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Abstract— In this paper, we present an adaptative extended
Kalman filter (A-EKF). The exponential convergence of this
observer is theoretically proven. An application on a series-
connected DC motor is given to illustrate the performance of
this A-EKF.

Index Terms— Adaptive observer, Kalman, DC motor

I. I NTRODUCTION

The extended Kalman filter (EKF) is one of the most famous
algorithms used to estimate unknown state variables from
measurements in dynamical nonlinear systems. It is also used
to estimate unknown constant or slowly varying parameters in
linear systems and sometimes to perform failure detection.In
this last case, it is necessary to quantify the efficiency of the
EKF with time. This task is usually based on the innovation
process, which is the integrated difference between actual
measurements and predicted measurements. The innovation
process can be monitored, and a large value of the innovation
can be used to send an alarm or to switch from an old model
to a new one. It can also be used to estimate the noise entering
into the process or to estimate the measurement noise.

Although the extended Kalman filter is not proved to con-
verge (except locally, see [3, 13]), it is very often used, even for
critical processes. In order to increase the performance and the
reliability of the EKF several engineers and researchers already
tried to develop an adaptive version. Using innovation and
state estimation, it seems possible to estimate parametersthat
characterize the state of the process. These parameters canthen
be used to adapt the gain matrix by online automatic tuning
of some of the covariance matrices used in the computation
of the gain matrix. These kind of adaptive EKF are empirical
but seem to have nice behavior compared to the EKF.

Because of the difficulty to ensure robustness when adaptive
quantity is continuously updated, some authors used an adap-
tive algorithm based on switching between several models. For
instance, in [17], authors have developed an application ona
highly critical process (from robustness point of view). They
proposed to switch between two covariances matrixQ1 and
Q2 depending on the state of the process.

There exist a very large number of papers dealing with
adaptive observers and adaptive extended Kalman filtering
([4, 5, 15]) especially in the GPS and DGPS community
([6, 14, 16]). In [6] for instance, authors present an adaptive
extended Kalman filter using innovation in order to adaptQ
andR matrices, exactly in the same spirit than in the present

paper, except that they do not give any theoretical proof.
Nevertheless, the need for this kind of observer is clearly
established.

In those papers, adaptation of the filter is done using
empirical rules (genetic algorithms [18], neural networks[20],
statistics [17]...), and no proofs are given. But in all cases,
efficiency of the adaptive observer is highlighted. Let us
remark that for neural networks based extended Kalman filters
(N-EKF), the system is splitted into a linear part and a
nonlinear part, and the extended kalman filter is applied to the
nonlinear part, which is approximated by neurons. The weights
of neurons can be calculated using EKF, making the algorithm
adaptive. In this case, some proofs can be established, but only
if the neural network can approximate the system.

An intuitive theoretical justification of adaptive gain is based
on the high gain observer theory. It has been shown from a
long time ([12]) that high gain observers have very nice the-
oretical properties. The first one is that they required to study
the observability property of the model. This study prevents
from developing an observer for a non-observable system.
But high gain observers are also exponential observers: one
can prove the convergence of the high gain observer. In our
opinion, the convergence property is a minimum requirement
for an observer which is used on some critical processes, and
sometimes as a diagnostic tool. Therefore, it is a good idea to
adapt the gain of observers in the following way:

• use an EKF when the estimation is close to the true
state, because EKF is a good (optimal) local observer
(as already stated) and

• use a high-gain observer when large perturbations oc-
cur, because these observers are nonlinear converging
observers.

In several previous papers [10, 11, 13], we have introduced
the high-gain extended Kalman filter (HG-EKF) which is also
an exponentially converging observer, but with the property
that it is more efficient in the presence of noise. Indeed, the
high sensitivity of high-gain observers is a well known draw-
back : the high gain ensures convergence but also increases
noise effects. In [7], we developed a new algorithm, based
on classical and high-gain EKF. This algorithm is based on a
theoretical result, which states that a time-dependant HG-EKF,
which is asymptotically equivalent to a classical EKF, may be
an exponentially converging observer, if the transition from
HG-EKF to EKF is slow enough. But this result is based on a
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time-dependant observer and, in order to make its convergence
property persistent, it is necessary to use several observers and
to switch from one to another, depending on the innovation
process. Although it is an efficient observer, as shown in the
reference above, but also in [8, 9], it is rather complicated
and CPU intensive. Moreover, even if the final algorithm can
be considered as an adaptive high-gain extended Kalman filter
(A-EKF), its implementation is far from the one of classical
observers as used by engineers.

