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Abstract. In this paper, following ideas already developped in [10], we con-
struct an observer for nonlinear systems that looks like the extended Kalman
filter. In fact, it is asymptotically (in time) exactly the deterministic version
of the extended Kalman filter, and when the ”innovation” is large, it is an
high gain observer. In the context of the theory developped in [10], we show
that it works for ”all observable systems”. In the paper, we prove convergence
of the estimation error, we give several estimates of this error, and we show a
convincing illustrative application (a distillation column).

1. Introduction, systems under consideration

1.1. Systems under consideration. We consider nonlinear systems of the fol-
lowing form (1.1), on Rn. The control space U, is a closed subset of Rd. Only for
simplicity of the exposition of the proof of the main result, the observation
is taken to be single-valued: it is a u− dependant linear form on Rn.

dx

dτ
= A(u)x + b(x, u),(1.1)

y = C(u)x.

A(u) , C(u) are matrices:

C(u) = (a1(u), 0, ...., 0),

A(u)




0, a2(u), 0, ...., 0
0, 0, a3(u), 0, ..., 0

.

.
0, .........., 0, an(u)
0, ...................., 0




.

where ai(.), i = 1, ..., n, are positive smooth functions, bounded from above and
from below:

0 < am ≤ ai(u) ≤ aM .
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Also, b(x, u)is a smooth, u−dependant vector field, depending triangularly on x
and compactly supported:

b = b1(x1, u)
∂

∂x1
+ b2(x1, x2, u)

∂

∂x2
+ ... + bn(x1, ..., xn, u)

∂

∂xn

.

These assumptions look very strong. In fact, under either genericity hypotheses
or observability hypotheses, for the purpose of synthesis of observers, it is
sufficient to restrict to these systems, under the normal form (1.1) (or
similar multi-output normal forms), and meeting these assumptions. This
will be discussed in the next section 2.

We stress again that in all the paper, the single output assumption can be
removed everywhere, and we leave this to the reader, but, in Section 4, we will
deal with a 2− outputs system, in a similar normal form.

1.2. Presentation of the paper. Our purpose herein is to construct observers,
for the observable systems described above.

In fact, for these systems, several types of nonlinear observers can be constructed.
We will focus on two types of construction that both turn around the ”extended
Kalman filter”, in either its deterministic or its stochastic form:

1. First construction: The Extended Kalman Filter itself,
2. Second construction: The High Gain Extended Kalman Filter,
3. Our construction in this paper: a mixing of 1. and 2.

Let us just give some details now, to explain where we want to go.

1. The extended Kalman Filter.
For long, the engineers introduced and successfully used the extended Kalman

filter (EKF), either in its stochastic or its deterministic form. The EKF is just
the standard Kalman filter for linear time-dependant systems, applied to the lin-
earized system along the estimate trajectory. We will give precise equations
later on.

It is easy to see that it is a non-intrinsic object (depending on coordinates). It
would be intrinsic if it was dealing with the linearized along the real trajectory, but
this trajectory is unknown.

It is known that, under observability conditions, the Extended Kalman filter,
has good properties:

(i) In its deterministic form, it is a local observer in the following sense. For
sufficiently small initial error on the estimate of the state, the estimation error
converges exponentially to zero. The prototype of these results can be found in [2]
for instance.

For our systems (1.1), with the assumptions of Section 1.1, it is not hard to
check that the linearized systems along any trajectory are uniformly observable,
(in the classical sense of the linear theory, and with uniform bounds on the Gramm
observability matrices). Hence, this result applies.

(ii) In its stochastic form, except for the linear case, where the EKF is the
”optimal” filter, there is no general theoretical result that applies. Even for good
observable systems in our normal form 1.1, for small noise, small initial variance
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and dimension 1: there is a counterexample of such a system, in [16] for instance,
where the EKF doesn’t work at all.

Nevertheless, despite the lack of these theoretical justifications, people use it in
practice for nonlinear filtering and it may give very good results (even for systems
that have much weaker observability properties than those considered here).

In the application of our techniques, presented in section 4 below, we will show
a (family of) practical examples which is very interesting because, it seems that,
the results of [16] on the EKF for small noise, apply in general, and that the ”small
parameter” has a physical interpretation.

We will not say more about that because this is beyond the scope of this paper.
But it is one more justification of the use of our method developed here to this
application.

2. The High Gain Extended Kalman Filter.
The following results have been proved in [4], [5], [10].
We consider the equations of the extended Kalman filter, in which the ”covari-

ance matrix Q” depends on a real parameter θ, θ ≥ 1, in the following way:

Qij = θi+j+1Q0
i,j .

For θ = 1, it is exactly the EKF. For θ large enough, it is what we call here the
”High gain extended Kalman filter” (HGEKF).

(i) In the deterministic setting, the estimation error has arbitrarily large ex-
ponential decay (depending on θ). ([10], for instance). This holds whatever
the initial error is, (that is, this is a global result).

(ii) In the stochastic setting, it is a nonlinear filter with ”bounded variance” (the
variance is bounded in θn, which is not that good, but it is bounded anyway). ([4],
for instance).

3. What we want to do in this paper.
The idea in this paper is the very simple following one: we give the parameter

θ in the HGEKF an exponential decay from θ0 large, to 1.
What is expected, (and what happens) is the following:
(i) The beginning of the transient of the estimation error is the one of the high

gain extended Kalman observer: there is an exponential decay that can be made
arbitrarily large.

(ii) There is a global exponential decay of the estimation error (but, of course,
it cannot be controlled).

(iii) The asymptotic behavior is the one of the standard ”extended Kalman
filter”, (that people like in practice, as stated above).

Our main result, Theorem 1 in Section 3 proves (i) and (ii). The proof is more or
less an improvement of the proof of convergence of the high gain Kalman observer,
as given in [10].

Of course, this construction has a terminal defect: it is time dependant. In
deterministic terms, it will work for large initial estimation errors, but not for big
”jumps” of the state at intermediate times. In the section 3.3, we propose a very
simple practical way to make the observer ”recursive”.
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In the section 4, we show the application of this procedure to a binary distillation
column in which the ”quality of the feed” is unknown, an subject to large changes.
It was already noticed in the book [10] that this application is a nontrivial nice
application of the observability theory, and of high gain observers.

Here, it is even much more convincing: when the feed changes, (a big ”state
jump”), the behavior of the observer is the one of a high-gain observer: recovering
arbitrarily fast the quality of the feed, and when the feed does not move, the
asymptotic behavior of the observer is the one of the extended Kalman filter, almost
optimal with respect to small noise in that case (but we do not prove anything about
this optimality in this paper).

For first applications of ”high gain observers” to distillation columns, see [19],
[20].

