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Abstract. In this paper, we recall general methodologies we developed for
observation and identification in nonlinear systems theory, and we show how
they can be applied to real practical problems.

In a previous paper, we introduced a filter which is intermediate between
the extended Kalman filter in its standard version and its high-gain version,
and we applied it to certain observation problems. But we were missing some
important cases. Here, we show how to treat these cases.

We also apply the same technique in the context of our identifiability theory.
As non academic illustrations, we treat a problem of observation and a

problem of identification, for a fluid catalytic cracker (FCC). This FCC unit is
one of the most crucial from the economic point of view, in petroleum industry.
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1. Introduction

1.1. The observation and identification problems: In this paper, we address
the problems of observation and identification of general nonlinear control systems.

By observation, we mean reconstruction of the state trajectory of the system,
on the basis of some “observed data”, produced by output functions. Roughly
speaking, we say that a system is observable if this reconstruction is possible. A
device realizing the observation task is called an “observer”. Usually, these devices
are realized under the guise of a differential system, fed by the observed data.

The problem of identification is a bit different: very often, practical control
systems depend on some functions, (with physical meaning), that are not well
known, and that have to be determined on the basis of experiments.

If x denotes the state of the system, if x 7→ ϕ(x) is the unknown function, and
y(t) is the observed data at time t, the identification problem is the problem of
reconstructing the piece of the graph of ϕ(·), visited during the experiment. That
is, for an experiment of duration T, we want to determine the couples (x(t), ϕ(x(t)),
for all t ∈ [0, T ], using only the observed data {y(t), t ∈ [0, T ]}.We say that a system
is identifiable if this is possible, whatever the experiment.
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An identifier is a device performing this task. We will be interested with “on-line
identifiers” only, i.e. identifiers that estimate the graph of ϕ simultaneously to the
experiment.

The two problems, of observation and identification, are of course strongly con-
nected.

1.2. Our previous results.

1.2.1. Observability and observers. In the book [8], a general observability theory
has been exposed, together with a methodology for constructing observer systems.
(These observers we construct are called “high gain” observers).

Otherwise, there is a practical tool, used for long by engineers, to construct
observers for nonlinear systems (in a stochastic context): the extended Kalman filter
(EKF). The idea is just to use the classical equations of the linear Kalman filter,
and to apply them to the linearization of the system along the estimate trajectory.
This is not a well defined procedure (since we linearize along the trajectory we are
just estimating, and not along the real trajectory). Nevertheless, and despite a lack
of theoretical justification, the EKF gives often very good results.

One version of our high-gain construction in [8] is connected with the EKF.
In the paper [5], we propose an observer system that has the advantages of both

approaches: in presence of big disturbances, or “state jumps”, it has the good
properties of the high gain observers, to recover the state of the system arbitrarily
fast. On the contrary, when the estimation error is small, it behaves exactly as the
EKF (with good performances in front of noise).

1.2.2. Identifiability and identifiers. In the paper [4], we establish the main results
of an identification theory and we propose an observer-based strategy for identifi-
cation.

A remarkable (but not surprising) fact is that the identification theory is per-
fectly parallel to the observation theory. To compare, let us consider, for the
observation problem, single input systems only, and for the identification
problem, the case of a single unknown function to be identified, and no
control. Then, for observability:

-If the number of outputs is two or more, systems are generically observable.
-If there is only one output, then, observability is a nongeneric property, so strong

that it can be characterized by a very rigid normal form.

For identifiability:

-If the number of outputs is three ore more, then, identifiability is a generic
property,

-If there is only one or two outputs, then, identifiability is a nongeneric property,
so strong that it can be characterized by 4 very rigid normal forms.
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1.3. Purpose of the paper. Our purpose here is twofold:
First, we want to recall, compare and summarize the main results of both theories

of observability and identifiability. We want also to present our observers, and
specially the final uppermentionned observer, mixing the high-gain construction
with the EKF.

Therefore, we will summarize the results of [8], [4], [5].
At the same time, we will give some improvement of our method, allowing to

apply it to certain important cases that we missed in our previous works.

Second, we want to show, through a practical nonacademic application, that
these theories are really applicable in practice, and give very good results, both for
the observation and the identification problem.

1.4. The application. The process we consider is a FCC unit, i.e. a Fluid Cat-
alytic Cracker process, used in petroleum industry to convert heavy petroleum
residues into gasoline.

There is at least one such FCC in any refinery, and it is a very strategic process,
from the economic point of view (may be the most one).

It is a highly nonlinear process, rather hard to control.
As usual in petroleum industry, a few measurements are available (mostly tem-

perature, pressure and flowrate measurements).
We will apply our observation methodology to recover the state of the system

on the basis of these measurements, and specially, our purpose is to reconstruct a
crucial variable inside the system: the Carbon Conradson factor.

Also, the FCC model depends on a certain “oxygen reaction rate” function,
which is very important, and is in practice not well known. Also, due to the degree
of simplification of the model under consideration, even if this “oxygen reaction
rate” function is known in theory, it has to be adapted.

We will apply our identification procedure to estimate this function.

1.5. Organization of the paper. First, in the remaining of this introduction,
we will fix precisely the systems under consideration, the classes of controls we
consider, and we will define a few notions that are crucial for our work.

Section 2 will be devoted to the observability theory: we state the definitions
of the various notions of observability we use, and we give a summary of the main
observability results.

In Section 3, we do the same for our identification theory.
In Section 4, we present our results on the construction of observers, and on

practical observer-based identification. We also present certain important simple
improvement of our methodology.

Section 5 is devoted to the application to the Fluid Catalytic Cracker unit.

1.6. Prerequisites. Here, the basic terminology is the standard one in “geometric
nonlinear control theory”, as may be found in one of the best–sellers for engineers
available today. The most understandable and reasonable one is [11] in our opinion.

As in this book, the mathematical background concerns differential calculus,
differential geometry up to integrability of distributions. Words as “immersions”,
“embeddings”, “tangent bundle”, ... belong to this basic vocabulary.
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Besides this, we use some terminology from differential topology, semi–algebraic
and subanalytic sets, stratifications, transversality theory, jet spaces. Words as
“Whitney topology” are pronounced.

In general, we explain inside the paper the minimum needed for intuitive under-
standing of the concepts and results. But in the paper, almost nothing is proven.
Therefore, we hope that this contribution will be accessible to people with low
mathematical background.

If one is interested in detailed proofs, or more precise statements, he should
consult the papers [4, 5], and the books [1, 8]. The appendix in [8] is specially
recommended. The book [10] is also a useful reasonable mathematical reference.

1.7. Notations, systems under consideration.

1.7.1. Conventions. All along the paper, for a smooth real-valued function (x, y) 7→
h(x, y), or for a smooth mapping (x, y) 7→ f(x, y), the notation dxh (resp. Dxf)
means the differential of h (resp. the tangent mapping to f) w.r.t. the variable x
only. In coordinates, they are represented by the Jacobian matrices of h, f w.r.t. x
only.

Also, all along the paper, the notation A′ means the transpose of the matrix A.

1.7.2. Systems. We will consider general finite dimensional nonlinear controlled
systems, of the form

(1.1) (Σ1)

{

ẋ = f(x, u),
y = h(x, u),

or,

(1.2) (Σ2)

{

ẋ = f(x, u, ϕ(x)),
y = h(x, u, ϕ(x)),

where the state x ∈ R
n, or more generally to a n-dimensional analytic differentiable

manifold X, where u denotes the control variable , u ∈ U, some “regular” compact
subset of R

p of dimension p (precisely subanalytic, a polyhedron for instance) with
nonempty interior, and y ∈ R

m is the output variable. In Σ1 (resp. Σ2), f is a u–
parametrized (resp. (u, ϕ)–parametrized) smooth vector field and the observation
mapping h is a smooth mapping X × U → R

dy (resp. X × U × I → R
dy). The

function ϕ in Σ2 is an unknown function to be identified. In this paper, we will
restrict to the case where it is I-valued, where I is a compact subinterval of R (i.e.,
we consider only the case of a single function to be identified) but the theory we
developed in [4], clearly has extensions to higher dimension.

In practice, very often, this function ϕ represents some “physical characteristic”
inside the system, that has to be determined on the basis of experiments. It may
happen that ϕ does not depend on the whole state x of the system, but only on
some projection π(x) (π : X → Z a known fixed smooth function).

Remark 1. Usually, output functions do not depend on the controls. It might seem
only a (practically void) mathematical assumption to consider this dependence. Un-
fortunately, assuming the non-dependence would lead to more complicated unnatural
statements, for many of our results below.
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1.7.3. Topologies. The sets of systems S1 = {Σ1 = (f, h)}, S2 = {Σ2 = (f, h)}, are
given the C∞ Whitney topology, (which is the relevant topology for our consider-
ations). Basic neighborhoods of a system Σ = (f, h) in the Cj Whitney topology
are determined by the data of functions ε(z) > 0, and are formed by the systems
Σ′ = (f ′, h′) such that all the partial derivatives, w.r.t. all variables, up to order j
of (f ′ − f, h′ − h), have norm at z = (x, u) (resp. z = (x, u, ϕ)) smaller than ε(z).
The C∞ Whitney topology is generated by these open sets for all j. Because of
the fact that ε depends on z, this topology “controls” the behavior at infinity of
the systems. The counterpart of this fact is that (unless X × U × I is compact), it
is not metrizable. Nevertheless, it has the nice “Baire property” that a countable
intersection of open dense subsets is still dense. A subset of S1, S2 is called residual
if it is such a countable intersection of open dense subsets. A subset is said generic
if it contains a residual subset. (Contrarily to the way it sounds, “residual” means
very big).

1.7.4. Controls and outputs. Control and output functions u(·), y(·) of systems Σ1

will be defined on semi-open intervals [0, Tu(·)[ depending on the control. May be
Tu(·) = +∞. Controls u(·) and outputs y(·) are measurable functions, bounded on
any compact subinterval [0, T ] ⊂ [0, Tu(·)[. The space of such functions is denoted

by L∞(U), (resp. L∞(Rm))1.
For systems Σ2 = (f(x, u, ϕ), h(x, u, ϕ)) ∈ S2, it will be convenient to consider

ϕ not as a function of x, but as an extra input function ϕ(t) of the time. Then, we
will often consider in (1.2) that ϕ = ϕ(t), ϕ(·) ∈ L∞(I).

1.7.5. State-output, input-state-output mappings and their “first variations”. For a
system Σ ∈ S1, the control u(·) being fixed, we may consider the state-output
mapping PXΣ,u, which to the initial condition x0 associates the output trajectory
y(·) ∈ L∞(Rm).

PXΣ,u : x0 7→ y(·).
If u(·) ∈ L∞[0, Tu[, it may happen that the output is only defined on [0, Ty[,

Ty < Tu, i.e. up to the “explosion time” Ty. In that case, limt→Ty
x(t) = ∞,

(obviously, here, x(·) is the state trajectory corresponding to initial condition x0

and control u(·)). For all T0 < Ty, there is a neighborhood Vx0
×Vu ⊂ X×L∞[0, T0],

such that for all (x0, u(·)) ∈ Vx0
× Vu, the corresponding trajectories t 7→ x(t), y(t)

are well defined on [0, T0].
Moreover, the mapping PXΣ,u (defined on a neighborhood of x0 as we said)

is differentiable with respect to x0. Let TPXΣ,u|x0 be this differential (it is well
defined as a linear mapping from Tx0

X to L∞([0, T0],R
m), T0 < Ty).

In fact, this differential TPXΣ,u|x0 is also the state-output mapping of another
system TXΣ , called the first (state) variation of Σ, with state space TX, the
tangent bundle of X (or on R

n × R
n)):

(1.3) (TXΣ)







ẋ = f(x, u),

ξ̇ = Dxf(x, u)ξ,
ŷ = dxh(x, u)ξ.

Here, (x, ξ) ∈ TX (or R
n × R

n) is the state of TXΣ.

1In fact, a y (·) ∈ L∞ (Rm) is an element of the usual space L∞
loc

([0, Ty[ , R
m) but the interval

[0, Ty[ depends on the element y (·). The same applies later to elements η (·) of L∞ (R).
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Let PTXΣ,u denote the state-output map of TXΣ. Then, the linear mapping ξ 7→
PTXΣ,u(x0, ξ) is the differential at x0, TPXΣ,u|x0, of the state-output mapping .

