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Abstract. In this paper, we consider general nonlinear systems with obser-
vations, containing a (single) unknown function ϕ. We study the possibility
to learn about this unknown function via the observations: if it is possible
to determine the [values of the] unknown function from any experiment [on
the set of states visited during the experiment], and for any arbitrary input
function, on any time interval, we say that the system is ”identifiable”.
For systems without controls, we give a more or less complete picture of

what happens for this identifiability property. This picture is very similar to
the picture of the ”observation theory” in [7]:
If the number of observations is three or more, then, systems are generically

identifiable.
If the number of observations is 1 or 2, then the situation is reversed.

Identifiability is not at all generic. In that case, we add a more tractable
infinitesimal condition, to define the ”infinitesimal identifiability” property.
This property is so rigid, that we can almost characterize it (we can char-

acterize it by geometric properties, on an open-dense subset of the product
of the state space X by the set of values of ϕ). This, surprisingly, leads to a
non trivial classification, and to certain corresponding ”identifiability normal
forms”.
Contrarily to the case of the observability property, in order to identify

in practice, there is in general no hope to do something better than using
”approximate differentiators”, as show very elementary examples.
As an illustration of what may happen in controlled cases, we consider the

equations of a biological reactor, [2], [4], in which a population is fed by some
substrate. The model heavily depends on a ”growth function”, expressing the
way the population grows in presence of the substrate.
The problem is to identify this ”growth function”. Our result, in the case

where the observed variable is the concentration of the substrate, is as follows:
the system is identifiable along a trajectory, if and only if this trajectory visits
the same value of the output at least twice.
We propose also a practical methodology for identification, which shows

very reasonable performances.

1. Introduction

1.1. Notations, definitions. In this paper, depending on the context, smooth
will mean Cω (real-analytic), or C∞, or Ck, for an integer k large enough.
Very often, in nonlinear control systems, certain special variables with ”physical

meaning” appear, (called here the ”internal variables”) and the system depends
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on certain functions of these variables. These functions describe some physical char-
acteristic inside the system, and it may happen that they are not well known, and
have to be determined on the basis of experiments.
We consider general smooth nonlinear systems:

Σ :

½
dx
dt = f(x, u(t),ϕ ◦ π(x(t)));
y = h(x, u(t),ϕ ◦ π(x(t))),(1.1)

or ”uncontrolled” such systems:

dx

dt
= f(x,ϕ ◦ π(x(t)));(1.2)

y = h(x,ϕ ◦ π(x(t))),
where x ∈ X denotes the state, y denotes the observation, u(.) is the control

function, z = π(x) is the ”internal variable”, π is called the internal mapping,
π : X → Z.We assume that X and Z are given analytic connected manifolds, both
Hausdorff and paracompact. dim(X) = n.
The (smooth) ”unknown function” is denoted by ϕ : Z → I. Here, I will

denote a compact interval of R. To finish, y ∈ Rdy , u ∈ U ⊂ Rdu , where U is a
compact subanalytic subset of Rdu . Also, f is a (u,ϕ)−parametrized smooth vector
field, and h, the observation mapping, is a smooth mapping: X ×U × I → Rdy .
In the following, the systems Σ = (f, h) will vary, but the manifolds X,Z, the

(smooth) internal mapping π, the space Rdy , and the sets I and U are given and
fixed.
Associated with such a system Σ, we consider the ”input-output mapping”

PΣ :

PΣ : X × L∞[U ]× L∞[I]* L∞[Rdy ];

(x0, u(.), ϕ̂(.))* y(.),

where L∞[U ], L∞[I], L∞[Rdy ] denote the set of U−valued (resp. I−valued, Rdy−
valued) measurable, bounded functions, defined on semi-open interval [0, Tu[, [0,
Tϕ̂[, [0, Ty[. The mapping PΣ is defined as follows:
For any input u(.) ∈ L∞[U ], any ϕ̂(.) ∈ L∞[I], any x0 ∈ X, then, the solution

x(t) of the Cauchy problem:

dx(t)

dt
= f(x(t), u(t), ϕ̂(t)), x(0) = x0;(1.3)

is defined on a maximum semi-open interval [0, e(x0, u, ϕ̂)[, where 0 < e(x0, u, ϕ̂) ≤
min(Tu, Tϕ̂). If e(x0, u, ϕ̂) < min(Tu, Tϕ̂), then e(x0, u, ϕ̂) is the positive escape time
of x0 for the time dependant vector field f in (1.3). For fixed u, ϕ̂, the mapping
x0 → e(x0, u, ϕ̂) ∈ R̄+∗ is lower semicontinuous (R̄+∗ = {t|0 < t ≤ ∞}).
PΣ(x0, u, ϕ̂) is the function ŷ : [0, e(x0, u, ϕ̂)[→ Rdy , defined by ŷ(t) = h(x(t), u(t),

ϕ̂(t)).

We say that (u(.), y(.)) ∈ L∞[U ]× L∞[Rdy ], with Tu = Ty, is an ”admissible
input-output trajectory”, if there exits a couple (x0, ϕ̂) ∈ X × L∞[I], such
that y(t) = PΣ(x0, u, ϕ̂)(t) for almost all t ∈ [0, Tu[ (which means in particular
e(x0, u, ϕ̂) = Tu), and ϕ̂(t) = ϕ◦π(x(t)), where ϕ is some smooth function, ϕ : Z →
I. (Of course, this ϕ depends on the input-output trajectory (or the ”experiment”)
(u(.), y(.))).
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Note that, as a consequence, if (u(.), y(.)) is an admissible i.o. trajectory, then,
ϕ̂(.) in the definition is in fact at least continuous. In the uncontrolled case, it is
smooth.

We define now the natural notion of identifiability:

Definition 1. The system Σ is said ”identifiable at” (u(.), y(.)) ∈ L∞[U ]×L∞[Rdy ],
with Tu = Ty, if there is at most a single couple (x0, ϕ̂),∈ X ×L∞([0, Tu[, I) such
that, for almost all t ∈ [0, Tu[:

PΣ(x0, u, ϕ̂)(t) = y(t),

and ϕ̂(t) = ϕ ◦ π(x(t)) for some smooth function ϕ : Z → I.
Given a system Σ, the ”identifiability set” of Σ is the subset of L∞[U ]×L∞[Rdy ]

formed by the admissible i-o trajectories (u(.), y(.)) at which Σ is identifiable. If
this set is exactly the set of admissible i-o trajectories, then Σ is said ”identifiable”.

Again, in this definition, the smooth function ϕ depends on the i.o. trajectory
(or the ”experiment”) (u(.), y(.)). Also, again, ϕ̂ is in fact at least continuous, and
smooth in the uncontrolled case.
Of course, this definition is not very tractable in practice, and, in order to work,

we will need a few other definitions.

For arbitrary k−jets of smooth functions ϕ̂, û at t = 0,
ϕ̂ : [0, ε[→ I, û : [0, ε[→ U,

jk(ϕ̂) = (ϕ̂(0), ϕ̂0(0), ...., ϕ̂(k−1)(0)), jk(û) = (û(0), û0(0), ...., û(k−1)(0)),

and for any x0 ∈ X, the corresponding k−jet jkŷ = (ŷ, ŷ0, ..., ŷ(k−1)) is well defined,
in such a way that the mapping ΦΣk : (x0, j

k(û), jk(ϕ̂)) → jkŷ be continuous.
ΦΣk : DkΦ = X × (U ×R(k−1)du)× (I ×Rk−1)→ Rkdy .

Remark 1. This mapping ΦΣk is smooth with respect to x0, ϕ̂(0), û(0), and alge-
braic with respect to ϕ̂0(0), ....ϕ̂(k−1)(0) and û0(0), ....û(k−1)(0). Also, ΦΣk depends
only on the k−jet jkΣ of Σ.
We define DkΦ∗2 as the set of couples ((x1, jk(û), jk(ϕ̂1)), ((x2, jk(û), jk(ϕ̂2)) =

(z1, z2), with z1 = (x1, jk(û), jk(ϕ̂1)) 6= ((x2, jk(û), jk(ϕ̂2)) = z2.
∆k is the diagonal in Rkdy × Rkdy . We denote by ΦΣ,∗k,2 the mapping: DkΦ∗2 →

Rkdy ×Rkdy , (z1, z2)→ (ΦΣk (z1),Φ
Σ
k (z2))

Definition 2. The system Σ is said ”differentially identifiable” of order k if the
mapping ΦΣ,∗k,2 has the following property: If

ΦΣ,∗k,2 (z1, z2) ∈ ∆k,
then, (x1, ϕ̂1(0)) = (x2, ϕ̂2(0)).

This means that, for all controls (sufficiently differentiable), all couples (initial
state, value of ϕ) are distinguished between them, by the observations and their
k − 1 first derivatives, whatever the other time derivatives of ϕ are.
Equivalently, one can reconstruct the state and the values of ϕ, (at points x0

visited by the system) in terms of the controls and their k− 1 first derivatives, the
outputs and their k − 1 first derivatives.
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Remark 2. One could think that a good definition of differential identifiability of
order k is just: the map ΦΣk is injective. Unfortunately, this property is not generic
(for uncontrolled systems), if there is less outputs than states (dy ≤ n).

Our notion of differential identifiability will be useful later on: In the un-
controlled case, we will show that differential identifiability at certain orders k is
generic, for dy ≥ 3 (Section 2).
It will be also useful, following the ideas developed in the book [7], and in the

papers [5], [6], (in the context of observability), to define and infinitesimal
notion of identifiability.
We give such a definition, very natural, just below. For this purpose, (as in the

context of observability theory, [7]), we need an adequate concept of the ”lineariza-
tion” of a system.

The mapping f : X × U × I → TX induces a partial tangent mapping Tx,ϕf :
TX × TI × U → TTX. (Here, TI ∼ I × R). If ω denotes the canonical involution
of TTX, then, ω ◦ Tx,ϕf defines a parametrized vector field on TX, also denoted
by Txf : it is parametrized by the elements (u, (ϕ, η)) of U × TI.
Similarly, the function h : X×U × I → Rdy , has a partial differential dx,ϕh, and

the linearization of Σ (or the first variation of Σ) is the following system on
TX :

TΣ

½
dξ
dt = Tx,ϕf(x, u,ϕ; ξ, η);
ŷ = dx,ϕh(x, u,ϕ; ξ, η),

(1.4)

where (ξ, η) ∈ TxX × TϕI.
Denote by Π the canonical projection: TX → X. If ξ : [0, Tξ[→ TX is a trajec-

tory of TΣ for the control u(.), function ϕ(.), and the ”variation” η(.), (all belonging
to L∞[0,Tξ[), then, Πξ is a trajectory of Σ corresponding to the same control u(.) and
function ϕ(.). Conversely, if φτ (x0, u, ϕ̂) : [0, e(x0, u, ϕ̂)[→ X is a trajectory of Σ
starting from x0, and corresponding to the control u and the function ϕ̂ : [0, Tϕ̂[→ I,
then, for all 0 < τ < e(x0, u, ϕ̂), the map:

(x,ϕ)→ φτ (x, u,ϕ);

is defined on a neighborhood of (x0, ϕ̂) in X ×L∞([0, τ ], I), and is differentiable at
(x0, ϕ̂). This differential Tx,ϕφτ is in the usual sense with respect to x, and in the
Frechet sense with respect to ϕ.

For all (ξ0, η) ∈ TX × L∞([0, τ ],R), for almost all t ∈ [0, τ ] :
PTΣ(ξ0, η)(t) = dx,ϕh(u, ϕ̂;Tx,ϕφt(u, ϕ̂; ξ0, η), η) = Tx,ϕP

t
Σ(ξ0, η).(1.5)

The right-hand side of this equality is the differential of the mapping P tΣ(x, u, ϕ̂)
with respect to (x,ϕ), at the point (x0, ϕ̂), with P tΣ(x, u, ϕ̂) = PΣ(x, u, ϕ̂)(t).

Definition 3. The system Σ is called ”infinitesimally identifiable” at (x0, u(.),
ϕ̂(.)) ∈ X × L∞[U ] × L∞[I] if all the linear mappings PTΣ : Tx0X × L∞([0,τ ],R) →
L∞
([0,τ ],Rdy ) in (1.5), (for all 0 < τ < e(x0, u, ϕ̂)), are injective. It is called ”uniformly
infinitesimally identifiable”, if it is infinitesimally identifiable at all (x0, u(.), ϕ̂(.)) ∈
X × L∞[U ]× L∞[I].
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Remark 3. The definitions 2, 3, do not depend on the internal variables and the
internal mapping. On the contrary, Definition 1 does.

A clear comparison between our 3 definitions of identifiability is not obvious at
all, at the level of this introduction. Definition 1 is a natural and general definition.
Definitions 2, 3, are adapted respectively to the generic and non generic cases
(uncontrolled), as we shall see.
It will be shown (Theorem 6, Section 2) that, for uncontrolled systems,

differential identifiability at some order k implies identifiability. Also, uniform
infinitesimal identifiability implies identifiability of the restrictions of the system to
certain open subsets. This last point will be proved in Sections 3, 4.
Very clearly, our identifiability properties are related to the notion(s) of ”invert-

ibility”, introduced by Hirschorn in the papers [12], [13]. In fact, identifiability is a
stronger property than invertibility, even for linear single input-output systems.
In particular, invertibility is generic, and moreover the set of noninvertible sys-

tems has infinite codimension.

1.2. An example: biological reactors. A simple biological reactor is a process
where a population grows in presence of some substrate by eating the substrate.
The concentration of the biomass (the population) in the mixture is denoted by
x, and the concentration of the substrate is s. Here, x and s belong to R+. The
reactor is fed continuously by some flow of substrate, with concentration Sin, and
flowrate D(t) > 0. Sin is a constant (in first approximation), and D(t) is usually a
control variable.
The way the population grows in presence of substrate is described by a ”growth

function” µ(x, s). The total volume is maintained constant by perpetually throwing
out the same volume of mixture as the volume of substrate entering the reactor.
Hence, the equations are:

ds

dt
= −µ.x+D(Sin − s)(1.6)

dx

dt
= (µ−D)x.