2. Justification of the assumptions and observability

2.1. Justification of the normal form. Let us recall here the main results of
an observability theory summarized in [10], and developed in [6], [7], [8], [9], [13].
This theory leads to the consideration of systems under the normal form (1.1), or
similar multi-output normal forms such as (2.1) below, that meet the assumptions
of the section 1.1. Here, by ”observability”, we mean ”observability for every fixed
input function u(t)”. For details, see [10].

The main results of this theory are as follows. They concern general nonlinear
smooth systems of the form:

dx

dt
= f(x, u),

y = h(x, u),

on a smooth manifold X, n dimensional, y ∈ Rp, u ∈ U, subset of Rd.
Basically, there are two cases.

Case 1. p ≤ d. In that case, observability is a non generic property. It is even
a property of infinite codimension, at the level of germs of systems. This high
degeneracy leads to the fact that, in the control affine case, all observable systems
can be put under normal forms similar to (1.1). (moreover, one can take ai = 1,
i = 1, ..., n).

This result is only a local result in the state space, but it is a global result with
respect to the control variable. Moreover, in most of the practical cases we know,
it is also global in x. In particular, it will be global in the application of Section 4.

In the non control affine case, there is another result, that we don’t want to recall
here. It leads naturally to high gain observers of another type (”Luenberger type”).
Let us just say that the results herein can be easily generalized to this normal form
and these observers.

Case 2. p > d. In that case, the situation is completely opposite. Observability
becomes a generic property, and generically, a system can be put globally under
a normal form similar to (1.1), but the dimension of the state in the normal form
is bigger than the dimension of the state of the original system: it is at most
double plus one. Also, the control in the normal form contains a certain number of



OBSERVERS FOR NONLINEAR SYSTEMS. 5

derivatives of the control of the initial system. But this is more or less unimportant
for observation problems, where the control, and hence its derivatives, are known.

In fact, generically, the systems can be put in a form which is a very special case
of the form (1.1), called the ”phase variable representation”:

y(N) = ϕ(y, ẏ, ...., y(N−1), u, u̇, ...., u(N−1)),(2.1)

N ≤ 2n + 1.

Other cases: there are also other (nongeneric) interesting cases where the
original system can be put under the ”phase variable representation” (2.1). For
instance, systems without control that are such that the mapping:

initial − state → derivatives of y :

x0 → (y, ẏ, ...., y(M)),

has ”finite multiplicity” for a certain integer M. (See [10], and originally [13]).

Note 1. The reasons for which we make the matrix A(u) depend on u in the
normal form (1.1) may look not clear, because, in all the cases described above, it
doesn’t.

In fact, the only reason to consider this dependance is the following: the formal
computations we do in the proof of our main result, work for that type of systems.
Moreover, in the application we describe in Section 4, the matrix A actually does
depend on u.

Note 2. In that case were ai depends on u, the following should also be noticed:
even the high gain version of the extended Kalman filter is much better in practice
than the ”high gain Luenberger observer” mentioned above: the high gain observers
both kill the nonlinearities contained in the vector field b. But the extended Kalman
filter takes into account the variations of u, through the matrix A(u). The standard
high gain observers in Luenberger form don’t do this. This is the case in the
application, Section 4 below.

2.2. Justification of the technical assumptions. Let us consider successively
the two technical assumptions we made in the section 1.1:

A. 0 < am ≤ ai(u) ≤ aM , i = 1, ..., n,
B. The functions bi are compactly supported.

In fact, the assumption A is always satisfied in the cases 1., 2. of the previous
section 2.1: the ai are constant and equal to 1. In the application of section 4, this
assumption is also satisfied, as we shall see.

Let us just notice the following.

A1. The Assumption ai(u) 6= 0 just implies observability of systems in the normal
form (1.1):

- If the output y(t) is known, the input being also known, the fact that a1(u) is
nonzero implies that we can compute x1(t) from y(t).

- The fact that a2(u) 6= 0 implies that we can compute x2(t) from the knowl-
edge of x1(t), and by induction, we can reconstruct the whole state x(t) from the
knowledge of y(t).
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Modulo a trivial change of variables, the condition ai(u) 6= 0 is equivalent to
ai(u) > 0.

A2. The ai being smooth, restricting to a compact subset of the set of values of
control implies that we can find the am, aM , of assumption A.

The assumption B above can be trivially realized, by multiplying by a cut-off
function, compactly supported, leaving the original vector field b unchanged on
an arbitrarily large compact subset of Rn.

We cannot expect more than that. As explained in the book [10], the problem
of synthesis of observers is an ill-posed problem outside compact sets of the state
space. This is easily understandable: on noncompact sets, it can happen that the
estimation error goes to zero for certain metrics, but to infinity for others. So that,
reasonable observers work only as long as the state trajectory x(t) of the system
remains in a given compact set, or they work for semi trajectories {x(t), t ≥ 0} that
are entirely contained in a given compact set.

To finish, let us mention that this restriction to compact sets (unavoidable in a
general observation theory), has not so important consequences: for instance, the
high gain observers can be used in general for global dynamic output stabilization
(again, see [10]).

3. Statement and proof of the theoretical result

The observer we propose, is based upon the High gain extended Kalman fil-
ter, proposed in [10], [4], [5]. For computational details about the Riccati matrix
equation, we refer to [3], or [10].

3.1. The observer and the statement of the theorem. The equation of the
observer is:

(3.1)






(i) dz
dτ

= A(u)z + b(z, u)− S(t)−1C′r−1(Cz − y(t)),
(ii)dS

dτ
= −(A(u) + b∗(z, u))′S − S(A(u) + b∗(z, u))+

C′r−1C − SQθS,
dθ
dτ

= λ(1 − θ),

where C = (a1(u), 0, ..., 0), Qθ = θ2∆−1Q∆−1, ∆ = diag(1, 1
θ
, ..., (1

θ
)n−1). Here,

b∗(z, u) denotes the Jacobian matrix of b(z, u) w.r.t. z, and r, λ are positive scalars.
Q is a symmetric positive definite matrix.

Comments:
1. Q, r, in the stochastic context, are the covariances of the state noise and output

noise respectively.
2. If λ = 0 and θ0 = 1, or if λ > 0, but t is large, this is exactly the (deterministic

version of) the extended Kalman filter.
3. If θ0 is large, and if τ ≤ T , then, this equation is almost the equation of

the high gain extended Kalman filter with gain θ(T ). Hence, for τ ≤ T, setting
ε(τ) = z(τ) − x(τ), (ε is the estimation error), we can expect the following, for
θ0 large enough in front of T :

(3.2) ||ε(τ)||2 ≤ θ(τ)2(n−1)H(c)e−(a1θ(T )−a2)τ ||ε(0)||2.
Here, a1, a2 are positive constants, H(c) is a decreasing positive function of c,

where S(0) ≥ c Id. Also, θ(T ) = 1 + (θ0 − 1)e−λT .