Now, for the purpose of explaining the main features of our identification the-
ory, we will define the input-state-output mapping, and the first (input-state-
output) variation of Σ2 in a similar way.

In fact, in our case, for systems Σ2 ∈ S2, we will be led to consider ϕ as an extra
control function, as we said, the (eventual) usual control u(·) remaining fixed.

Then, the input-state-output mapping is the mapping PXIΣ,u (or PXIΣ if there
is no control u)

PXIΣ,u : (x0, ϕ(·)) 7→ y(·),
which to the initial state x0 and the extra control function ϕ(·) associates the output
function.

Assume that PXIΣ,u : D ⊂ X × L∞(I) → L∞(Rm), is defined at a point
(x0, ϕ0) on the time interval [0, Ty[. Then, for all T < Ty, it is defined on an open
neighborhood of (x0, ϕ0) in X ×L∞([0, T ], I), and it is differentiable in the Frechet
sense at (x0, ϕ0) onX×L∞([0, T ], I). The differential is denoted by T(x0,ϕ0)PXIΣ,u.

The first (input-state-output) variation of Σ2 is the system TXIΣ,u,

(1.4) (TXIΣ,u) :







ẋ = f(x, u, ϕ0),

ξ̇ = Dxf(x, u, ϕ0)ξ +Dϕf(x, u, ϕ0)η
ŷ = dxh(x, u, ϕ0)ξ + dϕh(x, u, ϕ0)η,

with (variational) control η ∈ L∞(R).

If we take initial conditions (x0, ξ0) ∈ TX, and control functions ϕ0(·), u(·) as
above, then, the input-state-output mapping PTXIΣ,u of TXIΣ,u is the mapping:

(ξ0, η(·)) 7→ ŷ(·),
Tx0

X × L∞[R] → L∞[Rm].

This mapping also coincides (on the small enough finite time intervals [0, T ]
considered above) with the tangent mapping T(x0,ϕ0)PXIΣ,u.

1.7.6. k-jet extensions of state-output and input-state-output mappings. Let us con-
sider k-jets jkϕ̂, jkû, of smooth functions ϕ̂, û at t = 0,

ϕ̂ : [0, ε[→ I, û : [0, ε[→ U,

jkϕ̂ = (ϕ̂(0), ϕ̂′(0), ..., ϕ̂(k−1)(0)), jkû = (û(0), û′(0), ..., û(k−1)(0)).

Then, for any x0 ∈ X, the corresponding k-jet jkŷ = (ŷ(0), ŷ′(0), ..., ŷ(k−1)(0)) is
well defined, in such a way that the (extension to k-jets) mappings

ΦΣ1

k : (x0, j
kû) 7→ jkŷ; X × U × R

(k−1)p → R
km,

ΦΣ2

k : (x0, j
kû, jkϕ̂) 7→ jkŷ; X × (U × R

(k−1)p) × (I × R
(k−1)) → R

km,

are continuous. We call these mappings ΦΣ1

k , ΦΣ2

k the k-jets state-output map-
pings, (resp. k-jets input-state output mappings) associated to Σ1 ∈ S1

(resp. Σ2 ∈ S2).
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2. Observation theory

2.1. Definitions . In this section, the relevant set of systems is S1, i.e. there is no
unknown function ϕ.

We summarize the main observability results of the observation theory developed
in [8].

We are not very precise in definitions and results with the explosion times, in-
tervals of definitions of input and output functions, but everything is natural, and
details can be found in [8].

Definition 1. The system Σ1 = (f1, h1) is said uniformly observable, or just
observable, w.r.t. a certain class C of inputs (L∞(U) in most cases) if, for each
u(·) ∈ C, the state output mapping PXΣ,u is injective.

Observability means that we can reconstruct the complete information about the
system (i.e. the full state trajectory x(·)), from the knowledge of the input-output
data (u(·), y(·)).

Injectivity is not a very tractable property, since it is not stable (even for standard
mappings between finite dimensional spaces -example: x 7→ x3,R → R which may
lose injectivity under perturbation by arbitrary small functions) Therefore, in order
to state results, we need a few other definitions.

Notice also that, the bigger the class C, the more restrictive observability prop-
erty. For example, L∞(U)-observability is very strong, and implies observability
in the Ck class, k = 0, ..,∞, ω. A major property of Cω (analytic) systems is the
following, that expresses that in fact, no matter the class:

Theorem 1. [8, page 56] For Cω systems, Cω observability implies L∞ observ-
ability.

This theorem is in fact very hard to prove.

For usual smooth mappings between finite dimensional spaces, a way to make
the injectivity property stable is to add the requirement of infinitesimal injectivity
(i.e. injectivity of all the tangent mappings). This is done for the study of differ-
ential mappings in differential topology. In the same spirit, let us define uniform
infinitesimal observability.

Definition 2. System Σ1 is said uniformly infinitesimally observable if, for each
u(·) ∈ L∞(U), each x0 ∈ X, all the tangent mappings TPXΣ1,u|x0 are injective.
By Section 1.7.5, it is equivalent to require that the state-output mappings PTXΣ1,u

of the first variation of Σ1 are injective.

Another way to be more effective is to “pass to k-jets”:

Definition 3. System Σ1 is said differentially observable (of order k) if for all jkû,

the extension to k-jets mapping ΦΣ1

k : x0 7→ jkŷ; X → R
km is injective.

Again, this definition will become more effective if one adds an “infinitesimal
injectivity” requirement:

Definition 4. System Σ1 is said strongly differentially observable (of order k) if

for all jkû, the extension to k-jets mapping ΦΣ1

k,jkû
: x0 7→ jkŷ; X → R

km is an

injective immersion (immersion means that all the tangent mappings Tx0
ΦΣ1

k,jk û
to

this map, have full rank n at each point).
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Clearly, strong differential observability implies differential observability, which
implies observability for the C∞ class, which -for analytic systems- implies L∞-
observability by Theorem 1.

It is also a consequence of the theory that -for analytic systems- uniform infin-
itesimal observability implies observability of the restrictions of Σ1 to small open
subsets of X, the union of which is dense in X (but this is a priori non-obvious).

2.2. The generic case. We consider here the case where m > p (i.e. the number
of outputs is strictly larger than the number of inputs). Then in that case, strong
differential observability is generic:

Theorem 2. [8, page 40]. a).The set of systems that are strongly differentially
observable of order 2n+ 1 is residual in S1;

b) The set of analytic strongly differentially observable systems (of order 2n+1)
that are moreover L∞-observable is dense in S1.

For people who know about these topics, it could seem that b) is a consequence
of a) and of Theorem 1, using some general result of “approximation of smooth by
analytic”. It is not at all the case, and this part b) is difficult in itself.

This theorem has a nice consequence:

Theorem 3. The following is a generic (residual) property on S1 : Set k = 2n+1.
For all sufficiently smooth u(·), set jku(t) = (u(t), u̇(t), ..., u(k−1)(t)). Chose an

arbitrarily large relatively compact open subset Γ of X, and an arbitrary bound on

u, u̇, ..., u(k), the control and its first k derivatives. Then the mappings ΦΣ1

k,jku
:

x(t) 7→ (y, ẏ(t), ..., y(k−1)(t)) are smooth injective immersions that map the trajec-
tories of the system Σ1 (restricted to Γ) to the trajectories of the following system:

y = z1,(2.1)

ż1 = z2,

.

.

żk−1 = zk,

żk = ϕK(z1, ..., zk, u, u̇, ..., u
(k)).

A system under the form (2.1) is called a “phase-variable representation” (of
order k). It means that, in restriction to a compact subset K of X,

y(k) = ϕK(y, ..., y(k−1), u, u̇, ..., u(k)).

Theorem 3 claims that, generically, in restriction to (arbitrarily large) compact
subset, a system Σ1 ∈ S1 can be embedded into a phase-variable one, and the state
x(t) of Σ1 can be recovered from the state z(t) of (2.1), by the inverse mapping of

ΦΣ1

k,jku
, which is also smooth.

Of course, if we consider (u, u̇, ..., u(k)) = v as the control, systems of the form
(2.1), y(k) = ϕK(y, ..., y(k−1), v), are observable, strongly differentially observable,
uniformly infinitesimally observable. Hence, if m > p, (and for sufficiently smooth
inputs), generic systems are subsystems of other systems that are very good from
the point of view of observability.
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2.3. The nongeneric case m ≤ p.

2.3.1. The canonical flag. In this discussion, we will restrict to the case where
m = 1, p ≥ 1. Results for m > 1 are less clear. We will restrict also to analytic
systems in S1, but this is a purely technical assumption that can be avoided.

Associated to Σ = (f, h) ∈ S1, we may define the canonical flag D(u) of
distributions as follows:

D(u) = {D0(u) ⊃ D1(u) ⊃ ... ⊃ Dn−1(u)},(2.2)

D0(u) = Ker(dxh), Dk+1(u) = Dk(u) ∩Ker(dxL
k+1
f h),

where Lfh is the Lie derivative of the function h w.r.t. the vector field f, the control
u being considered as fixed.

The flag D(u) is a flag of possibly singular distributions, depending on the value
of the control u.

If the distributions Di(u) have constant rank n − i− 1 and are independent of
u, then, the canonical flag D(u) is said to be uniform.

Theorem 4. [8, page 22]The system Σ has a uniform canonical flag if and only
if, for all x0 ∈ X, there is a coordinate neighborhood of x0, (Vx0 , x), such that, in
these coordinates, the system Σ|Vx0

(Σ restricted to Vx0) can be written as:

y = h(x1, u);(2.3)

ẋ1 = f1(x1, x2, u),

ẋ2 = f2(x1, x2, x3, u),

...

ẋn−1 = fn−1(x1, x2, .., xn, u),

ẋn = fn(x1, x2, ..., xn, u),

where moreover

(2.4)
∂h

∂x1
and

∂fi

∂xi+1
, i = 1, .., n− 1,

are never zero on Vx0
× U.

The property to have a uniform canonical flag is highly non-generic (it has codi-
mension ∞).

It is easily seen from this normal form that, if a system Σ has a uniform canonical
flag, then, when restricted to neighborhoods Vx0

× U where it is under the normal
form (2.3, 2.4), it is infinitesimally observable, observable, and differentially
observable of order n.

2.3.2. Characterization of uniform infinitesimal observability. The main result is
the following: a necessary condition for a system Σ to be uniformly infinitesimally
observable, is that, on an open-dense subset of X, it has a uniform canonical flag.

Theorem 5. If Σ is uniformly infinitesimally observable, then, on the complement
of a subanalytic subset of X of codimension 1, Σ has a uniform canonical flag.

In other term, the canonical form (2.3, 2.4) characterizes uniform infinitesimal
observability.
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2.3.3. Control affine case. In the control affine case, where Σ can be written:

y = h(x);(2.5)

ẋ = f(x) +

p
∑

i=1

gi(x)ui,

there is a stronger result. Set Φ = (h, Lfh, ..., L
n−1
f h), Φ : X → R

n. First, it is an
elementary exercise to show that, if Σ is observable, then Φ has to have maximum
rank n on an open dense subset V of X. Then, consider any subset W ⊂ X in
restriction to which Φ is a diffeomorphism.

Theorem 6. Assume that Σ is observable. Then, the restriction Φ|W maps Σ into
a system of the form:

y = x1;(2.6)

ẋ1 = x2 +

p
∑

i=1

g1,i(x1)ui,

ẋ2 = x3 +

p
∑

i=1

g2,i(x1, x2)ui,

.

.

ẋn−1 = xn +

p
∑

i=1

gn−1,i(x1, x2, .., xn−1)ui,

ẋn = ψ(x) +

p
∑

i=1

gn,i(x1, x2, .., xn−1, xn)ui.

Conversely, if a system is under the form (2.6) on an open subset Ω ⊂ R
n, then it

is observable.

This normal form (2.6) is of course a special case of the uniform infinitesimal
observability canonical form (2.3, 2.4).

Notice that both theorems 5, 6 have a global character: they are local almost
everywhere w.r.t. x, but global w.r.t. u. For this reason, proof of Theorem 5 is not
that easy.

3. Identification theory

We will restrict to the uncontrolled case, i.e. our systems Σ3 = (f, h) ∈ S3 are
of the form:

(3.1) Σ3 :

{

y = h(x, ϕ(x));
ẋ = f(x, ϕ(x)),

with ϕ : X → I, i.e. there is no control, and a single function to identify. These
are the results presented in [4]. But now, we already have results for more general
systems, with controls, and with several ϕ′s.

