gain mode. To avoid this prob-lem, the parameter m is rewritten m = m1 +m2 where m1 is the previouslyomputed quantity and m2 will represent the in�uene of the noise on the



1 Adaptive-gain observers and appliations 37system. As a result, when I ≤ m2 we will have s(I) ≤ y1 and θ won't in-rease. We denote by σ the standard deviation of the output noise, whih anbe estimated from output measurements, and then m2 = T.σ2 where T is thedelay used in the de�nition of the innovation. Figure 1.5 shows the outputof the simulated DC motor (with addition of noise) and that σ = 0.7 is areasonable value for the standard deviation.
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Fig. 1.5. Estimation of the standard deviationFinally all those steps allow us to set the parameters to R = 1, Q =
[1, 0, 0; 0, 5, 0; 0, 0, 5], θmax = 3, λ = K = 500, β = 2000, T = 0.1, Dt = 0.01,and m = 0.005 + 0.049.1.5.5 Simulation resultsFigures 1.6 and 1.7 shows the performane of the designed observer, all theobservers identify the values taken by the load torque but with di�erent be-haviors. The EKF rejets noise but onverges slowly when the system faesunmodeled perturbations. We may add that in order to speed up a little bitthe EKF the Q matrix was set to [25, 0, 0; 0, 25, 0; 0, 0, 50] in this speial ase,it was kept to the value given in the previous hapter for all the other simu-lations.The HG�EKF is on the ontrary very sensitive to measurement noise butis very fast regarding onvergene when a perturbation arises.The AG�EKF presents both the advantages of the two previous �lters,namely noise rejetion and speed of onvergene under perturbations. Weobserve that the adaptive-gain observer is a little bit slower than the �xedhigh-gain one. This is due to the delay indued by the omputation of inno-vation, in fat the value hosen for Dt will have an impat on this delay as faras the behavior of θ (inreasing toward θmax or dereasing toward 1) will onlyhange with the innovation. In all the parameters tuned for this last observerone will have a major impat, this is m2. Indeed if it is set to a too big value
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adaptive−gain extended Kalman filterFig. 1.7. HGEKF VS AEKFthen θ won't inrease every time it is needed what does not onstitutes amajor drawbak beause the EKF rejets noise (this is true provided that m2is not suh as big that it totally prevent θ from inreasing). On the ontrary,if m2 is too small then θ will inrease when it is not needed (only beause ofthe noise) having the only e�et to amplify noise. However as it an be seenfrom Figure 1.5, σ and therefore m2 is not di�ult to estimate from outputmeasurements. To illustrate this omment Figure 1.8 shows the evolution of θfor two di�erent values of m2 (the value 0.049 orresponds to the simulationswhih results are shown above).
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Fig. 1.8. Di�erent values of m21.6 Eletronial neuron iruitWith this seond appliation we illustrate how observers an assist systemmodeling and, in the ase onsidered here, prototype assessment (as in Setion1.4). Identi�ability study of this model has been presented in [5℄.The modelization of neurons is extensively studied in neurosiene re-searh. A large quantity of models of isolated neuron ells or of neuron ellsnetworks are available in the literature eah one of them presenting variabledegrees in their auray. The model we use here, a modi�ation of the modelproposed by Fitzhugh, Nagumo & al. in the early 1960's, is a simpli�ation ofthe one of a single isolated biologial neuron proposed by Hodgkin and Huxley[24℄. Historial informations on the development of this model an be foundin [28℄.1.6.1 The modi�ed Fitzhugh-Nagumo model (MFHN)From the biologial point of view this model is omposed of two variables,
V representing the membrane voltage and W that represents the reoveryvariable

{

V̇ = V − V :3

3 −W

Ẇ = ǫ (g(V ) −W − η)
(1.54)where ǫ and η are onstant parameters and g is the pieewise linear funtion

g(V ) =

{

βV if V > 0
αV if V ≤ 0where α and β are onstant parameters.



40 Niolas Boizot and Eri BusvelleThis model was implemented as an analogue iruit at LE2I laboratory(university of Burgundy), the exat desription of this iruit is given in [6℄.The analyze of this physial system is made by mean of an observer basedapproah, real data being available.1.6.2 Identi�ability and observabilityFrom the analogue iruit point of view, V orresponds to a voltage andW to aurrent therefore both of them an be measured. Although in the ase of a realbiologial system it will only be possible to measure V , the membrane voltage.Thus we will onsider that only V is atually measured. The objetive of thisstudy is the identi�ation of the funtion g (i.e. the part of its graph visitedduring the experiment) and the study of the identi�ability property of thesystem onstitutes a �rst step. In Setion 1.4, we desribed an identi�abilitynormal form for single output unontrolled systems (normal forms for systemswith more than one output are also given)


























ẋ1 = x2...
˙xn−1 = xn
ẋn = ψ(x, g)
y = x1

(1.55)We now want to �nd a hange of oordinates that allow the MFHN equa-tions to math this normal form. This oordinate transformation is easilyfound: set x1 = V and x2 = V̇ .


























