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Abstract—In this paper, we present an adaptative extended paper, except that they do not give any theoretical proof.

Kalman filter (A-EKF). The exponential convergence of this Nevertheless, the need for this kind of observer is clearly
observer is theoretically proven. An application on a seris- established.

connected DC motor is given to illustrate the performance of . . . .
this A-EKF. In those papers, adaptation of the filter is done using

empirical rules (genetic algorithms [18], neural netwdi3],
statistics [17]...), and no proofs are given. But in all case
efficiency of the adaptive observer is highlighted. Let us
. INTRODUCTION remark that for neural networks based extended Kalmansfilter
The extended Kalman filter (EKF) is one of the most famoysl-EKF), the system is splitted into a linear part and a
algorithms used to estimate unknown state variables framanlinear part, and the extended kalman filter is applieth¢o t
measurements in dynamical nonlinear systems. It is alst us@nlinear part, which is approximated by neurons. The wsigh
to estimate unknown constant or slowly varying parameters éf neurons can be calculated using EKF, making the algorithm
linear systems and sometimes to perform failure detection.adaptive. In this case, some proofs can be establishednhut o
this last case, it is necessary to quantify the efficiencyhef tif the neural network can approximate the system.
EKF with time. This task is usually based on the innovation An intuitive theoretical justification of adaptive gain iaded
process, which is the integrated difference between actg@l the high gain observer theory. It has been shown from a
measurements and predicted measurements. The innovafgiy time ([12]) that high gain observers have very nice the-
process can be monitored, and a large value of the innovatigratical properties. The first one is that they required tmipt
can be used to send an alarm or to switch from an old modgk observability property of the model. This study present
to a new one. It can also be used to estimate the noise entefiggn developing an observer for a non-observable system.
into the process or to estimate the measurement noise.  But high gain observers are also exponential observers: one
Although the extended Kalman filter is not proved to corcan prove the convergence of the high gain observer. In our
verge (exceptlocally, see [3, 13]), itis very often use@refor  opinion, the convergence property is a minimum requirement
critical processes. In order to increase the performandet® for an observer which is used on some critical processes, and
reliability of the EKF several engineers and researcheesdy sometimes as a diagnostic tool. Therefore, it is a good idea t

tried to develop an adaptive version. Using innovation angiapt the gain of observers in the following way:
state estimation, it seems possible to estimate parantagdrs

characterize the state of the process. These parametdfsecan
be used to adapt the gain matrix by online automatic tuning
of some of the covariance matrices used in the computation
of the gain matrix. These kind of adaptive EKF are empirical *
but seem to have nice behavior compared to the EKF.
Because of the difficulty to ensure robustness when adaptive
guantity is continuously updated, some authors used anadapn several previous papers [10, 11, 13], we have introduced
tive algorithm based on switching between several models. Ehe high-gain extended Kalman filter (HG-EKF) which is also
instance, in [17], authors have developed an applicatioa oran exponentially converging observer, but with the propert
highly critical process (from robustness point of view).eyh that it is more efficient in the presence of noise. Indeed, the
proposed to switch between two covariances maffixand high sensitivity of high-gain observers is a well known draw
Q> depending on the state of the process. back : the high gain ensures convergence but also increases
There exist a very large number of papers dealing withoise effects. In [7], we developed a new algorithm, based
adaptive observers and adaptive extended Kalman filteriag classical and high-gain EKF. This algorithm is based on a
([4, 5, 15]) especially in the GPS and DGPS communitiheoretical result, which states that a time-dependan8H&;
([6, 14, 16]). In [6] for instance, authors present an ada&ptiwhich is asymptotically equivalent to a classical EKF, may b
extended Kalman filter using innovation in order to ad@pt an exponentially converging observer, if the transitioonir
and R matrices, exactly in the same spirit than in the preseHiG-EKF to EKF is slow enough. But this result is based on a

Index Terms— Adaptive observer, Kalman, DC motor

« use an EKF when the estimation is close to the true

state, because EKF is a good (optimal) local observer

(as already stated) and

use a high-gain observer when large perturbations oc-
cur, because these observers are nonlinear converging
observers.



time-dependant observer and, in order to make its conveegepvery system which has the observability for any input prop-
property persistent, it is necessary to use several obseame erty can be written in this form, using a change of coordinate
to switch from one to another, depending on the innovati@ome other hypothesis (bounds, compactness, etc...) kave b
process. Although it is an efficient observer, as shown in tldéscussed in previous papers (see [12]) and are not very
reference above, but also in [8, 9], it is rather complicate@strictive for practical applications, as it will appear the

and CPU intensive. Moreover, even if the final algorithm caapplication part of our paper. We will not give technicaladlst

be considered as an adaptive high-gain extended Kalman filkere, since proofs are omitted.