The results of our identifiability theory are very comparable to the results of
Section 2 above.
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3.1. Definitions. We will give several definitions of identifiability, starting form
a general natural one, but not very tractable. In our definitions, as we said, ϕ(·)
will not be considered as a function of x, but as an extra input, function of the
time t. Some of these definitions are with respect to the class of functions ϕ(·) that
are measurable bounded only (although, ϕ(x(t)) is smooth, and even analytic in t
if Σ3 is analytic). This choice (of a largest class of ϕ′s) is in fact justified by the
following property: if a system -analytic- is identifiable (or uniformly infinitesimally
identifiable) in the sense defined below, for Cω inputs ϕ(t), then it is also identifiable
in the same sense, for general L∞ inputs. This is discussed in details in our paper
[4], and in the paper to appear [3].

In presence of controls u (for systems in S2, which we do not address here),
the natural class for the ϕ’s as functions of t is the class of absolutely continuous
functions: ϕ(x) is smooth and x(t) is absolutely continuous.

Definition 5. The system Σ ∈ S3 is said identifiable at y(·) ∈ C∞[0, Ty[, if there is
at most a single couple (x0, ϕ(·)), with ϕ(·) ∈ C∞[0, Ty[, such that, for all t ∈ [0, Ty[,

PXIΣ(x0, ϕ)(t) = y(t).

Σ is said identifiable if it is identifiable at all y(·) ∈ C∞[0, Ty[.

In other terms, Σ is identifiable if its input-state-output mapping is injective.

Now, let us consider ΦΣ
k : X × I × R

(k−1) → R
km, the k-jet input-state output

mapping of Σ, (x0, j
kϕ̂) 7→ jkŷ.

Definition 6. The system Σ is said differentially identifiable of order k, if,

ΦΣ
k (x1

0, j
kϕ̂1) = ΦΣ

k (x2
0, j

kϕ̂2)

implies that (x1
0, ϕ̂

1(0)) = (x2
0, ϕ̂

2(0)).

This property is weaker than the injectivity of ΦΣ
k . It means that all couples

(initial state, value of ϕ) are distinguished between them by the observations and
their k − 1 first derivatives. But, it may happen that certain couples (x0, j

kϕ̂) are
not distinguished between them.

For the purpose of getting a genericity result similar to Theorem 2 for observ-
ability, this is the adequate notion. (one could think that the injectivity of ΦΣ

k is
the right notion for this purpose, but it is never generic).

Also, the following is more or less obvious:

Theorem 7. Differential identifiability at some order implies identifiability.

Now, we will define the infinitesimal notion of identifiability.
We consider TXIΣ, the first input-state-output variation of Σ ∈ S3, and its

input-state-output map PTXIΣ,

(ξ0, η(·)) 7→ ŷ(·),
Tx0

X × L∞[R] → L∞[Rm].

It is equivalent to consider the tangent mapping T(x0,ϕ0)PXIΣ of the input-state-
output mapping PXIΣ of Σ.

Definition 7. Σ is said uniformly infinitesimally identifiable if, for all (x0, ϕ0(·)) ∈
X×L∞[I], the tangent mapping PTXIΣ is injective (as a mapping Tx0

X×L∞([0, t],R)
→ L∞([0, t],Rm), for all t < Ty0

, where y0(·) ∈ L∞(Rm) is defined on [0, Ty0
[).
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That is, uniform infinitesimal identifiability means that all the tangent mappings
to the input-state-output mapping are injective.

It will be a consequence of the theory that (in all the cases under consideration)
uniform infinitesimal identifiability implies identifiability of the restrictions of the
system to certain small open subsets of X× I, the union of which is dense in X× I.

3.2. The generic case. We have the fundamental following result, comparable to
Theorem 2 for observability.

Theorem 8. If the number of outputs m is larger or equal to 3, then, differential
identifiability of order 2n+ 1 is a generic property. In particular, identifiability is
a generic property.

Of course, this theorem is false if m = 1, 2. On the contrary, identifiability
becomes a property of infinite codimension.

3.3. The nongeneric cases m = 1, 2. Again here, and also for purely technical
reasons, we consider systems that are analytic only.

3.3.1. The single output case. We denote by Lf (or Lfϕ
, when ϕ is fixed) the Lie-

derivative operator on X. Also, fϕ denotes the vector field f(., ϕ), for ϕ ∈ I, and
hϕ : X → R is the map h(., ϕ).

Theorem 9. If Σ is uniformly infinitesimally identifiable, then, there is a suban-
alytic closed subset Z of X, of codimension 1 at least, such that on the open dense
set X\Z, the following two equivalent properties 1 and 2 below hold:

1.a. ∂
∂ϕ

{

(Lfϕ
)khϕ

}

≡ 0, for k = 0, ..., n − 1, b. ∂
∂ϕ

{

(Lfϕ
)nhϕ

}

6= 0 (in the

sense that it never vanishes), c. dxhϕ ∧ ... ∧ dxL
n−1
fϕ

hϕ 6= 0,

2. any x0 ∈ X\Z has a coordinate neighborhood (x1, ...., xn, Vx0
), Vx0

⊂ X\Z
in which Σ (restricted to Vx0

) can be written:

(3.2)







































ẋ1 = x2,
ẋ2 = x3,

.

.
ẋn−1 = xn,
ẋn = ψ(x, ϕ);

y = x1;

where ∂
∂ϕ
ψ(x, ϕ) never vanishes.

This theorem has the following pseudo-converse:

Theorem 10. Assume that Σ meets the equivalent conditions of the previous the-
orem.

Then, any x0 has a neighborhood Vx0
such that the restriction Σ|Vx0

of Σ to Vx0

is uniformly infinitesimally identifiable, identifiable and differentially identi-
fiable of order n+ 1.

Notice that, again, Theorem 9 has a global character: it is almost everywhere
on X, but it is global with respect to ϕ ∈ I.
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3.3.2. The two-output case. Let us first state the results in a non invariant way.

Theorem 11. If Σ is uniformly infinitesimally identifiable, then, there is an open-
dense subanalytic subset Ũ of X × I, such that each point (x0, ϕ0) of X × I, has a
neighborhood Vx0

× Iϕ0
, and coordinates x on Vx0

such that the system Σ restricted
to Vx0

× Iϕ0
, denoted by Σ|Vx0

×Iϕ0
, has one of the three following normal forms:

-type 1 normal form: (in that case, n > 2k)

y1 = x1, y2 = x2,(3.3)

ẋ1 = x3, ẋ2 = x4,

..

ẋ2k−3 = x2k−1, ẋ2k−2 = x2k,

ẋ2k−1 = f2k−1(x1, ..., x2k+1),

ẋ2k = x2k+1,

..

ẋn−1 = xn,

ẋn = fn(x, ϕ), with
∂fn

∂ϕ
6= 0 (never vanishes),

-type 2 normal form:

y1 = x1, y2 = x2,(3.4)

ẋ1 = x3, ẋ2 = x4,

..

ẋ2r−3 = x2r−1, ẋ2r−2 = x2r,

ẋ2r−1 = Φ(x, ϕ), ẋ2r = F2r(x1..., x2r+1,Φ(x, ϕ)),

ẋ2r+1 = F2r+1(x1..., x2r+2,Φ(x, ϕ)),

..

ẋn−1 = Fn−1(x,Φ(x, ϕ)),

ẋn = Fn(x, ϕ),

with ∂Φ
∂ϕ

6= 0, ∂F2r

∂x2r+1
6= 0, ...., ∂Fn−1

∂xn
6= 0,

-type 3 normal form:

y1 = x1, y2 = x2,(3.5)

ẋ1 = x3, ẋ2 = x4,

..

ẋn−3 = xn−1, ẋn−2 = xn,

ẋn−1 = fn−1(x, ϕ), ẋn = fn(x, ϕ),

where (∂fn−1

∂ϕ
, ∂fn

∂ϕ
) never vanishes.

Notice that the type 2 normal form 3.4 is very comparable to the observability
normal form (2.3, 2.4).

Now, we will give the intrinsic characterization of the conditions “type 1, type
2, type 3”.
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We define two integers r and k, attached to a two-output system Σ ∈ S3. The
first one r is called the order of the system. It is the first integer such that dϕL

r
fh

does not vanish identically on X × I.
Set h = (h1, h2).
Let N(l) be the rank at generic points of X × I of the family El of one-forms

on X :

El = {dxhi, dxLfhi, ..., dxL
l−1
f hi, i = 1, 2}.

Set N(0) = 0.

This set of generic points Ul, is the intersection of the open sets Ũi, i ≤ l, where
Ei has maximal rank. Ul is semianalytic, open and dense in X × I. Moreover,
Ul+1 ⊂ Ul.

It is easy to check that N(l) increases strictly by steps of 2, up to l
def.
= k, and

after, (eventually), it increases by steps of 1 up to l
def.
= lM , N(lM ) ≤ n.

It may happen that k = 0, i.e. N(1) = 1.

Lemma 1. If Σ is uniformly infinitesimally identifiable, then, N(lM ) = n and
r ≤ lM .

Definition 8. A system Σ is regular if N(lM ) = n and r ≤ lM .

Lemma 1 says that, if a system is uniformly infinitesimally identifiable, then it
is regular. From now on, in this section, we will assume that systems Σ under
consideration are regular.

The integer k is the first with the following properties:

dxh1 ∧ dxh2 ∧ dxLfh1 ∧ ... ∧ dxL
k
fh1 ∧ dxL

k
fh2 ≡ 0, but

dxh1 ∧ dxh2 ∧ dxLfh1 ∧ ... ∧ dxL
k−1
f h1 ∧ dxL

k−1
f h2 6= 0 (not identically zero).

If r = k, there are three possibilities:

A. n = 2k;

B.
B.1.

dxh1 ∧ dxh2 ∧ dxLfh1 ∧ ... ∧ dxL
k−1
f h2 ∧ dxL

k
fh1 6= 0

(hence n > 2k) and dϕL
k
fh2 6= 0; or,

B.2.

dxh1 ∧ dxh2 ∧ dxLfh1 ∧ ... ∧ dxL
k−1
f h2 ∧ dxL

k
fh2 6= 0

(hence n > 2k) and dϕL
k
fh1 6= 0;

C.
C.1

dxh1 ∧ dxh2 ∧ dxLfh1 ∧ ... ∧ dxL
k−1
f h2 ∧ dxL

k
fh1 6= 0

(hence n > 2k) and dϕL
k
fh2 ≡ 0, dxh1∧dxh2∧dxLfh1∧ ...∧dxL

k−1
f h2∧dxL

k
fh2 ≡ 0,

or
C.2

dxh1 ∧ dxh2 ∧ dxLfh1 ∧ ... ∧ dxL
k−1
f h2 ∧ dxL

k
fh2 6= 0

(hence n > 2k) and dϕL
k
fh1 ≡ 0, dxh1∧dxh2∧dxLfh1∧ ...∧dxL

k−1
f h2∧dxL

k
fh1 ≡ 0
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Definition 9. Let Σ be a regular system. We say that Σ has:
-type 1 if r > k, or r = k but C. is satisfied,
-type 2 if r < k, or r = k but B. is satisfied,
-type 3 if r = k and A. is satisfied.

Lemma 2. Types 1, 2 and 3 exhaust the class of regular systems, and form a
partition of this class.

Type 2 regular systems:
For a regular system of type 2, eventually interchanging the role of h1, h2, we

can assume that dϕL
r
fh2(x, ϕ) 6= 0. In a neighborhood of a point (x0, ϕ0) ∈ UlM ,

such that Lr
fh2(x0, ϕ0) = u0 and dϕL

r
fh2(x0, ϕ0) 6= 0, there is an analytic function

Φ∗(x, u), such that Lr
fh2(x,Φ

∗(x, u)) = u. Let us consider the “auxiliary system”
ΣA :

ΣA

{

ẋ = f(x,Φ∗(x, ϕ̃)) = F (x, ϕ̃)
y = h(x,Φ∗(x, ϕ̃)) = H(x, ϕ̃).

This system is well defined and intrinsic, over an open set Vx0
× Vu0

⊂ X × R.

By construction, the integer r (the order) associated with this auxiliary system
is the same as the one of the given system Σ.