In this paper, we will present a time-independant adaptive-
gain extended Kalman filter. The adaptation ofθ will depend
on the innovation process.

As usual for the HG-EKF, the parameterθ appears in the
Riccati equation of the Kalman filter, and more precisely in the
matrixQ, denotedQθ. But in our case, the high-gain parameter
appears also in the matrixR (denotedRθ), as in [6] (for a
practical application). It is the first difference with our previous
result [7]. The second difference is thatθ may increase if
the innovation is high and decrease if the innovation is low.
This idea is the basis of practical applications: it is also the
cornerstone of the proof of our theorem.

In the next section (II), we will present our main result.
Because of the length of this paper, we will omit the proof.
Then, in section III, we will present an application to a series-
connected DC motor.

II. T HEORETICAL RESULT

In this paper, we consider systems of the form
{

dx

dt
= A (u)x + b (x, u)

y = C (u)x
(II.1)

wherex (t) ∈ R
n, y (t) ∈ R andu ∈ Uadm ⊂ R

d. Moreover,
A (u), b (x, u), and C (u) are defined as is usual for such
systems in the canonical form of observability:

A(u) =

















0 a2 (u) 0 · · · 0

a3 (u)
. . .

...
...

. . .
. . . 0

an (u)
0 · · · 0

















with 0 < am ≤ ai(u) ≤ aM for any u in Uadm,

b (x, u) =











b (x1, u)
b (x1, x2, u)

...
b (x1, . . . , xn, u)











and we suppose that there exists a compact subset ofR
n

such thatb (x, u) is identically equal to zero forx outside
this compact set, and finally

C (u) = (a1 (u) , 0, · · · , 0) .

This form is now conventional, and was introduced in
[12] and extensively studied in [13] for instance. Recall that
although the form of the system seems to be very restrictive,

every system which has the observability for any input prop-
erty can be written in this form, using a change of coordinates.
Some other hypothesis (bounds, compactness, etc...) have been
discussed in previous papers (see [12]) and are not very
restrictive for practical applications, as it will appear in the
application part of our paper. We will not give technical details
here, since proofs are omitted.

Because of its canonical form of observability, it is possible
to apply an extended Kalman filter to this system:


















dZ

dt
= A(u)Z + b(Z, u) + S−1C′R−1(CZ − y(t))

dS

dt
= −(A(u) + b(Z, u))′S − S(A (u) + b∗ (Z, u))

+C′R−1C − SQS
(II.2)

where, from a deterministic point of view,Q andR are tuning
matrices and are used to ensure good performance. However
the Kalman filter has a stochastic meaning, whereQ is the
covariance matrix of the state noise andR is the covariance
matrix of the measurement noise, i.e. if the system is written
in a stochastic form

{

dxt = A (u)xtdt + b (xt, u)dt + dwt

dyt = C (u)xtdt + dvt

thenQ = E
[

wtw
T
t

]

andR = E
[

vtv
T
t

]

. Hence, both matrices
depend on statistical properties of noise processes. In this
context, the Kalman filter is an optimal filter. Therefore, the
extended Kalman filter is close to an optimal filter when the
state and its estimation are close, since it is based upon a
linearization of the system around its estimated trajectory. As
a matter of fact, the extended Kalman filter is a converging
local observer (see [3, 7]).

However, the EKF is not a globally converging observer.
It cannot be used to estimate the state from a poora priori
estimation, or when large unmodeled perturbations occurs.
In this case, and in order to keep theoretical justifications
and proof of convergence, one can use a high-gain observer
([12, 13]). The simplest form of a high-gain observer is the
Luenberger high-gain observer: it is a constant gain observer
of the form

dZ
dt

= A(u)Z + b(Z, u) − Kθ(C (u)Z − y (t))

where Kθ = ∆θK, ∆θ = diag
(

θ, θ2, . . . , θn
)

, and θ is
the high-gain parameter. The theorem says that with some
hypotheses on the system, the input, and the matrixK when
θ is large enough the observer converges exponentially. The
same results hold for the high-gain extended Kalman filter


















dZ

dt
= A(u)Z + b(Z, u) + S−1C′R−1(CZ − y(t))

dS

dt
= −(A(u) + b(Z, u))′S − S(A (u) + b∗ (Z, u))

+C′R−1C − SQθS
(II.3)

whereQθ = ∆θQ∆θ. This high-gain observer was introduced
in [10, 11] and was developed in [13]. The basis of our work
consists of the following two remarks:

1) if one setsθ to 1 in system II.3 then one obtains the
classical extended Kalman filter, which is a local optimal
observer (in the sense explained above)
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2) if θ is large enough then one obtains a high-gain
observer, which is a global exponential observer.