(A-EKF), its implementation is far from the one of classical Because of its canonical form of observability, it is poksib

observers as used by engineers. to apply an extended Kalman filter to this system:

In this paper, we will present a time-independant adaptiver ;7
gain extended Kalman filter. The adaptationdofill depend — = AWZ+b(Z,u)+STIC'RTN(CZ —y(t))
on the innovation process. c%‘ B

_ / _ *
As usual for the HG-EKF, the parametérappears in the dt (f,l(u_)j b(Z,u))'S = S(A (u) +b* (Z,u))
Riccati equation of the Kalman filter, and more preciselyhie t +C'RC = SQS

matrix @, denoted)y. But in our case, the high-gain parameter o ) ) (”'_2)
appears also in the matrik (denotedRy), as in [6] (for a where, from a deterministic point of vieW and R are tuning

practical application). It is the first difference with ouepious Matrices and are used to ensure good performance. However
result [7]. The second difference is th@tmay increase if the Kalman filter has a stochastic meaning, whéres the
the innovation is high and decrease if the innovation is loOvVariance matrix of the state noise afdis the covariance
This idea is the basis of practical applications: it is alse t Matrix of the measurement noise, i.e. if the system is writte
cornerstone of the proof of our theorem. in a stochastic form
dvy = A(u)zedt + b (2, u)dt + dwy
In the next section (Il), we will present our main result. { dye = C(u)zedt + dvg

Because of the length of this paper, we will omit the proofheng = £ [wiw!] andR = E [v07]. Hence, both matrices
Then, in section I, we will present an application to a seri depend on statistical properties of noise processes. B thi

connected DC motor. context, the Kalman filter is an optimal filter. Thereforee th
extended Kalman filter is close to an optimal filter when the
Il. THEORETICAL RESULT state and its estimation are close, since it is based upon a
In this paper, we consider Systems of the form linearization of the SyStem around its estimated tranCtAS
a matter of fact, the extended Kalman filter is a converging
dx
— = Az +b(zr,u) local observer (see [3, 7]).
dt (1.1) However, the EKF is not a globally converging observer
y = Cu)x ) g Yy ging .

It cannot be used to estimate the state from a odiriori
wherex (t) € R", y(t) € R andu € Uaam C RZ. Moreover, estimation, or when large unmodeled perturbations occurs.
A (u), b(z,u), and C (u) are defined as is usual for suchn this case, and in order to keep theoretical justifications
systems in the canonical form of observability: and proof of convergence, one can use a high-gain observer
([12, 13]). The simplest form of a high-gain observer is the

0 ax(w) 0 - 0 Luenberger high-gain observer: it is a constant gain oleserv
az(u) : of the form
Al = o0 2 = A(u)Z+b(Z,u) — Ko(C (u) Z — y (1))
an (u) where Ky = AgK, Ay = diag (0,6,....0"), and 0 is
0 0 the high-gain parameter. The theorem says that with some
with 0 < a,,, < a;(u) < ap for anyw in Unam, hypotheses on the system, the input, and the mdtriwhen
0 is large enough the observer converges exponentially. The
) (b (@1, u) ) same results hold for the high-gain extended Kalman filter
T1,T2,U
= 7
b(x,u) = 5 d&i_% — A(W)Z 4+ b(Z,u) + STICTR-Y(CZ — (1))
o(1,- - 2nyu) 2 = —(A(w) +b(Z,u))'S — S(A(u) + b (Z,u))
: dt
and we suppose that there exists a compact subs®"of +C'R™1C — SQS
such thatb (z,u) is identically equal to zero for: outside (11.3)
this compact set, and finally whereQy = AyQAy. This high-gain observer was introduced

in [10, 11] and was developed in [13]. The basis of our work
consists of the following two remarks:

This form is now conventional, and was introduced in 1) if one setsd to 1 in system 1.3 then one obtains the
[12] and extensively studied in [13] for instance. Reca#tth classical extended Kalman filter, which is a local optimal
although the form of the system seems to be very restrictive, observer (in the sense explained above)

C(u):(al(u)voa"' 70>



2) if 6 is large enough then one obtains a high-gain convergence, thanks to the exponential property of high-
observer, which is a global exponential observer. gain observers.

