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Abstract— We consider the problem of representing a
complex process by a simple model, in order to perform
advanced control for instance. In many cases, the main
dynamic of the process is well known and some knowledge-
based equations can be written, but some parts of the
process are unknown. In this paper, we will present one
such application, but we have already encountered many
other situations of this kind.
Depending on measurements and control variables, it is
sometimes possible to identify the unknown part of the model
and the unmeasured state variables. We will briefly recall
some theoretical results concerning this problem, and we
will also present a general methodology to perform this
identification. Then we will explain more deeply how we
apply this approach to an electronic circuit representing a
neuron. We will estimate effectively the unknown function
from actual measurements.

I. THEORY

A. Identifiability

In this paper, we will consider processes that can be
represented by smooth continuous time systems of the
form

Σ

{

dx

dt
= f (x, ϕ (x))

y = h (x, ϕ (x))
(1)

where the statex = x (t) lies in an–dimensional analytic
manifoldX , the observationy is R

dy–valued, andf , h
are respectively a smooth (parametrized) vector field and
a smooth function. The functionϕ is an unknown function
of the state.x0 = x (0) is also supposed to be an unknown
initial state.

Our goal is to estimate (on-line) both state variablex
and unknown functionϕ : X −→ I ⊂ R. More precisely,
we want to reconstruct the piece of the graph ofϕ visited
during any experiment. Usually, the functionϕ represents
an unknown part of the process which is very difficult
to modela priori (in the applied part of the paper – see
section II – we will present an electronic system,ΣFHN ,
whereϕ is denoted byg).

Let us recall some definitions and results from our
previous papers ( [4], [5]).

Let Ω = X × L∞ [I], where L∞ [I] =
{ϕ̂ : [0, Tϕ̂] 7→ I, ϕ̂ measurable}. We can define the
input/output mapping

PΣ : Ω −→ L∞
[

Rdy
]

(x0, ϕ̂ (·)) −→ y (·)
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Definition 1: Σ is said to be identifiable ifPΣ is
injective.

This definition is the natural definition of identifiability:
it says that the system is identifiable if one can retrieve
from measurements the graph ofϕ along the trajectories.

As for observability, we define an infinitesimal version
of identifiability. Let us consider the first variation ofΣ
(whereϕ̂ (t) = ϕ ◦ x (t)):

TΣ



















dx

dt
= f (x, ϕ̂)

dξ

dt
= Txf (x, ϕ̂) ξ + dϕf (x, ϕ̂) η

ŷ = dxh (x, ϕ̂) ξ + dϕh (x, ϕ̂) η

and the input/output mapping ofTΣ

PTΣ : Tx0
X × L∞ [R] −→ L∞

[

R
dy

]

(ξ0, η (·)) −→ ŷ (·)

Definition 2: Σ is said to be infinitesimally identifiable
if PTΣ is injective for any(x0, ϕ̂ (·)) ∈ Ω i.e.ker (PTΣ) =
{0} for any (x0, ϕ̂ (·)).

In [4], [5], we have shown the very important following
result: identifiability is a generic property if and only if
the number of observationdy is greater or equal to3.
On the contrary, ifdy is equal to1 or 2, identifiability
is a very restrictive hypothesis (infinite codimension).
Moreover, in the casedy = 1 or 2, we have completely
classified infinitesimally identifiable systems by certain
geometric properties that are equivalent to the normal
forms presented in Theorems [4], [5] below. We will
apply these two theorems to study identifiability and to
build an identification algorithm for an electronic neuron.
Therefore, we recall these results. We recall them in coor-
dinates (exhibiting normal forms). One can find intrinsic
statements in the paper [5].