OBSERVERS FOR NONLINEAR SYSTEMS. 7

In particular, this implies that the error ε(t) can be made arbitrarily small,
in arbitrarily short time, increasing θ0. For θ constant, this is the behavior
of the ”high gain extended Kalman filter. In that case (θ constant), this estimate
follows from [10], [5]. We will prove it below for θ nonconstant.

Our main result herein will be the following:

Theorem 1. 1. For all 0 ≤ λ ≤ λ0, (λ0 = Qmα
4(n−2) , where Q ≥ QmId and α comes

from Lemma 1 below), for all θ0 large enough, depending on λ, for all S0 ≥ c Id,
for all K ⊂ Rn, K a compact subset, for all ε0 = z0 − x0, ε0 ∈ K, the following
estimation holds, for all τ ≥ 0 :

||ε(τ)||2 ≤ R(λ, c)e−a τ ||ε0||2Λ(θ0, τ, λ),(3.3)

Λ(θ0, τ, λ), = θ0
2(n−1)+ a

λ e−
a
λ

θ0(1−e−λτ ),

where a > 0. R(λ, c) is a decreasing function of c.
2. Moreover the short term estimate (3.2) holds for all T > 0, τ ≤ T, for all

θ0 ≥ θ̄0, θ̄0 = eλT ( L′

Qmα
− 1) + 1, where L′is the sup of the partial derivatives of b

w.r.t. x.

Comments.
a. Note that the function Λ(θ0, τ, λ) is a decreasing function of τ, and that, for

all τ > 0, λ > 0, Λ(θ0, τ, λ) can be made arbitrarily small, increasing θ0.
b. This means that, provided that λ is smaller than a certain constant λ0, and

θ0 is large in front of λ, the estimation error goes exponentially to zero, and can be
made arbitrarily small in arbitrary short time.

c. The asymptotic behavior of the observer is the one of the extended Kalman
filter,

d. The ”short term behavior” is the one of the ”high gain extended Kalman
filter”.

3.2. Proof of Theorem 1.

3.2.1. Preparation for the proof. Let us recall that:

(3.4) θ(τ) = 1 + (θ0 − 1)e−λτ ,

and let us set F = diag(0, 1, 2, ..., n− 1). Then:

d(1
θ
)

dτ
= −λ(1 − θ)

θ2
,(3.5)

d∆

dτ
= −F∆

λ(1 − θ)

θ
,

d∆−1

dτ
= F∆−1 λ(1 − θ)

θ
.

The equations under consideration are:

(3.6)
(i) dε

dτ
= A(u)ε + b(z, u) − b(x, u) − S(t)−1C′r−1Cε,

(ii)dS
dτ

= −(A(u) + b∗(z, u))′S − S(A(u) + b∗(z, u)) + C′r−1C − SQθS,
(iii) dθ

dτ
= λ(1 − θ).
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We make the following changes of variables, with P = S−1:

x̃ = ∆x, z̃ = ∆z, ε = z − x, ε̃ = ∆ε, S̃ = θ∆−1S∆−1,(3.7)

P̃ = S̃−1 =
1

θ
∆P∆, b̃(z) = ∆b(∆−1z), b̃∗(z) = ∆b∗(∆−1z)∆−1.

Remark : It should be noted that the Lipschitz constant of b̃ is the same as
the one of b, and the maximum of ||b̃∗|| is the same as the one of ||b∗|| (recall that
the component bi of b is compactly supported with respect to all of its arguments
(x1, ..., xi, u), and that θ ≥ 1).

An obvious computation gives:

d

dτ
(ε̃) = θ[(A − P̃C′r−1C)ε̃ +

1

θ
(b̃(z̃) − b̃(x̃)) − λ(1 − θ)

θ2
F ε̃],(3.8)

d

dτ
(S̃) = θ[−(A +

1

θ
b̃∗(z̃) − (

Id

2
+ F )

λ(1 − θ)

θ2
)′S̃

− S̃(A +
1

θ
b̃∗(z̃) − (

Id

2
+ F )

λ(1 − θ)

θ2
) + C′r−1C − S̃QS̃],(3.9)

dθ

dτ
= λ(1 − θ).

Important comment. At this place, we used the observability properties: the
normal form (1.1) is crucial in the computation above.

Now, we can make a time rescaling. We set:

dt = θ(τ)dτ, or t =

∫ τ

0

θ(v)dv,

ε̃(τ) = ε̄(t), S̃(τ) = S̄(t), P̃ (τ) = P̄ (t), θ(τ) = θ̄(t),

to get the final set of equations:

(i)
d

dt
(ε̄) = [(A − P̄C′r−1C)ε̄ +

1

θ̄
(b̃(z̄) − b̃(x̄)) − λ(1 − θ̄)

θ̄2
F ε̄],(3.10)

(ii)
d

dt
(S̄) = [−(A +

1

θ̄
b̃∗(z̄) − (

Id

2
+ F )

λ(1 − θ̄)

θ̄2
)′S̄

− S̄(A +
1

θ̄
b̃∗(z̄) − (

Id

2
+ F )

λ(1 − θ̄)

θ̄2
) + C′r−1C − S̄QS̄],

(iii)
dθ̄

dt
= λ

(1 − θ̄)

θ̄
.

First, there are some classical results allowing to bound the solutions of the
Ricatti equation (3.10), (ii), for θ0 > 1, and λ < 1. To apply these results, one has
to notice that the linear time dependant systems:

dx

dt
= (A(u(t)) +

1

θ̄
b̃∗(z̄) − (

Id

2
+ F )

λ(1 − θ̄)

θ̄2
)x(t),

y = C(u(t))x(t),

are uniformly observable (in the sense of linear systems), for all bounded measurable

functions ai(u(t)), b̃∗i,j(z̄(t)), θ̄(t), with aM ≥ ai ≥ am > 0. Precisely, we have:
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Lemma 1. If the functions ai(u(t)), |b̃∗i,j(z̄(t))|, θ̄(t), are all smaller than aM > 0,

and if ai(u(t)) > am > 0, (which is the case by our assumptions), if 0 ≤ λ ≤ 1, and
1 < θ̄(t) then, the solution of the Ricatti equation 3.10, (ii), satisfies the following
inequality,

α Id ≤ S(t) ≤ β Id,

for all T0 > 0, for all t ≥ T0, where α and β depend on T0, am, aM (but do not

depend on c, S̄0 ≥ c Id !)

This result is more or less classical. It is contained in [3] for instance. A detailed
proof is given in [10], because there are several mistakes in many textbooks. The
key point for a simple proof is the precompactness of the weak-* topology on
L∞[0, T ], and the continuity of the input-state mapping of a control-affine system,
for the weak-* topology on controls, and the uniform topology on trajectories x(t),
t ∈ [0, T ].