The questions of observation and control of such biological reactor have been
treated by several authors. See for instance [4], and the book [2].
In the literature, there are many possible choices of the function µ. One can find

a cornucopia of them in the book [2].

Here, we will consider the case where this function µ is an unknown function, of
either the variable s only, or the variable x only, or of both. We will give several
conclusion about its identifiability.
In fact, the general study in this paper was initially motivated by this very

interesting simple example.

1.3. Our main theoretical results. We will mainly consider the ”uncontrolled
case”, i.e. there is no control variable u(t).

In that case, we will get a lot of general results. To state them, let us endow the
set S of uncontrolled systems, of the form (1.2) with the C∞ Whitney topology.
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1.3.1. The generic case. In section 2, we will show the following important result:

Theorem 1. If the number of outputs is larger or equal to 3, then, differential
identifiability of order 2n + 1 (n = dimX), is a generic property. This is true in
the Baire sense only (i.e. the set of differentially identifiable systems is residual).
This implies in particular that identifiability is a generic property.

Remark 4. This theorem has to be compared with the corresponding result for the
observability theory (see [7], [6]). In the case of ”single input observability”, the
number of outputs has to be larger or equal to 2 only. If one thinks about the
function to be identified, as a control variable (which is what we do here in), it
is surprising that the number of outputs for generic identifiability be 3. At a first
glance, it should be 2.

In section 2, we will show an open set of systems with 2 outputs, which is not
identifiable.

1.3.2. The single output case. This case will be the subject of section 3.
In that case, by the previous section, differential identifiability is not generic.

Again similarly to the observability theory of [7], [5], we will consider the uniform
infinitesimal identifiability property. It is a so rigid property (infinite codimension,
in fact) that it can be completely characterized.
We will show the following theorem, in the analytic case (i.e. the system is Cω).

In the following, dim(X) = n, and Lf is the Lie-derivative operator on X. Also,
fϕ denotes the vector field f(.,ϕ), for ϕ ∈ I, and hϕ : X → Rdy is the map h(.,ϕ).
The symbol dx means differential with respect to x only.

Theorem 2. If Σ is uniformly infinitesimally identifiable, then, there is a suban-
alytic closed subset Z of X, of codimension 1 at least, such that on the open set
X\Z, the following two equivalent properties 1 and 2 below hold:
1.a. ∂

∂ϕ{(Lfϕ)khϕ ≡ 0, for k = 0, ..., n − 1, b. ∂
∂ϕ{(Lfϕ)nhϕ 6= 0 (in the sense

that it never vanishes), c. dxhϕ ∧ ... ∧ dxLn−1fϕ
hϕ 6= 0,

2. any x0 ∈ X\Z has a coordinate neighborhood (x1, ...., xn, Vx0), Vx0 ⊂ X\Z
in which Σ (restricted to Vx0) can be written:

ẋ1 = x2,
ẋ2 = x3,

.

.
ẋn−1 = xn,
ẋn = ψ(x,ϕ);
y = x1;

(1.7)

where ∂
∂ϕψ(x,ϕ) never vanishes.

This theorem has the following pseudo-converse:

Theorem 3. Assume that Σ meets the equivalent conditions of the previous theo-
rem.
Then, any x0 has a neighborhood Vx0 such that the restriction Σ|Vx0 of Σ to Vx0

is uniformly infinitesimally identifiable, identifiable and differentially identi-
fiable of order n+ 1.
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Notice that Theorem 2 has a global character: it is almost everywhere on X, but
it is global with respect to ϕ ∈ I.

1.3.3. The 2-output case. This case will be the purpose of section 4.

Again, (differential) ”identifiability” being not generic, we will consider the ”uni-
form infinitesimal identifiability” property, that is very rigid (infinite codimension),
so that we will be able to characterize it completely in a geometric way.
Since this geometric description is non obvious, and since there is (surprisingly) a

small but nontrivial zoology (3 distinct cases), we do not give the intrinsic geometric
characterization here. This is done in section 4 (Theorem 8). In this introduction,
we state an equivalent theorem (Theorem 4) in terms of normal forms.

Theorem 4. If Σ is uniformly infinitesimally identifiable, then, there is an open-
dense subanalytic subset Ũ of X × I, such that each point (x0,ϕ0) of X × I, has a
neighborhood Vx0 × Iϕ0 , and coordinates x on Vx0 such that the system Σ restricted
to Vx0 × Iϕ0 , denoted by Σ|Vx0×Iϕ0 , has one of the three following normal forms:
-type 1 normal form: (in that case, n > 2k)

y1 = x1, y2 = x2,(1.8)

ẋ1 = x3, ẋ2 = x4,

..

ẋ2k−3 = x2k−1, ẋ2k−2 = x2k,
ẋ2k−1 = f2k−1(x1, ..., x2k+1),
ẋ2k = x2k+1,

..

ẋn−1 = xn,

ẋn = fn(x,ϕ), with
∂fn
∂ϕ

6= 0 (never vanishes),

-type 2 normal form:

y1 = x1, y2 = x2,(1.9)

ẋ1 = x3, ẋ2 = x4,

..

ẋ2r−3 = x2r−1, ẋ2r−2 = x2r,
ẋ2r−1 = Φ(x,ϕ), ẋ2r = F2r(x1..., x2r+1,Φ(x,ϕ)),

ẋ2r+1 = F2r+1(x1..., x2r+2,Φ(x,ϕ)),

..

ẋn−1 = Fn−1(x,Φ(x,ϕ)),
ẋn = Fn(x,ϕ),

with ∂Φ
∂ϕ 6= 0, ∂F2r

∂x2r+1
6= 0, ...., ∂Fn−1∂xn

6= 0,
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-type 3 normal form:

y1 = x1, y2 = x2,(1.10)

ẋ1 = x3, ẋ2 = x4,

..

ẋn−3 = xn−1, ẋn−2 = xn,
ẋn−1 = fn−1(x,ϕ), ẋn = fn(x,ϕ),

where (∂fn−1∂ϕ , ∂fn
∂ϕ ) never vanishes.

Also, in Section 4, we will give a lot of complementary results, examples, weak
converses of Theorems 4, 8, and a few ”global” results.

1.4. Results for the biological reactor. One of our results for the biological
reactor will be like that: we consider the case of a single observation, the concen-
tration s of the substrate.
Then, the biological reactor is not identifiable in the sense of definition 1.
Also, if we consider only constant input functions, (D(.) = ct.), then, the (single

output) system is not uniformly infinitesimally identifiable in the sense of Definition
3, because it does not meet the necessary conditions of Theorem 2.
Assuming that the growth function depends on s only (π : (x, s) → s is the

internal mapping), then, we prove (easily) the following theorem:

Theorem 5. The bioreactor is identifiable at an admissible i-o trajectory (y(.), u(.))
= (s(.),D(.) iff the output trajectory y(.) = s(.) visits twice the same value.

This result, and others, are the subject of Section 6.

1.5. Identification. In Section 5, we say a few words about the practical problem
of identification, specially in the cases where identifiability is not generic: 1 and
2 outputs. In these cases, a reasonable practical methodology for identification is
proposed.

Acknowledgement 1. We thank Jean-Luc Gouzé, from INRIA Sophia-Antipolis,
for stating this problem, and for fruitful discussions.

2. The Generic Case

The purpose of this section is to prove Theorem 1, and to give some complemen-
tary results and examples.

2.1. Comparison between differential identifiability and identifiability.
We state a result in the uncontrolled case only. In the controlled case, the
situation is much more complicated. It is possible to prove something very strong,
using techniques developed in the book [7], for observability. But, this is a great
complication, and it will be the purpose of another paper, since it is beyond the
scope of this general study.

Theorem 6. (uncontrolled systems) In the uncontrolled case, differential iden-
tifiability at some order implies identifiability.

Proof. Let us assume that an uncontrolled system Σ is not identifiable. It means
that there is an admissible output trajectory ŷ : [0, τ [→ Rdy , such that Σ is not
identifiable at ŷ, i.e., there are two trajectories x1(t), x2(t), and two corresponding
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functions ϕ̂1(t), ϕ̂2(t), ϕ̂1(t) = ϕ1(π(x1(t))), ϕ̂2(t) = ϕ2(π(x2(t))), such that ϕ1 and
ϕ2 are smooth, hence ϕ̂1(t), ϕ̂2(t), and ŷ(t) are smooth. Moreover, ϕ̂1(t0) 6= ϕ̂2(t0)
for some t0 ∈ [0, τ [, or x1(0) 6= x2(0). Restricting the interval [0, τ [, we may assume
that t0 = 0. Then, for an arbitrary positive integer k, consider the two k-jets at
time zero, jkϕ̂1, j

kϕ̂2. Consider the mapping Φ
Σ
k defined in the introduction. Set

z1 = (x1(0), j
kϕ̂1), z2 = (x2(0), j

kϕ̂2). Then, (Φ
Σ
k (z1), Φ

Σ
k (z2)) ∈ ∆k, the diagonal

of Rkdy . Therefore, Σ is not differentially identifiable of order k, since ϕ̂1(0) 6= ϕ̂2(0)
or x1(0) 6= x2(0).
2.2. Preliminaries for the proof of Theorem 1. Let S denote the set of C∞

systems Σ = (f, h) of the form 1.2, i.e elements of S are couples (f, h) of ϕ-
parametrized vector fields f and functions h. We endow S with the C∞ Whitney
topology. Let JkS denote the bundle of k−jets of systems in S. It is the fiber
product JkF ×X×I JkH of the bundles JkF, JkH over X× I, that are respectively
the bundles of k−jets of smooth sections of TX×I → X×I andX×I×Rdy → X×I.
Let us also denote by JkS∗2 the restriction of J

kS2 = JkS × JkS to ((X × I)×
(X × I))\∆(X × I), where ∆(X × I) is the diagonal in ((X × I)× (X × I)).

Let us recall that the mappings ΦΣk , Φ
Σ,∗
k,2 , defined in the introduction, depend

only on the k−jet jkΣ of Σ. When we want to stress this fact, we write ΦjkΣ in
place of ΦΣk .

2.2.1. The bad sets.

Definition 4. B1(k) is the subset of JkS2 of all couples (jkΣ(p), jkΣ(q)), such
that: (1) p 6= q, p = (x1,ϕ1), q = (x2,ϕ2), (2) f(p) = f(q) = 0, (3) h(p) = h(q).

Definition 5. a. Let B̂2(k) be the subset of JkS2 × R(k−1) × R(k−1), of all tuples
(jkΣ(p), jkΣ(q), v1, v2) such that: (1) p 6= q, p = (x1,ϕ1), q = (x2,ϕ2), (2) f(p) 6= 0
or f(q) 6= 0, (3) ΦΣk (x1, (ϕ1, v1)) = ΦΣk (x2, (ϕ2, v2)),
b. B2(k) denotes the canonical projection of B̂2(k) in JkS2.

The two following lemmas are obvious.

Lemma 1. B1(k), B̂2(k), B2(k), are respectively partially semi-algebraic subbun-
dles of JkS∗2 , JkS∗2 ×R(k−1)×R(k−1), JkS∗2 (this means that heir typical fiber is a
semi-algebraic subset of the fibers of the ambient bundles).

Lemma 2. If the map

Θ : ((X × I)× (X × I))\∆(X × I)→ jkS∗2

(p, q)→ (jkΣ(p), jkΣ(q)), p = (x1,ϕ1), q = (x2,ϕ2),

avoids B1(k) ∪B2(k), then Σ is differentially identifiable of order k.

2.3. Proof of Theorem 1. a. Estimation of the codimension of B1(k) in
JkS∗2 : It is obvious that this codimension is 2 n+ dy.

b. Estimation of the codimension of B2(k) in JkS∗2 : We treat only the
case f(p) 6= 0. The other case f(q) 6= 0 is similar.



10 ERIC BUSVELLE, JEAN-PAUL GAUTHIER

Let (x,ϕ, y,ψ) ∈ ((X×I)×(X×I))\∆(X×I). The typical fiber B̂2(k, x,ϕ, y,ψ)
of B̂2(k) in JkS(x,ϕ)× JkS(y,ψ)×Rk−1 ×Rk−1 is characterized by the following
properties: (i) f(p) 6= 0 and (ii) ΦΣk (x, (ϕ, v1))− ΦΣk (y, (ψ, v2)) = 0.
Let G be the subset of JkS(x,ϕ) × JkS(y,ψ) × Rk−1 × Rk−1 of all tuples

(jkΣ(x,ϕ), v1, j
kΣ(y,ψ), v2) such that f(x,ϕ) 6= 0 and let χ : G → Rk be the

mapping χ(jkΣ(x,ϕ), v1, j
kΣ(y,ψ), v2) = Φ

Σ
k (x, (ϕ, v1)) − ΦΣk (y, (ψ, v2)). Then,

B̂2(k, x,ϕ, y,ψ) = χ−1(0).
The map χ is an algebraic mapping, affine in jkh(x,ϕ).
By Lemma 3 in Appendix 2.5 below, for fixed v1 ∈ Rk and jkf(x,ϕ), the linear

mapping jkh(x,ϕ) ∈ JkH(x,ϕ)→ ΦjkΣ(x,ϕ, v1) is surjective. This shows that the
map χ : G→ Rk is a submersion. Since B̂2(k, x,ϕ, y,ψ) = χ−1(0),

codim(B̂2(k, x,ϕ, y,ψ), J
kS(x,ϕ)× JkS(y,ψ)×Rk−1 ×Rk−1) = kdy.

Hence:

codim(B̂2(k), J
kS∗2 ×Rk−1 ×Rk−1) = kdy.

It follows that codim(B2(k), JkS∗2) ≥ k(dy − 2) + 2.
c. Final estimation of codim(B1(k) ∪B2(k), JkS∗2).
It follows from a. and b. above that:

codim(B1(k) ∪B2(k), JkS∗2) ≥ min(2 n+ dy, k(dy − 2) + 2).(2.1)

d. Proof of Theorem 1. Let k ≥ 2 n + 1, and dy ≥ 3. Then, codim(B1(k) ∪
B2(k), J

kS∗2) ≥ 2n+3.We apply the standard multijet transversality theorems ([1],
[11]) to the map

ρ : S × ((X × I)× (X × I))\∆(X × I)→ JkS∗2 ,

(Σ, x,ϕ, y,ψ)→ (jkΣ(x,ϕ), jkΣ(x,ϕ)).