Moreover, the following flags D and DA of integrable distributions over Vx0
:

D0(x) = TxX, D1(x) = Ker(dxh(x)), ...Dr(x) = Dr−1(x) ∩Ker(dxL
r−1
f h(x)),

D = {D0 ⊃ D1 ⊃ ... ⊃ Dr};

and

DA
0 (x) = TxX, D

A
1 (x) = Ker(dxH(x)), ...DA

r (x) = DA
r−1(x) ∩Ker(dxL

r−1
F H(x)),

DA = {DA
0 ⊃ DA

1 ⊃ ... ⊃ DA
r },

are equal.

Let us “prolong” the auxiliary flag DA, in the following way:

DA
r+1(x, ϕ̃) = DA

r (x) ∩Ker(dxL
r
FH1(x, ϕ̃)),

DA
i+1(x, ϕ̃) = DA

i (x) ∩Ker(dxL
i
FH1(x, ϕ̃)),

DA(ϕ̃) = {DA
0 ⊃ DA

1 ⊃ .. ⊃ DA
r ⊃ DA

r+1(ϕ̃) ⊃ .. ⊃ DA
l (ϕ̃) = DA

l+1(ϕ̃)},

where l is the first integer such that DA
l (x, ϕ̃) = DA

l+1(x, ϕ̃) at generic points.

Definition 10. The auxiliary flag DA(ϕ̃) is regular on an open subset U ⊂ X× I,
if DA

l (ϕ̃) = {0}, and all the other DA
i (ϕ̃) have constant rank first n − 2i (i ≤ r),

second n− r − i (r < i < l), third, 0 (i ≥ l = n− r); on this open set.

Definition 11. The auxiliary flag DA(ϕ̃) is uniform on an open subset U ⊂ X×I,
if it is regular, and independent of ϕ̃.

This property of having a uniform auxiliary flag (for identifiability) is the equiv-
alent of having a uniform canonical flag for observability: it is the necessary (and
almost sufficient condition) for uniform infinitesimal identifiability (type 2):
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Theorem 12. (Normal form for a uniform auxiliary flag) A system Σ has
a uniform auxiliary flag around (x0, ϕ0), iff there is a neighborhood Vx0

× Iϕ0
of

(x0, ϕ0), and coordinates on Vx0
such that Σ can be written:

y1 = x1, y2 = x2,

ẋ1 = x3, ẋ2 = x4,

..

ẋ2r−3 = x2r−1, ẋ2r−2 = x2r,

ẋ2r−1 = Φ(x, ϕ), ẋ2r = F2r(x1..., x2r+1,Φ(x, ϕ)),

ẋ2r+1 = F2r+1(x1..., x2r+2,Φ(x, ϕ)),

..

ẋn−1 = Fn−1(x,Φ(x, ϕ)),

ẋn = Fn(x, ϕ),

with ∂Φ
∂ϕ

6= 0, ∂F2r

∂x2r+1
6= 0, ...., ∂Fn−1

∂xn
6= 0.

Theorem 13. (intrinsic result in the 2-output case) If Σ is uniformly in-
finitesimally identifiable, (hence regular), then, there is an open-dense subanalytic

subset Ũ of X × I, such that at each point (x0, ϕ0) of Ũ , Σ has the following prop-
erties, on a neighborhood of (x0, ϕ0):

-If Σ has type 2, the auxiliary flag is uniform,
-If Σ has type 1, then, N(r) = n.

This theorem is in fact equivalent to Theorem 11.
These two equivalent theorems (Theorems 13, 11) have a weak converse:

Theorem 14. Assume that Σ satisfies the equivalent conditions of theorems 13,
11, on some subset Vx0

× Iϕ0
of X × I (so that, taking Vx0

, Iϕ0
small enough, the

restriction Σ|Vx0
×Iϕ0

has one of the three normal forms above on Vx0
× Iϕ0

). Then,

in case type 1, type 2, (normal forms 3.3, 3.4) Σ|Vx0
×Iϕ0

is uniformly infinitesimally

identifiable and identifiable. In case type 3 (normal form 3.5), this is also true,
eventually restricting the neighborhoods Vx0

, Iϕ0
.

Also, in the special case of type 1, there is a stronger result:

Theorem 15. Assume Σ is uniformly infinitesimally identifiable, (hence regu-

lar). Assume that Σ has type 1. Then, there is an open-dense subanalytic subset X̃

of X, such that each point x0 of X̃, has a neighborhood Vx0
, and coordinates x on

Vx0
such that the system Σ restricted to Vx0

× I, denoted by Σ|Vx0
, has the normal

form 3.3 (globally over Vx0
× I). Conversely, if it is the case, then, the restriction

Σ|Vx0
is uniformly infinitesimally identifiable and identifiable.

4. Observer and identifier design

4.1. Observer design. Here, mainly, we recall the results of [8], and of the paper
[5]. We add an improvement that makes the strategy proposed in [5] effective for
uniformly infinitesimally observable systems, i.e. systems in normal form (2.3, 2.4).
This improvement uses a crucial observation of Hammouri et al., in [9].
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4.1.1. Luenberger-type high-gain observers. We present the basic construction of
high gain observers. It works for general uniformly infinitesimally observable sys-
tems in normal form (2.3, 2.4). As a consequence, it works also for control affine
systems in the normal form (2.6), or for systems in phase-variable representation
(2.1), (therefore, it works in all cases -generic or not- of “observable” systems ex-
hibited by the theory). In the 2 last cases, the construction is more explicit than
in the case of Normal-form (2.3, 2.4).

Let us consider a system on R
n, which is globally under the form (2.3, 2.4), or

under the affine normal form (2.6), or under the phase-variable form:

y = Cx = x1,(4.1)

ẋ1 = x2, ...., ẋN−1 = xN ,

ẋN = ψ(x, u);

In that case, we may have several outputs (i.e. m > 1, each xi ∈ R
m, n = Nm),

and the control in the normal form (2.1), that was (u, u̇, ..., u(N)) is now denoted
by u. This practically means that the observer system will be fed not only by the
control, but also by certain of its derivatives.

We will make the following technical assumptions, that will be discussed below:
Assumptions (A):
Case of Normal-form (2.3, 2.4):

A1. 0 < α ≤ ∂h
∂x1

≤ β, 0 < α ≤ ∂fi

∂xi+1
≤ β, i = 1, ..., n− 1

A2. Each of the maps fi, i = 1, ..., n− 1, is globally Lipschitz w.r.t. (x1, ..., xi)),
uniformly w.r.t. u and xi+1.

A3. The control u is bounded,
Case of Normal-forms (2.6) and (4.1):
A1. The control u (and a certain number of first derivatives of u, if any) is

bounded
A2. All the functions ψ, gi,j appearing in the normal forms are compactly sup-

ported.

Comment 1 about these assumptions:
The assumption that u is bounded, seems to be a non avoidable requirement. In

fact, since we assumed U compact, it is automatically satisfied. We recall it here
for clarity. Also, in the case of a phase variable representation 2.1, it means that
certain derivatives of u have to be bounded.

Comment 2 about these assumptions:
The other assumptions can be always realized, provided that we restrict the

observation problem to a compact subset K ⊂ X (which means that we want to
estimate the state x(t) of Σ as long as the trajectory x(t) remains in K only).

Indeed:
1. in the case of Normal forms (2.6) and (4.1), all the functions under consid-

eration can be multiplied by a smooth cut-off function, which is equal to one on
K;

2. in the case of Normal-form (2.3, 2.4), h and f can be smoothly prolonged
outside K, for they satisfy A1, A2. (This last point is not immediate, and it is
shown in [8]).
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Under these assumptions, let us consider another system of the form:

(4.2)
dx̂

dt
= f(x̂, u) − ∆θΩ(h(x̂, u) − y(t));

where Ω is a certain constant n×m matrix, θ is a real parameter, and ∆θ is the
block-diagonal matrix:

∆θ = block-diag(θIdm, ..., θ
NIdm).

Here, Idm denotes the m ×m identity matrix, and m = 1 in other cases than
(4.1).

Theorem 16. There is an Ω with the following properties: for all β̂ > 0, there exists
a θ (large enough), such that, whatever x̂(0), the solution x̂(t) of (4.2) satisfies:

||x̂(t) − x(t)|| ≤ k(β̂)e−β̂t||x̂(0) − x(0)||,
as long as x(t) remains in K. The function k(·) has polynomial growth.

Remark 2. The function k having polynomial growth, it implies that the “estima-
tion error” ||x̂(t) − x(t)|| can be made arbitrarily small in arbitrary short time (a
polynomial against an exponential).

The construction of the matrix Ω is not so hard in the case (2.3, 2.4), See [8]. It
is specially simple in the cases (2.6), (4.1): any Ω such that (A − ΩC′) is Hurwitz
does the job (where (A,C) is the canonical linear system in Brunowsky form).

This very simple “luenberger-type” observer shows already good performances
in many cases. Since it is high-gain (θ is large, then the “correction gain” ∆θΩ
might be big), it may be sensitive to noise.

4.1.2. Kalman-filter type high-gain observers. The high-gain extended Kalman fil-
ter is another solution of high-gain type. Since it is high gain, it might be also
sensitive to noise (although, very often, it works well in practice). It is related to
the classical extended Kalman filter, and it can be shown that (in a stochastic
context), it is a nonlinear filter with bounded variance (See [6]).

In [8] and in [5], it is applied to a less general class of nonlinear systems than the
Luenberger high-gain observer. In Section 4.1.4 below, we will show how to apply
it to the same class of systems. But in this section, let us stay at the level of the
results of [8] and [5].

We assume that the system Σ ∈ S1 is (on R
n) in normal form (2.6), or more

generally in the following (multi-output) normal form:

y = Cx = x1,(4.3)

ẋ1 = Ax+ b(x, u),

where C : R
n → R

m, C = (Idm, 0, ..., 0), where A is the Nm × Nm = n × n
block-antishift matrix:

A =

















0 Idm 0 . . 0
0 0 Idm 0 . 0
. . . . . .
. . . . . .
0 . . . 0 Idm

0 0 . . . 0

















,
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and where x = (x1, ..., xN ), xi ∈ R
m, and b(x, u) is lower block-triangular: the ith

component bi depends only on (x1, ..., xi).
Notice that this normal form includes the case (2.1), (4.1) of a phase-variable

representation.

The only case of observable systems which is not covered by this normal form
is the “uniform infinitesimal observability normal form” (2.3, 2.4). But, as we said,
we will remedy to this in Section 4.1.4.

Again, we need additional technical assumptions:
Assumption B:
B1. the components (x, u) 7→ bi(x, u) are compactly supported with respect to

all their respective arguments;
B2. u is bounded (void assumption if u ∈ U which is assumed to be compact,

but non void assumption if u = (u, u̇, ..., u(k)) for a phase-variable representation).

Remark 3. As in the previous section 4.1.1, the assumption B1 can be realized
by smooth prolongation of b out of any compact subset K ⊂ X × U. In that case,
the observer we construct will work as long as the trajectories x(t) of the system
remain inside K.

Consider the Kalman-type equations:

dS

dt
= −(A+Dx̂b(x̂, u))

′S − S(A+Dx̂b(x̂, u)) + C′r−1C − SQθS,(4.4)

dx̂

dt
= Ax̂ + b(x̂, u) − S−1C′r−1(Cx̂ − y).

Here, Qθ = θ2∆−1Q∆−1, ∆ = block-diag(Idm,
1
θ
Idm, ..., (

1
θ
)N−1Idm). Here, θ

is a real parameter. The matrix S, as usual, lies in the cone of symmetric positive
definite matrices. This equation is called the “high-gain extended Kalman filter”.
If θ = 1, it is just the standard Extended Kalman filter equation, and in a stochastic
context, Q and r (both symmetric positive definite) are the covariance matrices of
the state and output noise respectively.

Theorem 17. Let x(t), t ≥ 0 be a semi-trajectory of (4.3). Let θ be large enough.
Let x̂(0), S(0) (positive definite) be initial conditions for (4.4). Let x̂(t), S(t) be the
corresponding semi-trajectories (t ≥ 0). Then:

a. S(t) remains in a compact subset of the cone of positive definite symmetric
matrices,

b. for all β > 0, there is a θ (large), such that:

||x̂(t) − x(t)|| ≤ H(S(0))k(β)e−βt||x̂(0) − x(0)||,

where H is a smooth mapping, and k is a function with polynomial growth.