The first application of this remark was presented in [7]: in
this paper, we just added the equation

dθ

dt
= λ (1 − θ) (II.4)

to the system II.3. Ifθ is large enough (and the parameterλ
small enough) then we obtain an observer which is a high-gain
observer for small time and which converges asymptotically
to a classical extended Kalman filter. Hence we can expect its
convergence since the observer should converge exponentially
to the state (high-gain observer property) and then stays in
a neighborhood of the state (since extended Kalman filter
is a local observer). Indeed this result has been proved in
[7]. But this observer is time-dependant, since it converges
exponentially only in the beginning. So, in order to construct
a persistent observer, we should take into account this property.
The simplest way is to use several observers of the form II.3-
II.4, each one initialized at different times, and using some
delays between each initialization. Thus we obtain several
estimations of the state, given by each one of the observers:
the final estimation is the one corresponding to the observer
that minimizes the innovation process. The whole construction
is clearly explained in [8, 7].

In this paper, we present a much simple observer. In place
of equation II.4, we introduce the equation

dθ

dt
= F (θ, I) (II.5)

where

I =

∫ t

t−T

‖y(s) − ȳt−T (s)‖
2
ds = ‖y − ȳt−T ‖

2
L2(t−T,t)

(II.6)
is the innovation from timet − T to current timet. More
precisely, in definition II.6,y represents the output, butȳt−T

represents the prediction of the output from the state estimation
at timet−T (given by the observer,Z (t − T )): hencēyt−T (s)
is the solution at times of







dξ
dτ

= A(u)ξ (τ) + b(ξ (τ) , u)
ξ (t − T ) = Z (t − T )
ȳt−T (τ) = C (u) ξ (τ)

T is a tuning parameter, representing the length of the
window used to calculate the innovation. In the following
theorem, the functionF will be chosen in the formF (θ, I) =
λ (1 − θ) + µ (θmax − θ). In fact, F can be chosen in a more
general form. We will describe a more general hypothesis on
F in a next paper. We will also give a version ofF that is
better adapted in the presence of noise in the application part
of this paper. Intuitively, the role of the functionF is:

• to let θ decrease if the innovation is small, because in this
case the observer has already converged and a Kalman-
like observer will be sufficient to correctly estimate the
state

• to let θ increase if the innovation is too large, because
in this case, the observer gives a bad estimation of the
state andθ has to be large enough in order to ensure

convergence, thanks to the exponential property of high-
gain observers.

Finally, the adaptive extended Kalman filter can be written






























dZ

dt
= A(u)Z + b(Z, u) + S−1C′R−1

θ (CZ − y(t))

dS

dt
= −(A(u) + b(Z, u))′S − S(A (u) + b∗ (Z, u))

+C′R−1
θ C − SQθS

dθ

dt
= λ (1 − θ) + µ (θmax − θ)

(II.7)
We defineQθ andRθ from Q andR thanks to the matrix

∆ =



















1 0 0 · · · 0

0 1
θ

0
...

0 0 1
θ2

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1

θn−1



















by Qθ = θ∆−1Q∆−1 and Rθ = θ−1R. Let us remark that
this change of coordinates is different from the previous one
as explained in [7].

Our main result is the following:
Theorem 1:Let us consider a system of the form II.1 in

the canonical form of observability. We consider the adaptive-
gain extended Kalman filter II.7. Let us suppose thatλ, µ
and θmax are three constant parameters such thatλ is small
enough,µ is large enough, andθ0 is large enough. Then, II.7
is an exponentially converging observer.