This allows to conclude that the set of Σ ∈ S such that ρΣ is transverse to
B1(k) ∪ B2(k) is residual. But, dim(((X × I) × (X × I))\∆(X × I)) = 2n + 2 <
codim(B1(k) ∪B2(k), JkS∗2) ≥ 2n+ 3.
Hence, the set of Σ ∈ S such that ρΣ avoids B1(k)∪B2(k) is residual. By Lemma

2, this ends the proof of Theorem 1.

2.4. A counterexample. We consider, on the circle S1, for values of ϕ in the
interval I = [−π,π], systems of the form: Σ = Σ0 + δΣ, where δΣ is C∞ but C1

small, and Σ0 is the system:

Σ0

 ẋ = ψ(x)− ϕ = f0(x,ϕ)
y1 = cos(x) = h

1
0(x,ϕ);

y2 = sin(2x) = h
2
0(x,ϕ).
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The cyclic coordinate on S1 is x and ψ : S1 → R is such that ψ(x) = x on the
interval [−π

2 − ε, π2 + ε], for ε > 0 small. We want to solve the system of equations:

(f0 + δf)(x1,ϕ1) = 0;(2.2)

(f0 + δf)(x2,ϕ2) = 0;

(h1 + δh1)(x1,ϕ1)− (h1 + δh1)(x2,ϕ2) = 0;

(h2 + δh2)(x1,ϕ1)− (h2 + δh2)(x2,ϕ2) = 0;

around the trivial solution δf = 0, δh1 = 0, δh2 = 0, x1 =
π
2 ,ϕ1 =

π
2 , x2 =−π

2 ,ϕ2 = −π
2 .

Here, the set S of systems is identified with a subspace of the Banach space BS
of C1 triples (δf, δh1, δh2) ∈ (C1(S1 × I))3 with the C1 topology .
It is trivial to check that the Jacobian matrix of the system (2.2), with respect to

the variables (x1,ϕ1, x2,ϕ2) at the point (
π
2 ,

π
2 ,−π

2 ,−π
2 ), is invertible. This means,

applying the implicit function theorem in the Banach manifold BS×S1×I×S1×I,
that for all C∞ variations δΣ small enough (C1), we can find solutions to Equations
(2.2), and these solutions are close to x1 = π

2 ,ϕ1 =
π
2 , x2 = −π

2 ,ϕ2 = −π
2 .

But, such a solution of (2.2) produces a system Σ and two couples (x1,ϕ1) 6=
(x2,ϕ2) such that, for the constant control functions ϕ1, ϕ2, and for the initial con-
ditions x1, x2, the corresponding couples of outputs (y1, y2) are constant functions
of the time, that are equal.
Hence, there is an open neighborhood (C1 open in C∞) of systems, that are not

differentially identifiable at any order k (and also not identifiable).

Remark 5. Notice that, in the formula 2.1, the 2 bounds on the codimension are
2n + 2 and 2, for dy = 2. Hence, there should be two typologies of counterex-
amples for dy = 2.
In this example, we have exhibited the simplest one, corresponding to codimension

2n + 2. But, from the results of section 4, (the case dy = 2), counterexamples
corresponding to the other typology are easy to construct.

2.5. Appendix. For the sake of completeness, we give here a (very simple) lemma
which is already contained in the paper [6], and in the book [7].
If V is a vector space, Syma(V ) denotes the space of symmetric tensors of

degree a on V, that can be canonically identified with the space of homogeneous
polynomials of degree a over V ∗, dual space of V. The symbol ¯ means symmetric
tensor product or power.
Let (x,ϕ, v) ∈ X × I ×Rk−1 be given, and set p = (x,ϕ). Let f ∈ F (the space

of smooth I−parametrized vector fields on X), such that f(p) 6= 0.
Lemma 3. The mapping Θ : JkH → Rkdy , jkh → Φj

kΣ(x,ϕ, v) is linear and
surjective.

Proof. Let f be a representative of jkf(p). Take a coordinate system (O,x1, ...xn)
for X at x. Then, if y(r) denotes the rth derivative of the output at time 0, we have:

y(r)(p, v) = drxh(p; f(p)
¯r) +

r−1X
a=0

daxh(p,Ra,r(j
kf(p), v) +X

l=1,..r,
s+l=r

dsxd
l
ϕh(p;T

r
s,l(j

kf(p), v)).
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The expressionsRa,r, T rs,l, are universal polynomial mappings : J
kF (p)×Rk−1 →

Syma(TxX) (resp. JkF (p) × Rk−1 → Syms(TxX) ⊗ Rl). This implies the result
because f(p) 6= 0.

3. The single-output case.

The purpose of this section is to prove Theorem 2 and Theorem 3

3.1. Proof of Theorem 2. Let us assume (A) that ∂
∂ϕ(Lfϕ)

ihϕ ≡ 0, i = 0, ..., k−1,
and ∂

∂ϕ(Lfϕ)
khϕ 6= 0, for k ≤ n− 1.

Then, (B): the closed analytic subset of X : Zk−1 = {x|dxh∧ ...∧ dxLk−1f h(x) =

0}, has codimension 1 at least. Then, for all x0 ∈ X\Zk−1, it can be completed by
functions hk(x), ..., hn(x), in order to form a local coordinate system on a neigh-
borhood Ux0 of x0.

Were it otherwise, then, by connectedness, dxh ∧ dxLfh ∧ ... ∧ dx(Lf )k−1h ≡ 0.
Take j ≤ k − 1, the first integer such that dxh ∧ dxLfh ∧ ... ∧ dx(Lf )jh ≡ 0. Then,
set, on some open subset of X : x1 = h, ...., xj = (Lf )

j−1h. complete this set of
functions by xj+1, ..., xn, in order to form a coordinate system.
In these coordinates, with a straightforward computation, the system Σ can be

rewritten:

X



y = x1,
ẋ1 = x2,

.

.
ẋj−1 = xj ,

ẋj = ψj(x1, ..., xj),
ẋj+1 = ψj+1(x,ϕ)

.
ẋn = ψn(x,ϕ),

which is obviously not uniformly infinitesimally identifiable: take in the first
variation, ξ(0) 6= 0, ξ1(0) = .. = ξj(0) = 0, and the ”variation” η(.) ≡ 0. The output
of the first variation system is identically zero, whatever ϕ(.). A contradiction with
uniform infinitesimal identifiability.
This shows (B).

Now, let us show that (A) is impossible.
In the coordinate system defined as in (B), the system writes, on some on some

open subset:
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X



y = x1,
ẋ1 = x2,

.

.
ẋk−1 = xk,

ẋk = ψk(x,ϕ),
.
.

ẋn = ψn(x,ϕ).

(3.1)

Now, the linearized system writes, in these coordinates (and the associated co-
ordinates ξi on TX): 

ẋ = f(x,ϕ),

ξ̇1 = ξ2,

ξ̇k−1 = ξk,

ξ̇i = dxψi(x,ϕ)ξ + dϕψi(x,ϕ)η,
i = k, ..., n,

(3.2)

where f is as in 3.1. Let us take ξ(0) 6= 0, ξ1(0) = 0, ..., ξk(0) = 0. Our assumption
(A) implies that on an open dense analytic subset D of X × I, dϕψk(x,ϕ) 6= 0.
Around a point p0 = (x0, ξ(0),ϕ0) ∈ TX × I, (x0,ϕ0) ∈ D, with ξ(0) just defined,
we consider the feedback function for the system 3.2: η(x,ϕ, ξ) = −dxψk(x,ϕ)ξ

dϕψk(x,ϕ)
. We

consider also the function ϕ(t) ≡ ϕ0. Then, the feedback system 3.2 has a unique
trajectory (ξ(t), x(t)) around p0, starting from (x0, ξ0) at time 0. By construction,
this trajectory is such that ξ1(t), ..., ξk(t) = 0 for all t small enough. This contra-
dicts the infinitesimal identifiability assumption. Hence, ∂

∂ϕ(Lfϕ)
khϕ = 0, (A) is

impossible.

Now, at this point, identically on X × I, ∂
∂ϕ{(Lfϕ)khϕ = 0, for k = 0, ..., n− 1.

This is the property 1.a. of Theorem 2. Property 1.c. also holds, by the proof
of (B) above, which works also in that case. Moreover, we already know that, on
an open dense semianalytic subset D of X, our system can be rewritten (in local
coordinates, around any point x0 ∈ D):

y = x1,
ẋ1 = x2,

.

.
ẋn−1 = xn,
ẋn = ψ(x,ϕ).

(3.3)

Consider the closed analytic subset of S ⊂ X×I, formed by the (x,ϕ)’s satisfying
∂ψ
∂ϕ = 0 (or equivalently,

∂
∂ϕ{(Lfϕ)nhϕ = 0). If this subset has nonempty interior,

by analyticity and connectedness, it is the whole X×I, and ψ does not depend on ϕ,
which is easily seen as a contradiction with infinitesimal identifiability. Then, S has
codimension 1 at least. Let ΠS be the projection of S on X, Π : X × I → X. Since
I is compact, ΠS is subanalytic. By Hardt’s Theorem ([9]), we can stratify the
mapping Π : S → ΠS. Let S1, ΠS1 be two strata such that ΠS1 has maximal
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dimension, and Π maps S1 submersively onto ΠS1. Let ϕ̂ : ΠS1 → S1 be a smooth
section of Π. (See the footnote at the beginning of the appendix, Section 7).
Assume that dim(S1) = dimX = n. Then, ϕ̂ is a smooth mapping from an open

subset ΠS1 of X to X × I.
Let us apply this (feedback) function ϕ̂ to our linearized system restricted to

ΠS1 × I. In the coordinates defined above, it rewrites:
y = x1,(3.4)

ẋ1 = x2, ..., ẋn−1 = xn, ẋn = ψ(x, ϕ̂(x)),

ξ̇1 = ξ2, ..., ξ̇n−1 = ξn, ξ̇n = dxψ(x, ϕ̂(x))ξ + 0.

ŷ = ξ1.

This equation 3.4 is independent of η, the input of the linearized system. Then,
let us take ξ(0) = 0, η(t) 6= 0. Then ŷ(t) is identically zero, which contradicts the
infinitesimal identifiability.
Therefore, ΠS1 is not open in X, and therefore, it has codimension 1. ΠS has

codimension 1, and this shows exactly the property 1.b. of Theorem 2, together
with the property 2. (the normal form), in the statement of the theorem. This ends
the proof.¤

3.2. Proof of Theorem 3. Assume that Σ is a system in normal form 3.3, on
some open neighborhood O of x = 0 in Rn, with ∂ψ

∂ϕ (x) never vanishing.
It is clear that admissible output trajectories (there is no input in our case),

are smooth. Given any smooth function y(.) : [0, T [→ R, an immediate com-
putation with the normal form 3.3 shows that x1(t) = y(t), x2(t) = ẏ(t), .....,

xn(t) =
dn−1y
dtn−1 (t). Also,

dny

dtn
(t) = ψ(y, ẏ, ..., y(n−1)(t),ϕ(t)).(3.5)

Assume that y(.) is an admissible output trajectory. For y, ẏ, ..., y(n−1) fixed,
set:

ψy,ẏ,...,y(n−1)(ϕ) = ψ(y, ẏ, ..., y(n−1),ϕ).

The function ψy,ẏ,...,y(n−1) is monotonous:
∂ψ
∂ϕ (.) never vanishes. Since y(.) is

an admissible output trajectory, then, the equation 3.5 has a solution ϕ(t) for all
t ∈ [0, T ], (and this solution is smooth w.r.t. t). By the monotonicity, this solution
is unique. This means that Σ is identifiable, for Z = O and π : O → O being the
trivial ”internal mapping”. For the same reason, it is also identifiable if π : O → Z,
is nontrivial.
To finish, by the normal form, it is just a matter of trivial computation to show

that Σ|O is differentially identifiable of order n + 1, and the uniform infinitesimal
identifiability of Σ|O is also obvious, from the normal form.

4. The two-output case

Here, we want to prove Theorem 4, give a series of intrinsic conditions corre-
sponding to these normal forms, state and prove several weak converses of Theorem
4 for all these normal forms, and give a few examples.
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4.1. Preliminaries, definitions. Here, as above, L is the Lie derivative operator
on X. Hence, if f(x,ϕ) is a ϕ-dependant vector field, Lf is the Lie derivative
operator with respect to the vector fields fϕ(x) = f(x,ϕ), for ϕ fixed in I.
Let N(l) be the rank at generic points of X × I of the family El of one-forms

on X:

El = {dxhi, dxLfhi, ..., dxLl−1f hi, i = 1, 2}.
Set N(0) = 0.
This set of generic points Ul, is the intersection of the open sets Ũi, i ≤ l, where

Ei has maximal rank. Ul is semianalytic, open and dense in X × I. Moreover,
Ul+1 ⊂ Ul.
It is easy to check that N(l) increases strictly by steps of 2, up to l = k, and

after, (eventually), it increases by steps of 1 up to l = lM , N(lM ) ≤ n.
It may happen that k = 0, i.e. N(1) = 1.

Lemma 4. If Σ is uniformly infinitesimally identifiable, then, N(lM ) = n.

The idea in this lemma is that, if it is not true, then, for constant functions ϕ(.),
infinitesimal identifiability will be contradicted.

Proof. If N(lM ) < n, let (x1, ...xn,ϕ) be a coordinate system in an open sub-
set of UlM formed by ϕ, and by N(lM ) functions of (x,ϕ) chosen, in the fam-
ily {hi, Lfhi, ..., LlM−1f hi, i = 1, 2}, (the N(lM ) first coordinates), and other x-
coordinates. In these coordinates, it is easy to see that, for the constant function
ϕ(.) ≡ ϕ0, Σ can be rewritten as:

ẋ1 = f1(x1, ..., xN(lM ),ϕ0),

.