Straightforward computations with (3.10) give:

d

dt
(ε̄(t)′S̄(t)ε̄(t)) ≤ −Qm ε̄′S̄(t)2ε̄ + 2ε̄′S̄(t)(

1

θ̄
(b̃(z̄) − b̃(x̄) − b̃∗(z̄)ε̄))(3.11)

+
λ(1 − θ̄)

θ̄2
ε̄′S̄(t)ε̄,

where Q ≥ Qm Id.
In particular, if t ≥ T0, with α given by Lemma 1, this gives:

d

dt
(ε̄(t)′S̄(t)ε̄(t)) ≤ −(Qmα +

λ(θ̄ − 1)

θ̄2
) ε̄′S̄(t)ε̄+(3.12)

2ε̄′S̄(t)(
1

θ̄
(b̃(z̄) − b̃(x̄) − b̃∗(z̄)ε̄)).

Using this equation, and again Lemma 1, we will now prove the theorem.

3.2.2. Proof of the short term estimation 3.2. This proof is in two steps. We will first
prove an estimation for T ≥ t ≥ T0 > 0, and after for t ≤ T0. Gluing them together,
we get the short term estimation 3.2. This is the standard high gain reasoning, and
it is done in details in [10] for θ constant. We omit the computational details.

Step 1, T ≥ t ≥ T0.
Straightforward computations using (3.12), Lemma 1 and the remark in Section

3.2.1 give:

(3.13) ε̄(t)′S̄(t)ε̄(t) ≤ ε̄(T0)
′S̄(T0)ε̄(T0)e

−(Qmα−
L′

θ̄(T )
)(t−T0).

Therefore ε̄(t)′S̄(t)ε̄(t) ≤ β||ε̄(T0)||2e−(Qmα−
L′

θ̄(T )
)(t−T0)

, and finally:

T ≥ t ≥ T0 :(3.14)

||ε̄(t)||2 ≤ β

α
e
−(Qmα−

L′

θ̄(T )
)(t−T0)||ε̄(T0)||2.

Step 2, t ≤ T0.
We need a more straightforward estimation here. A very rough one is obtained

just using Gronwall’s identity. For certain s, k > 0, we have:

(3.15) ||P̄ (t)|| ≤ (||P̄ (0)|| + k)esT0 .
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We assume that S(0) = S0 lies in the compact set: c Id ≤ S0 ≤ d Id. As a
consequence, P (0) ≤ 1

c
Id.

By the equation (3.10), we have, for t ≤ T0 : d
dt

(ε̄) = (A− P̄C′r−1C)ε̄+ 1
θ̄
(b̃(z̄)−

b̃(x̄)) − λ(1−θ)

θ̄2 F ε̄, hence:

||ε̄(t)||2 ≤ ||ε̄(0)||2 +

∫ t

0

||ε̄(τ)||2(2||A|| + 2||C||2||r−1|| ||P̄ || + f

θ̄
)dτ,

and by 3.15, we know that ||P̄ (t)|| ≤ ϕ1(T0) + ||P̄0||ϕ2(T0). Then, since P̄0 =
1
θ0

∆P0∆(0), θ0 > 1, ||P̄ (t)|| ≤ ϕ1(T0)+ ||P0||ϕ2(T0) ≤ ϕ1(T0)+
1
c
ϕ2(T0) = ϕ(T0, c).

||ε̄(t)||2 ≤ ||ε̄(0)||2 + ν̄(T0, c)

∫ t

0

||ε̄(τ)||2dτ,

and ν̄(T0, c) is a positive decreasing function of c.
Gronwall’s inequality implies that:

||ε̄(t)||2 ≤ Ψ(T0, c)||ε̄(0)||2,

with: Ψ(T0, c) = eν̄T0 , Ψ(T0, c) is also a decreasing function of c.
In particular, ||ε̄(T0)||2 ≤ Ψ(T0, c)||ε̄(0)||2. Plugging this in (3.14), we get:

(3.16) ||ε̄(t)||2 ≤ β

α
e
−(Qmα−

L′

θ̄(T )
)(t−T0)Ψ(T0, c)||ε̄(0)||2, for T ≥ t ≥ T0.

Hence, for T ≥ t ≥ T0,

(3.17) ||ε̄(t)||2 ≤ β

α
e
−(Qmα−

L′

θ̄(T )
)t

eQmαT0Ψ(T0, c)||ε̄(0)||2.

Going back to t ≤ T0, we have:

||ε̄(t)||2 ≤ Ψ(T0, c)||ε̄(0)||2 ≤ Ψ(T0, c)
β

α
||ε̄(0)||2

≤ β

α
e
−(Qmα−

L′

θ̄(T )
)t

eQmαT0Ψ(T0, c)||ε̄(0)||2,

Hence, in all cases (either t ≤ T0 or T0 ≤ t), we have:

(3.18) ||ε̄(t)||2 ≤ H(T0, c)e
−(Qmα−

L′

θ̄(T )
)t||ε̄(0)||2, 0 ≤ t ≤ T,

with H(T0, c) = β
α
Ψ(T0, c)e

QmαT0 , a decreasing function of c. Therefore, going

back to the initial time τ, since t =
∫ τ

0
θ(v)dv, and t ≤ T, then, τ ≤ τ(T ), and

t ≥ θ(τ(T ))τ :

||ε̃(τ)||2 ≤ H(T0, c)e
−(Qmαθ(τ(T ))−L′)τ ||ε̃(0)||2, τ(T ) ≥ τ ≥ 0,

if C̃ = Qmαθ(τ(T )) − L′ > 0, which is implied by

(3.19) θ0 > eλτ(T )(
L′

Qmα
− 1) + 1,

indeed, if (3.19) holds, since θ(τ(T )) = θ̄(T ) = 1 + (θ0 − 1)e−λτ(T ) > L′

Qmα
.
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Since ε = ∆−1ε̃, and θ > 1, ||ε(τ)||2 ≤ ||(∆−1)||2||ε̃(τ)||2 ≤ θ2(n−1)||ε̃(τ)||2, we
get, for all τ0 ≥ τ ≥ 0 :

||ε(τ)||2 ≤ θ2(n−1)(τ)H(T0, c)e
−(Qmαθ(τ0)−L′)τ ||ε(0)||2,

for θ0 > eλτ0(
L′

Qmα
− 1) + 1,

or equivalently, θ(τ0) >
L′

Qmα
.

H(T0, c) is a decreasing function of c.

This is the short term estimation (3.2). If λ = 0, it gives the standard high gain
estimation.