Again, the exponential against the polynomial ensure that the estimation error,
||x̂(t) − x(t)|| can be made arbitrarily small in arbitrary short time.
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4.1.3. A mixed solution. We present here the version of the extended Kalman filter
proposed in [5], that mixes the standard extended Kalman filter and the high-gain
extended Kalman filter of the previous section.

We obtain an observer with the following properties:
a) in presence of big disturbances (state jumps), it has the high-gain behavior:

the estimation error can be made arbitrarily small very quickly;
b) when the error is small, it behaves as the regular extended Kalman filter (good

performances w.r.t. noise).

This observer behaves extremely well in practice, as we will show in Section 5
on a non-academic example, and it can be also used for identification, as explained
in section 4.2.

We consider exactly the same class of systems on R
n, globally in normal form

(4.3), as in the previous section 4.1.2, and meeting assumption B of this section.
Again, the compact support assumption for b, if not realized, can be obtained by
smoothly modifying b out of a large compact subset of X.

Then, the equations of the observer are:

dS

dt
= −(A+Dx̂b(x̂, u))

′S − S(A+Dx̂b(x̂, u)) + C′r−1C − SQθS,(4.5)

dx̂

dt
= Ax̂ + b(x̂, u) − S−1C′r−1(Cx̂ − y),

dθ

dt
= λ(1 − θ).

Now, θ is not constant anymore, hence we have an initial condition θ0, and λ is
a positive real, to be chosen not too large as we shall see.

Intuitively, this observer should behave like that:
a. When t → +∞, θ → 1, and then, the behavior of the observer for large t

is the same as the one of the usual extended Kalman filter (known as good w.r.t.
noise in practice 2).

b. On the contrary, if θ0 is large, when t is small, the behavior is the one of the
high-gain EKF: the error can be made arbitrarily small in arbitrary short time.

This is true, as stated in the following theorem:

Theorem 18. 1. For all 0 ≤ λ ≤ λ0, (λ0 a certain positive real), for all θ0 large
enough, (depending on λ), for all S0 ≥ c Id, for all K̄ ⊂ R

n, K̄ a compact subset,
for all ε0 = x̂0 − x0, ε0 ∈ K̄, the following estimation holds, for all τ ≥ 0.

Long term estimation:

||ε(τ)||2 ≤ R(λ, c)e−a τ ||ε0||2Λ(θ0, τ, λ),(4.6)

Λ(θ0, τ, λ), = θ0
2(n−1)+ a

λ e−
a
λ

θ0(1−e−λτ ),

where a > 0. c 7→ R(λ, c) is a decreasing function.
2. Set θ(T ) = 1+(θ0−1)e−λT . For all T > 0, τ ≤ T, for all θ0 ≥ θ̄0, θ̄0 a certain

positive real depending on λT , for a1, a2 certain positive constants, and with H(c), a

2No more than in practice: there is no theoretical result (but negative) on the stochastic
behavior of the EKF, even for small noise. See [16].
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certain decreasing positive function of c, where S(0) ≥ c Id, the following estimation
holds.

Short term estimation:

(4.7) ||ε(τ)||2 ≤ θ(τ)2(n−1)H(c)e−(a1θ(T )−a2)τ ||ε(0)||2.

This theorem has been proved in [5].

Comments.
a. Note that the function Λ(θ0, τ, λ) is a decreasing function of τ, and that, for

all τ > 0, λ > 0, Λ(θ0, τ, λ) can be made arbitrarily small, increasing θ0.
b. This means that, provided that λ is smaller than a certain constant λ0, and

θ0 is large in front of λ, the estimation error goes exponentially to zero, and can be
made arbitrarily small in arbitrary short time.

c. The asymptotic behavior of the observer is the one of the extended Kalman
filter,

d. The “short term behavior” is the one of the “high gain extended Kalman
filter”.

Practical implementation:
The problem with this observer is that its behavior is “time dependant”: for

small time, it is the high-gain EKF, and for large time it is the ordinary EKF.
A way to remedy this evil is to proceed as follows.

We consider a one parameter family {Oτ , τ ≥ 0} of observers of type (4.5),
indexed by the time, each of them starting from S0, θ0, at the current time τ. In
fact, in practice, it will be sufficient to consider, at current time t, a slipping window
of time, [t−T, t[, and a finite set of observers {Oti

, t−T ≤ ti ≤ t}, with ti = largest
multiple of T

N
smaller than t− (i− 1) T

N
, i = 1, ..., N.

As usual, we call the term I(τ) = ŷ(τ) − y(τ), (the difference at time τ be-
tween the estimate output and the real output), the “innovation”. Here, for each
observer Oti

,we have an innovation Iti
(τ).

Our suggestion (very natural and very simple), is to take as the estimate of
the state, the estimation given by the observer Oti

that minimizes a norm of the
innovation.

Let us analyze what will be the effect of this procedure in a deterministic setting:

1. Let us assume that there is no “jump” of the state. Then, clearly, the best
estimation will be given by the “oldest” observer in the window, OtN

. Then, the
error will be given by the “long term” and “short term” estimates at time T :

||ε(τ + T )||2 ≤ R(λ, c)e−a T ||ε(τ)||2Λ(θ0, T, λ),

||ε(τ + T )||2 ≤ θ(T )2(n−1)H(c)e−(a1θ(T )−a2)T ||ε(τ)||2.
a. If T is large enough, the asymptotic behavior will be the one of the “extended

Kalman filter”.
b. At the beginning, the transient is the one of the HGEKF.
c. the error can be made arbitrarily small in arbitrary short time, provided that

θ0 is large enough.
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2. If at a certain time we have a “jump” of the state, then, the innovation of
the “old observers” will become large. The “youngest” one will be chosen, and the
transient will be the same as the one of the HGEKF, first, and of the EKF, after
T.

4.1.4. The case of the uniform infinitesimal observability normal form (2.3). In
fact, the observer presented in the previous section can be also applied to uni-
formly infinitesimally observable systems, under the general normal form (2.3, 2.4),
provided that the control functions u(·) are (globally on [0,+∞[) Lipschitz functions
of the time. We will prove this now.

A first remark is that systems under this normal form (2.3, 2.4) are strongly dif-
ferentially observable of order n (this is easily checked). A consequence is that they
have a phase variable representation of order n (of type 2.1). This is a way to apply
the results of the previous section, but this method involves complicated changes
of coordinates, and above all, it uses the derivatives of the control u̇, ..., u(n)..

In fact, there is a way to transform systems in normal form (2.3, 2.4) into systems
in normal form (4.3), by using only u̇, the first derivative of the control.

Consider such a system Σ on R
n, and set:

(4.8) z = Φu(x) = (h(x, u), Lfh(x, u), ..., L
n−1
f h(x, u)).

Let K ⊂ R
n be any fixed open relatively compact subset. As previously in this

paper, we deal with semi-trajectories of Σ that remain in K, only. It follows from
(2.4) that, for all u ∈ U, Φu is an injective immersion (this is easily checked by
induction on the components of Φu). Therefore, Φu is a u-dependent diffeomorphism
from K onto its image. Consider the image Σ′ of the system Σ|K (Σ restricted to
K) by the time dependant diffeomorphism Φu. It is of the form:

y = z1,(4.9)

ż = F (z, u) +G(z, u)u̇,

and moreover, it is in fact in the form (4.3):

y = z1,(4.10)

ż = Az + Ḡ(z, u, u̇),

where A is the antishift matrix, and where Ḡ is smooth and depends in a triangular
way of z : Ḡ1(x1, u, u̇), ...

There is the very small difficulty that Ḡ is not defined on the whole of R
n×U×R

p,
and then, has to be smoothly prolonged to R

n×U×Ω, where Ω is a compact subset
of R

p (Ω : set of values of u̇, which we may take compact as will be justified below).
Moreover, this prolongation can be taken with compact support, in order to meet
assumption B1 of the two previous sections.

Consider any semi-trajectory x(·) : [0, T [ of Σ (possibly T = +∞), corresponding
to a Lipschitz control u, with Lipschitz constant Ku. Then u is absolutely continu-
ous, and its derivative is bounded by Ku (which explains that we may take Ω com-
pact: u̇ is bounded by the Lipschitz constant of u). Consider Z(t) = Φu(t)(x(t)).

Then, since x, u are absolutely continuous, Z(·) is also absolutely continuous.
But, by construction, Z(t) satisfies almost everywhere (4.10) and (4.9), provided
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that x(t) remains in K, which we assume. Then, Z(·) is the unique absolutely
continuous solution of (4.10), corresponding to the controls u, u̇, and the initial
condition z0 = Φu(0)(x0).

We have shown the following:

Lemma 3. For Lipschitz controls, (with given Lipschitz constant), semi-trajectories
of Σ that remain in K are mapped by Φu in the semi-trajectories of the systems
(4.9, 4.10).

Then, at the price of using the first derivative of u, the EKF and the “mixed” ob-
server of the previous section 4.1.3, can be used for general uniformly infinitesimally
observable systems.

This observation, in fact, comes from the paper [9] (where it is not stated pre-
cisely, but the idea is present).

4.2. Identifier design. In this section, we will remain in the context of Section
3, i.e. systems without controls. Nevertheless, the application considered in Sec-
tion 5 will concern systems with controls, but the effect of the controls will be
transparent, since the systems are in the normal forms studied previously (but
control-dependent).

The following simple single-output example shows that there is no chance to
avoid approximate differentiation for effective identification:

y = x1,(4.11)

ẋ1 = x2, .., ẋn−1 = xn,

ẋn = ϕ(x).

In fact, in this example, identifying (i.e. reconstructing the piece of the
graph of ϕ visited during the experiment) is just equivalent to differentiate
the output n times.

Also, we will not consider the generic case m ≥ 3, but only the cases correspond-
ing to m = 1 (normal form 3.2) and m = 2, systems of type 1,2,3.

Our basic idea is the same in all cases, and leads to the use of the nonlinear
observers developed in the previous section 4.1: we assume, along the trajectories
visited, a local model for ϕ. For instance, a simple local model is: ϕ(k) = 0.

This does not mean, at the end, that we will identify ϕ as a polynomial in t: the
question is not that this polynomial models the function ϕ globally as a function of
t, but only locally, on reasonable time intervals (reasonable w.r.t. the performances
of the observer that we will use).

4.2.1. The single output case. Let us consider a system Σ in the identifiability
normal form 3.2. Adding the local model for ϕ, we get the system:

y = x1,(4.12)

ẋ1 = x2, ..., ẋn−1 = xn,

ẋn = Ψ(x, ϕ1), ϕ̇1 = ϕ2, ..., ϕ̇k−1 = ϕk, ϕ̇k = 0,

∂Ψ

∂ϕ1
6= 0 (never vanishes).(4.13)
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This is a system on R
n+k, which is not controlled (however, for the considerations

that follow, Ψ could depend on a control u), and this system is under the normal
form (2.3, 2.4).

Therefore, we may apply the high gain Luenberger observer, or we may apply
the trick of the previous section 4.1.4. Then, for instance, the observer of Section
4.1.3 may be applied to this system. It will provide estimations of x(t), ϕ(t), that
is, just an estimation of the piece of the graph of ϕ visited during the experiment.
(It provides also estimations of ϕ̇, ..., ϕ(k), which we don’t care about).

4.2.2. The two-output case. The cases of normal forms (3.3), (3.4), (3.5), corre-
sponding to Type 1 to 3 systems can be treated in a similar way to the single-output
case, with some more or less easy adaptations of the methods of the previous sec-
tions.

Let us just consider one example: the case of a Type 2 system, with r = 0, which
is very illustrative, and goes directly back to the observation problem for uniformly
infinitesimally observable systems:

y1 = Φ(x, ϕ), y2 = h(x1,Φ(x, ϕ)),(4.14)

ẋ1 = F1(x1, x2,Φ(x, ϕ)),

..

ẋn−1 = Fn−1(x,Φ(x, ϕ)),

ẋn = Fn(x, ϕ),

with ∂Φ
∂ϕ

6= 0, ∂F1

∂x2
6= 0, ...., ∂Fn−1

∂xn
6= 0, ∂h

∂x1
6= 0.