Theorem 1:(dy = 1) If Σ is uniformly infinitesimally
identifiable, then, there is a subanalytic closed subsetZ of
X, of codimension 1 at least, such that for anyx0 ∈ X\Z,
there is a coordinate neighborhood(x1, . . . , xn, Vx0

),
Vx0

⊂ X\Z in whichΣ (restricted toVx0
) can be written:

Σ1



























ẋ1 = x2

...
ẋn−1 = xn
ẋn = ψ(x, ϕ)
y = x1

and
∂

∂ϕ
ψ(x, ϕ) 6= 0 (2)



Theorem 2:(dy = 2) If Σ is uniformly infinitesimally
identifiable, then, there is an open-dense semi-analytic
subsetŨ of X × I, such that each point(x0, ϕ0) of Ũ ,
has a neighborhoodVx0

× Iϕ0
, and coordinatesx on Vx0

such that the systemΣ restricted toVx0
×Iϕ0

, denoted by
Σ|Vx0

×Iϕ0
, has one of the three following normal forms:

-type 1 normal form:

Σ2,1































































y1 = x1 y2 = x2

ẋ1 = x3 ẋ2 = x4

...
...

ẋ2k−3 = x2k−1 ẋ2k−2 = x2k

ẋ2k−1 = f2k−1(x1, ..., x2k+1)
ẋ2k = x2k+1

...
ẋn−1 = xn
ẋn = fn(x, ϕ)

with ∂fn

∂ϕ
6= 0.

-type 2 normal form:

Σ2,2















































































y1 = x1 y2 = x2

ẋ1 = x3 ẋ2 = x4

...
...

ẋ2r−3 = x2r−1 ẋ2r−2 = x2r

ẋ2r−1 = ψ(x, ϕ) ẋ2r = F2r(x1, . . . ,

x2r+1, ψ(x, ϕ))
ẋ2r+1 = F2r+1(x1, . . . ,

x2r+2, ψ(x, ϕ))
...

ẋn−1 = Fn−1(x, ψ(x, ϕ))
ẋn = Fn(x, ϕ)

with ∂ψ
∂ϕ

6= 0, ∂F2r

∂x2r+1
6= 0, ...., ∂Fn−1

∂xn
6= 0

-type 3 normal form:

Σ2,3



























y1 = x1

ẋ1 = x3

...
ẋn−3 = xn−1

ẋn−1 = fn−1(x, ϕ)

y2 = x2

ẋ2 = x4

...
ẋn−2 = xn
ẋn = fn(x, ϕ)

with ∂
∂ϕ

(fn−1, fn) 6= 0

One can easily read on these normal forms that the
converses of Theorems 1 and 2 are ”almost true”.

For the casedy ≥ 3, where identifiability is a generic
property, we provide a normal form in [3].

B. Identification

For a given system, it is very important to study
identifiability in a general context before developping an
algorithm in order to perform identification. Indeed, in
some cases, it is possible to develop an identifier for
non-identifiable systems (see [6]). Moreover, studying the
identifiability allows us to put the system into a suitable

form for developping a reasonably general identification
algorithm.

Indeed, let us assume that we have a systemΣ which
is uniformly infinitesimally identifiable. Then this system
can be written in some identifiability canonical form as
explained above. Let us assume that the system can be
put globally under this identifiability canonical form (even
if this strong hypothesis can be sometimes relaxed). In
[6], [8], we developped a general methodology for the
synthesis of nonlinear observers of observable systems.
Comparable algorithms will be developped for identifica-
tion of the functionϕ, when the system is in identifiability
canonical form.

More precisely, we will assume alocal polynomial
model for the unknown functionϕ: at a given time,
assume thatϕ can be written as a function oft of the form
ϕ = ant

n+· · ·+a1t+a0. Hence, we will use the following
local dynamic model corresponding tod

n+1ϕ
dtn+1 = 0:



















ϕ̇ = ϕ1

ϕ̇1 = ϕ2

...
ϕ̇n = 0

With this approach, any of the previous canonical form
of identifiability yields the following canonical form of
observability:

{

ẋ = Ax+ b(x)
y = Cx

where

A =



















0 1 0 · · · 0

0 0 1
. . .

...

0 0 0
. . . 0

...
. . . 1

0 · · · 0



















andC = (1, 0, ...., 0)

andb is a smooth vector field, depending triangularly on
x and compactly supported:

b = b1(x1)
∂

∂x1
+b2(x1, x2)

∂

∂x2
+ ...+bn(x1, ..., xn)

∂

∂xn

Then, we could apply any kind of high-gain observer in
order to reconstruct both state variables andϕ as a func-
tion of t, that isϕ (x (t)). Combining these informations,
we obtain the graph ofϕ in restriction to the experimental
trajectory.