3.2.3. proof of the long term estimation. Going back to (3.12), and using Lemma
3, in Section 5, we get, for all λ, 0 ≤ λ < 1, t ≥ T0,

d

dt
(ε̄(t)′S̄(t)ε̄(t)) ≤ −k1 ε̄′S̄(t)ε̄ + k2 θ̄(t)(n−2)||S̄|| ||ε̄||3,

where k1 = Qmα, k2 is a positive constant.
Lemma 1, applied to the Riccati equation in (3.10), implies:

(3.20)
d

dt
(ε̄(t)′S̄(t)ε̄(t)) ≤ −k1 ε̄′S̄(t)ε̄ + k′

2 θ̄(n−2) ||ε̄(t)′S̄(t)ε̄(t)|| 32 ,

for another positive constant k′

2.
Now, we apply Lemma 2, in Section 5, to get that, for t ≥ T ≥ T0:

(3.21) ε̄(t)′S̄(t)ε̄(t) ≤ 4e−k1(t−T )ε̄(T )′S̄(T )ε̄(T ),

as soon as

(P) ε̄(T )′S̄(T )ε̄(T )θ̄(T )2(n−2) ≤ (k1)
2

4(k
′

2)
2
.

Setting, q = ε̄(T )′S̄(T )ε̄(T )θ̄(T )2(n−2), let us use the short term estimation

(3.18). It gives q ≤ βH(T0, c)e
−(Qmα−

L′

θ̄(T )
)T ||ε̄(0)||2θ̄(T )2(n−2),

q ≤ βH(T0, c)e
−(Qmα−

L′

θ̄(T )
)T ||ε̄(0)||2θ2(n−2)

0 .

If :

(3.22) θ0 ≥ eλT (
2L′

Qmα
− 1) + 1,

then Qmα
L′

− 1
θ̄(T )

≥ Qmα
2L′

. Indeed, in that case, θ̄(T ) ≥ θ(T ) = 1 + (θ0 − 1)e−λT ≥
2L′

Qmα
.

Then, let us chose T = T ∗ = Log( θ0−1
2L′

Qmα
−1

)
1
λ ≥ T0 (in order to get the equality in

(3.22)). This is possible, since we can assume from the very beginning that 2L′

Qmα
−1 >

0 (we can increase L′ for this) and θ0−1
2L′

Qmα
−1

> eT0 > eλT0 (we can take θ0 large
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enough).

q ≤ βH(T0, c)(

2L′

Qmα
− 1

θ0 − 1
)

Qmα
2λ ||ε̄(0)||2θ2(n−2)

0

≤ βH(T0, c)||ε̄(0)||2(2(
2L′

Qmα
− 1))

Qmα
2λ θ0

2(n−2)−Qmα

2λ .

Then, if:

(3.23) λ <
Qmα

4(n − 2)
,

for θ0 large enough, for ||ε0|| bounded, q is arbitrarily small.
This means that the property (P) above is met at T = T ∗(θ0, λ), as soon as λ

satisfies (3.23) and θ0 is large enough.
In that case, (3.21) above holds, for t ≥ T ∗ (≥ T0) :

ε̄(t)′S̄(t)ε̄(t) ≤ 4e−k1(t−T∗)ε̄(T ∗)′S̄(T ∗)ε̄(T ∗),

≤ 4e−k1t(
θ0 − 1
2L′

Qmα
− 1

)
k1
λ ε̄(T ∗)′S̄(T ∗)ε̄(T ∗).

This implies, with (3.18):

||ε̄(t)||2 ≤ 4
β

α
e−k1t(

θ0 − 1
2L′

Qmα
− 1

)
k1
λ ||ε̄(T ∗)||2,

≤ 4
β

α
H(T0, c)e

L′T∗

e−k1t(
θ0 − 1
2L′

Qmα
− 1

)
k1
λ ||ε0||2,

≤ 4
β

α
H(T0, c)e

−k1t(
θ0 − 1
2L′

Qmα
− 1

)
k1+L′

λ ||ε0||2,

for t ≥ T ∗ (≥ T0).
For t ≤ T ∗, using (3.18), and the fact that k1 = Qmα :

||ε̄(t)||2 ≤ H(T0, c)e
−k1teL′t||ε0||2,

≤ H(T0, c)e
−k1t4

β

α
(

θ0 − 1
2L′

Qmα
− 1

)
k1+L′

λ ||ε0||2,

because θ0−1
2L′

Qmα
−1

> 1.

Therefore, for all t ≥ 0 :

||ε̄(t)||2 ≤ 4
β

α
H(T0, c)e

−k1t(
θ0 − 1
2L′

Qmα
− 1

)
k1+L′

λ ||ε0||2,

≤ H̃(T0, c, λ)e−k1tθ0

k1+L′

λ ||ε0||2,

where H̃ is a decreasing function of c. Hence:

||ε̃(τ)||2 ≤ H̃(T0, c, λ)e−k1tθ0

k1+L′

λ ||ε0||2,
and, with t = τ + θ0−1

λ
(1 − e−λτ ),

||ε̃(τ)||2 ≤ H̃(T0, c, λ)e−k1τθ0

k1+L′

λ e−k1
θ0−1

λ
(1−e−λτ )||ε0||2.
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Finally,

||ε(τ)||2 ≤ H̄(T0, c, λ)e−k1τ ||ε0||2θ0

k1+L′

λ
+2(n−1)e−k1

θ0
λ

(1−e−λτ ),

where H̄(T0, c, λ) is a decreasing function of c.

This is the long term estimation. It holds as soon as λ satisfies (3.23), and for
θ0 large, depending on λ.

3.3. Practical implementation: making the observer ”recursive”. We con-
sider a one parameter family {Oτ , τ ≥ 0} of observers of type (3.1), indexed by the
time, each of them starting from S0, θ0, at the current time τ. In fact, in practice,
it will be sufficient to consider, at time τ, a slipping window of time, [τ −T, τ [, and
a finite set of observers {Oti

, τ − T ≤ ti ≤ τ}, with ti = τ − i T
N

, i = 1, ..., N.
As usual, we call the term I(τ) = ŷ(τ) − y(τ), (the difference at time τ be-

tween the estimate output and the real output), the ”innovation”. Here, for each
observer Oti

,we have an innovation Iti
(τ).

Our suggestion (very natural and very simple), is to take as the estimate of the
state, the estimation given by the observer Oti

that minimizes the absolute value
of the innovation.

Let us analyze what will be the effect of this procedure in a deterministic setting:

1. Let us assume that there is no ”jump” of the state. Then, clearly, the best
estimation will be given by the ”oldest” observer in the window, OtN

. Then, the
error will be given by the ”long term” and ”short term” estimates at time T :

||ε(τ + T )||2 ≤ R(λ, c)e−a T ||ε(τ)||2Λ(θ0, T, λ),

||ε(τ + T )||2 ≤ θ(T )2(n−1)H(c)e−(a1θ(T )−a2)T ||ε(τ)||2.
a. If T is large enough, the asymptotic behavior will be the one of the ”extended

Kalman filter”.
b. At the beginning, the transient is the one of the HGEKF.
c. the error can be made arbitrarily small in arbitrary short time, provided that

θ0 is large enough.