The first application of this remark was presented in [7]: in Finally, the adaptive extended Kalman filter can be written
this paper, we just added the equation

az
— = AWZ+b(Z,u)+ STIC'R;N(CZ — y(t
Y _\a-o) ws | 7 (u)Z +b(Z.u) + 7 (CZ —y(1))
: — = —(A(u) +b(Z,u))'S = S(A(u) +b" (2, u))
to the system 11.3. I is large enough (and the parameter dt A
small enough) then we obtain an observer which is a high-gai 40 +CRyC = 5Q0S
observer for small time and which converges asymptotically — = X (1—6) + p (Oax — 0)
to a classical extended Kalman filter. Hence we can expect it dt (1.7)

convergence since the observer should converge expolentia \ye defineQ, and R, from Q and R thanks to the matrix
to the state (high-gain observer property) and then stays in

a neighborhood of the state (since extended Kalman filter 1 0 0 0
is a local observer). Indeed this result has been proved in o 1 o

[7]. But this observer is time-dependant, since it converge o

exponentially only in the beginning. So, in order to constru A= ¢9 o eiz

a persistent observer, we should take into account thisgptypp ) 0

The simplest way is to use several observers of the form 11.3- 1

I1.4, each one initialized at different times, and using som 0 v 0 g

delf':\ys _between each |n|t|_allzat|on. Thus we obtain Seve'bagl_Q(, — 9A-1QA- and Ry — 0-'R. Let us remark that

estimations of the state, given by each one of the observe[h X . Do .

) N . IS change of coordinates is different from the previous on
the final estimation is the one corresponding to the observer . :
N : . . as explained in [7].

that minimizes the innovation process. The whole constioct o . It is the followina:

is clearly explained in [8, 7]. ur main rfasu IS the Tollowing: .
In this paper, we present a much simple observer. In place! N€0rem 1:Let us consider a system of the form II.1 in

of equation 1.4, we introduce the equation the canonical form of observability. We consider the adeapti

gain extended Kalman filter 11.7. Let us suppose thatu

dé = F(0,T) (I1.5) and 6,,,, are three constant parameters such thas small
dt ’ enough, is large enough, ané, is large enough. Then, 1.7
where is an exponentially converging observer.
t We have not enough place to give a proof of this result.
I:/ THy(S) —Ger(s)|* ds = lly = -1l 72001 It is more or less an adaptation of the proof in [7]. The
t,

(1.6) main difference is the fact that now, the matrk depends
is the innovation from timet — T' to current timet. More ©N ¢, which was not necessary whénwas only a decreasing
precisely, in definition 1.6y represents the output, byt_ Parameter. The proof is then based on the following lemma:
represents the prediction of the output from the state esiom ~ Lemma 2:Let 29, 23 € R" and u € Unam. Let us
attimet—T (given by the observey, (f/ _ T)) hencegt_T(S) consider the outputs (t) andyg (t) of system 1.1 with initial
is the solution at time of conditions respectively{ and z9. The following condition
(called persistant observability) holds:

T = AWE() +b(E(r),u)
E¢-T) = Z(t-T) VT >0 Vue L} (Upam) 3INr >0
Ye-r (1) = C(u)&(7)

. . . T
T is a tuning parameter, representing the length of the 0 0
. . . . - < — —
window used to calculate the innovation. In the following et — 3] < M Jo lys (7) = vz (7)l] dr
theorem, the functiod” will be chosen in the forn¥ (6,7) =

A(1=0)+ p(Omax — 0). In fact, F' can be chosen in a more
. . . _1ll. APPLICATION TO A SERIESCONNECTEDDC MOTOR
general form. We will describe a more general hypothesis on