In this study, we will use a ”high-gain/non-high-gain”
observer which is asymptotically an extended Kalman
filter. This observer has been described in [6] and has
the following form















ż = Az + b(z)− S(t)−1C′r−1(Cz − y(t))

Ṡ = −(A+ b∗(z))′S − S(A+ b∗(z))
+C′r−1C − SQθS

θ̇ = λ(1 − θ)



Fig. 1. Electronic neuron

We have the following result ( [6])
Theorem 3:There existλ0 such that for all0 ≤ λ ≤

λ0, for all θ0 large enough, depending onλ, for all S0 ≥ c

Id, for all K ⊂ R
n, K a compact subset, for allε0 =

z0 − x0, ε0 ∈ K, the following estimation holds, for all
τ ≥ 0 :

||ε(τ)||2 ≤ R(λ, c)e−a τ ||ε0||
2Λ(θ0, τ, λ),

Λ(θ0, τ, λ), = θ0
2(n−1)+ a

λ e−
a
λ
θ0(1−e

−λτ ),

wherea > 0. R(λ, c) is a decreasing function ofc.
Moreover for all T > 0, τ ≤ T, for all θ0 ≥ θ̄0,

θ̄0 = eλT ( L′

Qmα
− 1) + 1, whereL′ is the sup of the

partial derivatives ofb w.r.t. x:

||ε(τ)||2 ≤ θ(τ)2(n−1)H(c)e−(a1θ(T )−a2)τ ||ε(0)||2

Using this theorem, we have explained in [4]–[6] how
to construct an observer which is both globally convergent
and robust w.r.t. noise. In the next section, we will explain
how to use this theorem in order to develop practically an
observer for a neuron system.

II. APPLICATION

In this section, we will describe an application of the
previous theory to a simple but practical system.

A. The electronic neuron

The modelisation of neurons is of a strong interest in
neuroscience research. There exists a large number of
papers describing more or less accurate models of one
isolated neuron or interaction between neurons.

An accurate model of a single isolated biological neuron
has been proposed by Hodgkin and Huley in 1952 ( [10])
This model has been extensively studied and is considered
as a reasonably good quantitative model of neuron. But
in order to perform some theoretical studies, simplified
models have been proposed. One of these models is the
Fitztugh-Nagumo model introduced by Fitzhugh, Nagumo

& al. in early 1960’s ( [7], [11]). In [2], one can find a
short historical story of this very simple model.

The Fitzhugh–Nagumo (FHN) model has been studied
by mathematicians, physiologists and computer scientists
for several purposes. Recently, in our laboratory (LE2I,
Université de Bourgogne), an analogue circuit which
implement a modified version of FHN model has been
developped (see Fig. 1) . The main objective of these real-
ization was to quantitatively study this modified Fitzhugh–
Nagumo (MFHN) model in experimental conditions.

In order to retrieve the nonlinear complexity of an
actual biological neuron, a part of the electronic circuit
corresponds to a nonlinear function (in fact, a piecewise
linear function). We will call this functiong and we will
describeg and the dynamical MFHN model in the next
subsection.

The electronic circuit description and results have been
published in [1], [2]. The conclusion of this study was that
this electronic neuron is able to reflect the main qualita-
tive behavior of an actual neuron, especially excitability,
oscillatory dynamics and bistability. These properties have
been obtained using a particular choice of the functiong.
However, in a biological neuron, and assuming the MFHN
model may be used, the functiong is unknown. Hence,
in order to model the neuron by a MFHN model, it will
be necessary to identify this functiong.

Before using our approach with actual data, we will
validate the method with our electronic neuron. We will
identify the functiong without using anya priori infor-
mation about it. Since the actual function is known, we
will be able to compare our estimation ofg with the actual
function and hence to validate the method. Since we use a
real process and electric measurements, we will also study
the effect of the noise on the identification algorithm.