In that case, Let us set Φ(x, ϕ) = Φ(t) (= y1(t)). Then, forgetting about y1, and
since Φx(ϕ) is an invertible function of ϕ for x fixed, we have the system:

y2 = h(x1,Φ(t))(4.15)

ẋ1 = F1(x1, x2,Φ(t)),

..

ẋn−1 = Fn−1(x,Φ(t)),

ẋn = Fn(x,Φ−1
x (Φ(t))).

The function Φ(t) being known, the identification problem is just the observation
problem for this new system, which is in uniform infinitesimal observability normal
form: having an estimate x̂(t) of the state, we get an estimate of ϕ(t) by ϕ̂(t) =
Φ−1

x̂(t)(y1(t)).

Then, we may apply the high-gain Luenberger observer (4.2), or at the price of
a single (approximate) differentiation of y1, we may apply again the observer of
section 4.1.3.

5. Application to a fluid catalytic cracker

A fluid catalytic cracker (FCC) is a process used in refineries to produce gasoline
from heavy petroleum residues.

The well known model of FCC used in this paper is adapted from [12]. It has
been used by several authors as an example of a highly nonlinear system with a
lot of strong interactions, see for instance [13, 14]. This model has already been
used by the first author, to study the performances of high gain observers, in [2].



OBSERVATION, IDENTIFICATION, APPLICATION TO A FCC UNIT. 25

A FCC unit, as depicted on Figure 1, is composed of a reactor and a regenerator.
The heavy petroleum residues feed the FCC by the bottom of the reactor (called
the riser). Long molecules are broken thanks to a catalyst, that circulates between
the reactor and the regenerator. When the long molecules are broken, carbon is
produced (coke), and is fixed on the catalyst, that becomes dirty. In the regenerator,
the coke on the catalyst is burned, regenerating the catalyst. The cracking reactions
inside the riser and the reactor are endothermic, and use the heat produced when
regenerating the catalyst. This “heat flowrate” is driven from the regenerator to
the riser of the reactor, by the flow of regenerated catalyst.

Therefore it is clear that the thermal balance between the reactor and the regen-
erator results in a strong coupling between these two parts, that affects crucially
the behavior of the unit.

5.1. Description of the model, and purpose of the study. Our model is
closely related to the Kurihara model [12], as described in [14] for dynamic opti-
mization. The Kurihara FCC model has also been used in [2] in order to estimate
the “carbon Conradson factor” Fcf , an important parameter from the point of view
of operation: it characterizes in some sense the propensity of the catalyst to become
inefficient. In particular, it becomes worse when the catalyst is old, and it is not
very well known. Our first objective here, will be also the estimation of
this parameter Fcf .

But here, we will use less measurements than in [2]: indeed, we will only use
temperature measurements, from both the reactor and the regenerator. We will
not use the measurement of the carbon concentration in the regenerator, which was
supposed to be reconstructed in [2] thanks to a measurement of the concentration
of oxygen in flue gas.

Another problem is that the local model of oxygen combustion in the regenerator
is not very accurate (may be not very well known, in fact). Therefore, the purpose
of the second part of this study will be to identify this model.

The control of the FCC unit is performed via two control variables, namely
the “air flowrate” (Rai) (air of combustion of the coke on the catalyst, inside the
regenerator) and the “catalyst circulation rate” (Rc).

The Kurihara model is really a two time-scales model: the evolutions of the rate
of carbon in the reactor and in the regenerator are modelled by three differential
equations. However, one of these equations (modelling the catalytic carbon balance)
has a very short time-constant with respect to other dynamics inside the system.
Here, we have replaced this differential equation by an algebraic one. Comparisons
of solutions between both models lead to very similar results.

Another simplification that we make is the following: We assume steady-state
for the catalyst flowrates between the reactor and the regenerator. These two
simplifications are analyzed from a chemical-engineering point of view in [13]. In
this paper ([13]), authors use the model to illustrate the fact that the FCC may
admit multiple equilibria.

In fact, these two modifications of the Kurihara FCC model and the local model
of oxygen burning in the regenerator are the main differences between [12] and [13]
FCC models.
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Figure 1. FCC Unit

As we shall see, in the case of temperature measurements only, this simplified
model is observable, even if Fcf is considered as an unknown parameter, and added
to the system as a constant state variable (indeed, this parameter varies very slowly:
it represents the long-term degradation of the catalyst, as we said).

Finally, the model we consider consists of a set of four differential equations rep-
resenting the evolution of the reactor temperature (5.1), regenerator temperature
(5.8), carbon concentration on spent catalyst (5.4) and carbon concentration on
regenerated catalyst (5.13).

5.1.1. Reactor model.
Temperature in the reactor:

ScHraṪra = ScRc (Trg − Tra) + StfRtf (Ttf − Tra)(5.1)

− ∆HfvRtf − ∆HcrRtfCtf

Ctf =
Rcr

Rcr +Rtf

(5.2)

Rcr =

√
kcrRcPraHra

10C0.12
rc

exp

(

−1

2

Acr

RTra

)

,(5.3)

with:

• Reactor operating conditions Tra|t=0 = 775 K, Hra = 1.85 10−4 kg, Pra =
211.7 kPa,

• Feed properties Rtf = 41 kg / s, Ttf = 492.8 K, Stf = 3140 J/ (kg .K),
• Catalyst recirculation Rc|t=0 = 290 kg / s, 0 < Rmin

c ≤ Rc ≤ Rmax
c , Sc =

1047 J/ (kg .K),
• Heat constants ∆Hcr = 4.65 105 J / kg, ∆Hfv = 1.74 105 J / kg, ∆Hrg =

3.02 107 J / kg,
• kcr = 25.96 kPa−1 s−1, Acr = 83.8 103 J /mol
• R = 8.314 J/ (mol .K)
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Carbon concentration on spent catalyst in the reactor:

HraĊsc = Rc (Crc − Csc) + 100Rcf(5.4)

Rcf = Rcc +Rad(5.5)

Rcc =

√
kccRcPraHra

10C0.03
rc

exp

(

−1

2

Acc

RTra

)

(5.6)

Rad = FcfRtf(5.7)

with:

• Csc|t=0 = 1.2

• kcc = 2.66 10−4 kPa−1 s−1, Acc = 4.18 104 J /mol

5.1.2. Regenerator model.
Temperature in the regenerator:

ScHrgṪrg = ScRc (Tra − Trg) + SaiRai (Tai − Trg) + ∆HrgRcb(5.8)

Rcb =
Rai

242
(21 −Ofg)(5.9)

Ofg = 21 exp

(

−PrgHrg

Rai

1
Kod

+ 1
KorCrc

)

(5.10)

Kod = 6.34 10−9R2
ai(5.11)

Kor = 1.16 10−5 exp





Aor

R
(

1
866.7 − 1

Trg

)



(5.12)

with:

• Regenerator operating conditions Trg|t=0 = 943 K, Hrg = 1.53 105 kg,
Prg = 254.4 kPa,

• Air properties Rai|t=0 = 26 kg / s, 0 < Rmin
ai ≤ Rai ≤ Rmax

ai , Tai = 394 K,
Sai = 1130 J/ (kg .K)

• Aor = 1.47 105 J /mol

Carbon concentration on regenerated catalyst in the regenerator:

(5.13) HrgĊrc = Rc (Csc − Crc) − 100Rcb

with Crc|t=0 = 0.3

5.2. Estimation of the Carbon Conradson factor. Here, we will use this
model to estimate unmeasured state variables. We will first study the observability,
and, after positive answer to this question, we will apply the observer construction
described above. Moreover, in the next section, we will assume that a part of
the model is unknown and we will show that the unknown function is identifiable.
Therefore the system can be transformed to a certain observability canonical form,
similar to the type 2 normal form 3.4.

In fact, it can also be put under a form such that our “mixed” observer con-
struction of Section 4.1.3, can be applied in order to estimate simultaneously both
the state variables and unknown function.

However, this section is devoted to observation only: we will assume that our
knowledge-based model is perfectly known and we will use it to estimate unknown
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state variables (Crc, Csc and Fcf ) thanks to temperature measurements (Tra

and Trg).

5.2.1. Observer construction. First of all, an elementary analysis shows that the
system is observable and infinitesimally observable: Indeed, since Tra is measured,
the derivative Ṫra allows to compute Crc from Ctf . Then Ċrc gives Csc. Finally,

Ċsc gives Rcf and hence Fcf . Moreover, the function Crc 7→ Ctf has nonvanishing
derivative on any interval of the form [ε,+∞[, ε > 0 (the other variables being fixed
and positive). Hence, the system is globally observable and uniformly infinites-
imally observable. The fact that Crc belongs to an interval of the form [ε,+∞[
will be shown later (Proposition 1)

Notice that the measurement Trg is not used here. We will use it in the next
section in order to identify the unknown function.

This analysis of infinitesimal observability shows us that the system may already
be written under the (single output, as we said) observability canonical form 2.3,
2.4: by the theory, this can be done at least locally (see [8] and Section 2.3).

Nevertheless, in order to apply our mixed high-gain extended Kalman filter con-
struction 4.1.3, we have to apply the trick presented in Section 4.1.4. To do this, we
have to find a coordinate-change, such that the system in new coordinates is under
the canonical form 4.10, as explained in Section 4.1.4. To do this, we will consider
successive time derivatives of the output, and at each step, we will obtain a new
coordinate, corresponding to a new variable obtained by derivation.

Let us consider first the reactor temperature. Its time derivative is given by the
right hand side of 5.1. Since both Tra and Trg are outputs, the new information

about the state, provided by Ṫra, is the value of Ctf which is a function of Tra and
Crc. Let us observe that:

Ctf =
Rcr

Rcr +Rtf

= 1 −Rtf

1

Rcr +Rtf

,

so that,

Ṫra =
∆HcrR

2
tf

ScHra

1

Rcr +Rtf

+
1

ScHra

(ScRc (Trg − Tra)

+StfRtf (Ttf − Tra) − (∆Hfv + ∆Hcr)Rtf )

Denoting the two measured state variables x1 = Tra and x5 = Trg, the first control
variable u1 = Rc and defining the new state variable x2 = 1

Rcr+Rtf
then

(5.14) ẋ1 = a2x2 + g1 (x1, Trg, u1)

with a2 = 1
ScHra

∆HcrR
2
tf .

It is clear that (other variables being fixed), the function Crc 7→ 1
Rtf +Rcr(Crc)

is

a diffeomorphism from any open interval ]ε,+∞[, ε > 0, to its image. Practically,
Crc is the concentration of carbon on spent catalyst hence it is a positive variable,
and it can be assumed to have a strictly positive lower bound.

In fact, there is more than that. We have mathematical coherence of the
model with this property, in the sense that the domains {Crc > ε}, are positively
invariant under the dynamics. Let us check this property now.
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Proposition 1. Certain domains {Crc > ε}, for ε small, are positively invariant

Proof. Let us consider both temperatures. Let us assume that Tra = 273 K and
Trg ≥ 273 K then using (5.1),

1

Rtf

ScHraṪra ≥ Stf (Ttf − 273)− (∆Hfv + ∆Hcr)

= 3140 (492.8− 273) − 1.74 105 − 4.65 105 > 0

and also if Tra ≥ 273 K and Trg = 273 K then using (5.8),

ScHrgṪrg ≥ SaRai (Tai − 273) > 0.

Hence Tra and Trg are bounded from below by 273 K. Then we will prove that
there exist ε1 such that Ccs ≥ Crc + ε1. Using (5.4,5.13),

d

dt
(Csc − Crc) = −Rc

(

1

Hra

+
1

Hrg

)

(Csc − Crc) +
100

Hra

Rcf +
100

Hrg

Rcb

but Rcf = Rcc + Rad and since 0 < Rmin
c ≤ Rc ≤ Rmax

c , Rcc can be bounded from
below by a positive decreasing function of Crc (recall that Tra ≥ 273 K). Moreover,
Rcb can be bounded from below by a positive increasing function of Crc (using
Trg ≥ 273 K and 0 < Rmin

ai ≤ Rai ≤ Rmax
ai in (5.9) to (5.12)). Therefore, there exist

ε1 such that 100
Hra

Rcf + 100
Hrg

Rcb ≥ ε1R
max
c

(

1
Hra

+ 1
Hrg

)

hence

d

dt
(Csc − Crc − ε1) ≥ −Rc

(

1

Hra

+
1

Hrg

)

(Csc − Crc − ε1)

We can chose ε1 such that Csc − Crc|t=0 ≥ ε1 and so Csc − Crc ≥ ε1 along the
trajectory.