ẋN(lM ) = f1(x1, ..., xN(lM ),ϕ0),

ẋN(lM )+1 = f1(x1, ..., xn,ϕ0),

.

ẋn = f1(x1, ..., xn,ϕ0),

y1 = h1(x1, ..., xN(lM ),ϕ0),

y2 = h2(x1, ..., xN(lM ),ϕ0).

Then, taking η ≡ 0, and ξ1(0) = ... = ξN(lM )(0) = 0, ξN(lM )+1(0) 6= 0, in the
equation of the first variation, we see that the solution ξ(t) verifies ξ1(t) = ... =
ξN(lM )(t) = 0, on a small time interval [0, T ], T > 0. This implies that on this
time interval, the output ŷ = (ŷ1, ŷ2) of the first variation is identically zero. A
contradiction with infinitesimal identifiability for ϕ(.) ≡ ϕ0.

Definition 6. We define r, the ”order” of the system, as the first integer such
that dϕLrfh does not vanish identically.

Lemma 5. If Σ is uniformly infinitesimally identifiable, then, r ≤ lM .
Proof. Assume r ≥ lM+1. Let us take again a coordinate system on an open subset
of X, formed by functions of the family {hi, Lfhi, ..., LlM−1f hi, i = 1, 2}. These
functions are functions of x only, since r ≥ lM + 1. By the previous lemma, this is
possible. It is obvious that, in these coordinates, the system can be rewritten:

ẋ = f(x), y = h(x).
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Let us take ξ(0) = 0, but a function η(t) nonzero, in the first variation. Then,
the output ŷ of the first variation is identically zero, on some open time interval.
This contradicts the infinitesimal identifiability.

Definition 7. A system Σ is regular if N(lM ) = n and r ≤ lM .
If a system is uniformly infinitesimally identifiable, then it is regular, by the 2

previous lemmas. From now on, in this section, we will assume that systems Σ
under consideration are regular.

The integer k is the first with the following properties:

dxh1 ∧ dxh2 ∧ dxLfh1 ∧ ... ∧ dxLkfh1 ∧ dxLkfh2 ≡ 0, but

dxh1 ∧ dxh2 ∧ dxLfh1 ∧ ... ∧ dxLk−1f h1 ∧ dxLk−1f h2 6= 0 (not identically zero).

If r = k, there are three possibilities:
A. n = 2k;
B.
B.1.

dxh1 ∧ dxh2 ∧ dxLfh1 ∧ ... ∧ dxLk−1f h2 ∧ dxLkfh1 6= 0
(hence n > 2k) and dϕLkfh2 6= 0; or,
B.2.

dxh1 ∧ dxh2 ∧ dxLfh1 ∧ ... ∧ dxLk−1f h2 ∧ dxLkfh2 6= 0
(hence n > 2k) and dϕLkfh1 6= 0;
C.
C.1

dxh1 ∧ dxh2 ∧ dxLfh1 ∧ ... ∧ dxLk−1f h2 ∧ dxLkfh1 6= 0
(hence n > 2k) and dϕLkfh2 ≡ 0, dxh1∧dxh2∧dxLfh1∧ ...∧dxLk−1f h2∧dxLkfh2 ≡ 0,
or
C.2

dxh1 ∧ dxh2 ∧ dxLfh1 ∧ ... ∧ dxLk−1f h2 ∧ dxLkfh2 6= 0
(hence n > 2k) and dϕLkfh1 ≡ 0, dxh1∧dxh2∧dxLfh1∧ ...∧dxLk−1f h2∧dxLkfh1 ≡ 0
Definition 8. Let Σ be a regular system. We say that Σ has:
-type 1 if r > k, or r = k but C. is satisfied,
-type 2 if r < k, or r = k but B. is satisfied,
-type3 if r = k and A. is satisfied.

Lemma 6. Types 1, 2 and 3 exhaust the class of regular systems, and form a
partition of this class.

Proof. For a system with r 6= k, it is clear that it is either of type 1 or type 2 and
not both. There can be only problems for r = k. If we show that, for r = k:
i) cases B. and C. exhaust all regular systems with n > 2k,
ii) cases B. and C. do not intersect;
then, the theorem is proved since n ≥ 2k.
Assume that Σ is simultaneously B. and C., then:
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If Σ is B.1., it cannot be C.2. which contradicts dxh1 ∧ dxh2 ∧ dxLfh1∧ ... ∧
dxL

k−1
f h2 ∧ dxLkfh1 6= 0, and it cannot be C.1., which contradicts dϕLkfh2 6= 0.
On the same way, if Σ is B.2., it cannot be C.1. which contradicts dxh1 ∧dxh2 ∧

dxLfh1∧ ... ∧ dxLk−1f h2 ∧ dxLkfh2 6= 0, and it cannot be C.2., which contradicts
dϕL

k
fh1 6= 0.
This shows ii).

Proof of i): By definition of k :

dxh1 ∧ dxh2 ∧ dxLfh1 ∧ ... ∧ dxLkfh1 ∧ dxLkfh2 ≡ 0,

dxh1 ∧ dxh2 ∧ dxLfh1 ∧ ... ∧ dxLk−1f h1 ∧ dxLk−1f h2 6= 0.

Since n > 2k,either:

(a) dxh1 ∧ dxh2 ∧ dxLfh1 ∧ ... ∧ dxLk−1f h1 ∧ dxLk−1f h2 ∧ dxLkfh1 6= 0,
or:

(b) dxh1 ∧ dxh2 ∧ dxLfh1 ∧ ... ∧ dxLk−1f h1 ∧ dxLk−1f h2 ∧ dxLkfh2 6= 0,
or both: were it otherwise, lM = k,N(lM ) = 2k, and n = 2k, by Lemma 4.
Assume that (a) and (b) hold simultaneously.
Then, since dϕLkfh = dϕL

r
fh 6= 0 by definition of r, either (α), dϕLkfh1 6= 0, or

(β), dϕLkfh2 6= 0 Assume (α) (the case (β) is symmetric). Then we are in case B.2.

Assume that (a) holds, but not (b) (the case (b) holds but not (a) is symmetric).
Then:

dxh1 ∧ dxh2 ∧ dxLfh1 ∧ ... ∧ dxLk−1f h1 ∧ dxLk−1f h2 ∧ dxLkfh1 6= 0,

dxh1 ∧ dxh2 ∧ dxLfh1 ∧ ... ∧ dxLk−1f h1 ∧ dxLk−1f h2 ∧ dxLkfh2 ≡ 0.

If dϕLkfh2 6= 0, we are in case B.1., if dϕLkfh2 ≡ 0, we are in case C.1. This ends
the proof.

Type 2 regular systems:
For a regular system of type 2, eventually interchanging the role of h1, h2, we

can assume that dϕLrfh2(x,ϕ) 6= 0. In a neighborhood of a point (x0,ϕ0) ∈ UlM ,
such that Lrfh2(x0,ϕ0) = u0 and dϕL

r
fh2(x0,ϕ0) 6= 0, there is an analytic function

Φ∗(x, u), such that Lrfh2(x,Φ
∗(x, u)) = u. Let us consider the ”auxiliary system”

ΣA :

ΣA

½
ẋ = f(x,Φ∗(x, ϕ̃)) = F (x, ϕ̃)
y = h(x,Φ∗(x, ϕ̃)) = H(x, ϕ̃).

This system is well defined and intrinsic, over an open set Vx0 × Vϕ0 ⊂ X × I.

By construction, the integer r (the order) associated with this auxiliary system
is the same as the one of the given system Σ.
Moreover, the following flags D and DA of integrable distributions over Vx0 :

D0(x) = TxX, D1(x) = Ker(dxh(x)), ...,Dr(x) = Dr−1(x) ∩Ker(dxLr−1f h(x)),

D = {D0 ⊃ D1 ⊃ ... ⊃ Dr};
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and

DA
0 (x) = TxX, D

A
1 (x) = Ker(dxh(x)), ...,D

A
r (x) = D

A
r−1(x) ∩Ker(dxLr−1f H(x)),

DA = {DA
0 ⊃ DA

1 ⊃ ... ⊃ DA
r },

are equal.

Let us ”prolong” the auxiliary flag DA, in the following way:

DA
r+1(x, ϕ̃) = DA

r (x) ∩Ker(dxLrFH1(x, ϕ̃)),
DA
i+1(x, ϕ̃) = DA

i (x) ∩Ker(dxLiFH1(x, ϕ̃)),
DA(ϕ̃) = {DA

0 ⊃ DA
1 ⊃ .. ⊃ DA

r ⊃ DA
r+1(ϕ̃) ⊃ .. ⊃ DA

l (ϕ̃) = D
A
l+1(ϕ̃)},

where l is the first integer such that DA
l (x, ϕ̃) = D

A
l+1(x, ϕ̃) at generic points.

Definition 9. The auxiliary flag DA(ϕ̃) is regular on an open subset U ⊂ X × I,
if DA

l (ϕ̃) = {0}, and all the other DA
i (ϕ̃) have constant rank first n − 2i (i ≤ r),

second n− r − i (r < i < l), third, 0 (i ≥ l = n− r); on this open set.
Definition 10. The auxiliary flag DA(ϕ̃) is uniform on an open subset U ⊂
X × I, if it is regular, and independent of ϕ̃.
4.2. Normal form for a uniform auxiliary flag (systems of type 2). Here,
we consider a regular system Σ of type 2, with a uniform auxiliary flag over X × I.
The flag being integrable (in the sense that it is a flag of integrable distributions of
constant rank), around each point of X × I, we can find coordinates x such that:

DA
l−1(ϕ̃) = Span{ ∂

∂xn
}, ....,DA

r+1(ϕ̃) = Span{
∂

∂xn
, ...,

∂

∂x2r+2
},

DA
r (ϕ̃) = Span{ ∂

∂xn
, ...,

∂

∂x2r+1
},DA

1 (ϕ̃) = Span{
∂

∂xn
, ...,

∂

∂x3
}.

Moreover, we can take as x coordinates:

x1 = h1(x), x2 = h2(x), ..., x2r−1 = Lr−1F h1(x), x2r = L
r−1
F h2(x).

Then, the auxiliary system ΣA can be written:

ẋ1 = x3, ẋ2 = x4,(4.1)

..

ẋ2r−3 = x2r−1, ẋ2r−2 = x2r,
ẋ2r−1 = F2r−1(x, ϕ̃), ẋ2r = F2r(x, ϕ̃) = ϕ̃,

..

ẋn = Fn(x, ϕ̃),

y1 = x1, y2 = x2.

Since DA
r+1(ϕ̃) = Span{ ∂

∂xn
, ..., ∂

∂x2r+2
}, we must have ∂F2r−1

∂x2r+2
= .. = ∂F2r−1

∂xn
= 0,

and ∂F2r−1
∂x2r+1

6= 0, or, locally:

F2r−1 = F2r−1(x1, ..., x2r+1, ϕ̃),
∂F2r−1
∂x2r+1

6= 0.
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Repeating this reasoning, we get that:

Fn−2 = Fn−2(x1, ..., xn−1, ϕ̃),
∂Fn−2
∂xn−1

6= 0,

Fn−1 = Fn−1(x1, ..., xn, ϕ̃),
∂Fn−1
∂xn

6= 0,
Fn = Fn(x, ϕ̃).

Conversely, if the system ΣA is like that, then it is just a trivial computation to
check that the auxiliary flag is uniform.
Hence, replacing ϕ̃ by Φ(x,ϕ) = Lrfh2(x,ϕ), and reversing the role of h1, h2, we

get the following result:

Theorem 7. (Normal form for a uniform auxiliary flag) A system Σ has
a uniform auxiliary flag around (x0,ϕ0), iff there is a neighborhood Vx0 × Iϕ0 of
(x0,ϕ0), and coordinates on Vx0 such that Σ can be written:

y1 = x1, y2 = x2,

ẋ1 = x3, ẋ2 = x4,

..

ẋ2r−3 = x2r−1, ẋ2r−2 = x2r,
ẋ2r−1 = Φ(x,ϕ), ẋ2r = F2r(x1..., x2r+1,Φ(x,ϕ)),

ẋ2r+1 = F2r+1(x1..., x2r+2,Φ(x,ϕ)),

..

ẋn−1 = Fn−1(x,Φ(x,ϕ)),
ẋn = Fn(x,ϕ),

with ∂Φ
∂ϕ 6= 0, ∂F2r

∂x2r+1
6= 0, ...., ∂Fn−1∂xn

6= 0.
4.3. Statement of the results for the two-output case.

Theorem 8. (main result in the 2-output case) If Σ is uniformly infinitesi-
mally identifiable, (hence regular), then, there is an open-dense subanalytic subset
Ũ of X × I, such that at each point (x0,ϕ0) of Ũ , Σ has the following properties,
on a neighborhood of (x0,ϕ0):
-If Σ has type 2, the auxiliary flag is uniform,
-If Σ has type 1, then, N(r) = n.

Remark 6. a. In the case where Σ has type 3, then, there is no other requirement.

b. In the case of type 1 assume r = k. Then, we have C., which implies n > 2k.
But N(r) = n = N(k) = 2k. Then, for type 1 systems, r = k cannot happen
for a uniformly infinitesimally identifiable system.

This theorem is in fact equivalent to the theorem in the introduction, Theorem
4.
These two equivalent theorems (Theorems 8, 4) have a weak converse:

Theorem 9. Assume that Σ satisfies the equivalent conditions of theorems 8, 4,
on some subset Vx0 × Iϕ0 of X × I (so that, taking Vx0 , Iϕ0 small enough, the
restriction Σ|Vx0×Iϕ0 has one of the three normal forms above on Vx0 × Iϕ0). Then,
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in case type 1, type 2, (normal forms 1.8, 1.9) Σ|Vx0×Iϕ0 is uniformly infinitesimally
identifiable and identifiable. In case type 3 (normal form 1.10), this is also true,
eventually restricting the neighborhoods Vx0 , Iϕ0 .