ẋ1 = V̇
= x2

ẋ2 = V̇ − V̇ V 2 − Ẇ

= (1 − x2
1)x2 − ǫ

(

g(x1) − x1 +
x3
1

3 + x2 − η
)

= ψ(x, g)

(1.56)Sine ǫ 6= 0, the system is learly identi�able. We see that if the parameter
η is unknown we have the possibility to rede�ne the unknown funtion g as
g(x1) = g(x1) − η with no hange in the normal form.In order to identify the funtion g, we extend the state vetor by making
g a state variable. As it is lear that g is not onstant over time we model itas a loal polynomial of time

g(V (t)) = g(t) = a0 + a1t+ ...+ ant
nwhih imply that dn+1g(t)

dtn+1 = 0. The model is ompleted by the addition of nnew state variables orresponding to the n �rst derivatives of g with respetto time (for a total of n+ 1 new variables). It appears that when the system



1 Adaptive-gain observers and appliations 41de�ned by (1.56) is extended in that manner it is in the observability anonialform. However there exist a muh more simpler way to obtain the anonialform that is not to do any hange of variables. This latter form is the onewe will onsider so as to avoid hange of variables while implementing theobserver
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where hi = d
i
g(t)

dt
i for i = 0, ..., n and with d0g

dt
= g.One ould think that the hoie of a loal representation for the funtion

g (here a polynomial of time) and the transformation of the model into theanonial observability form su�es to prove identi�ability. It is in fat notthe ase. This subtle di�erene has been well illustrated in [9, part 6℄ wherethe authors exhibit the example
{

ẋ = ϕ(x)
y = x+ ϕ(x)

x ∈ Rindeed, keeping the notations used above for the funtion g and setting n = 1,then the hange of oordinates (x, h0, h1) → (z1, z2, z3) = (x+h0, h0 +h1, h1)leads to an observability anonial form. However the authors showed thatthis system is not identi�able !1.6.3 ImplementationThe high-gain extended Kalman �lter is adapted to the problem of identi-�ation of the unknown funtion g. The implementation of this observer ismuh more easy to arry on than the previous one: only one S-funtion isneeded. Even if our objetive is to use real data get from the analogue iruitmentioned above we use a ontinuous S-funtion. This is motivated by thefat that our data's sample time is smaller than the average time step used bythe software to ompute the ontinuous solutions (but a ontinuous�disreteobserver (1.37)�(1.38) will be another possible hoie). The orrespondingMatlab/Simulink diagram is shown Figure 1.9.Codes may be downloaded (together with a set of data) from http://www.u-bourgogne.fr/monge/e.busvelle/springer/.
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Fig. 1.9. Identi�ation from real data1.6.4 ResultsA �rst series of simulations of the MFHN model are done in order to tunethe three parameters n, Q, and θ. The parameters for the MFHN modelare set to α = 0.5, β = 1.96, ǫ = 0.2966, η = 0.20531 V (0) = 1.0656,and W (0) = 2.6903. Sine we are using an observer that only has a high-gain behavior, Q is set to the identity matrix Id(3+n)×(3+n). The high-gainparameter θ is then hosen to ensure an aurate identi�ation of the funtion.Several simulations shows that θ = 1 (orresponding to an extended Kalman�lter) does not lead to the identi�ation of the funtion. The identi�ation ismade possible when θ ∈ [5; 10], and is very aurate when θ > 10. Figure 1.10shows identi�ation results for four di�erent values of the high-gain parameterwhen the data fed to the observer are simulated. No noise have been addedduring those simulations and then even if θ = 15 gives the best result, thetrade-o� between speed of onvergene and sensibility to noise lead us tohoose a smaller value.The values for V got from the analogue iruit are shown Figure 1.11 andthe result of the identi�ation (with θ = 10 and n = 1) is shown Figure1.12(a). We see that the unknown funtion is identi�ed as a loop and fromthe shape of the data used, we expet four of them.We isolated the �rst values given by the observer in order to obtain thelearer graphi Figure 1.12(b) in whih we highlighted the overshoot due tothe inaurate initialization of the observer. After this overshoot the observeronverges to the values taken by the unknown funtion and while V < 0the estimation is quite good. When V beomes positive the estimation isnot that aurate anymore. Two reasons an be pointed out to explain thisphenomenon: the real data do not orrespond exatly to the output the theo-reti model would give for the same set of parameters (whih is analogous tomodeling errors) and the fat that the funtion we want to identify is not dif-ferentiable in 0, a very spei� property that is not re�eted by our polynomialapproximation.We rewrite the model used to perform the identi�ation so as to take thisinto onsideration
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ẋ1 = x2 ẋ2 = ψ̄(x, α̂, β̂)