Finally

HrgĊrc = Rc (Ccs − Crc) − 100Rcb

≥ Rmin
c ε1 − 100Rcb

and since Rcb
Crc→0−→ 0 there exist ε2 such that Rcb ≤ 1

100R
min
c ε1 if Crc ≤ ε2 hence

HrgĊrc ≥ 0 for Crc = ε2 and therefore, Crc is bounded from below by ε2. �

Due to this analysis, the diffeomorphism Crc 7→ x2 can be smoothly prolonged
to all of R without changing the trajectories on the physical domain. This property
could be important, in order to reach the assumption B that is needed for the
construction of our observer (Section 4.1.2). In fact, in practice, we observe in
simulations that our estimations of Crc never vanish. Hence, we just don’t make
any prolongation, and in fact, we don’t use this property, which nevertheless is
crucial from the theoretical point of view.

Let us remark that our change of variable already depends on the control variable
Rc since x2 = 1

Rcr+Rtf
and Rcr depends explicitly on Rc. Then, as expected, the

first derivative of the control will appear after the coordinate-change.
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We have to calculate the derivative of x2 with respect to time:

ẋ2 =
1

(Rcr +Rtf )
2

(

−Ṙcr

)

= −x2
2

(

dRcr

dCrc

Ċrc +
dRcr

dTra

Ṫra +
dRcr

dRc

Ṙc

)

= −x2
2 (−0.12)

Rcr

Crc

Rc

Hrg

Csc + g2 (x1, x2, x5, u1, u̇1, u2)

= a3x3 + g2 (x1, x2, x5, u1, u̇1, u2) ,(5.15)

with x3 = x2
2

Rcr

Crc

RcCsc and a3 =
0.12

Hrg

.

To finish, differentiating once more, we obtain:

ẋ3 =
x3

Csc

100RtfFcf

Hra

+ g3 (x1, x2, x3, x5, u, u̇)

= a4x4 + g3 (x1, x2, x3, x5, u, u̇) ,(5.16)

where x4 = x3
Fcf

Csc

= x2
2

Rcr

Crc

RcFcf and a4 =
100Rtf

Hra

.

Finally, our (control depending) change of coordinates is

ψu (Tra, Crc, Csc, Fcf , Trg) = (x1, x2, x3, x4, x5)

Here u denotes the control variables u = (Rc, Rai) but ψu does not depend explicitly
on Rai.

Again, a certain number of “theoretical precautionary measures” have to be
taken: it is easy to check that ψu is a smooth function in the interior of the physical
domain (positive variables). Therefore, it would be possible to prolong ψ outside
this domain in order that it becomes (smoothly) everywhere defined. In practice,
we don’t do this: we do not prolong ψu but we keep in mind that our simulation
results are justified only if the state variables remain in the physical domain.

The only problem that may occur -and that occurs in practice- concerns the
fact that, temporarily, the estimations of Crc may vanish or become negative,
which may have unpleasant consequences in the other equations. To palliate this
difficulty, we just introduce a smooth cut-off function χε such that χε is one to
one from R into

]

ε
2 ,+∞

[

and χε (z) = z if z > ε. Then we replace Crc in (5.3)
by χε (Crc) with ε small enough. This is just an artificial way to correct irrelevant
estimations of Crc.

Finally, our system is equivalent up to a diffeomorphism to the following system

y1 = x1, y2 = x5

ẋ1 = a2x2 + g1 (x1, x5, u)
ẋ2 = a3x3 + g2 (x1, x2, x5, u, u̇)
ẋ3 = a4x4 + g3 (x1, x2, x3, x5, u, u̇)
ẋ4 = g4 (x)

Then we may apply our “mixed” extended Kalman filter to this system. To do
this, we don’t care about the theoretical bounds of the tuning parameters θ, λ that
come from the theory. We just tune these parameters in order to obtain reasonable
practical performances: increasing θ results in better performances in high-gain
mode, decreasing λ makes the filtering mode (performances w.r.t. noise) be good
a long time after the occurrence of large perturbations.
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Figure 2. Euclidian norm of the gain

5.2.2. Tuning of parameters. As we explained, we want to build an observer mix-
ing the good properties of the high-gain EKF with respect to large unmodelled
disturbances and the good properties of the classical EKF with respect to noise.
In order to achieve this goal, we have to tune each parameter very carefully. let us
now explain how to achieve this goal.

(1) As a first step, we just use a single classical EKF (that is θ = 1) and we
tune Q and r – in (4.5) – in order to obtain best possible performances with
respect to measurement noise. During this first step, we do not simulate
disturbances and, of course, we initialize our EKF at the right value of the
state. Nevertheless, we choose Q and r such that the EKF reaches also
good performances when θ is slightly larger than 1 (for instance θ ≈ 2). As
a consequence, when several observers will be working together, a number
of them will reach good performances with respect to noise (those among
them for which θ will be close to 1), similar to performances of a classical
EKF.

(2) The second step is to tune the high-gain EKF. We use the same matrices Q
and r as in the first step and we use θ0 and λ to achieve our purposes, that is
fast convergence. We have simulated several “physical” disturbances. Since
the rate of convergence might be theoretically arbitrary, we have simulated
a very small noise, and asked for a – fast but – reasonable convergence.
During this step, we keep in mind that the high-gain EKF should become
a classical EKF as fast as possible. Therefore, despite the fact that λ
should be small enough to ensure exponential convergence, it should not
be too small. The price to pay for a too small λ will be a large number
of observers. As in the first step, we check that the performances are
reasonable even for slightly lower values than θ0. We will denote by θ1
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the minimal value of θ which ensures good performance in presence of
disturbances.

(3) The last step consists of using several observers as explained in Section
4.1.3. Since at each current time, we want to have at least an observer
working in “high-gain mode”, and another one working in “filtering mode”,
the number of observers will depend on the values obtained for θ0, θ1 and
λ. The time between two consecutive initializations of an observer will
be the time necessary for θ (t) to reach θ1 starting from θ0 and satisfying

θ̇ = λ (1 − θ). The number of observers will be high enough in order to be
sure that at any time, there exist observers with a current value of θ almost
equal to 1 (at least less than 2, according to first step). It can be useful to
plot informations concerning the actual gain value versus the time in order
to check that the gain is actually high enough when θ is high.

Indeed, since the gain is obtained as the solution of a Ricatti equation,
and since this equation itself depends on an exponentially converging pa-
rameter, it is not at all obvious to get intuition of how the gain is varying.
We decided to plot the Euclidian norm of the correction applied to the state,
(which is equal to the correction gain times a normalized innovation (equal
to 1 K) ), see figure 2. Here, the ratio between high gain and non-high-gain
is approximately equal to 15.

Practically, we used 5 observers running in parallel, each of them with a life-
time equal to 15 h (hence we initialize a new observer each 3 h). This “3 hours” is
comparable to the average response time of the FCC to perturbations. The initial
value of θ has been set to θ0 = 10 and we have set λ = 0.27 h−1, such that at any
time, there is an observer with a corresponding value of θ greater than 2. The value
θ1 = 5 looks sufficient to ensure convergence of a high-gain observer for any initial
condition (from simulation results).

All simulations below were performed using Simulink R© [15].

5.2.3. Discussion of numerical results. Figures 3 and 4 represent respectively Tra

and Trg measurements. Figures 5, 6 and 7 represent the (unknown) state variables
Crc, Csc and Fcf respectively. We also plotted on figures 3 to 7 the estimation pro-
vided by the best observer. On figure 8, we have plotted five curves corresponding
to the value of θ for each observer. Hence, it is simply five exponentially decreasing
functions, each of them obtained from the others by a time shift. On the same
figure, we have also plotted the value of θ corresponding to the best observer at
current time (see below).

We simulate some measurement-noise on each temperature. We simulate also
a disturbance consisting of a ramp on Fcf , starting at t = 10 h from Fcf = 0 to
Fcf = 5.6 10−4 at t = 12 h. This unmodelled and unmeasured disturbance is larger
than realistic actual disturbances: the coke formation factor usually varies very
slowly. The tracking of the parameter is fast and accurate (figure 7).

Moreover, figure 8 shows that our multiple high-gain extended Kalman filter
does exactly what we expected from the theory. Indeed, we have represented on
figure 8 the behavior of θ (t) for each of our five observers (thin lines). At each
time, the value of θ (t) corresponding to the observer with smallest innovation
is plotted with a thick line. So it is clear which kind of observer (high-gain or
classical extended Kalman filter) has the best performance at each time. At the
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beginning, each observer is a high-gain observer. Then, since the model is accurate
(no disturbances) the observer with the smallest value of θ (t) becomes more robust
to measurement noise and so has the smallest innovation. When suddenly Fcf (t)
begins to vary according to a ramp, the observer with highest gain becomes more
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Figure 5. Crc
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accurate and this behavior illustrates the well-known ability of high-gain observers
to track the state in presence of unmodelled disturbances. When Fcf (t) stabilizes
and is correctly estimated, the classical extended Kalman filter becomes better
again, thanks to its good (optimal) local properties.
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Figure 8. θ (t) and the best observer versus time

5.3. Identification of reaction rate model of oxygen.

5.3.1. Identifiability analysis. Now, we will assume that the function describing the
reaction rate of oxygen is unknown. As a matter of fact, this part of the model
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is usually very dependant from the FCC unit under consideration, and/or more
simply, from the author of the paper.

Indeed, the main difference between the model described in [14] and the simplest
one in [13] concerns the oxygen reaction rate model Ofg which gives the rate Rcb

of burning carbon. Therefore, we will assume that Kor (in Formula 5.12) is
now an unknown function of Trg. We use the same approach as in the previous
section to check the (infinitesimal) identifiability of the system. Since Kor is now
considered as an unknown function, we will use Trg to estimate it:

Mainly, by differentiation, Ṫrg allows to compute Rcb and Rcb gives Ofg. Here,
Ofg is a nonlinear function (5.10) of our unknown function Kor. This function is
not defined at Kor = 0. But, in restriction to the set of values that are physically
relevant, it is bijective. Hence, it is possible, and useful to modify it outside a
“relevant set”, as we shall see below.

Therefore, let us set Kor = ϕ (Trg), and Rcb = Φ (Crc, Rai, ϕ (Trg)) so that (5.15)
becomes:

ẋ2 = a3x3 + g2 (x1, x2, x5,Φ (x2, u, ϕ (x5)) , u, u̇) .

Starting from this point, it would be easy to transform directly the FCC system
into Identifiability canonical form. But, in order to illustrate the intrinsic charac-
terizations given in Section 3 (details in the paper [4]), we will apply the theory to
the FCC model.

At first, we have to calculate the two indices, k and r, as defined in section 3.3.2.
Briefly, let us consider a system of the form:







ẋ = f (x, ϕ)
y1 = h1 (x, ϕ)
y2 = h2 (x, ϕ) ,

and recall that:

• k is the first index such that the respective ranks (Nl)l=0,1,... of the family

(El)l=0,1,... of one-forms

El = span
(

{dxhi, dxLfhi, . . . , dxL
l−1
f hi, i = 1, 2}

)

are such that Nk = 2k and Nk+1 < 2k + 2;
• r is the order of the system with respect to ϕ that is the first index such

that dϕL
r
fh1 or dϕL

r
fh2 does not vanish identically.

In the FCC case, h1 (x, ϕ) = Tra = x1 and h2 (x, ϕ) = Trg = x5, hence E1 =
span ({dTra, dTrg}). But since the only new state variable appearing in Tra and Trg

is Crc, then E2 = span ({dTra, dTrg, dCrc}) . As a consequence, N1 = 2 and N2 = 3
therefore k = 1. Moreover, thanks to our observability analysis, let us observe that
N3 = 4 and N4 = 5 = n.

Remark 4. The order of the system is r = 1 since Lfh2 is a function of Ofg and
therefore of the unknown function Kor (dϕLfh2 6= 0). Nevertheless, dϕLfh1 ≡ 0.