Also, in the special case of type 1, there is a stronger result:

Theorem 10. Assume Σ is uniformly infinitesimally identifiable, (hence regu-
lar). Assume that Σ has type 1. Then, there is an open-dense subanalytic subset X̃
of X, such that each point x0 of X̃, has a neighborhood Vx0 , and coordinates x on
Vx0 such that the system Σ restricted to Vx0 × I, denoted by Σ|Vx0 , has the normal
form 1.8 (globally over Vx0 × I). Conversely, if it is the case, then, the restriction
Σ|Vx0 is uniformly infinitesimally identifiable and identifiable.

Several points in this last theorem are not true in the case of types 2 and 3.

Example 1. (Type 2) consider the type 2 system:

y1 = x1, y2 = x2,

ẋ1 = x3 cosϕ, ẋ2 = x3 sinϕ,

ẋ3 = f(x).

where x3 > 0 (x ∈ X = R2×R+), and I = [−A,A], for A > 0, sufficiently large.
For this system, k = 1, r = 1, and B. is always satisfied.
(a) The normal form 1.9 is met only locally with respect to ϕ (changing the role

of h1 and h2 depending on ϕ);

(b) For any open subset X̃ of X, Σ|X̃ is never identifiable: for ϕ(t) and x(0)
arbitrary, (x(0),ϕ(t)) and (x(0),ϕ(t) + 2π) produce the same output.

Example 2. (Type3) Consider the type 3 system on R2 :
y1 = x1, y2 = x2,

ẋ1 = cosϕ, ẋ2 = sinϕ,

where, as above, I = [−A,A], for A > 0, sufficiently large. Again, (x(0),ϕ(t))
and (x(0),ϕ(t) + 2π) produce the same output.

Example 3. (Type 2) Consider the system on a subset X × I of R2 × R, with X
open:

y1 =
1

2
(ϕ− x2)2, y2 = x1

ẋ1 = x2, ẋ2 = 0.

For this system, r = 0, k = 1.
If we take for X and I neighborhoods of zero in R2 and R, then, the auxilliary

flag is not uniform (on any open subset with zero in its closure), and the normal
form 1.9 is not met. On the contrary, if X is a neighborhood of (x1(0), x2(0)),
and I is a neighborhood of ϕ0, provided that these neighborhoods are small and
ϕ0 6= x2(0), the auxilliary flag is uniform, and the normal form is met.

4.4. Proof of the results for the 2-output case.
First, let us show that theorems 8, 4 are equivalent.
It is just a matter of simple computations to see that normal form 1.9 (resp.

1.8, 1.10) in Theorem 4 imply the conditions ”type 2” (resp. ”type 1”, ”type 3” of
theorem 8.
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Conversely it is easy to check that, in Theorem 8, conditions ”type 1”, ”type 3”
imply the corresponding normal forms in Theorem 4. For type 3, see the (trivial)
details in the proof of Theorems 8, 4, below. Condition ”type 2” is equivalent to
the normal form 1.9 by Theorem 7.

Proof. (of Theorem 9).
1. Normal form 1.8. From the normal form, computing the first variation, it

follows immediately that ŷ(t) = 0 on some time interval [0, ε] (ŷ the output of the
first variation), implies ξ(0) = 0 on the same time interval, where ξ(0) ∈ Tx0X is
the initial condition for the first variation. Deriving once more, we get that η(.) (the
variation control) vanishes for almost all t. This shows that Σ|Vx0×Iϕ0 is uniformly
infinitesimally identifiable.
Now, from the normal form, differentiating the output y(t) a certain number of

times, one reconstructs the full state x(t) = (x1(t), ..., xn(t)) of the system.
Knowing x(t), the equation ẋn(t) = fn(x(t),ϕ(t)) can be solved with respect to

ϕ, at almost all t ∈ [0, ε] : if ∂fn
∂ϕ never vanishes, then the function of ϕ: ẋn(t) −

fn(x(t),ϕ) is a monotonous function of ϕ. Then, its values determine ϕ uniquely.
This shows that Σ|Vx0×Iϕ0 is identifiable.

2. Normal form 1.10. Again, computing the first variation (with output ŷ), we
see immediately that ŷ(t) = 0 on some time interval [0, ε] implies that ξ(t) = 0

on this interval. The condition that (∂fn−1∂ϕ , ∂fn
∂ϕ ) does not vanish implies that

η(t) = 0 for almost all t ∈ [0, ε] if ŷ(.) = 0. This shows that Σ|Vx0×Iϕ0 is uniformly
infinitesimally identifiable.
Now, from the normal form, any output trajectory y(t) determines x(t) by

differentiation. The condition that (∂fn−1∂ϕ , ∂fn
∂ϕ ) does not vanish implies that

(restricting the neighborhood Vx0 × Iϕ0 , and eventually exchanging the role of
h1, h2) that

∂fn−1
∂ϕ never vanishes. Then the same argument as for the normal form

1.8 shows that ϕ(t) is determined almost everywhere by one more differentiation.
Σ|Vx0×Iϕ0 is identifiable.
3. Normal form 1.9. Computing with the first variation, assuming that the

output ŷ(t) is identically zero on some interval [0, ε] we get that ξ1(t), ...ξ2r(t) are
identically zero on the same interval. The two equations:

ẋ2r−1 = Φ(x,ϕ), ẋ2r = F2r(x1..., x2r+1,Φ(x,ϕ)),

with ∂Φ
∂ϕ 6= 0, ∂F2r

∂x2r+1
6= 0, show that dxΦ.ξ(t)+dϕΦ.η(t) and ξ2r+1(t) are identically

zero for almost all t, and by continuity, ξ2r+1(t) = 0 on [0, ε]. By induction, using
the fact that ∂F2r+i

∂x2r+i+1
6= 0, we get that ξ2r+i+1(t) is identically zero, and at the

end, ξ(t) is identically zero.
The equation of ξ2r−1 again, shows that η is zero almost everywhere: 0 =

dxΦ.ξ(t) + dϕΦ.η(t) a.e. Hence, Σ is uniformly infinitesimally identifiable.
Now, the output y(t) = (x1, x2)(t), by differentiation, determines (x3, x4)(t)

for all t ∈ [0, ε]. By differentiation of (x3, x4)(t), we get (x5, x6)(t), and so on.
Once we know (x2r−1, x2r), with the same reasoning, we determine Φ(x,ϕ) and
F2r(x1..., x2r+1,Φ(x,ϕ)) almost everywhere w.r.t. t. Now, ∂F2r

∂x2r+1
6= 0 (never van-

ishes), shows that F2r is monotonous w.r.t. x2r+1, the other variables being fixed.
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Hence, since we know Φ and x1, ..., x2r, we can determine uniquely x2r+1(t), t ∈ [0, ε]
(by continuity) from the knowledge of the values of F2r a.e. By induction, we de-
termine x(t) for all t ∈ [0, ε].
Solving the equation ẋ2r−1 = Φ(x(t),ϕ(t)) (using again the monotonicity of Φ

w.r.t ϕ, since ∂Φ
∂ϕ 6= 0), determines ϕ(t) for almost all t, hence determines ϕ as an

L∞([0, ε], Iϕ0) function. Hence, Σ|Vx0×Iϕ0 is identifiable.

Proof. (of Theorem 10.)
Assume that Σ is regular, type 1. Then, consider the subset X̃ of X where

dxh1 ∧ dxh2 ∧ dxLfh1 ∧ ... ∧ dxLk−1f h1 ∧ dxLk−1f h2 6= 0.
X̃ is semi-analytic, open dense. On a neighborhood of each point of X̃, we can

chose as coordinates (x1, x2) = h(x), ...., (x2k−1, x2k) = Lk−1f h(x). Let us assume
that r > k or C.2 is satisfied (the case C.1 is obtained by exchanging the role of
h1 and h2). Then, Σ can be written locally in x :

y1 = x1, y2 = x2,

ẋ1 = x3, ẋ2 = x4,

..

ẋ2k−3 = x2k−1, ẋ2k−2 = x2k,
ẋ2k−1 = f2k−1(x1, ..., x2k+1),
ẋ2k = x2k+1,

..

ẋN(r)−1 = xN(r),

ẋN(r) = fN(r)(x,ϕ),

..

ẋn = fn(x,ϕ).

with ∂fN(r)

∂ϕ nonidentically zero.
Moreover, if r = k, then f2k−1 = f2k−1(x1, ..., xk), and ẋ2k = f2k(x,ϕ) =

fN(r)(x,ϕ).

Assume that N(r) < n. Then, let us consider the initial condition ξ(0) for the
first variation: ξ1(0) = ... = ξN(r)(0) = 0, ξN(r)+1(0) 6= 0. Chose the feedback

function η(x,ϕ, ξ) = −dxfN(r)(x,ϕ)ξ

dϕfN(r)(x,ϕ)
. For this, chose any function ϕ (ϕ constant for

instance). We have, for the first variation:

ξ̇1 = ξ3, ξ̇2 = ξ4
..

ξ̇2k−1 =
∂f2k−1
∂x1

ξ1 + ...+
∂f2k−1
∂x2k+1

ξ2k+1,

ξ̇2k = ξ2k+1,

..

ξ̇N(r)−1 = ξN(r),

ξ̇N(r) = 0 by construction.

Moreover, if r = k, ∂f2k−1
∂x2k+1

≡ 0, and ξ̇N(r) = ξ̇2k = 0.
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Hence, for t > 0 small, (ξ1(t), ξ2(t)) = ŷ(t) = 0 (remind that ŷ is the output of
the first variation). This contradicts the uniform infinitesimal identifiability.
Hence, N(r) = n. Let E = {(x,ϕ)|dϕLrfh(x,ϕ) = 0}. Let πE be the projection of

E on X. X\πE is subanalytic. Assume that πE contains an open set X̃. By Hardt’s
Theorem on the stratification of mappings, there is a smooth (analytic) mapping
ϕ̂ : X̃ → E (restricting X̃ eventually). Then, choosing for the first variation the
initial condition ξ(0) = 0, and any nonzero variation η(t), but the feedback ”control”
ϕ(t) = ϕ̂(x(t)), (for small times), we get by construction that the trajectory ξ(t)
of the first variation is in the zero section of TX. A contradiction with the uniform
infinitesimal identifiability.
We conclude that πE has codimension 1, and X̃ = X\πE contains an open

dense set. This shows the first part of the theorem.
Since on X̃ × I, dϕLrfh(x,ϕ) never vanishes by construction, the proof of the

last part of the theorem is exactly the same as the proof of Theorem 9, part ”type
1”.

Proof. (of Theorems 8, 4.)
We already know, by the beginning of this section, that these theorems are

equivalent.
The proof of Theorem 4, ”type 1”, is already contained in the proof of Theorem

10 (which is stronger, for type 1 systems).

Type 3: (the most simple case). It is clear that if r = k, n = 2k, the system can
be locally written under normal form 1.10 around any point of an open dense semi-
analytic subset of X × I : x1 = h1(x), x2 = h2(x), ..., x2k−1 = Lk−1f h1(x), x2k =

Lk−1f h2(x) are adequate coordinates around any point where they are independent.
The set of these points is semianalytic open, dense inX. The fact that r = k implies
that dϕLkfh(x,ϕ) is not identically zero. Hence, it is never zero on a semi-analytic
open dense subset of X × I. On the intersection of these two semianalytic subsets
of X × I, (the first one can be considered as such), in the coordinates just defined,
the system is under the normal form 1.10.

Type 2: This is the most difficult case. In that case, by the definition of type
2, eventually interchanging h1, h2, we may assume that, around any point (x0,ϕ0)
of the complement (X × I)\Ũ of the codimension 1 analytic set Ũ ⊂ X × I :

Ũ =

{(x,ϕ)|dxh1 ∧ dxh2 ∧ dxLfh1 ∧ ... ∧ dxLr−1f h2 ∧ dxLrfh1 = 0}
∪{(x,ϕ)|dϕLrfh2 = 0},
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we can find coordinates x such that the system can be written:

y1 = x1, y2 = x2,(4.2)

ẋ1 = x3, ẋ2 = x4,

..

ẋ2r−3 = x2r−1, ẋ2r−2 = x2r,
ẋ2r−1 = f2r−1(x,ϕ), ẋ2r = f2r(x,ϕ),

..

ẋn = fn(x,ϕ),

with ∂f2r
∂ϕ 6= 0, and dx1 ∧ ... ∧ dx2r ∧ dxf2r−1 6= 0.

Here, in case r = k, we treatB.1. only. In case r < k, we chose h2 for dϕLrfh2 6= 0,
and h1 is the other. This ensures that Ũ has codimension 1.
Let ŷ(t) be an output function of the first variation of the system, which is identi-

cally zero on some time interval [0, ε]. Let x(t), ξ(t), ϕ(t), η(t) be the corresponding
trajectories. We know that the couple (ξ(t), η(t)) has to be identically zero, by the
uniform infinitesimal identifiability. Differentiating ŷ(t) = 0 r times, we get:

ξ1(t) = ... = ξ2r(t) = 0 for all t ∈ [0, ε], and:
dxf2r−1(x(t),ϕ(t))ξ(t) + dϕf2r−1(x(t),ϕ(t))η(t) = 0,(4.3)

dxf2r(x(t),ϕ(t))ξ(t) + dϕf2r(x(t),ϕ(t))η(t) = 0,

for almost all t ∈ [0, ε].
Hence, the system of equations (4.3), must have no smooth solution (η,ϕ)(x, ξ),

in a neighborhood of (x0, ξ(0)), ξ(0) 6= 0, in X × Rn−2r = {(x, ξ(0))|ξ1(0) = ... =
ξ2r(0) = 0}, with ϕ close to ϕ0 and η arbitrary:
Indeed, assume that there is a solution (η,ϕ)(x, ξ). Then, consider the feedback

system:

ẋ = f(x,ϕ(x, ξ)),

ξ̇2r+1 = dxf2r+1(x,ϕ(x, ξ))ξ + dϕf2r+1(x,ϕ(x, ξ))η(x, ξ),

...

