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Abstract— We consider the problem of representing a Definition 1: X is said to be identifiable ifPs is
complex process by a simple model, in order to perform injective.

advanced control for instance. In many cases, the main  ‘ypg definition is the natural definition of identifiability:

836/12231 Iceglzetl'?igngroccgrslski Wv&!ilttkemowgu?nsdorsr?em%;rrt]gv‘g?dt%(: it says that the system is identifiable if one can retrieve

process are unknown. In this paper, we will present one from measurements the graphpfalong the trajectories.

such application, but we have already encountered many  As for observability, we define an infinitesimal version

gther Sc'it_uatlons of this kind. § | variables. it | of identifiability. Let us consider the first variation af
epending on measurements and control variables, it is NN i

sometimes possible to identify the unknown part of the model (whereg (t) = p oz (1)

and the unmeasured state variables. We will briefly recall dx .
some theoretical results concerning this problem, and we — = f(z,9)
will also present a general methodology to perform this TS fl]z . .
identification. Then we will explain more deeply how we at Tof (z, @)+ dof (z,0)n
apply this approach to an electronic circuit representing a g = dph(z,9)E+doh(z,$)n
neuron. We will estimate effectively the unknown function * ’ v ’
from actual measurements. and the input/output mapping Gf:
Pry: T, X X L*[R] — L= [Rdy]
I. THEORY (o () — ()
A. ldentifiability Definition 2: ¥ is said to be infinitesimally identifiable

In this paper, we will consider processes that can bié Pry is injective for any(zo, ¢ (-)) € Qi.e.ker (Pry) =
represented by smooth continuous time systems of tH®} for any (zo, ¢ (-)).

form
dzx = f(z,0(2)) In [4], [5], we have shown the very important following
N dt . ( D) result: identifiability is a generic property if and only if
y = hze()) the number of observatior, is greater or equal t@.

where the state = x (¢) lies in an—dimensional analytic On the contrary, ifd, is equal tol or 2, identifiability
manifold X, the observatiory is R%—valued, andf, h  is a very restrictive hypothesis (infinite codimension).
are respectively a smooth (parametrized) vector field arldoreover, in the casd, = 1 or 2, we have completely
a smooth function. The functiop is an unknown function classified infinitesimally identifiable systems by certain
of the statezy, = = (0) is also supposed to be an unknowngeometric properties that are equivalent to the normal
initial state. forms presented in Theorems [4], [5] below. We will
Our goal is to estimate (on-line) both state variable apply these two theorems to study identifiability and to
and unknown functiorp : X — I C R. More precisely, build an identification algorithm for an electronic neuron.
we want to reconstruct the piece of the graphoofisited Therefore, we recall these results. We recall them in coor-
during any experiment. Usually, the functignrepresents dinates (exhibiting normal forms). One can find intrinsic
an unknown part of the process which is very difficultstatements in the paper [5].
to modela priori (in the applied part of the paper — see

section Il — we will present an electronic systefy 4 v, Theorem 1:(d, = 1) If ¥ is uniformly infinitesimally

whereg is denoted byy). identifiable, then, there is a subanalytic closed subset
Let us recall some definitions and results from ourX, of codimension 1 at least, such that for anye X\ Z,

previous papers ( [4], [5]). there is a coordinate neighborhodd,...,z,, Vi),
Let Q@ = X x L*>®[I], where L*[I] =V, C X\ZinwhichX (restricted tol,,) can be written:

{¢:[0,Ty] — I, » measurable We can define the

. . T = Z2
input/output mapping
Py : Q — L [Rdy} 219 i,y = a, and a—q/)(:c,gp) #0 (2)
(0,2 ()) — y() En = (z,9) v
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Theorem 2:(d, = 2) If ¥ is uniformly infinitesimally form for developping a reasonably general identification
identifiable, then, there is an open-dense semi-analytagorithm.
subsetU of X x I, such that each pointxo, o) of U, Indeed, let us assume that we have a sysiemhich
has a neighborhoot,,, x I,,, and coordinates on V,, is uniformly infinitesimally identifiable. Then this system
such that the systerd restricted toV,,, x I,,, denoted by can be written in some identifiability canonical form as
BV, %Iy has one of the three following normal forms: explained above. Let us assume that the system can be