F'in a next paper. We will also give a version éfthat is  The stator of a DC motor (also denotéeld) is composed
better adapted in the presence of noise in the application pgf an electromagnet or a permanent magnet that immerses the
of this paper. Intuitively, the role of the functiofi is: rotor in a magnetic field. The rotor (also denotethaturd is
« toletd decrease if the innovation is small, because in thirade of an electromagnet whose windings are connected to a
case the observer has already converged and a Kalmeommutator that switches the direction of the current flgwin
like observer will be sufficient to correctly estimate thehrough it, inversing its polarity. The attraction/repgjibehav-
state ior of magnets creates the rotating motion that is mainthine
« to let # increase if the innovation is too large, becaudey the commutations. A DC motor whose field and armature
in this case, the observer gives a bad estimation of thcuits are connected in series, and therefore fed by time sa
state andd has to be large enough in order to ensungower supply, is refered to as series-connected DC motor.
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A. Motor model C. Observer construction

The adaption function we actually used to completely define
The mathematical model for the series-connected DC mothe A-EKF is slightly different from the one presented in Il
is obtained from the equivalent circuit representationmshim
fig.1. The state vector is composed of the current flowing F(0,I) = M1 = 5(1))-(1 = 0) + K.5(Z).(Omaz — 0)
through the circuit {) and the rotation speed of the shait J. wheres(Z) = [1 + e_ﬁ(z—m)]*l, namely the sigmoid func-

The electrical balance of the circuit is given i+ Ly).I = tion, is defined fronR to ]0; 1], C*°, increasing, and lipschitz.

Vap — (Ba + Ry).I — E whereL, a_ndRa, and Ly and Ry This function can be devided into three parts:
denote the inductance and the resistance of the armatude, an

of the field. E is the back electromotive force. The mechanical * va:ues Og SUCE :Eaz(? IS c:ose EO 2

balance for the shaft in the hypothesis of vicscous friction * vajues OLL such tha (Z) is close to .
and load isJw, — T., — Buw, — T, whereT.,, denotes the ° & transition part that can be made as small as possible
electromechanical torquéd,, the (positive) load torque, and thanks t(? .the pargmet@r .

B the viscous friction coefficient. We consider the case of !f this transition part is made small enough th&f) will be

no magnetic saturation in the field circuit such that, — €ither close to zero or close to 1 but aimost all the time. When
KL I? and E = K,,L;Iw, where K,, denotes the back s(Z) is close to zero the termy(1 —6) will drive the evolution
e.m.f constant. of 6 which will decrease toward 1. Conversly whe(t) is

The voltage applied between terminals A and B is the inpﬁ&ose to 1 then the terh (. — 6) will drive the evolution

variableu, and the currenf is the output variablg leading ﬁ]tfo\év:ézg \é\/llrllér&vcre;s;ntgt\g Ssm(’)[’(”“* Tﬁh |se ada;p:;]OaQ ;uenecél?g
to the following SISO model: P + T Py Omaz

be tuned in addition to the classicBland @ matrices. As we
will explain in the next section, the choice of those pararset

< LI > _ ( u— RI — Lojw,I ) can easily be made.
¥ Jw, LosI? — Bw, — T,
y=1I D. Tuning of parameters

The procedure explained here is inspired by the one de-
scribed in [8, part 5.2.2] regarding the parametBrs), and
0 of a high-gain observer. We also think that only few of the
additional parameters will actually need be reset at eagh ne
implementation of the observeft = 2000, K = A = 500,
andm = my + me Wherem; = 0.005 may be kept to those
values.

whereL = Lo+ Ly, R =R, + Ry and L,y = K,,,Ly. More
detailed approaches can be found in [1, 2].

B. Observability

vation when the load changes suddenly. When such a change and@ by using an EKF. This observer can be obtained
occurs we expect the high-gain parameter to increase as a from the A-EKF when the parameters of the adaptation

reaction to this perturbation. This identification is made-c function are set to 0 and the initial value®fo 1. Large

sidering the extended state vectdr w,,7,) and the simple perturbations are not considered and the observer is
equation7, = 0 for the load torque. The diffeomophism initialised to the proper (or previously estimated) values

defined by of the state vector.

2) we then set th&® and ) matrices to the values previ-
ously found and use a HG-EKF to turfe As above,
the filter needed is obtained from our observer when the
parameters of the adaption function are set to 0 and the
initial value of 8 is changed. Here we will try to find
transforms the modeXL; into the following SISO observ- a value for the high-gain parameter that allows fast and
ability canonical form which implies observability for the reasonable convergence with respect to noise when large
extended system and therefore identifiability for the load  unmodeled perturbations are applied to the system.