˙̂α = α1
˙̂
β = β1

α̇1 = α2 β̇1 = β2

α̇2 = α3 β̇2 = β3

α̇3 = 0 β̇3 = 0

(1.57)The results of this new identi�ation are shown Figure 1.13(a-b). This newestimation is very aurate after a few yles. Small errors both for the positiveand negative values of V are still visible, they an also be spotted when wetrae the values taken by α̂ and β̂ against time as in Figure 1.14. Those errorsare due to the fat that real data di�er from the ideal mathematial model.Referenes1. Ammar S., Vivalda J.-C. (2005) On the generiity of the observability of on-trolled disrete-time systems, in ESAIM: Control, Optimisation and Calulus ofVariations, vol. 11, 161�1792. Ammar S., Vivalda J.-C. (2004) On the preservation of observability undersampling, Systems & Control Letters, vol. 52, no 1, 7�153. Balde M., Jouan P. (1988) Observability of ontrol a�ne systems,ESAIM/COCV, Vol. 3, pp. 345-359, 1998.4. Baras J.S. , Bensoussan A. , James M.R. , (1988) Dynami observers as asymp-toti limits of reursive �lters: speial ases�, SIAM J. Appl. Math., 48, 1147�11585. Binzak S, Busvelle E, Gauthier JP, Jaquir S (2006) Identi�ation of unknownfuntions in dynami systems. 17th International Symposium on MathematialTheory of Networks and Systems (MTNS 2006), Kyoto:2157�2162.6. Binzak S, Kazantsev V, Nekorkin V I, Bilbault JM (2003) Experimental studyof bifurations in modi�ed Fitzhugh-Nagumo ell. Eletroni letters 39,13:961�962.7. Boizot N, Busvelle E, Gauthier JP, Sahau J (2007) Adaptive-Gain ExtendedKalman Filter: Appliation to a Series-Conneted DC Motor. In Conferene onSystems and Control (CSC'2007), Marrakeh.8. Busvelle E., Gauthier J.-P. (2002) High-Gain and Non-High-Gain Observersfor Nonlinear Systems, Contemporary Trends in Nonlinear Geometri ControlTheory and its Appliations, World Sienti�, 233�2569. Busvelle E., Gauthier J.-P. (2005) Observation and Identi�ation Tools for Non-linear systems. Appliation to a Fluid Catalyti Craker. International Journalof Control, Vol. 78, 3, 200510. Busvelle E., Gauthier J.-P. (2003) On determining unknown funtions in dif-ferential systems, with an appliation to biologial reators, ESAIM: COCV 9,509�55211. Buy R. , Joseph P. (1987) Filtering for stohasti proesses with appliationsto guidane, Chelsea publishing ompany, seond edition12. Busse F.D. , How J.P., Simpson J. (2003) Demonstration of Adaptive ExtendedKalman Filter for Low-earth-orbit Formation Estimation using CDGPS Navi-gation. Journal of the Institute of Navigation, v 50, n 2, 79�93