ξ̇n = dxfn(x,ϕ(x, ξ))ξ + dϕfn(x,ϕ(x, ξ))η(x, ξ),

in which ξ1 = ... = ξ2r = 0.
This is a smooth differential equation on an open subset of X × Rn−2r. It has

a smooth solution x(t), ξ(t). We set ϕ̂(t) = ϕ(x(t), ξ(t)), η̂(t) = η(x(t), ξ(t)), with
ξ(t) 6= 0.
By construction, we have:

ẋ = f(x, ϕ̂(t)),

ξ̇ = Txf(x, ϕ̂(t))ξ + dϕf(x, ϕ̂(t))η̂(t),

because, for ξ1, ..., ξ2r, these equations read ξ1(t) = ... = ξ2r(t) = 0 for all t (small).
Hence, in particular ŷ1(t) = 0, ŷ2(t) = 0. This is impossible, by uniform infini-

tesimal identifiability.
Therefore, by the crucial Lemma 7, Section 7, we get that:
there are neighborhoods Vx0 , Vϕ0 , and coordinates x̃ on Vx0 , with x̃1 = x1, ...,

x̃2r = x2r, such that:

x̃2r+1 = Φϕ0(x̃1, ..., x̃2r, f2r−1(x̃,ϕ), f2r(x̃,ϕ)),(4.4)
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for all (x̃,ϕ) ∈ Vx0 × Vϕ0 .
Moreover,

(
∂Φϕ0
∂f2r−1

,
∂Φϕ0
∂f2r

) never vanishes,(4.5)

∂f

∂ϕ
Z ∂f

∂x̃p+1
never vanishes,(4.6)

on Vx0 ×Vϕ0 , where ∂f
∂ϕ Z

∂f
∂x̃p+1

denotes the determinant of the 2×2 matrix formed
by ∂(f2r−1,f2r)

∂ϕ and ∂(f2r−1,f2r)
∂x̃p+1

.

In fact, ∂Φϕ0
∂f2r−1

6= 0, because, if it is zero, then ∂Φϕ0
∂f2r

6= 0 by (4.5), and, differen-
tiating (4.4) with respect to ϕ, we get a contradiction (since ∂f2r

∂ϕ 6= 0).
Therefore, we can apply the implicit function theorem to (4.4): restricting may

be our neighborhood Vx0 × Vϕ0 , we find a smooth function Φ̄ such that

f2r−1(x̃,ϕ) = Φ̄(x̃1, ..., x̃2r, x̃2r+1, f2r(x̃,ϕ)),(4.7)

with ∂Φ̄
∂x̃2r+1

6= 0.
Now, set ∆ = ∂(f2r−1,f2r)

∂ϕ Z ∂(f2r−1,f2r)
∂x̃p+1

. An easy computation shows that ∆ =

−∂f2r
∂ϕ

∂Φ̄
∂x̃2r+1

. This says no more than ∂f2r
∂ϕ 6= 0, which we already know. Equation

(4.3) becomes:

1.
∂Φ̄

∂x̃2r+1
ξ2r+1 +

∂Φ̄

∂f2r
dxf2r(x̃,ϕ)ξ +

∂Φ̄

∂f2r
dϕf2rη = 0,(4.8)

2. dxf2r(x̃,ϕ)ξ + dϕf2rη = 0.

Equation (4.8, 2) implies η = −dxf2r(x̃,ϕ)ξdϕf2r
, which replaced in (4.8,1) gives

∂Φ̄
∂x̃2r+1

ξ2r+1 = 0, ξ2r+1 ≡ 0. We have shown that ŷ ≡ 0 implies (ξ1, ..., ξ2r+1) ≡ 0,
and, making the change of notations x := x̃, (4.2) rewrites:

y1 = x1, y2 = x2,(4.9)

ẋ1 = x3, ẋ2 = x4,

...

ẋ2r−3 = x2r−1, ẋ2r−2 = x2r,
ẋ2r−1 = f2r−1(x1, ..., x2r+1, f2r(x,ϕ)), ẋ2r = f2r(x,ϕ),
ẋ2r+1 = f2r+1(x,ϕ),

...

ẋn = fn(x,ϕ),
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∂f2r
∂ϕ 6= 0, and ∂f2r−1

∂x2r+1
6= 0. With ξ1(0) = ... = ξ2r+1(0) = 0, we obtain, for the

first variation:

ŷ1 = ξ1, ŷ2 = ξ2,(4.10)

ξ̇1 = ξ3, ξ̇2 = ξ4
...

ξ̇2r−3 = ξ2r−1, ξ̇2r−2 = ξ2r,

ξ̇2r−1 = dxf2r−1(ξ1, .., ξ2r+1) +
∂f2r−1
∂f2r

(dxf2rξ + dϕf2rη),

ξ̇2r = dxf2rξ + dϕf2rη,

ξ̇2r+1 = dxf2r+1ξ + dϕf2r+1η,

...

ξ̇n = dxfnξ + dϕfnη.

If n = 2r + 1, our theorem is already proved (exchanging h1, h2). Assume n >
2r + 1.
If we can find a feedback solution (η̂, ϕ̂)(x, ξ) of :

dxf2r(x,ϕ)ξ + dϕf2r(x,ϕ)η = 0,

dxf2r+1(x,ϕ)ξ + dϕf2r+1(x,ϕ)η = 0,

for (ξ1, ..., ξ2r+1) = 0, (ξ2r+2, ..., ξn) 6= 0, on some open set in the space of the
other variables ξ2r+2, .., ξn, x, then, this will contradict the uniform infinitesimal
identifiability, with the same reasoning as above. Therefore, another application
of Lemma 7 shows that, we can change the coordinates x, keeping x1, ..., x2r+1
unchanged, for:

f2r+1 = f2r+1(x1, ..., x2r+2, f2r(x,ϕ)),

where ∂f2r+1
∂x2r+2

6= 0 (never vanishes on some neighborhood Vx0 × Vϕ0). Iterating the
process, and at the end, exchanging the roles of y1 = x1 and y2 = x2, ends the
proof of the theorem.

5. Identification

We will not consider the case where identifiability is a generic property (dy ≥ 3).
In this case, there is a new difficulty, and it will be treated in another paper. For
the cases dy = 1, dy = 2, we will be very short, and give only the ideas, leaving all
details to the reader. Also, we will focus on the problem of ”on line” identification
(that is, the process of learning about the unknown function runs simultaneously
to the process of observing the data y(t)).
In the case dy = 1, (normal form 1.7), the most simple example is:

y(n) = ϕ.

This trivial example shows that there is in general no hope to do something
better than approximate differentiation: the problem of learning about the graph
of ϕ is just the problem of estimating the n first derivatives of the output.
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5.1. Identification using approximate derivators.

Theorem 11. We consider, on X × I, (X an open subset of Rn), a system which
is globally in normal form 1.7, (dy = 1) or in normal forms 1.8, 1.9, (dy = 2), or
1.10 with the additional requirement that ∂fn

∂ϕ
never vanishes (dy = 2). The points

of the graph of the functions ϕ(x), or ϕ ◦ π(x) visited during some experiment can
be reconstructed by (a finite number of) differentiations of the output(s).

Proof. Several facts in this theorem have been proved already. Nevertheless, we
shortly prove everything.
1. Normal forms 1.7, 1.8, 1.10.
Differentiating the outputs, we can reconstruct the state x(t) of the system. Dif-

ferentiating once more, we reconstruct respectively ψ(x,ϕ)(t) in (1.7), and fn(x,ϕ)(t)
in (1.8), (1.10). These functions, as functions of ϕ, are monotonous. Hence, x(t)
being known, we can reconstruct ϕ(t) from the knowledge of their values.
2. Normal form 1.9.
Differentiating a certain number of times, we reconstruct x1, ..., x2r, and Φ(x,ϕ).

Differentiating once more, we reconstruct F2r(x1, .., x2r+1,Φ). It is a monotonous
function of x2r+1. Hence, x2r+1 can be obtained from these values. Iterating the
result, we reconstruct x(t). Once x(t) is known, the function Φ being monotonous
with respect to ϕ, we get ϕ(t).

In fact, this procedure is not so far from what is done for the identification of
linear systems.

5.2. Identification using nonlinear observers. We may assume, along the tra-
jectories visited, a ”local model” for ϕ as a function of time. For instance, the
most simple model is ϕ(k) ≡ 0, i.e. ϕ is a polynomial function of the time. Of
course, the coefficients of this polynomial will be perpetually reestimated. And
hence, the question is not that they model the function ϕ globally as a function of
time, but only locally, on reasonable time intervals (reasonable with respect to the
performances of the observer).
Let us consider again the 4 normal forms 1.7, 1.8, 1.9, 1.10, (with the same

additional requirement, in case 1.10, that ∂fn
∂ϕ

never vanishes). Adding ϕ and its k
first derivatives as extra state variables, the problem is now reduced to the problem
of estimation of the state.
It turns out that, in all these cases, the extended systems we get have very

strong observability properties, and that the ”High Gain Construction”, pre-
sented in the book [7], generalizes to these cases, allowing to reconstruct (approxi-
mately) the state of the extended system, and hence to estimate the corresponding
points of the graph of ϕ.

5.3. A more robust solution. High gain observers may be rather sensitive to
noise. A more robust solution is proposed in [3]. This construction also works for
all the cases under consideration here in, if dy = 1 or 2.
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As an example, let us consider just the case of the normal form (1.7), which
gives, adding derivatives of ϕ as state variables:

dny

dtn
= ψ(y, ..., y(n−1),ϕ),(5.1)

ϕ̇ = ϕ1,

..

ϕ̇k−2 = ϕk−1,
ϕ̇k−1 = 0,

where, as usual, ∂ψ∂ϕ never vanishes.

The map Ξ : Rn+k → Rn+k, (y, ẏ, ..., yn−1,ϕ, ...,ϕk−1) → (y, ẏ, ..., y(n+k−1)), is
a diffeomorphism, as it is easily checked. Hence, (see again [7] for details), this
system is diffeomorphic to a system on Rn+k, of the form:

ξ̇1 = ξ2, ..., ξ̇n+k−1 = ξn+k, ξ̇n+k = ψ̂(ξ), y = ξ1,

for some smooth function ψ̂. This is exactly what is needed for applying the tech-
nique developed in [3].
We will exploit a variation of this idea for the biological reactor in the next

section.

6. The biological reactor

6.1. The model and its basic properties. Let us recall the equations of the
model of bioreactor presented in the introduction:

ds

dt
= −µ.x+D(Sin − s)(6.1)

dx

dt
= (µ−D)x.

The growth function, µ(s, x), is smooth, positive or zero, and, for obvious physi-
cal reasons, µ(0, x) = 0 : if there is no substrate to eat, the population cannot grow.
On the contrary, if there is something to eat, the population grows: µ(s, x) > 0 for
s > 0. The control function D(t) verifies D(t) > ε > 0 : this means that the reactor
is always fed. The constant Sin is assumed to be strictly positive.
Now, the subset X = R+ × R+ is invariant by the dynamics (6.1) of the biore-

actor: if x = 0, then ẋ = 0, and if s = 0, then ṡ = D. Sin > 0. Therefore, we may
consider that x(t), s(t) are always strictly positive.
The function µ(s, x) is often considered in the literature as a function of s only,

µ(0) = 0, µ ≥ 0. This means that the internal variable is s ∈ R+, and the internal
mapping π : X → R+ is the mapping (x, s)→ s.
Typical expressions of the growth function in that case are the Monod model:

µ(s) =
µ0s

km + s
,(6.2)

or the Haldane model:

µ(s) =
µ0s

km + s+
s2

ki

.(6.3)
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6.2. Observation of s only. Setting X = x+ s, we get:
ds

dt
= −µ.x+D(Sin − s),(6.4)

dX

dt
= D(Sin −X),

hence, setting D̃(t) =
R t
0
D(τ)dτ , we get:

X = e−D̃(t)X0 + (1− e−D̃(t))Sin.(6.5)

Let us set:

(1) Λ(t) = eD̃(t)(s− Sin) + Sin, or:(6.6)

(2) s = e−D̃(t)Λ(t) + Sin(1− e−D̃(t)), s(0) = Λ(0).
By (6.4), we get:

Λ̇ = −eD̃(t)(X − s)µ,(6.7)

and with (6.5):

Λ̇ = (Λ−X0)µ.(6.8)

Let us assume, as we said in the previous section, that µ is a function of s only.
Let us also assume that s(.) visits twice the same value, i.e, T0 < T1, s(T0) =
s(T1). Then, with X0 = X(0) = x(0) + s(0):

µ(s(T0)) =
Λ̇(T0)

Λ(T0)−X0 =
Λ̇(T1)

Λ(T1)−X0 = µ(s(T1)).

Observe, with Equation (6.8), that Λ is everywhere continuously differ-
entiable, even if D(.) is only measurable, bounded. From (6.7), and the fact
that µ(s) > 0 for s > 0, we get that Λ(t) is a strictly decreasing function, and
Λ(0) = s(0), X0 = x(0) + s(0), x(0) > 0, implies that Λ(t) −X0 is never zero for
t ≥ 0.
Also, s(t) being observed, and D(t), the control, being known, we may consider,

by the definition (6.6, 1) of Λ, that Λ is an observed function. Then, X0 can be
computed:

X0 =
Λ̇(T0)Λ(T1)− Λ̇(T1)Λ(T0)

Λ̇(T0)− Λ̇(T1)
,(6.9)

indeed, Λ̇(T0)− Λ̇(T1) = (Λ(T0)− Λ(T1))µ(s(T0)) 6= 0.
Now, X0 being known,

µ(s(t)) =
Λ̇(t)

Λ(t)−X0(6.10)

since Λ(t)−X0 never vanishes.
Conversely, let us consider a trajectory, defined on [0, T ], such that:
(H.a.) s never visits twice the same value on [0, T ], (i.e. s is strictly monoto-

nous),
or, stronger,
(H.b.) D(.) is smooth, (from what it follows that s(.), x(.),Λ(.),X(.), are all

smooth functions), and ds
dt (t) 6= 0 for all t ∈ [0, T ].
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Initial conditions corresponding to this trajectory are s0, x0,X0 (all strictly > 0).
Let us consider another arbitrary value, X̃0 = x̃0 + s0 > 0, close to X0. Then,

since Λ(t) = eD̃(t)(s− Sin) + Sin is C1 (even in case, (H.a.)), as we know by (6.8),
we may compute µ̃(t) = Λ̇(t)

Λ(t)−X̃0
, on the interval [0, T ] : indeed, since X̃0 is close

to X0, then Λ(t)− X̃0 is close to Λ(t)−X0, and then never vanishes. Then, under
Assumption (H.a.), there is a continuous function t(s), which is the inverse of s(t),
and which is smooth under assumption (H.b.). Set µ̄(s) = µ̃(t(s)). In case (H.b.),
µ̄ is smooth, in case (H.a.), it is continuous only. Set also x̃(t) = X̃(t) − s(t) =
e−D̃(t)X̃0 + (1− e−D̃(t))Sin − s(t). In these circumstances, we claim that:
Claim: (a) s(t), x̃(t) are solutions of the system:

(1)
ds

dt
= −µ̄(s(t))x̃+D(t)(Sin − s(t)),(6.11)

(2)
dx̃

dt
= (µ̄(s(t))−D(t))x̃(t),

(b) if X̃0 is sufficiently close to X0, x̃(t) > 0 for all t ∈ [0, T ].