2. If at a certain time we have a ”jump” of the state, then, the innovation of
the ”old observers” will become large. The ”youngest” one will be chosen, and the
transient will be the same as the one of the HGEKF, first, and of the EKF, after
T.

This looks very promising. We show on an example in the next section, that it
works very well.

4. Application: observation of a binary distillation column

4.1. The constant molar overflow model. The model we consider is the classi-
cal ”constant molar overflow” (CMO) model. It is one of the most simple distillation
models, and it is used by many process engineers (for instance, even in its static
form, it is used for simple short-cut distillation calculations).

Since everything here follows from the very special ”tridiagonal” structure of
this model, and since any reasonable distillation model possesses such a structure,
all what we do in this paper can certainly be extended to more precise distillation
models.
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The equations are based upon:
a. a thermodynamical relation describing the thermal equilibria for each tray.
b. Material balances on each plate.

Thermal balance on each plate is replaced by the ”Lewis hypotheses”, that lead
to the fact that the liquid and vapor flowrates along the column are constant in
the ”stripping” (above the feed) and ”rectification” (below the feed) zones. For
justification of these assumptions, see [15].

The equations of this model are:
Total condenser:

(4.1) H1
dx1

dt
= (V + FV )(y2 − x1).

Rectifying section, j = 2, · · · , f − 1 :

(4.2) Hj

dxj

dt
= L(xj−1 − xj) + (V + FV )(yj+1 − yj).

Feed tray:

Hf

dxf

dt
= FL(ZF − xf ) + FV (k(ZF ) − yf)(4.3)

+ L(xf−1 − xf ) + V (yf+1 − yf ).

Stripping section, j = f + 1, · · · , n − 1 :

(4.4) Hj

dxj

dt
= (L + FL)(xj−1 − xj) + V (yj+1 − yj).

Bottom of the column:

(4.5) Hn

dxn

dt
= (L + FL)(xn−1 − xn) + V (xn − yn).

The parameters have the following physical meaning:

n number of trays,
f index of the feed tray,
Hj liquid hold up on the jth tray (a geometric constant),
xj liquid composition on the jth tray,
yj vapor composition on the jth tray,
FL, FV, L, V feed (liquid and vapor), reflux and vapor flow,
ZF feed composition (molar fraction of light component in feed).

On each tray the liquid and vapor compositions, xj and yj, are linked by the liq-
uid/vapor equilibrium law yj = k(xj). We assume that the function k is monotonic,
i.e. we do not consider azeotropic distillation.

Each of the equations is relative to a tray. It just expresses the accumulation of
the liquid on the corresponding tray, and the thermodynamical equilibrium.

The condenser and the bottom of the column are assimilated to tray 1 and tray
n respectively. The state of the model is the liquid composition profile of the more
volatile component on each tray, denoted by (xj).

The top and bottom product compositions x1 and xn are the two observed
variables. In practice, they are also the two variables that one wants to control:
they are the ”qualities” of the products going out of the column.

The two control variables are the reflux flow-rate L and the vapor flow-rate V .
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There are also two disturbances to be counteracted:
a. changes in the feed rate F = FL + FV. In general this is a ”measured

disturbance”, (a flowrate measurement),
b. the in-feed composition ZF . In general, it is unknown, and it is practically very

expensive to ”observe it”. Moreover, it may change brutally. We will consider this
feed composition ZF as an unknown (constant) state variable. When ZF changes,
the consequence is a jump of the state of the system.

The qualitative properties of this model are very nice (see [10], [18], [17]):
a. For positive control variables L and V , (negative doesn’t physically makes

sense), the ”physical” domain D = [O, 1]n is positively invariant under the dynam-
ics. This means that all the state variables xj remain between 0 and 1.

b. In the domain D, all other variables (than the xi’s and the yi’s) being constant,
there is a single equilibrium, which is globally asymptotically stable.

c. It has very nice observability properties, as will be discussed later on.

Our goal in this section is to construct an estimator of the state x, and more
specifically of the feed composition ZF , by using the results of the previous sections.

4.2. Observability of the model and synthesis of the observer. A complete
analysis of observability and observer synthesis has been carried out in [10] in the
general case. It happens that, even if the feed is considered as an unknown state
variable (meeting the equation dZF

dt
= 0), the model is observable in the strongest

possible sense. In particular, as we shall see, it can be put in a normal form similar
to (1.1).

Our purpose here is just to apply the observer described in the previous sections.
Hence, we will fix a special case of distillation column. But all what we show works
in general. We will chose:

• n = 5 and f = 3,
• The function k is a diffeomorphism from [0, 1] into itself and is given by,

k (x) =
αx

1 + (α − 1)x
.

Here α is the ”relative volatility” of the mixture. It is a physical parameter
larger than 1 (but close to 1). The closer to one, the most difficult distil-
lation. If α = 1, the two products are thermodynamically identical, and
cannot be distillated (the model is not controllable).

• Let us observe that k is a diffeomorphism from
]
− 1

α−1 , +∞
[

to
]
−∞, α

α−1

[
.

• The feed is assumed to enter the column at its ”bubble point”. As a conse-
quence, F = FL.

Let us make the following change of state variables: ξ1 = x1, ξ2 = k (x2),
ξ3 = x3, ξ4 = x4, ξ5 = x5 and ξ6 = ZF .

Then, the system can be rewritten as:
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(4.6)





H1
dξ1

dt
= V (ξ2 − ξ1),

H2
dξ2

dt
= k′

(
k−1 (ξ2)

) (
L(ξ1 − k−1 (ξ2)) + V (k (ξ3) − ξ2)

)
,

H3
dξ3

dt
= F (ξ6 − ξ3) + L(k−1 (ξ2) − ξ3) + V (k (ξ4) − k (ξ3)),

H4
dξ4

dt
= (L + F )(ξ3 − ξ4) + V (k (ξ5) − k (ξ4)),

H5
dξ5

dt
= (L + F )(ξ4 − ξ5) + V (ξ5 − k (ξ5)),

H6
dξ6

dt
= 0,

or:

(4.7)
dξt

dt
= A (L, V ) ξt + b̃ (L, V, ξt) ,

where,

A (L, V ) =




0 V
H1

0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 F

H3

0 0 L+F
H4

0 0 0

0 0 0 L+F
H5

0 0

0 0 0 0 0 0




,

and,

b̃ (L, V, ξ) =




− V
H1

ξ1

k′
(
k−1 (ξ2)

) (
L(ξ1 − k−1 (ξ2)) + V (k (ξ3) − ξ2)

)
�H2(

−Fξ3 + L(k−1 (ξ2) − ξ3) + V (k (ξ4) − k (ξ3))
)

�H3

(−(L + F )ξ4 + V (k (ξ5) − k (ξ4))) �H4

(−(L + F )ξ5 + V (ξ5 − k (ξ5))) �H5

0




,

=




b̃1 (V, ξ1)

b̃2 (L, V, ξ1, . . . , ξ5)

b̃3 (L, V, ξ3, ξ4, ξ5)

b̃4 (L, V ; ξ4, ξ5)

b̃5 (L, V, ξ5)
0




.