-type 1 normal form: put globally under this identifiability canonical form (eve

if this strong hypothesis can be sometimes relaxed). In

v - Y2 = T2 [6], [8], we developped a general methodology for the
i = 3 2 - synthesis of nonlinear observers of observable systems.
: : Comparable algorithms will be developped for identifica-
Tok—3 = Top_1 Zop—a = Tok tion of the functionp, when the system is in identifiability
2271 Top_1 = ka_l(l‘l, . $2k+1) canonical form.
Eog = Topi1 More precisely, we will assume Bbcal polynomial

model for the unknown functiony: at a given time,
assume thap can be written as a function ofof the form

3:5n—1 = In ® = a,t"+- - -+ait+ag. Hence, we will use the following
= . . n+1
Tn = falz,9) local dynamic model corresponding &+ = 0:
with Gz £ 0. $ = ¥
-type 2 normal form: o1 = oo
1 = I Y2 = T2 :
T = 3 To = T4 ¢n = 0
: : With this approach, any of the previous canonical form
Top_3 = Top_1 Top_o9 = Lo of identifiability yields the following canonical form of
Tor—1 = Y(x, ) Loy = Fy(zq,..., observability:
Yoo _ T i1, (2, @) i = Az+b(z)
Zorp1 = Forpa(w1,..., { y = Cz
T2r4-2, 1/}(307 SD))
where
jjn—l - F7L—1(x7w(ma§0))
. 1
Tn - Fn(ma (10) 0 0 0
0 0 1 :
with 22 £ 0, 2 £ 9ot o
Op ' 0o, ’ ' Oxp _ _
-type 3 normal form: A=100 o o | adC=(1,0,...,0)
Y1 = 1 Y2 = X2 : 1
5.61 = I3 le = X4 0 e 0
o3 : : andb is a smooth vector field, depending triangularly on
Bng = Tn1 B = x and compactly supported:
jnfl == fnfl(xv@) In = fn(fU;SD) 0 0 0
b="b —+b — by (T, T) =—
1(561)811 + 2(3017332)(%2 ot (21, L)azn

- 4]
with 9¢ (=1, fn) 70 Then, we could apply any kind of high-gain observer in
One can easily read on these normal forms that th%rder to reconstruct both state. v_ariables a:_nds a fu_nc—
converses of Theorems 1 and 2 are "almost true”. tion of ¢, that ise (x (t)). Combining these informations,
For the casel, > 3, where identifiability is a generic we obtain the graph ap in restriction to the experimental

; . trajectory.

roperty, we provide a normal form in [3]. : . . . . .
property, we provi in (3] In this study, we will use a "high-gain/non-high-gain”
B. Identification observer which is asymptotically an extended Kalman

. _ . filter. This observer has been described in [6] and has
For a given system, it is very important to studythe following form
identifiability in a general context before developping an

algorithm in order to perform identification. Indeed, in £ o= Az+b(z) - St)1C'r=1(Cz — y(t))
some cases, it is possible to develop an identifier for ) S = —(A+0b*(2))'S —S(A+b*(2))
non-identifiable systems (see [6]). Moreover, studying the +C'r~1C — SQpS

identifiability allows us to put the system into a suitable 6 = XN1-06)



& al. in early 1960’s ( [7], [11]). In [2], one can find a
short historical story of this very simple model.

The Fitzhugh—Nagumo (FHN) model has been studied
by mathematicians, physiologists and computer scientists
for several purposes. Recently, in our laboratory (LE2I,
Université de Bourgogne), an analogue circuit which
implement a modified version of FHN model has been
developped (see Fig. 1) . The main objective of these real-
ization was to quantitatively study this modified Fitzhugh—
Nagumo (MFHN) model in experimental conditions.