46 Niolas Boizot and Eri Busvelle13. Deza F. (1991) Contribution to the synthesis of exponential observers, Phdthesis, INSA de Rouen, Frane, June 1991.14. Deza F., Busvelle E., Gauthier J.-P. (1992) High-gain estimation for nonlinearsystems, Systems and Control Letters 18, 295�29915. Deza F., Busvelle E., Gauthier J.-P., Rakotopara D., (1992)A stability resulton the ontinuous-ontinuous and ontinuous-disret extended Kalman �lters,Compte-Rendus de l'Aadémie des Sienes de Paris, 314, Février 199216. Gauthier J.-P., Hammouri H., Kupka I., (1991) Observers for nonlinear systems;IEEE CDC Conferene, deember 1991, Brighton, England, 1483�148917. Gauthier J.-P., Hammouri H., Othman S. (1992) A simple observer for nonlinearsystems. IEEE Trans. Aut. Control, 37, 875�88018. Gauthier J.P., Kupka I., (1994) Observability and observers for nonlinear sys-tems. SIAM Journal on Control, vol. 32, N◦ 4, 975�99419. Gauthier J.P., Kupka I., (1996) Observability for systems with more outputsthan inputs. Mathematishe Zeitshrift, 223, pp. 47�7820. Gauthier, J.-P., and Kupka, I., (2001), Deterministi Observation Theory andAppliations, Cambridge University Press21. Gikhman, I. I., Skorokhod, A.V. (1969), Introdution to the Theory of RandomProesses, W.B. Saunders, Philadelphia22. Gevers M., Bastin G. (1986) A Stable Adaptive Observer for a lass of NonlinearSeond-order Systems, Analysis and optimization of systems, ed. by Bensoussan,A., and Lions, J. L. Springer-Verlag, 143�15523. Hammouri, H., Farza, M., (2003), Nonlinear observers for loally uniformly ob-servable systems, COCV, 9, 343-352.24. Hodgkin L A, Huxley A F (1952) A quantitative desription of membrane ur-rent and its appliation to ondution and exitation in nerve. Journal of phisi-ology 117:500�544.25. Holland C.D. (1963) Multiomponent Distillation, Englewood Cli�s, New-Jersey, USA: Prentie Hall, 1963.26. Hu C., Chen W., Chen Y., Liu D. (2003) Adaptive Kalman �ltering for vehilenavigation, Journal of Global Positioning Systems, Vol. 2, No 1, 42�4727. Huillet T., Salut G. (1989) Interprétation des équations du �ltrage non linéaire,GdR Automatique du CNRS, Paris, 8 Novembre 198928. Jaquir S (2006) Systèmes dynamiques non-linéaires, de la biologie àl'életronique. Thèse de dotorat, Université de Bougogne, Frane.29. Jaswinski A., (1970) Stohasti proesses and �ltering theory, Aademi Press,New York30. Johansson A., Medvedev A. (2003), An observer for systems with nonlinearoutput map, Automatia 39, pp 909�91831. Jouan P., (1995) Singularités des systèmes non linéaires, observabilité et obser-vateurs, PHD thesis, Université de Rouen,32. Jouan P., J.P. Gauthier J.P., (1996) Finite singularities of nonlinear systems.Output stabilization, observability and observers. Journal of Dynamial andControl Systems, vol. 2, N◦ 2, 255�288.33. Kent K. C. Yu, N. R. Watson, J. Arrillaga, (2005) An adaptive Kalman �lterfor dynami harmoni state estimation and harmoni injetion traking, IEEETrans. on power delivery, Vol. 20, No 234. Krause P C, Wasunzuk O, Sudho� S D (2002) Analysis of Eletri Mahin-ery and Drive Systems, 2nd edition. Wiley-intersiene, IEEE series on powerengineering.



1 Adaptive-gain observers and appliations 4735. La Moyne L., Porter L. L., Passino K. M. , (1995) Geneti adaptive observers,Engng Appli. Artif. Intell. Vol. 8, No 3, 261�26936. Mehta S,Chiasson J (1998) Nonlinear Control of a Series DC Motor: Theoryand Experiment. IEEE transations on industrial eletronis 45, 1.37. E. Pardoux (1991) Filtrage non linéaire et équations aux dérivées partiellesstohastiques assoiées, Eole d'Eté de Probabilités de Saint-Flour XIX-1989,Leture Notes in Math., 1464, Springer, 67�16338. Piard J. (1991), �E�ieny of the extended Kalman �lter for nonlinear systemswith small noise�, SIAM J. Appl. Math., 51, No3, 843�885.39. Rigal G. (1993) Filtrage non-linéaire, résolution partiulaire et appliations autraitement du signal, Thèse de l'Université de Toulouse, LAAS.40. Rosenbrok H. (1962), A Lyapunov funtion with appliations to some nonlinearphysial systems, Automatia, 1, 31�5341. Ropuhon P. (1990), Simulation dynamique et ommande non linéaire desolonnes à distiller, Thèse de l'éole des mines de Paris,42. Shen L., Wang H. (2003), Adaptive observer design for general nonlinear sys-tems with linear output struture, 4th International Conferene on Control andAutomation, June 2003. ICCA '03. Proeedings, 48�5243. Shim, H., Son, Y. I., and Seo, J. H., (2001), Semi-global observer for multi-output nonlinear systems, Systems Control Lett. 42 233�244.44. Stubberud S., Lobbia R., Owen M., (1998) An adaptive extended Kalman �l-ter using arti�ial neural networks, The international journal on smart systemdesign, Vol. 1, pp 207-22145. Viel, F (1994) Stabilité des systèmes non linéaires ontrolés par retour d'étatestimé. Appliation aux réateurs de polymérisation et aux olonnes à distiller,Thèse de l'université de Rouen46. Viel F., Busvelle E., Gauthier J.P. (1997) A stable ontrol struture for binarydistillation olumns, International Journal on Control, Vol 67, N◦4, 475�505