The observations are then given by

y =

(
1 0 0 0 0 0
0 0 0 0 1 0

)
ξ = Cξ.

Now, since in fact the only pertinent (and positively invariant) part of the

state space is D′ = [0, 1]6, we can manage the things for b̃ be compactly sup-

ported, as in section 1.1, and unchanged on D′. Let us change b̃ (L, V, ξ) in the

following way outside [0, 1]
6

: replace b̃ (L, V, ξ) by b (L, V, ξ) = b̃ (L, V, Φ (ξ)) where
Φ (ξ1, . . . , ξ6) = (ϕ (ξ1) , . . . , ϕ (ξ6)) and ϕ (ξ) is any C∞ function from R to [0, 1]

equal to one in [0, 1] and equal to zero outside
]
− 1

α−
1
2

, α
α−

1
2

[
. This modification

does not change the ”physical trajectories”.

Our system has the property to be observable for any input, as soon as the
control variables L and V are > 0. Here, we assume that L, V are bounded from
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below (and from above) by > 0 constants:

LM ≥ L(t) ≥ ε1 > 0, VM ≥ V (t) ≥ ε2 > 0.

This assumption is the analog of the assumption 0 < am ≤ ai(u) ≤ aM , in
section 1.1. It is a realistic requirement from the physical point of view.

To finish, let us point out the fact that we are in case 1 of section 2.1 above
(i.e. the nongeneric case): The number of observations is equal to the number of
control variables (it is 2).

Due to these observability properties, we will be able to apply the observer of
the previous section 3.3. In fact, it will be an adaptation of the results of section 3,
Theorem 1, to this multi-output case.

We leave the reader to check (this is really straightforward) that all
the reasoning in the proof of Theorem 1 can be strictly repeated, and
that the statements of this theorem are valid for the distillation column.

Of course, in practice, we didn’t compute the theoretical bounds λ0 and θ0(λ).
We have just got some values for them by experimentation. Also, the number N of
”parallel” observers, and the ”sampling times” ti of section 3.3 have been chosen
experimentally.

Finally, the state of our observer is the collection of the states of N indepen-
dent observers (zi, Si, θi)i=1,...,N . Each observer is a set of three equations of the
following form:





dz
dt

= A (u) z + b (u, z)− S (t)
−1

CT R−1
θ (Cz − y (t))

dS
dt

= − (A (u) + b∗ (z, u))
′

S − S (A (u) + b∗ (z, u)) + C′R−1
θ C − SQθS

dθ
dt

= λ (1 − θ)

where u = (L, V ) .

Due to the multi-output structure, with ”Brunovsky-like” blocks of different
dimensions (4 and 2), a way to make the proof of Theorem 1 work, is to take a
matrix R depending also on θ, as shown below. This could be avoided by increasing
the dimension of the state as explained in [10].

It is not hard to check that a good choice is to set:

∆ = diag

(
1

θ2
,

1

θ3
,

1

θ2
,
1

θ
, 1,

1

θ3

)

with Qθ = θ2∆−1Q∆−1 and Rθ =
(
C∆−1C′

)
R

(
C∆−1C′

)
.

In practice, we have chosen N = 5 observers, and we have taken a regular
sampling T

N
. That is to say, at each time step k T

N
, the oldest observer is replaced

by a new one (with θ = θ0 and a new guess of state and covariance matrix). At the
beginning of the simulation, we chose an initial value θ0 of θ for each observer, such

that the ith observer has θi = 1 + e−λ
(i−1)T

N (θ0 − 1), see figure 3, where ”crosses”
represent reinitializations.

We have implemented our observer as described in the previous section. Since
the state has dimension 6, each observer requires to solve 28 ordinary differential
equations (for the state, the Riccati matrix, and the very simple equation for θ).
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Finally, our observer is a set of 140 ODE’s. We have solved it in conjunction with
the model (6 equations) using LSODAR from ODEPACK ([14]), without taking into
account the possibility of decoupling these equations (which are indeed equivalent
to five systems of 34 equations, including the model into each system). A simulation
of 3 hours of real time takes about 40 seconds on a Pentium III machine.

4.3. Simulation results. We have chosen the following constant parameters:

• Hold-up H1 = 40, Hj = 10 for j = 2, 3, 4 and H5 = 80,
• Relative volatility α = 2.

We have applied the following scenario:
- During the simulation, the state noise is simulated by the sum of several sine

functions at some random frequencies representing a band limited noise with an
amplitude of 10−8 before the time t2 = 116 mn40 s and 10−2 after this time,

- Moreover, at time t1 = 66 mn40 s, we simulate a step in the feed quality ZF

from 0.45 to 0.60. Hence we can consider that there is no perturbation before time
t1, where a large ”jump of the state” occurs,

- after that, nothing happens until time t2 where a periodic perturbation on ZF

is applied.

We have also added a measurement noise at some random high frequencies and
with amplitude of 10−2. The effect of noise can be seen on Figure 1 (top and bottom
lines).

To make the simulation more realistic, we have applied a very simple controller,
which calculates the inputs L and V in order to regulate top and bottom qualities
at a reasonable level (that is, 73% for the top quality and 23% for the bottom
quality).

As we said already, the parameters of the observers where tuned in order to
obtain good performances, and not caring about the theoretical bounds.

Practically, we have used θ0 = 10, T
N

= 10 mn and λ = 1
600 s−1, in such a way

that the time of life of an observer is T = 50 mn, and then an old observer has
θ ≈ 1.16. Also, there is always an observer with θ > 4.3 which is running.

Finally, R is equal to 10−2 times the 2 × 2–identity matrix and Q is 10−9 times
the 6 × 6–identity matrix.

First of all, the behavior of the observer is very good during the unmodelled
transient as well as during smooth operation, see Figure 1: top and bottom quality
measurements are plotted, as well as the unknown feed quality, each curve being
represented by a continuous line. The overall estimation of the feed quality, corre-
sponding to the estimation of the feed quality provided by the observer with the
smallest innovation, is represented by a dashed line. It is very close to the actual
feed quality.