In order to retrieve the nonlinear complexity of an
actual biological neuron, a part of the electronic circuit
corresponds to a nonlinear function (in fact, a piecewise
linear function). We will call this functiory and we will
describeg and the dynamical MFHN model in the next
subsection.

The electronic circuit description and results have been
published in [1], [2]. The conclusion of this study was that
this electronic neuron is able to reflect the main qualita-

We have the following result ( [6]) tive behavior of an actual neuron, especially excitahility

Theorem 3:There exist\y such that for all0 < A <  oscillatory dynamics and bistability. These propertiegcha
Xo, for all 4y large enough, depending onfor all S, > ¢  been obtained using a particular choice of the function

Fig. 1. Electronic neuron

Id, for all K ¢ R*, K a compact subset, for afiy = However, in a biological neuron, and assuming the MFHN
20 — x0, €0 € K, the following estimation holds, for all model may be used, the functignis unknown. Hence,
T7>0: in order to model the neuron by a MFHN model, it will
be necessary to identify this functign
le(MII® < R\, c)e™ [eo| PAo, T, N), Before using our approach with actual data, we will
Ao, 7, N), = 02D+ 5 g= X 00(1—e™*7) validate the method with our electronic neuron. We will
identify the functiong without using anya priori infor-
wherea > 0. R()\,¢) is a decreasing function ef mation about it. Since the actual function is known, we

_ Moreover fpr alT > 0, 7 < T, for all 5 > 6y, will be able to compare our estimation gfvith the actual
Oy = eAT(ﬁ — 1) + 1, where L’ is the sup of the function and hence to validate the method. Since we use a

partial derivatives ob w.r.t. z: real process and electric measurements, we will also study
) a(n—1) (@16(T)—a)r ) the effect of the noise on the identification algorithm.
lle(T)II” < 0(7) H(c)e |e(0)] In the next subsection, we will present the model. Then,

Using this theorem, we have explained in [4]-[6] howye will present our algorithm and finally the results.
to construct an observer which is both globally convergent

and robust w.r.t. noise. In the next section, we will explaire: 1€ FitzHugh—Na?gur.no model S
how to use this theorem in order to develop practically an In [1], [2], the realization of an electronic circuit which

observer for a neuron system. practically realizes the FHN model has been described.

More precisely, the electronic system is supposed to
Il. APPLICATION implement the following equations:
In this section, we will describe an application of the dv
) . . — = V-V3-W
previous theory to a simple but practical system.
YFHN d% )
A. The electronic neuron 7 (g(V) =W —n)

The modelisation of neurons is of a strong interest in For details concerning the electronic realization of this
neuroscience research. There exists a large number /5tem, see [2]. Let us just point out that, in our electronic
papers describing more or less accurate models of ofécuit, V' corresponds to a voltage (Fig. 2) ard’
isolated neuron or interaction between neurons. corresponds to a current (Fig. 3). In a biological modiel,

An accurate model of a single isolated biological neuroféPresents the membrane voltage afidis the recovery
has been proposed by Hodgkin and Huley in 1952 ( [L0pariable.c andrn are some constant parameters.

This model has been extensively studied and is consideredn the electronic circuit, the function corresponds to
as a reasonably good quantitative model of neuron. Bifté modification of the original model and is a known
in order to perform some theoretical studies, simplifie®i€cewise linear function:

models have been proposed. One of these models is the 'A% if V>0
Fitztugh-Nagumo model introduced by Fitzhugh, Nagumo g(V)= { aV if V<0 ()



us denoter, = V — V3 — W. The system can be written

05F i { % = X9
PN S = w(y)
or ] wherex = (x1,2), ¢ (z) = ¢ (z1) =g (V) and
-05 1 "l} (x7 SD) = (1 - 31‘%) x2

—e(p(z1) —n—a1 + 2} + 32)

Sincee # 0, the system is clearly identifiable. More-
over, we can see that ifi is an unknown parameter,

B T T e the whole functiony (x1) — 1 could also be identified.
However, in the following, we will simply identifyy.
Fig. 2. V' versus time We used the general algorithm as described in section
I-B, that is to say we apply a high—gain/non high gain
e I L A extended Kalman filter to the system
? = X2 % = 1/) (Za @)
Y Y1
L = ¢ _— = 2 (5)
L L
ar - dt