We have not enough place to give a proof of this result.
It is more or less an adaptation of the proof in [7]. The
main difference is the fact that now, the matrixR depends
on θ, which was not necessary whenθ was only a decreasing
parameter. The proof is then based on the following lemma:

Lemma 2:Let x0
1, x0

2 ∈ R
n and u ∈ Uadm. Let us

consider the outputsy1 (t) andy2 (t) of system II.1 with initial
conditions respectivelyx0

1 and x0
2. The following condition

(called persistant observability) holds:

∀T > 0 ∀u ∈ L1
b (Uadm) ∃λT > 0

∥

∥x0
1 − x0

2

∥

∥ ≤
1

λT

∫ T

0

‖y1 (τ) − y2 (τ)‖ dτ

III. A PPLICATION TO A SERIES-CONNECTEDDC MOTOR

The stator of a DC motor (also denotedfield) is composed
of an electromagnet or a permanent magnet that immerses the
rotor in a magnetic field. The rotor (also denotedarmature) is
made of an electromagnet whose windings are connected to a
commutator that switches the direction of the current flowing
through it, inversing its polarity. The attraction/repeling behav-
ior of magnets creates the rotating motion that is maintained
by the commutations. A DC motor whose field and armature
circuits are connected in series, and therefore fed by the same
power supply, is refered to asa series-connected DC motor.
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Fig. 1. Equivalent circuit

A. Motor model

The mathematical model for the series-connected DC motor
is obtained from the equivalent circuit representation shown in
fig.1. The state vector (x) is composed of the current flowing
through the circuit (I) and the rotation speed of the shaft (ωr).
The electrical balance of the circuit is given by:(La+Lf).İ =
VAB − (Ra + Rf ).I − E whereLa andRa, andLf andRf

denote the inductance and the resistance of the armature, and
of the field.E is the back electromotive force. The mechanical
balance for the shaft in the hypothesis of vicscous friction
and load isJω̇r = Tem − Bωr − Ta whereTem denotes the
electromechanical torque,Ta the (positive) load torque, and
B the viscous friction coefficient. We consider the case of
no magnetic saturation in the field circuit such thatTem =
KmLfI2 and E = KmLfIωr whereKm denotes the back
e.m.f constant.

The voltage applied between terminals A and B is the input
variableu, and the currentI is the output variabley leading
to the following SISO model:

Σ1

(

Lİ
˙Jωr

)

=

(

u − RI − LafωrI
LafI2 − Bωr − Ta

)

y = I

whereL = La + Lf , R = Ra + Rf andLaf = KmLf . More
detailed approaches can be found in [1, 2].

B. Observability

We propose identifying the load torque by means of obser-
vation when the load changes suddenly. When such a change
occurs we expect the high-gain parameter to increase as a
reaction to this perturbation. This identification is made con-
sidering the extended state vector(I, ωr, Ta) and the simple
equation Ṫa = 0 for the load torque. The diffeomophism
defined by

R
+∗×R × R → R

+∗×R × R

(I, ωr, Ta) 7→ (I, I.ωr, I.Ta) = (x1, x2, x3)

transforms the modelΣ1 into the following SISO observ-
ability canonical form which implies observability for the
extended system and therefore identifiability for the load

torque[13].

Σ2





ẋ1

ẋ2

ẋ3



 =





0 −
Laf

L
0

0 0 − 1
J

0 0 0



 .





x1

x2

x3





+







V
L
− R

L
x1

Laf

J
x3

1 + (V
L

. 1
x1

−
Laf

L
..x2

x1

− R
L
− B

J
).x2

−
Laf

L
.x2.x3

x1

+ V
L

.x3

x1

− R
L

x3







y = x1

C. Observer construction

The adaption function we actually used to completely define
the A-EKF is slightly different from the one presented in II:

F (θ, I) = λ(1 − s(I)).(1 − θ) + K.s(I).(θmax − θ)

wheres(I) =
[

1 + e−β(I−m)
]−1

, namely the sigmoid func-
tion, is defined fromR to ]0; 1[, C∞, increasing, and lipschitz.

This function can be devided into three parts:

• values ofI such thats(I) is close to 0
• values ofI such thats(I) is close to 1
• a transition part that can be made as small as possible

thanks to the parameterβ

If this transition part is made small enough thens(I) will be
either close to zero or close to 1 but almost all the time. When
s(I) is close to zero the termλ(1−θ) will drive the evolution
of θ which will decrease toward 1. Conversly whens(I) is
close to 1 then the termK(θmax − θ) will drive the evolution
of θ which will increase towardθmax. This adaption function
introduces 5 new parameters (λ, K, m, β, θmax) that need to
be tuned in addition to the classicalR andQ matrices. As we
will explain in the next section, the choice of those parameters
can easily be made.