In the next subsection, we will present the model. Then,
we will present our algorithm and finally the results.

B. The FitzHugh-Nagumo model

In [1], [2], the realization of an electronic circuit which
practically realizes the FHN model has been described.
More precisely, the electronic system is supposed to
implement the following equations:

ΣFHN











dV

dt
= V − V 3 −W

dW

dt
= ε (g (V ) −W − η)

(3)

For details concerning the electronic realization of this
system, see [2]. Let us just point out that, in our electronic
circuit, V corresponds to a voltage (Fig. 2) andW
corresponds to a current (Fig. 3). In a biological model,V

represents the membrane voltage andW is the recovery
variable.ε andη are some constant parameters.

In the electronic circuit, the functiong corresponds to
the modification of the original model and is a known
piecewise linear function:

g (V ) =

{

β V if V > 0
αV if V ≤ 0

(4)
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Fig. 3. W versus time

The choice of this function is more or less arbitrary: this
kind of function can be easily implemented in a circuit and
is sufficient to reproduce the main dynamical properties of
a neuron. The values of the shapesα andβ of the linear
parts of the function were tuned in order to observe these
well known properties (excitability, oscillatory dynamics
and bistability). From a mathematical point of view, a
piecewise linear function is not so simple, since it is not
differentiable at some points. Since many identification
techniques require more regularity of the function, these
methods will fail in this case. However, our method does
not require such a preliminary assumption.

C. Identification of theg–function

Let us consider the system (3). Both state variables
are measured but onlyV will be used as a measured
variable, in order to be in the same operating conditions
as for a biological neuron experiment. Hence, we are in
the case of a system with only one output. Althrough
the identifiability is not a generic property in this case,
it is clear that our system can be written globally in
the generic identifiability canonical form (2) (and hence
is identifiable and uniformly infinitesimally identifiable).
Using the same notations as in the theoretical part, let us
denotey = x1 = V . Then, in order to havėx1 = x2, let

us denotex2 = V − V 3 −W . The system can be written

Σ̃FHN

{

dx1

dt
= x2

dx2

dt
= ψ (x, ϕ)

wherex = (x1, x2), ϕ (x) = ϕ (x1) = g (V ) and

ψ (x, ϕ) =
(

1 − 3x2
1

)

x2

− ε
(

ϕ (x1) − η − x1 + x3
1 + x2

)

Sinceε 6= 0, the system is clearly identifiable. More-
over, we can see that ifη is an unknown parameter,
the whole functionϕ (x1) − η could also be identified.
However, in the following, we will simply identifyg.

We used the general algorithm as described in section
I-B, that is to say we apply a high–gain/non high gain
extended Kalman filter to the system























dx1

dt
= x2

dx2

dt
= ψ (x, ϕ̃)

dϕ̃

dt
= ϕ1

dϕ1

dt
= ϕ2

dϕ2

dt
= ϕ3

dϕ3

dt
= 0

(5)

From this algorithm (using a local polynomial of order3)

we should obtain an estimation
(

V̂ (t) , ĝ (t)
)

along the

time. V̂ (t) is just an estimation of the measured output
V (t) (hence a Kalman filtering version ofV (t)). ĝ (t)
is an estimation ofg (V (t)). Therefore, the parametric

curve
(

V̂ (t) , ĝ (t)
)

represents the graph of the function
g versus its variableV .

Our first results were very bad. It was impossible to
estimate an unknown functionϕ (x2). Practically, instead
of a graph, we obtained a chaotic curve which was not at
all a graph. In fact, this kind of result proves that there is
no functionϕ in the structureΣFHN which can explain
the observed dynamic. Indeed, thanks to this study, we
conclude that the electronic circuit didn’t simulate a FHN
model. Watching more deeply the circuit, we observed that
one electronic component (an operational amplifier) was
in fact used outside its operating range. After changing
this device, results became correct. This hardware problem
was in fact very interesting because we were able to detect
the problem only after our identification study. So we
hope to obtain the same kind of results with biological
measurements (even if we hope that the conclusion will
be that someϕ does exist).