RP*xR xR — RT™xR x R
(Lw,, T,) — (I, I.w,, 1.T,) = (z1,22,23)



3) we will now choose the parameters of the adaptic 3

function. We remark that whem = 0 thens(0) = 0.5.
We then need to shift the sigmoid function to the righta 25}
we wants(0) to be close to zero. Chosing as small as
we want and solving the equatie0) = y; allows us to
obtain the parameten. This solution is easily computed
provided that the parametgris known. As the sigmoid
function is centered aroun@, 0.5) whenm = 0, the 1
computation ofg is made by setting a lengthfor the

Load Torque
.
ul

- — —set point

transition part and solving the nonlinear equation (wit

High-gain Kalman filter 8=3

m = O): 3([/2) — 3(—[/2) = (1 — yl) — 1. Of course, . ‘ ‘ adaptive-gain extended Kalman fiter

0 5 10 15 20

anoher approach is to graphically defifieandm from Time

trial and error.

Now that the transition part is small, we want the gain t6ig. 3. Comparison with a HG-EKF
increase and decrease quickly. If we suppose&tiat=

25 30

1 and that we want it to reaah,,.,, within a timer then 5
the equationy = Zmez=l — K (6., — 1) allows the
computation ofK. Since the equation used to comput
K is only an approximation, a bigger value (e.g. twici
the computed value) may be used. A reasonable cho
for the last parameter remaining s= K. The delay
parameterT’ = 0.1 is choosen with respect to the
dynamic of the observed system ahygl, .. is taken equal
to the value found in the previous stage.

Load Torque
N N
Bl N o

N

0.5F " | = — - set point

One last thing has to be taken into account before ca

High-gain Kalman filter 8=2

tinuing. Because of measurement noise the innovati ‘ ‘
0 5 10 15 20

adaptive—gain extended Kalman filter|

will never be equal to zero and therefore the observ Time
will stay in a high-gain mode. To avoid this problem, the

25 30

parametetn is now writtenm = my + mo WheremsiS Fig. 4. Comparison with a HG-EKF wheh= 2

the previously computed quantity amebwill represent
the influence of the noise on the system. As a resu

when I < mowe haves(Z) < y; and 6 does not
increase. We denote by the standart deviation of
the output noise, which can be estimated from outp
measurement. Them, = To? whereT is the delay
used in the definition of the innovation.

E. Simulation results and discussion 1:

1.4

12

T
m2=0.025
—— m2=0.049 |4

Time

Load Torque
N
@

25 30

Fig. 5. Evolution ofé for different values ofmsa

— — — set point
extended Kalman filter
adaptive—gain extended Kalman filter|

10 15 20 25
Time

Fig. 2. Comparison with an EKF

30

the innovation needed the use of a discrete S-function gaval
the computation ofj(¢) and of the integral). This implies that
the choice of the sample time of this computation will have an
impact on the behavior of the system as innovation drives the
adaption function. Noise was added at both input and output
(drift=0.95, sample timex)~*, standard deviation=1 and 0.5
respectively) and to the load torque set points. The paenset
of the model were set td. = 1.22 N, R = 5.4183 Q,

We made our simulations with Matlab/Simulink. The system® = 0.0026 Nm/rads, J = 1.22 kgm?, and L,y = 0.0683
3, was used to simulate the motor adly, to implement Nm/WbA (those values were motivated by measures made on
the observer. The main equations of the observer were impéereal system). The parameters of the observer were set to R=1
mented in a continuous S-function while the computation @=[100;010; 00 5]\ = K = 500, 8 = 2000, m; = 0.005,



25 ‘ ‘ : : : : innovation. The dotted curve shows that underestimation of
this parameter leads to an increaséainly due to the noise

2 ] and not due to a large pertubation, and then that the observer
switches to a high-gain mode that only amplifies noise. Still
we think that the estimation ofi; from the ouput signal can

be done quite accuratly and easily.