Proof. (of the claim) (a): Let us show first that µ(t)x(t) = µ̃(t)x̃(t) for all t ∈ [0, T ].
By construction:

µ̃(t) =
Λ(t)−X0
Λ(t)− X̃0

µ(t),

then it is sufficient to check that Λ(t)−X0

Λ(t)−X̃0
µ(t)x̃(t) = µ(t)x(t), or, since µ(t) > 0 :

(Λ(t)−X0)x̃(t) = (Λ(t)− X̃0)x(t).(6.12)

But x(t) = X(t)− s(t) = e−D̃(t)X0 + (1− e−D̃(t))Sin − s(t), and x̃(t) = X̃(t)−
s(t) = e−D̃(t)X̃0 + (1 − e−D̃(t))Sin − s(t). Replacing by these expressions and by
the expression (6.6, 1) of Λ(t), just shows that (6.12) is true. Therefore, since
ds
dt = −µ.x+D(Sin − s), we get that also, dsdt = −µ̃.x̃+D(Sin − s). This is (a, 1).
Now,

x̃(t) = X̃(t)− s(t) = e−D̃(t)X̃0 + (1− e−D̃(t))Sin − s(t),
dx̃

dt
(t) = −D(t)(x̃(t)− Sin + s(t)) + µ(t)x(t)−D(t)(Sin − s(t)),

= −D(t)x̃(t) + µ(t)x(t) = −D(t)x̃(t) + µ̃(t)x̃(t),
by the proof of (a, 1). Hence, dx̃dt (t) = (µ̃(t)−D(t))x̃(t). This is (a, 2).
To prove (b), let us just observe that: x̃(t) = e−D̃(t)X̃0+(1−e−D̃(t))Sin−s(t), and

x(t) = e−D̃(t)X0+(1−e−D̃(t))Sin−s(t), then, x̃(t)−x(t) = e−D̃(t)(X̃0−X0). Hence,
for X̃0 sufficiently close to X0, or equivalently x̃0 sufficiently close to x0, x̃(t) is
strictly positive.

We have shown the following theorem (precise version of Theorem 5 in the in-
troduction):
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Theorem 12. a. The bioreactor is identifiable at any admissible i.o. trajectory
(s(t),D(t)), t ∈ [0, T ] such that s(t) visits twice the same value,
b. Conversely, if (s(t),D(t)), t ∈ [0, T ] is an admissible i.o. trajectory along

which s(t) is strictly monotonous, then, there is an infinity of corresponding couples
(x(.), µ), with µ continuous. If moreover D(.) is smooth, and ṡ(t) 6= 0 for all
t ∈ [0, T ], then, there is an infinity of corresponding couples (x(.), µ), with µ smooth.
In Section 6.5, some numerical investigation will be made on the basis of this

theorem.

6.3. Observation of both s and x. In that case, assuming D(.) constant, we
are in the situation dy = 2, of Section 4, and our system is regular, and Type 3
(normal form 1.10), with the additional requirement of Theorem 11.
Therefore, we may use the ideas explained briefly in Section 5, Subsections 5.2,

5.3. In fact, in that case, we can do better:
1. we can adapt these ideas to the case where D(.) is not constant,
2. making a small change of variables, we can use a real linear Kalman observer,

in place of a high-gain one:

Let us set z(t) = µ(s(t)).x(t), and let us, (as explained in Section 5), assume a
local model for z(.), of the form dkz

dtk
= 0. Then, our system becomes:

ṡ = −z +D(t)(Sin − s);(6.13)

ẋ = z −D(t).x,
ż = z1, ..., żk−2 = zk−1, żk−1 = 0;
y1 = s, y2 = x.

Assuming only that 0 ≤ D(t) ≤ Dmax, this is a linear time-dependant system,
which is uniformly observable in the sense of the linear theory. Hence, classical
versions of the (time dependant) Linear Kalman Filter work, even in a stochastic
context.
This method will be also investigated numerically in Section 6.5.

6.4. Observation of x only. This case is often considered in practice.
If µ would be a function µ(x) of x, then, we could consider the system:

ẋ = (µ(x)−D)x,
y = x,

for x ∈ R+. Then, assuming D(.) constant, we are exactly in the case of uniformly
infinitesimally identifiable systems, in the case dy = 1, normal form 1.7. Our ideas
of Section 5 can then be used, and work as perfectly as in the case of the previous
section 6.3, (even for D(.) non constant).

But, in the case where µ depends only on s, as we assume here, (and as is often
assumed in the literature), or if µ = µ(s, x) depends on both s and x, then, the
system:

ẋ = (µ−D)x,
ṡ = −µ.x+D(Sin − s),
y = x;
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is not uniformly infinitesimally identifiable (it does not verify the necessary con-
ditions of Theorem 2).
Moreover, clearly, it is not identifiable: assume D constant (for simplicity only),

and µ(x, s), or µ(s) given, smooth. Given a smooth trajectory (x(t), s(t)), t ∈
[0, T ], x(0) > 0, s(0) > 0, of this system. Then,

s(t) = e−Dts(0) +
Z t

0

e−D(t−τ)(−(µx)(τ) +DSin)dτ .

Let us chose another s̃0 6= s(0), (s̃(0) close to s(0)), and consider:

s̃(t) = e−Dts̃0 +
Z t

0

e−D(t−τ)(−(µx)(τ) +DSin)dτ .

Consider now the trajectory (x(t), s̃(t)), t ∈ [0, T ], and a smooth function µ̃(x, s),
or µ̃(s), such that µ̃(x(t), s̃(t)) = µ(x(t), s(t)) for t ∈ [0, T ]. This is possible, even-
tually restricting the interval [0, T ] to some [T0, T1] ⊂ [0, T ]. In fact, (x(t), s̃(t)) is
a solution of:

dx

dt
= (µ̃−D)x,

ds̃

dt
= −µ̃.x+D(Sin − s̃),

x(0) = x0, s̃(0) = s̃0.

Hence, some people identify systems that are not identifiable: It is possible,
by differentiation of the output x, to obtain complete information on the function
µ(x(t), s(t)), as a function of time. But it is not possible to deduce from this, any
information about the function µ(s, x), or µ(s).

In fact, the reason why they obtain ”some results” in practice (even for D(.)
nonconstant) is the following: because of Equation 6.5, we see that, whatever the
control D(.) > ε > 0, X(t) tends to Sin when t → +∞. Hence, after some time,
X = x+s is close to Sin, and s is close to Sin−x. Then, the estimate µ̂(t), obtained
after differentiation of the output x(t), is such that (x(t), Sin − x(t), µ̂(t)), is close
to a point of the graph of µ, for t large enough.

6.5. Numerical simulations.

6.5.1. Simulation with complete measurements. In this section, we simulate the
bioreactor model using the Monod growth function (6.2)

µ (s) =
0.15 s

2 + s

We assume Sin constant, equal to 5. D (t) is a periodic function with period shown
on Figure 1. Initial conditions are x (0) = 3 and s (0) = 2.
In this first case, we assume that both the substrate and the biomass concen-

tration are measured. Hence the output is y (t) = (s (t) , x (t)). A colored noise
is added to both variables to simulate noisy measurement. More precisely, this
colored noise has been simulated using

dUt = −aUt dt+ σ
√
2a dWt
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where Wt is a normalized Brownian motion. So Ut is an Ornstein—Uhlenbeck pro-
cess, that is a stationary process with mean 0 and with covariance function

ΓU (t, s) = E [UtUs] = σ2e−a|t−s|

and hence Ut is a reasonable approximation of a realistic noise.
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As explained in section 6.3, we set z (t) = µ (s (t)) x (t), and we assume a local
model for z (t) of the form 

dz (t)

dt
= z1 (t)

dz1 (t)

dt
= z2 (t)

dz2 (t)

dt
= 0
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We add to these equations the two equations of the bioreactor
ds (t)

dt
= −z (t) +D (t) (Sin − s (t))

dx (t)

dt
= z (t)−D (t) x (t)

and we apply the classical Kalman filter to these five equations, i.e. setting X (t) =
(s (t) , x (t) , z (t) , z1 (t) , z2 (t))

d bX (t)
dt

= A (t) bX (t) + b (t) + PCTR−1 ³y (t)− C bX (t)´
dP (t)

dt
= A (t)P (t) + P (t)A (t)T +Q− P (t)CTR−1CP (t)

with

A (t) =


−D (t) 0 −1 0 0
0 −D (t) 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 , b (t) =

D (t) sin

0
0
0
0


and C =

µ
1 0 0 0 0
0 1 0 0 0

¶
Measured outputs are shown on figure 2 and 3 where the continuous line repre-

sents noisy outputs and the dashed line represents observer estimation.

Figure 4 represents µ (t) and bµ (t) = bz (t)bx (t) with the same convention as in the
previous figures. Clearly, after the initial transient, the behavior of the Kalman
filter looks good.
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Figure 6. µ (s) (thin line) and its initial guess cµ0 (s) (thick line)
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Figure 7. µ (s) and bµt (s) at time t = 0.019
6.5.2. Simulation with a single measurement s (t). If s is the only measurement, we
can still expect to reconstruct µ (s) for all visited value of s provided that at least
one value of s has been visited twice, as already explained in section 6.2.
Since this identification process does not depend on the estimation of x, we use

the estimation of µ to estimate x. Moreover, once µ is known, the system is a
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Figure 8. µ (s) and bµt (s) at time t = 0.042
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Figure 9. µ (s) and bµt (s) at time t = 0.051
linear system with a matrix depending on the output s, therefore we can apply
linear Kalman filter to estimate x.
Our algorithm is divided in two steps:
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• estimation of µ using the redundant visited values of the measurement s. The
estimation of the function s→ µ (s) at time t is denoted by s→ bµt (s);

• estimation of x (t) on the basis of s (t) and bµt.
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The second part of our algorithm is simply standard Kalman filtering. Let us
explain the first part.
We first choose a sample time ∆t, arbitrarily fixed to 0.2. At each sample time

t = k∆t, we consider the N+1 values of s at time k∆t, (k − 1)∆t, . . . , (k −N)∆t,
i.e. we consider only the history up to time T = N∆t in the past.
Since we want to estimate a function, we have to discretize the coordinate space

of s in a range corresponding to physical values, with a small enough discretization
step, to ensure good accuracy. In this way, we chose smin and smax and a step size
∆s.
At each sample time k∆t, we replace the measured trajectory

s ((k −N)∆t) , . . . , s (k∆t)(6.14)

by a linearly interpolated trajectory

s (t1) , s (t2) , . . . , s (tn)(6.15)

such that (k −N)∆t ≤ t1 < t2 < · · · < tn ≤ k∆t and each s (tj) is of the form
smin+p∆s. Let us explain more precisely how we build the list 6.15. Let us assume
that we have already build the list from t1 to tj considering measurements from time
(k −N)∆t to time (k − i)∆t. Then between time (k − i)∆t and (k − i+ 1)∆t, l
and r are such that

smin + l∆s < s ((k − i)∆t) ≤ smin + (l + 1)∆s ≤ smin + (l + 2)∆s ≤ · · ·
≤ smin + (l + r)∆s ≤ s ((k − i+ 1)∆t) ≤ smin + (l + r + 1)∆s

Now we interpolate tj+1, . . . , tj+r so that s (tj+p) ≈ smin + (l + p)∆s, p =
1, . . . , r and we add s (tj+1) , . . . , s (tj+r) to the list.
The list 6.15 is then used to look for values appearing at least twice and to

estimate X0 and µ at sample values smin + (l + p)∆s.
Nevertheless, in order to give some weight to a priori knowledge of µ and to

increase robustness with respect to measurement noise, we do not modify completely
µ (s) when a new value is provided by equations (6.9) and (6.10) and the previous
algorithm. In fact, we use a first order filter to actualize bµt, that is, if a new µt (s)
is obtained from (6.10) at time t for a discretized s, we modify bµt (s) usingbµt (s) = (1− β) bµt (s) + β µt (s)

Despite this filtering, both on measurement and actualization of µ, this algorithm
looks rather sensitive to noise. Here, we illustrate our approach without adding any
noise on the output s.
Figure 5 shows D (t) which is the control. Figures 6 to 9 show the estimationbµt (s) of µ (s) at different times. At the beginning of the simulation, we setcµ0 to be

the Monod law, although the actual unknown law µ (s) is the Haldane law. Thin
lines represent the actual Haldane growth function. Thick lines and dots represent
the estimation of the function µ.
At each sample time, as already mentioned, we use the bioreactor model withbµt (s) as growth function to estimate x (t) using a linear Kalman filter. At the

beginning of our simulation, since cµ0 is wrong (Monod law instead Haldane law),
our observer does not estimate x accurately and there is a bias between the actual
x (t) and its estimate bx (t). It is expected that when µ is correctly identified, the
observer gives an unbiased estimation of x. Indeed, at time 0.15 approximately,
s (t) begins to decrease (Figure 10) and then visits again a domain where µ has
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already been identified. Therefore µ (s) ≈ bµt (s) for t > 0.15. It is then expected
that after time 0.15, estimation of x (t) will be unbiased. This actually happens,
see Figure 11.