Because of the non differentiability ofV , the graph was
not estimated very efficiently arroundV = 0. Instead of
a graph, we obtained a closed curve arround the graph.
Indeed, the local approximation ofg (V ) by a polynomial
of degree3 was not justified each timeV crossed the0-
axis. The consequence was a delay for the estimation of
g (V ), and then a trigger effect which explains that we
obtained a closed loop instead of a graph.

In order to improve the estimation, we just separate the
estimation of the shape (i.e. of α andβ) depending on the
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Fig. 4. Estimation ofg after 8 cycles
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Fig. 5. Estimation ofg after 13 cycles

sign ofV , that is to say we replace the system (5) by the
following system



















































dx1

dt
= x2

dx2

dt
= ψ̄

(

x, α̂, β̂
)

dα̂

dt
= α1

dβ̂

dt
= β1

dα1

dt
= α2

dβ1

dt
= β2

dα2

dt
= α3

dβ2

dt
= β3

dα3

dt
= 0

dβ3

dt
= 0

(6)

where, as for the definition ofg in (4)

ψ̄
(

x, α̂, β̂
)

=

{

ψ
(

x, β̂
)

if x1 > 0

ψ (x, α̂) if x1 ≤ 0
(7)

D. Results

Figures 4 to 7 show the results obtained using the
previous algorithm on the electronic neuron, based upon
the measurements of Fig. 2. The piecewise linear black
curve is the implemented functiong. The red dotted line
represents the trajectory of

(

V̂ (t) , ĝ (t)
)

. On the first
figure (Fig. 4), the trajectory is plotted from timet = 0 to
time t ≃ 200µs, corresponding to8 cycles of the almost
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Fig. 6. Estimation ofg after 19 cycles
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Fig. 7. Estimation ofg after 25 cycles

periodic trajectory of(V (t) ,W (t)). The second curve
(Fig. 5) represents the same parametric curve, for the5
next cycles, and so on for Figures 6 and 7. On Figure 4,
the algorithm had not enough time to converge. On Figure
7, the observer has correctily estimated the graph ofϕ.

One can see a very small error on the shape both for
the positive values and negative values ofV . These small
errors are more clear on figure 8, where we have plotted
α̂ and β̂ versustime. In our case, since the function is
a piecewise linear function,̂α and β̂ should be constant
parameters, after the transient part. It is important to keep
in mind that, even if we plotted̂α and β̂ versus time,
we did not assume that̂α and β̂ are constant parameters
i.e. we performed identification and not only parametric
estimation (see [4], [5]).

If we simulate a FHN-model rather than using actual
measurements of an electronic device, our identification
procedure will exhibit̂α andβ̂ as perfect constants. Here,
we can see some periodic errors: these errors reflect
small modelling errors, due to the fact that the circuit
does not implement exactly the FHN model, especially
aroundV = 0 since the switch between shapes is just
implemented with non ideal diodes. Once again, this
behavior is interesting because it exhausts the ranges
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where the model does not succeed to perfectly explain
the system.

III. CONCLUSIONS AND FUTURE WORKS

In this paper, we have reconstructed an unknown func-
tion from electronic experimental data. In this way, we
have validated our theoretical identification method by
comparing the identified function with the actual function,
in a noisy context.

Results obtained on an artificial neuron were very
promising. Despite the fact that the system is far less com-
plicated than a biological neuron, the Fitzhugh–Nagumo
model is good enough to represent main dynamics of
a real neuron. Our method was able to estimate the
unknown function for an electronic circuit which simutale
this model.

Therefore, we will be able to apply the identification
procedure to actual measurements of a biological neuron.
If it is impossible to identify a function corresponding to
measurements, then we will conclude that the Fitzhugh–

Nagumo is not good enough to quantitatively model the
main dynamic of a biological neuron. Hence we will use
the model which has been designed for this purpose: the
Hodgkin–Huley model. But if a function can be identified
then we will obtain a simple model of biological neuron.

The next step will be to study several connected
neurons. We have already studied the case of several
electronic neurons and estimated the unknown function
in this case.
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