This remark will be used for the construction of the observer

The system is regular (see Section 3.3.2, or [4]), but we have to look further in
order do decide if the system is of type 1, 2 or 3. Here, since dxh1∧dxh2∧dxLfh1 6= 0
then hypothesis B.1. is satisfied hence the system has type 2.
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More precisely, it may be written under the following form:

(5.17)

y1 = x1 y2 = x5

ẋ1 = F1 (x1, x2, x5, u) ẋ5 = Φ (x, ϕ)
ẋ2 = F2 (x1, x2, x3, x5,Φ (x, ϕ) , u)
ẋ3 = F3 (x1, x2, x3, x4, x5,Φ (x, ϕ) , u)
ẋ4 = F4 (x, ϕ, u)

with ∂Φ
∂ϕ

6= 0, ∂F1

∂x2
6= 0, ∂F2

∂x3
6= 0, ∂F3

∂x4
6= 0.

Notice that this canonical form has a particularity: ẋ1 does not depend of Φ
since dϕLfh1 ≡ 0.

5.3.2. Model for identification. We will estimate the function Φ. In order to con-
struct our exponentially converging observer of “mixed” high-gain extended Kalman
filter type, we will use a “local” second order model for Φ that is to say we will

assume that d3Φ
dt3

= 0 (locally: on reasonable time intervals, Φ is accurately approx-
imated by a 2rd order polynomial, which doesn’t mean that it is globally a third
order polynomial).

Hence we add three state variables to the original state variables, x6 = Φ (= Rcb),

x7 = Φ̇ and x8 = Φ̈ such that ẋ6 = x7, ẋ7 = x8 and ẋ8 = 0.
It has to be noticed that this local model becomes not valid when the control

variable Rai has jumps, since Rai appears both in Rcb as a function of Ofg and in
Ofg as a nonlinear function of Kor. We will tune the model in order to obtain very
fast convergence so that this kind of disturbance has no large effect on estimation.

In order to retrieve ϕ from Φ, the function ϕ 7→ Φ (x, ϕ) should be one to one.
More precisely, the following function

z 7→ exp

( −a
b+ c

z

)

,

has to be modified out of the set of “physical values”, in such a way that it becomes a
smooth diffeomorphism for any positive value of the parameters a, b and c, bounded
from below. We leave the reader to check that this function can be smoothly
modified outside any domain {A > z > 0, A large} in order to obtain a global
diffeomorphism from R to R.

Moreover, we observed that, during simulations, the observer internal variables
remain in the physical state domain except at the very beginning of the simulation,
so that, again, (and this seems to be a general fact in that type of applications), our
carefulness is not justified here. Brute force computation appears to be enough, in
most cases.

Finally, in agreement with the theory developed in the first part of this paper,
our system can be written globally,

(5.18)

y1 = x1 y2 = x5

ẋ1 = a2x2 + g1 (x1, x5, u) ẋ5 = x6 + g5 (x1, x5, u)
ẋ2 = a3x3 + g2 (x1, x2, x5, x6, u, u̇) ẋ6 = x7

ẋ3 = a4x4 + g3 (x1, x2, x3, x5, u, u̇) ẋ7 = x8

ẋ4 = g4 (x) . ẋ8 = 0
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5.3.3. Identification algorithm. As we said, the system (5.17) is clearly in the type
2 identifiability normal form. However, we cannot apply our (mixed Kalman) ob-
server directly on the system (5.18) because x6 appears in ẋ2 which is not allowed in
our method. To overcome this (small) difficulty, we decided to proceed as follows.

We consider the two following systems (Σ1) and (Σ2) independently

(Σ2)























y2 = ξ1
ξ̇1 = α1 (u) ξ1 + α2ξ2 + α3 (u) y1 + β (u)

ξ̇2 = ξ3
ξ̇3 = ξ4
ξ̇4 = 0,

where the equation of ξ̇1 comes immediately from (5.8), and

(Σ1)























y1 = x1

ẋ1 = a2x2 + g1 (x1, y2, u)
ẋ2 = a3x3 + g2 (x1, x2, ξ1, ξ2, u, u̇)
ẋ3 = a4x4 + g3 (x1, x2, x3, ξ1, u, u̇)
ẋ4 = g4 (x)

The observer of Subsystem (Σ2) will be mainly an approximate derivator of
ξ2 = Φ (= Rcb).

But (Σ2) is very simple: it is linear, time dependant. This will allow us to “filter”
the output Trg and its derivative, using a standard linear Kalman filter. This
filter will provide an accurate estimation of ξ1 = Trg and ξ2 = Φ.

We will use directly this estimation of (Trg,Φ) inside (Σ1) , to which we will apply
the (mixed) observer of Section 4.1.3, just considering ξ1 and ξ2 as new inputs.
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Remark 5. For general results concerning that type of cascade systems, and on the
way to apply exponentially converging high-gain observers (mostly Luenberger-type)
to cascade systems, see [17].

5.3.4. Simulation. We used exactly the same scenario as in Section 5.2.
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Figure 13. Crc

Estimation of Rcb is not a hard task, even if it requires one derivative of y2 = Trg.
But the estimation of Kor requires a very good estimation of Rcb: this is due to
the high “sensitivity” of the nonlinear function Rcb (Kor) (i.e. large values of the
derivative of Rcb w.r.t. Kor).
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Figure 15. Fcf

The model – supposed to be unknown – used for simulation is the equation
(5.12), coming from [14]. Figures 11 to 15 represent the state estimation.

The noise being not too large, estimation of Fcf is not hard. Therefore, we were
able to tune our observers for they estimate faster than in Section 5.2. The result
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Figure 16. Kor as a function of Trg, t = 0 h

of this new choice of parameters appears clearly on figure 15, where one can see the
very quick estimation of Fcf (comparing to figure 7).

We also plotted the estimation (coming from a standard linear Kalman filter, as
we said) of Rcb on figure 9 and the estimation of Kor resulting from the estimation
of Rcb, on figure 10.

We have plotted the results of the identification at time 0 h, 1 h, 9 h and 17 h on
figures 16 to 19. The continuous line is the actual function Kor versus Trg. The
dotted line represents the estimation of Kor as a function of Trg. The figure 16
represents the unknown function to be identified.

On figure 17, we have no information about this function for temperatures larger
than 985 K, because Trg (t) does not pass beyond 985 K. However, the function has
been identified between 970 K and 985 K. This interval represents the range of
regenerator temperatures during the first hour of operation, as it can be seen on
figure 12. After 9 h, the function has been identified between 970 K and 1005 K
(figure 18). At the end of the simulation (figure 19), the function has been also
identified between 970 K and 1005 K, that is for each values reached by Trg during
the simulation. It can be seen on figure 19 that there are two values for which
Kor (Trg) is very badly estimated (around Trg = 990 K and Trg = 1005 K). These
values correspond to discontinuities of Rai : the estimation of Rcb becomes bad
during a short transient.

An accurate estimation of the unknown function can be obtained by some reg-
ularization of the informations collected during simulation. We just applied some
outliers removal procedure followed by some smoothing procedure, in order to ob-
tain the estimation shown on figure 20.
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Figure 18. Kor as a function of Trg, t = 9 h

6. Comments, conclusion, and future research

6.1. Conclusion. In this paper, we have explained and compared our theoretical
results for observability and identification.



44 ERIC BUSVELLE, JEAN-PAUL GAUTHIER

970 980 990 1000 1010
0

0.0001

0.0002

0.0003
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Figure 20. Kor as a function of Trg after smoothing

These theories are parallel, leading to the same type of observability (resp. iden-
tifiability) results. In particular, systems fall in two classes: those that are gener-
ically observable (resp. identifiable) corresponding to a large number of outputs,
and those with a small number of outputs, for which the observability property
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(resp. identifiability) is on the contrary completely nongeneric (an infinite codi-
mension property, in fact). For all the observable (resp. identifiable) systems, we
have developped a practical observer (resp. identifier), based upon the classical
“extended Kalman filter”. We have shown a non–academic practical application of
our theory, to a system from petroleum industry.

Except a few technical improvements, this paper contains no new general result:
we try simply to explain our methodology, and to illustrate it.

Now, after exposition of these results, we would like to focus on some “philo-
sophical question”.

6.2. Functional identification versus parametric identification. Our approach
to identification, in this paper, is “functional identification” (identification of
functions). This concept has to be faced with the concept of “parametric iden-
tification”. In fact, as a final step of our “functional identification” analysis, we
perform parametric identification via a “local model” of the unknown function ϕ (t).
This local model is in general polynomial as explained in section 4.2 but, everything
that we do is firstly justified by a “functional identifiability” property.

By “parametric identification”, we mean parametrizing the unknown function
by a finite number of parameters, in order to transform the problem into a finite
dimensional observation problem, or simply into a finite dimensional (nonlinear)
optimisation problem.

Parametric identification has been used for long in practice by many people:
typing on a reasonable data–base (Zentralblatt for instance) the words “parametric
identification”, we get a lot of references (118), in which “parametric identification”
is understood in this sense.

It is also a very classical approach to use the extended Kalman filter exactly
in the way we do it, to perform observation and parametric identification. There
are so many references, for practical examples of this approach, that we cannot be
exhaustive, and hence we will not cite anyone.

What we want to say here is the following statement, that we feel extremely
important: without precise identifiability analysis, parametric identifiability may be
very dangerous !

We explain this now on the basis of a naive example, but in fact, the idea is not
naive at all.

6.3. An example. For the sake of simplicity in the exposition, we have chosen a
very academic example. Consider

(Σ)

{

ẋ = ϕ (x)
y = x+ ϕ (x)

, x ∈ R

This system is of course not identifiable (neither identifiable, nor differentially
identifiable, nor infinitesimally identifiable). In fact, in that case, all these notions
are equivalent because, if we set ϕ̂ (t) = ϕ (x (t)), the mapping

PΣ : (x0, ϕ̂ (·)) 7→ y (·)
is linear.

Let us make the exemple more concrete: set ψ (ϕ) = −ϕ − log (ϕ− 1), ψ :
]1,+∞[ → R is a diffeomorphism onto R. Set ϕ̃ (x) = ψ−1 (x), ϕ̃ : R → ]1,+∞[,
and finally set ϕ∗ (x) = ϕ̃ (x+ ψ (2)).
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Consider Σ1 (resp. Σ2) the system Σ corresponding to the choice ϕ (·) = 1 (resp.
ϕ (·) = ϕ∗ (·)). Direct analysis shows that both systems Σ1 and Σ2 are very well
defined: they are “forward–complete”, i.e. all trajectories t 7→ x (t) are defined on
full intervals of the form [0,+∞].

Consider for Σ1 (resp. Σ2) the choice x0 = 1 (resp. x0 = 0). An elementary
computation shows that both outputs y1 and y2 are equal: y1 (t) = y2 (t) = t + 2
for all t ≥ 0. Then Σ is not identifiable (in any of the three senses).

Another less explicit but simpler way to see what happens is to consider the
kernel K of the (linear) input–state-output map PΣ and to check that K is the
one–dimensional set K = {(x0,− exp (−t)x0) , x0 ∈ R}. Because of this, the system
Σ is in fact identifiable in the class of polynomial functions ϕ̂ (t) !

In this example, our methodology for identification becomes specially natural: if

we assume a “local model” of polynomial type: dkϕ̂(t)
dtk = 0 for an arbitrary k, we

get a linear system, observable, with extended state
(

x, ϕ (0) , ϕ̇ (0) , . . . , ϕ(k−1) (0)
)

.
Then, it is not even necessary to use a high gain–non high gain extended Kalman
filter: the standard linear Kalman filter will give perfect estimation of ϕ̂ (t). Would
the system be Σ1 or Σ2, we would get ϕ̂ (t) = 1 for all t. With small noise, the
estimation will be almost perfect, giving confidence in the result. But, if the system
is Σ2, this result is in fact completely false !

In our approach, the step of “parametric identification” occurs in the same way
as in this example, when we specify the polynomial local model for ϕ̂ (·). But, the
“functional identifiability” assumption prevents from the occurence of the phenom-
enon described in the example.

6.4. Future work. First, the general situation (more than a single function to
identify) has to be studied. We already have two kind of results on this subject:

(1) Identifiability is generic if the number of outputs is larger than or equal to
the number of controls plus the number of functions to identify plus two;

(2) There is a finite number of identifiability normal forms in the nongeneric
case (this is much harder than in the case of a single function).

Theses points will be the purpose of a forthcoming paper.
Besides this study, as for observability, we have results concerning normal forms

in the generic situation (in that case, systems can be globally embedded into systems
in a very special canonical form). This study is the purpose of [3].

Finally of course, several other applications of our theories and techniques have
to be developped.
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