D. Tuning of parameters

The procedure explained here is inspired by the one de-
scribed in [8, part 5.2.2] regarding the parametersR, Q, and
θ of a high-gain observer. We also think that only few of the
additional parameters will actually need be reset at each new
implementation of the observer:β = 2000, K = λ = 500,
andm = m1 + m2 wherem1 = 0.005 may be kept to those
values.

1) we determine the (symetric positive definite) matricesR
andQ by using an EKF. This observer can be obtained
from the A-EKF when the parameters of the adaptation
function are set to 0 and the initial value ofθ to 1. Large
perturbations are not considered and the observer is
initialised to the proper (or previously estimated) values
of the state vector.

2) we then set theR and Q matrices to the values previ-
ously found and use a HG-EKF to tuneθ. As above,
the filter needed is obtained from our observer when the
parameters of the adaption function are set to 0 and the
initial value of θ is changed. Here we will try to find
a value for the high-gain parameter that allows fast and
reasonable convergence with respect to noise when large
unmodeled perturbations are applied to the system.
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3) we will now choose the parameters of the adaption
function. We remark that whenm = 0 thens(0) = 0.5.
We then need to shift the sigmoid function to the right as
we wants(0) to be close to zero. Chosingy1 as small as
we want and solving the equations(0) = y1 allows us to
obtain the parameterm. This solution is easily computed
provided that the parameterβ is known. As the sigmoid
function is centered around(0, 0.5) when m = 0, the
computation ofβ is made by setting a lengthl for the
transition part and solving the nonlinear equation (with
m = 0): s(l/2) − s(−l/2) = (1 − y1) − y1. Of course,
anoher approach is to graphically defineβ andm from
trial and error.
Now that the transition part is small, we want the gain to
increase and decrease quickly. If we suppose thatθ(t) =
1 and that we want it to reachθmax within a timeτ then
the equationθ̇ = θmax−1

τ
= K.(θmax − 1) allows the

computation ofK. Since the equation used to compute
K is only an approximation, a bigger value (e.g. twice
the computed value) may be used. A reasonable choice
for the last parameter remaining isλ = K. The delay
parameterT = 0.1 is choosen with respect to the
dynamic of the observed system andθmax is taken equal
to the value found in the previous stage.
One last thing has to be taken into account before con-
tinuing. Because of measurement noise the innovation
will never be equal to zero and therefore the observer
will stay in a high-gain mode. To avoid this problem, the
parameterm is now writtenm = m1 + m2 wherem1is
the previously computed quantity andm2will represent
the influence of the noise on the system. As a result,
when I ≤ m2we haves(I) ≤ y1 and θ does not
increase. We denote byσ the standart deviation of
the output noise, which can be estimated from output
measurement. Thenm2 = Tσ2 where T is the delay
used in the definition of the innovation.

E. Simulation results and discussion
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Fig. 2. Comparison with an EKF

We made our simulations with Matlab/Simulink. The system
Σ1 was used to simulate the motor andΣ2, to implement
the observer. The main equations of the observer were imple-
mented in a continuous S-function while the computation of
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Fig. 3. Comparison with a HG-EKF
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Fig. 4. Comparison with a HG-EKF whenθ = 2
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Fig. 5. Evolution ofθ for different values ofm2

the innovation needed the use of a discrete S-function (to allow
the computation of̂y(t) and of the integral). This implies that
the choice of the sample time of this computation will have an
impact on the behavior of the system as innovation drives the
adaption function. Noise was added at both input and output
(drift=0.95, sample time=10−4, standard deviation=1 and 0.5
respectively) and to the load torque set points. The parameters
of the model were set toL = 1.22 N , R = 5.4183 Ω,
B = 0.0026 Nm/rads, J = 1.22 kgm2, andLaf = 0.0683
Nm/WbA (those values were motivated by measures made on
a real system). The parameters of the observer were set to R=1,
Q=[1 0 0; 0 1 0; 0 0 5],λ = K = 500, β = 2000, m1 = 0.005,
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Fig. 6. Load torque estimation and evolution ofθ
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Fig. 7. Detailed view

and T = 0.1. From the output signal we estimatedσ = 0.7
for the standard deviation , thenm2 = σ2T = 0.049. In order
to obtain a more reactive EKF (i.e. when all the adaption
coefficients were set to zero andθ(0) = 1) Q was set to
[25 0 0; 0 25 0; 0 0 50] .