7. Appendix

7.1. A crucial lemma .

Notations:
1. In this section, we keep the notation ∧ for the exterior product of differential

forms on X or on X×I, and, for V1, V2 ∈ R2, we denote by V1 ZV2 the determinant
of the 2× 2 matrix formed by the vectors V1, V2.
2. Again, in this section, for a smooth function f of two variables (x,ϕ), x ∈ Rn,

ϕ ∈ Rp, we denote by dxf (resp dϕf), the differentials with respect to the x variable
(resp. ϕ variable) only.

3. For x = (x1, ..., xn) ∈ Rn, we denote by xp∈ Rp the vector xp= (x1, ...., xp).
For a function h : Rn → R, of the variables x1, ..., xn, the notation h \i1,...,ip means
that h does not depend on xi1 , ..., xip .

Lemma 7. Consider h : U × I → R2, U an open connected subset of Rn, with a
given Cω coordinate system x = (x1, ...., xn), and h(x,ϕ) = (h1(x,ϕ), h2(x,ϕ)),
such that dϕh never vanishes on U × I, and the equation

dxh(x,ϕ)ξ + dϕh(x,ϕ)η = 0, with (ξ1, ...ξp) = 0, p < n,(7.1)

has no smooth solution (η,ϕ)(x, ξ), on any open subset of U×Rn−p ⊂ {(x, ξ)|(ξp+1,
..., ξn) 6= 0}.
Then, there is Z ⊂ U, a closed subanalytic subset of codimension 1, such that, for

all x0 ∈ U\Z, it does exist a neighborhood Vx0 of x0 and coordinates x̃ = (x̃1, ..., x̃n)
on Vx0 , with x̃1 = x1, ..., x̃p = xp, and:
for all ϕ0 ∈ I, there is a neighborhood Vϕ0 of ϕ0, a Cω real function Φϕ0 , with

open domain D in Vx0 ×Θ1 ×Θ2, Θ1,Θ2 open subsets of R,
with:

(F ) x̃p+1 = Φϕ0(x̃p, h1(x̃,ϕ), h2(x̃,ϕ)),

for all (x̃,ϕ) ∈ Vx0 × Vϕ0 .
Moreover,

(G) (
∂Φϕ0
∂h1

,
∂Φϕ0
∂h2

) never vanishes on D,

(H)
∂h

∂ϕ
Z ∂h

∂x̃p+1
never vanishes on (U\Z)× I.(7.2)

Remark 7. (G) is a consequence of (F ), since x̃ is a Cω coordinate system on X.

Proof. (of Lemma 7).
Proof for p+1 = n : Let E = {(x,ϕ)| ∂h∂ϕ Z ∂h

∂xn
(x,ϕ) = 0}, and let πE : E → U.

By Hardt’s theorem on the stratification of proper subanalytic mappings between
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subanalytic sets, if πE contains an open set, then, there is , on a (may be smaller)
open set Θ, a smooth (Cω) function ϕ̂ : Θ→ E.1

Hence, ∂h
∂ϕ Z

∂h
∂xn

(x, ϕ̂(x)) = 0, for x ∈ Θ. We chose x0 ∈ Θ, ϕ0 = ϕ̂(x0).

If dϕh1(x0,ϕ0) 6= 0 (we can assume this by the statement of the lemma, eventu-
ally changing h1 for h2), then, set:

η̂(x, ξ) = −(dxh1)(x, ϕ̂(x))ξ
(dϕh1)(x, ϕ̂(x))

, for ξ = (0, ..., 0, ξn) 6= 0.

Then the couple (η̂, ϕ̂)(x, ξn) solves Equation (7.1). This is a contradiction.
Therefore, Z = πE has codimension 1, and on (U\Z × I), ∂h

∂ϕ Z
∂h
∂xn

never vanishes
by construction. This proves (H).
Now, (x1, ..., xp, h1, h2) is a coordinate system over small open subsets of (U\Z)×

I :

dx1 ∧ .... ∧ dxp ∧ dh1 ∧ dh2 =

dx1 ∧ .... ∧ dxp ∧ dϕ ∧ dxn(∂h
∂ϕ

Z ∂h

∂xn
) 6= 0.

Hence, on such a small open set, xp+1 = Φ(x1, ..., xp, h1, h2).

Proof for p + 1 < n : There exists i > p such that ∂h
∂ϕ Z

∂h
∂xi

does not vanish
identically: were it otherwise, for ξ 6= 0, ξ1 = 0, ..., ξp = 0, and in a neighborhood of
(x,ϕ) such that dϕh1 6= 0, η̂ = −dxh1.ξdϕh1

solves Equation (7.1), which is impossible.
Now, for ξ 6= 0, for ξ1 = 0, ..., ξp = 0,

(1) dxh.ξ Z dϕh(x,ϕ) = 0 implies:(7.3)

(2) dϕ(dxh.ξ Z dϕh(x,ϕ)) = 0.

Indeed, if it is not true, by the implicit function Theorem, one can solve (7.3,1)
with respect to ϕ, and obtain a smooth solution ϕ̂(x, ξ), on some open set. Setting

η̂(x, ξ) = − (dxh1)(x, ϕ̂(x, ξ))ξ
(dϕh1)(x, ϕ̂(x, ξ))

,

we solve again Equation (7.1) on an open set, a contradiction.
Statement (7.3) can be rewritten:

nX
i=p+1

(dxih Z dϕh(x,ϕ))ξi = 0⇒
nX

i=p+1

dϕ(dxih Z dϕh(x,ϕ))ξi = 0.

But, one of the dxihZdϕh(x,ϕ)does not vanish identically. Hence, in a neighbor-
hood V of some (x0,ϕ0), we have, for all i = p+ 1, ..., n, and for a certain analytic
function λ(x,ϕ) :

dϕ(dxih Z dϕh(x,ϕ)) = λ(x,ϕ)(dxih Z dϕh(x,ϕ)),
and then, integrating this (linear) differential equation in ϕ :

dxih Z dϕh(x,ϕ) = Λ(x,ϕ)ωi(x), Λ(x,ϕ) 6= 0, i = p+ 1, ..., n.
This implies, on V :

ωj(x) dxih Z dϕh(x,ϕ)− ωi(x)dxjh Z dϕh(x,ϕ) = 0,

1Here, in fact, Sard’s Theorem plus the implicit function Theorem is enough to obtain this
function ϕ̂. But Hardt’s Theorem is more explicit, and we crucially use subanalyticity elsewhere.
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for all i, j > p. Hence, since dϕh never vanishes,

ωj(x) dxih− ωi(x)dxjh = λi,j(x,ϕ)dϕh, i, j > p.(7.4)

This is true again on V, and for analytic functions ωi(x), λi,j(x,ϕ). Moreover,
one of the functions ωi(x) does not vanish (ωp+1 6= 0, say): remember that ωi(x0) =
dxih Z dϕh(x0,ϕ0), which is nonzero for some i.
Taking i = p + 1, j = p + 2, this implies in particular that h is a (R2−valued)

first integral of the vector field:

(
−→
C ) $p+2(x)

∂

∂xp+1
+

∂

∂xp+2
+ λ̄(x,ϕ)

∂

∂ϕ
.

This is true on V, and for certain analytic functions $p+2(x), λ̄(x,ϕ).

The flow of the ”characteristic vector field”
−→
C is:

exp(t
−→
C )(x) = (x1, ..., xp, Rp+2(t, x), t+ xp+2, xp+3, ..., xn, Sp+2(t, x,ϕ)),

with ∂Rp+2
∂xp+1

6= 0,
∂Sp+2
∂ϕ 6= 0 . Therefore, h(exp(t

−→
C )(x) = h(x), and, setting

(xp+2 := 0; t := xp+2), we get:

h(x1, ..., xp, R̄p+2(x), xp+2, ..., xn, S̄p+2(x,ϕ)) = h(x
[p+2,ϕ),

for some analytic functions R̄p+2(x), S̄p+2(x,ϕ), with
∂R̄p+2
∂xp+1

6= 0, ∂S̄p+2∂ϕ 6= 0. Hence,
using the implicit function Theorem:

h(x,ϕ) = h(x1, ..., xp, R
∗
p+2(x), 0, xp+3, ..., xn, S

∗
p+2(x,ϕ)),

or, setting x̃p+1 = R∗p+2(x), x̃i = xi for i 6= p+ 1,

h(x̃,ϕ) = H(x̃
[p+2, S∗p+2(x̃,ϕ)),

∂S∗p+2
∂ϕ

6= 0.

Let us denote these new coordinates x̃ by x. We get:

h(x,ϕ) = H(x
[p+2, Sp+2(x,ϕ)),

∂Sp+2
∂ϕ

6= 0.

Again (for the same reason as above), there is i > p such that dxih Z dϕh(x,ϕ)
does not vanish identically. Let us assume dxp+1hZdϕh(x,ϕ) 6= 0. Hence, (dxp+1H+
dSH

∂Sp+2
∂xp+1

) Z dSH ∂Sp+2
∂ϕ 6= 0, which implies dxp+1H Z dSH 6= 0.

Also for the same reason as above, we obtain (7.4), for i = p+1, j > p+2, and
dividing by ωi(x) 6= 0 :

ωj(x) dxp+1h− dxjh = λp+1,j(x,ϕ)dϕh,

which gives:

ωj(x) dxp+1(H(x, S(x,ϕ)))− dxj (H(x, S(x,ϕ))) = λp+1,j(x,ϕ)dϕ(H(x, S(x,ϕ))),

dϕS 6= 0.

or:

ωj(x) (dxp+1H)(x, θ)− (dxjH)(x, θ) = λ̄p+1,j(x, θ)(dθH)(x, θ).

For j = p+ 3, with the same reasoning as above, we get:

H(x1, ...xp, R̄p+3(x), xp+3, ..., xn, S̄p+3(x,ϕ)) = H(x
\p+2,p+3,ϕ),
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with ∂R̄p+3(x)
∂xp+1

6= 0, ∂Sp+3(x)∂ϕ 6= 0, or:
H(x1, ...xp, xp+1, xp+3, ..., xn,ϕ)

= H(x1, ...xp, R
∗
p+3(x), xp+4, ..., xn, S

∗
p+3(x,ϕ)).

Making the change of coordinates xp+1 := R∗p+3(x), we get:

H(x,ϕ) = H(x1, ...xp, xp+1, xp+4, ..., xn, S
∗
p+3(x,ϕ)).

At the end, iterating the process, we get that:

h(x,ϕ) = H(x1, ..., xp+1, S(x,ϕ)),
∂S

∂ϕ
6= 0,(7.5)

on some open subset of U × I. The coordinates xi, i = 1, ..., p, are unchanged.
As a consequence, we finally get that there is an open dense subanalytic subset

U\Z of U, and for each x0 ∈ U\Z, a coordinate neighborhood of x0, (Ux0 , x), with
coordinates xi, i = 1, ..., p, unchanged, and with:

dh1 ∧ dh2 ∧ dx1 ∧ ... ∧ dxp+1 ≡ 0,
identically on Ux0 × I, by analyticity.
Now, let Ex0 = {(x,ϕ)|dh1 ∧ dh2 ∧ dx1 ∧ ... ∧ dxp = 0}, and let πEx0 be the

canonical projection of Ex0 on Ux0 . If πEx0 contains an open set, again by Hardt’s
Theorem on stratification of proper subanalytic maps, we can find another open
subset Θ of U, and a smooth mapping ϕ̂ : Θ→ Ex0 . Then:

(dh1 ∧ dh2 ∧ dx1 ∧ ... ∧ dxp)|(x,ϕ̂(x)) = 0,
and, in particular, for j > p, (∂h1∂xj

∂h2
∂ϕ − ∂h1

∂ϕ
∂h2
∂xj
)|(x,ϕ̂(x)) = 0. Therefore, since dϕh

is nonzero, Equation (7.1) can still be solved, in the following way:

η = −dxh1(x, ϕ̂(x))ξ
dϕh1(x, ϕ̂(x)),

for ξ 6= 0 (if dϕh1(x0, ϕ̂(x0)) 6= 0, and using h2 if not).
This contradicts the assumptions of the lemma. Hence, there is a codimension

1 subanalytic closed subset of U, called again Z, such that, over U\Z, each x0 has
a coordinate neighborhood (Ux0 , x), xi, i = 1, ..., p, unchanged, where dh1 ∧ dh2 ∧
dx1 ∧ ...∧ dxp never vanishes, and dh1 ∧ dh2 ∧ dx1 ∧ ...∧ dxp+1 is everywhere zero,
and this is true over Ux0 × I.
Since (if dϕh1 6= 0), dx1 ∧ ... ∧ dxn ∧ dh1 6= 0, dh1 ∧ dh2 ∧ dx1 ∧ ... ∧ dxp+1 ≡ 0

implies:

h2 = H2(h1, x1, ..., xp+1).(7.6)

The condition dh1 ∧ dh2 ∧ dx1 ∧ ... ∧ dxp 6= 0 can be rewritten ∂H2

∂xp+1
6= 0. Hence:

dϕh Z dxp+1h = dϕh1.dxp+1H2 6= 0.
This is (H), in (7.2).
Now, since ∂H2

∂xp+1
6= 0,

dh1 ∧ dh2 ∧ dx1 ∧ ... ∧ dxp ∧ dxp+2 ∧ ... ∧ dxn
= (dϕh Z dxp+1h)dϕ ∧ dxp+1 ∧ dx1 ∧ ... ∧ dxp ∧ dxp+2 ∧ ... ∧ dxn 6= 0.
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This shows that h1, h2, x1, ..., xp, xp+2, ..., xn is a coordinate system on some
neighborhood Ux0,ϕ0×Vϕ0 , for all ϕ0 ∈ I, and then, since dh1∧dh2∧dx1∧...∧dxp+1
is identically zero,

xp+1 = Φϕ0(h1, h2, xp).

Now, I being compact, we may cover {x0}×I ⊂ X×I by a finite number of such
open neighborhoods Ux0,ϕ0 × Vϕ0 , on which (F ), (G), (H) are satisfied. Hence the
neighborhood Ux0 can be taken fixed, independantly of ϕ0. This ends the proof.
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