=
o

Load Torque, 8

|

F. Estimation from real Data

05 Measured value e
e e itor 622 The next step in the developement of our observer is now
0 Adaptivegain extended Kalman fiter] to apply it in a real environment. Our system is composed of
A a DC motor from the German company LN and that can be
connected in series, parallel, or in a compound maner. The
Fig. 6. Load torque estimation and evolution tbf brake (magnetic powder system) and its module were also

provided by the same company. An I/O card connected to a
desktop PC allowed us to get and set the values of the ditferen
guantities in play. The RTAl/linux system was used as our
realtime environment. Even if our goal is to use our observer

J ] as a SISO system with the voltage as input and the current as
| ] output, we measured the speed and the load torque in order to
/ | compare those values with the estimated ones. Those measure
were also used to estimate model parameters. In reality we
found out that our model did not fit that well to the values
obtained from the real motor and therefore we modified the

Load Torque
[y = g
o ® N N
T T

N
IS
T

12 T
W Measured value ! . ) R X .
A4 Extended Kalman fiter | first equation described in 11l-A with the addition of a sedon
— High-gain Kalman filter 8=2 . ) )
‘ ‘ — Adaptive—gain extended Kalman fiter degree polynomial iv,.. As we see below, we still observe a
A small bias in our estimations. We tuned the parameters of the
observer according to the procedure described above.
Fig. 7. Detailed view Results of the estimation of the torque load from real data

(in a batch mode) are shown in Fig.6 and Fig.7. All the

data were obtained with our observer only by changing the
andT = 0.1. From the output signal we estimated= 0.7 values of the adaption function. As told before, the estiomat
for the standard deviation , then, = 027" = 0.049. In order is not that precise but still lies in an acceptable range. The
to obtain a more reactive EKF (i.e. when all the adaptiosurimposed curve in Fig.6 shows the evolution ébfwith
coefficients were set to zero arff0) = 1) Q was set to respect to time. We see that the high-gain parameter reacts
[2500;0250; 00 50] . as expected. We insist on the fact that, the important

Fig.2 shows the performance of the A-EKF compared {sarameter representing the influence of noise, has been set

the one of an extended Kalman filter. We observe that whenly from the measured output, namely the current, and has
no unmodeled pertubations occur, the A-EKF ensures a gdeskn kept to the very first value we choose: we did not tune
noise rejection just as the EKF does. On the other hand (éitdy trial and error. Fig.7 presents a detailed view of what
with a delay), the convergence of our observer is much fasteppens around time 7 after a sudden change in the load
than the EKF when a significant perturbation occurs. Thisrque. The perfomance of the A-EKK is the same as in the
delay is explained by the fact th#& only increases when simulations.
the pertubation has an impact on the innovation. ThereforeA last point has to be stressed hefeis not likely to be
it is connected to the amplitude of the perturbation and & tlequal to zero because of the errors which will always occur in
sampling time choosen for the (discrete) computation of thike system modeling. This problem is solved by the addition
innovation. Fig.3 compares the same performance with tiee asf an integrator acting as a high-pass filter on the innowatio
of a HG-EKF whose high-gain value was setftQ,... As we
expected the convergence speed of the A-EKF is comparable to
the convergence of the high-gain one but with a delay caused
by the computation of the innovation. Noise rejection is of The main advantage of our adaptive extended Kalman filter
course much more effective in the case of the adaptive-g#nthe proof of its convergence. Because of thparameter,
observer. Fig.4 shows what happens when we#séat the matrices@ and R may be chosen to satisfy nice local
HG-EKF to a smaller value in order to lessen the influengeerformance, as usual for extended Kalman filtering. The
of noise on the estimation: even if there’'s a delay due fmrameterd is sufficient to ensure the convergence when a
the adaption procedure, the A-EKF is more efficient in thisrge disturbance appears. Moreover, monitoringill give
situation. In Fig.5 we want to stress the importance of thieformation on the system, and especially on the presence of
parametemn, which represents the influence of noise on theisturbances, as seen in the application.

IV. CONCLUSION



In order to validate our approach practically, we applied
our observer on a real system. The application shows exactly
what we expected from the proof: the A-EKF performs as an
EKF when no perturbation occurs and performs as a high-gain
observer when a perturbation occurs. Therefore, it is agstob
regarding to noise as the extended Kalman filter, and coasgerg
as quickly as high-gain observers. Among other objectiwes,
now want to assess the perfomance of the A-EKF when it is
implemented in a realtime environment.
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