Fig.2 shows the performance of the A-EKF compared to
the one of an extended Kalman filter. We observe that when
no unmodeled pertubations occur, the A-EKF ensures a good
noise rejection just as the EKF does. On the other hand (and
with a delay), the convergence of our observer is much faster
than the EKF when a significant perturbation occurs. This
delay is explained by the fact thatθ only increases when
the pertubation has an impact on the innovation. Therefore
it is connected to the amplitude of the perturbation and to the
sampling time choosen for the (discrete) computation of the
innovation. Fig.3 compares the same performance with the one
of a HG-EKF whose high-gain value was set toθmax. As we
expected the convergence speed of the A-EKF is comparable to
the convergence of the high-gain one but with a delay caused
by the computation of the innovation. Noise rejection is of
course much more effective in the case of the adaptive-gain
observer. Fig.4 shows what happens when we setθ in the
HG-EKF to a smaller value in order to lessen the influence
of noise on the estimation: even if there’s a delay due to
the adaption procedure, the A-EKF is more efficient in this
situation. In Fig.5 we want to stress the importance of the
parameterm2 which represents the influence of noise on the

innovation. The dotted curve shows that underestimation of
this parameter leads to an increase ofθ only due to the noise
and not due to a large pertubation, and then that the observer
switches to a high-gain mode that only amplifies noise. Still
we think that the estimation ofm2 from the ouput signal can
be done quite accuratly and easily.

F. Estimation from real Data

The next step in the developement of our observer is now
to apply it in a real environment. Our system is composed of
a DC motor from the German company LN and that can be
connected in series, parallel, or in a compound maner. The
brake (magnetic powder system) and its module were also
provided by the same company. An I/O card connected to a
desktop PC allowed us to get and set the values of the different
quantities in play. The RTAI/linux system was used as our
realtime environment. Even if our goal is to use our observer
as a SISO system with the voltage as input and the current as
output, we measured the speed and the load torque in order to
compare those values with the estimated ones. Those measures
were also used to estimate model parameters. In reality we
found out that our model did not fit that well to the values
obtained from the real motor and therefore we modified the
first equation described in III-A with the addition of a second
degree polynomial inωr. As we see below, we still observe a
small bias in our estimations. We tuned the parameters of the
observer according to the procedure described above.

Results of the estimation of the torque load from real data
(in a batch mode) are shown in Fig.6 and Fig.7. All the
data were obtained with our observer only by changing the
values of the adaption function. As told before, the estimation
is not that precise but still lies in an acceptable range. The
surimposed curve in Fig.6 shows the evolution ofθ with
respect to time. We see that the high-gain parameter reacts
as expected. We insist on the fact thatm2, the important
parameter representing the influence of noise, has been set
only from the measured output, namely the current, and has
been kept to the very first value we choose: we did not tune
it by trial and error. Fig.7 presents a detailed view of what
happens around time 7 after a sudden change in the load
torque. The perfomance of the A-EKK is the same as in the
simulations.

A last point has to be stressed here:I is not likely to be
equal to zero because of the errors which will always occur in
the system modeling. This problem is solved by the addition
of an integrator acting as a high-pass filter on the innovation.

IV. CONCLUSION

The main advantage of our adaptive extended Kalman filter
is the proof of its convergence. Because of theθ parameter,
matrices Q and R may be chosen to satisfy nice local
performance, as usual for extended Kalman filtering. The
parameterθ is sufficient to ensure the convergence when a
large disturbance appears. Moreover, monitoringθ will give
information on the system, and especially on the presence of
disturbances, as seen in the application.
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In order to validate our approach practically, we applied
our observer on a real system. The application shows exactly
what we expected from the proof: the A-EKF performs as an
EKF when no perturbation occurs and performs as a high-gain
observer when a perturbation occurs. Therefore, it is as robust
regarding to noise as the extended Kalman filter, and converges
as quickly as high-gain observers. Among other objectives,we
now want to assess the perfomance of the A-EKF when it is
implemented in a realtime environment.