A more accurate plot is presented on Figure 2 where we have only shown the
relative estimation error of the feed quality. The estimation provided by the best
observer (in our sense, that is to say, the observer with minimal innovation) is
the continuous line. The crosses represent the estimation of ZF provided by other
observers every minute. One can see that our criteria on the innovation to select
the right observer is a good choice, at least in this case.
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Figure 1. Measured output and estimation of the feed quality.
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Figure 2. Relative error between the actual feed quality and its
estimation by the selected observer (continuous line) and the oth-
ers.

Moreover, the behavior of the observer is very close to what we expected from
the theoretical results:

- When no perturbation arises, the best observer (that is to say the observer
with the smallest innovation) is the one with the smallest value of θ i.e. the oldest
observer which is also the observer which is the closest to the pure extended Kalman
observer.

-If a large perturbation occurs (such as the feed change at time t1 = 66 mn40 s),
the best observer becomes the youngest one, i.e. the observer with the highest θ.
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Figure 3. The 5 observers. Time of reinitialization of each ob-
server (×), and the best one (continuous line).
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Figure 4. Various values of θ versus time (dotted lines), and best
observer (continuous line).

-Of course, small perturbations are well corrected by oldest or intermediate ob-
servers. This is very clear on the figure 4.

Our conclusion, from these simulations, is that even if the use of several observers
in parallel requires the introduction of new tuning parameters (θ0, λ, N and T ),
the choice of these new parameters is very easy, due to their very clear effect on
the results.

From a practical point of view, θ0, λ, N and T have to be chosen such that at
any time, there is an HGEKF and an EKF-like observer running at the same time,
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that is to say such that 1 + e−λ T
N (θ0 − 1) is large enough (to ensure that at least

one observer is a HGEKF) and such that 1 + e−λT (θ0 − 1) is close to 1.

Also, an important point, for people that are used to tune Kalman’s observers,
is that the choice of the Q and R matrices is less crucial than with a single observer
which has to be tuned in order to be efficient both with and without perturbations.

Moreover, this approach allows us to obtain a diagnosis of abnormal behavior:
if the smallest innovation is provided by the last reinitialized observer then one
can conclude that the model has encountered a perturbation. If this happen for a
long time then one can conclude that the model has some difficulties to deal with
certain unmodelled perturbations. Indeed, the scenario that we have applied in our
simulations can be easily deduced from the figure 4.

5. Appendix. Technical lemmas

Lemma 2. Let {x(t) > 0, t ≥ 0} ⊂ Rn be absolutely continuous, and satisfying:

dx

dt
≤ −λx + kx

√
x,

for almost all t > 0, for λ, k > 0. Then, as soon as x(0) < λ2

4k2 , x(t) ≤ 4x(0)e−tλ.

Proof. We make the successive following changes of variables: y =
√

x, z = 1/y,

w(t) = e−
λ
2 tz(t). Then, all the quantities y(t), z(t), w(t) are positive and absolutely

continuous, on any finite time interval [0, T ]. We denote by ′ the derivatives with
respect to time.

Straightforward computations give, for almost all t > 0 :

y′ ≤ −λ

2
y +

k

2
y2,(5.1)

z′ ≥ λ

2
z − k

2
,

w′ ≥ −e−
λ
2 t k

2
.

Moreover, w(0) = 1√
x(0)

. Then, for all t > 0,

(5.2) w(t) ≥ 1√
x(0)

− k

λ
+

k

λ
e−

λ
2 t.
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If 1√
x(0)

− k
λ

> 0, then w(t) > 0,and we can go backwards in the previous

inequalities:

w(t) ≥ 1√
x(0)

− k

λ
(1 − e−

λ
2 t),

z(t) ≥ e
λ
2 t(

1√
x(0)

− k

λ
) +

k

λ
,

y(t) ≤ 1

e
λ
2 t( 1√

x(0)
− k

λ
) + k

λ

,

x(t) ≤ x(0)e−λt

(1 −
√

x(0) k
λ
)2

.

Hence, if x(0) ≤ λ2

4k2 , or 1 −
√

x(0) k
λ
≥ 1

2 , then:

x(t) ≤ 4x(0)e−λt.

�

Lemma 3. Let B = b̃(z) − b̃(x) − b̃∗(z)ε be as in Section 3: ε = z − x, b̃(x) =

∆b(∆−1x), b̃∗(z) = ∆b∗(∆−1x)∆−1, where b∗(x) is the Jacobian matrix of b at
x, and where b is compactly supported. ∆ = diag(1, 1

θ
, ..., 1

θn−1 ), θ ≥ 1. Then,

||B|| ≤ K θn−1||ε||2, for some K > 0.

Proof. Let us consider a smooth expression E(z, x) of the form:

E(z, x) = f(z)− f(x) − df(z)ε, with ε = z − x,

where f : Rp → R is compactly supported.
We have, for t > 0:

f(z − tε) = f(z) −
p∑

i=1

εi

∫ t

0

∂f

∂xi

(z − τε)dτ,

and:
∂f

∂xi

(z − τε) =
∂f

∂xi

(z) −
p∑

j=1

εj

∫ τ

0

∂2f

∂xi∂xj

(z − θε)dθ.

Hence,

f(z − ε) = f(z) −
p∑

i=1

εi

∂f

∂xi

(z) +

p∑

i,j=1

εiεj

∫ 1

0

∫ τ

0

∂2f

∂xi∂xj

(z − θε)dθdτ.

Since f is compactly supported, we get:

|f(z) − f(z − ε) − df(z)ε| ≤ M

2

p∑

i,j=1

|εiεj |,

where M = supx | ∂2f
∂xi∂xj

(x)|.
Now, we take f = b̃k, and we use the facts that b̃k depends only on x1, ..., xk,

and that θ ≥ 1 :

| ∂2b̃k

∂xi∂xj

(x)| ≤ θk−1| ∂2bk

∂xi∂xj

(∆−1x)|.

This gives the result. �
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Université de Rouen, 1995.
[13] P. JOUAN, J.P. GAUTHIER, Finite singularities of nonlinear systems. Output stabilization,

observability and observers. Journal of Dynamical and Control Systems, vol. 2, N◦ 2, 1996,
pp. 255-288.

[14] A. C. HINDMARSCH, Odepack, a systematized collection of ode solvers, in scientific com-
puting, r. s. Stepleman et al. (eds.), North-Holland, Amsterdam, 1983, pp. 55-64

[15] C.D. HOLLAND, Multicomponent Distillation, Englewood Cliffs, New-Jersey, USA: Prentice
Hall, 1963.

[16] J. PICARD, ”Efficiency of the extended Kalman filter for nonlinear systems with small

noise”, SIAM J. Appl. Math., 51, No3, (1991), 843–885.
[17] H.H. ROSENBROCK, A Lyapunov function with applications to some nonlinear physical

systems, Automatica, 1, pp. 31-53, 1962.
[18] P. ROUCHON, Simulation dynamique et commande non linéaire des colonnes à distiller,
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