REFERENCES

[1] S. Mehta, J. Chiasson,Nonlinear Control of a DC Motor: Theory and
Experiment,IEEE transactions on Industrial Electronics, Vol. 45, No.
1, Feb. 1998.

[2] P. C. Krause, O. Wasynczuk, S. D. Sudhoff,Analysis of Electric Machin-
ery and Drive Systems, 2nd edition,IEEE Series on Power Engineering,
Wiley-Interscience, 2002.

[3] J. S. Baras, A. Bensoussan, M. R. James,Dynamic Observers as
Asymptotic Limits of Recursive Filters: Special Cases,SIAM J. Appl.
Math., 48, 1147–1158,1988

[4] G. Besançon, J. de Leon-Morales, O. Huerta-GuevaraOn adaptive
observers for state affine systems, International Journal of Control, Vol.
79, No. 6, p 581-591,2006

[5] M. Gevers, G. Bastin,A Stable Adaptive Observer for a class of
Nonlinear Second-order Systems, Analysis and optimization of systems,
ed. by Bensoussan, A., and Lions, J. L. Springer-Verlag, June 1986, pp
143-155

[6] F.D. Busse, J.P. How, J. Simpson,Demonstration of Adaptive Extended
Kalman Filter for Low-earth-orbit Formation Estimation using CDGPS
Navigation. Journal of the Institute of Navigation, v 50, n 2, p 79-93,
2003

[7] E. Busvelle, J.-P. Gauthier,High-Gain and Non-High-Gain Observers
for Nonlinear Systems, Contemporary Trends in Nonlinear Geometric
Control Theory and its Applications,World Scientific, p. 233–2562002

[8] E. Busvelle, J.-P. Gauthier,Observation and Identification Tools for Non-
linear systems. Application to a Fluid Catalytic Cracker.International
Journal of Control, Vol. 78, 3,2005

[9] E. Busvelle, J.-P. Gauthier,On determining unknown functions in
differential systems, with an application to biological reactors,ESAIM:
COCV 9, p. 509–5522003

[10] F. Deza, E. Busvelle, J.-P. Gauthier, D. Rakotopara,High Gain Estima-
tion for Nonlinear Systems,Systems & Control Letters, 18 1992

[11] F. Deza, E. Busvelle, J.-P. Gauthier, D. Rakotopara,A stability result
on the continuous-continuous and continuous-discret extended Kalman
filters, Compte-Rendus de l’Académie des Sciences de Paris, 314,
Février 1992

[12] J.-P. Gauthier, H. Hammouri, S. Othman,A simple observer for nonlin-
ear systems,IEEE Trans. Aut. Control,37, pp. 875–880,1992

[13] J.-P. Gauthier, I. Kupka,Deterministic observation theory and applica-
tions, Cambridge University Press,2001

[14] C. Hu, W. Chen, Y. Chen, D. Liu,Adaptive Kalman filtering for vehicle
navigation, Journal of Global Positioning Systems, Vol. 2,No 1, p42–47
2003

[15] A. Johansson, A. Medvedev,An observer for systems with nonlinear
output map, Automatica 39, pp 909-918,2003

[16] D. Jwo, H. Huang,Neural network aided adaptive extended Kalman
filtering approach for DGPS positioning, The journal of navigation, 57,
p 449-463,2004

[17] Kent K. C. Yu, N. R. Watson, J. Arrillaga,An adaptive Kalman filter
for dynamic harmonic state estimation and harmonic injection tracking,
IEEE Trans. on power delivery, Vol. 20, No 2,2005

[18] L. La Moyne , L. L. Porter II, K. M. Passino,Genetic adaptive observers,
Engng Applic. Artif. Intell. Vol. 8, No 3, p261-269,1995

[19] L. Shen, H. Wang,Adaptive observer design for general nonlinear
systems with linear output structure, 4th International Conference on
Control and Automation, 2003. ICCA ’03. Proceedings, June2003
On page(s): 48- 52

[20] S. Stubberud, R. Lobbia, M. Owen,An adaptive extended Kalman
filter using artificial neural networks, The international journal on smart
system design, Vol. 1, pp 207-2211998