From this algorithm (using a local polynomial of ordr

we should obtain an estimatio(ﬁ/ (t) ,g(t)) along the

time. V (t) is just an estimation of the measured output
V (t) (hence a Kalman filtering version df (¢)). g (¢)
m W w0 % w7 @ w w o is an estimation ofy (V' (¢)). Therefore, the parametric

Fig. 3. W versus time curve (V (t),g(t)) represents the graph of the function
g Vversus its variablé/.
Our first results were very bad. It was impossible to

The choice of this function is more or less arbitrary: thi€Stimate an unknown function(z,). Practically, instead
kind of function can be easily implemented in a circuit ancf @ 9raph, we obtained a chaotic curve which was not at
is sufficient to reproduce the main dynamical properties gl @ graph. In fact, this kind of result proves that there is
a neuron. The values of the shapesnd 3 of the linear NO functiony in the structureXrp v which can explain
parts of the function were tuned in order to observe thed8® observed dynamic. Indeed, thanks to this study, we
well known properties (excitability, oscillatory dynaraic conclude that the electronic circuit didn’t simulate a FHN

and bistability). From a mathematical point of view, gmodel. Watching more deeply the circuit, we observed that

piecewise linear function is not so simple, since it is noP€ €lectronic component (an operational amplifier) was

differentiable at some points. Since many identificatioff? fact used outside its operating range. After changing

techniques require more regularity of the function, thestS device, results became correct. This hardware problem
methods will fail in this case. However, our method doe¥/as in fact very interesting because we were able to detect
not require such a preliminary assumption. the problem only after our identification study. So we

hope to obtain the same kind of results with biological

C. Identification of thej—function measurements (even if we hope that the conclusion will
Let us consider the system (3). Both state variablgge that somep does exist).

are measured but only’ will be used as a measured Because of the non differentiability &f, the graph was
variable, in order to be in the same operating conditionsot estimated very efficiently arrourid = 0. Instead of
as for a biological neuron experiment. Hence, we are ia graph, we obtained a closed curve arround the graph.
the case of a system with only one output. Althroughndeed, the local approximation gf(V') by a polynomial
the identifiability is not a generic property in this casepf degree3 was not justified each tim& crossed the-
it is clear that our system can be written globally inaxis. The consequence was a delay for the estimation of
the generic identifiability canonical form (2) (and hencgy (V), and then a trigger effect which explains that we
is identifiable and uniformly infinitesimally identifiable) obtained a closed loop instead of a graph.
Using the same notations as in the theoretical part, let usIn order to improve the estimation, we just separate the
denotey = x; = V. Then, in order to have; = x5, let estimation of the shapé&é&. of « and3) depending on the
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Fig. 5. Estimation ofy after 13 cycles

sign of V, that is to say we replace the system (5) by th

following system

Boem B ()

da g P

I - 1 N - 1

A B o
—t Q2 — = [

&~ a % = [s

é 0 & = 0

dt dt

where, as for the definition of in (4)
- ~3) o 1/)(1,3) if z1 >0 7
¢($,a75) { ¥ (z, &) if 1 <0 ()
D. Results
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Fig. 6. Estimation ofy after 19 cycles
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Fig. 7. Estimation ofy after 25 cycles

%eriodic trajectory of(V (t),W (t)). The second curve
(Fig. 5) represents the same parametric curve, forSthe
next cycles, and so on for Figures 6 and 7. On Figure 4,
the algorithm had not enough time to converge. On Figure
7, the observer has correctily estimated the graph.of

One can see a very small error on the shape both for
the positive values and negative valueslofThese small
errors are more clear on figure 8, where we have plotted
Q andB versustime. In our case, since the function is
a piecewise linear functiory and 3 should be constant
parameters, after the transient part. It is important tgokee
in mind that, even if we plottedv and 3 versus time,
we did not assume that and 3 are constant parameters
i.e. we performed identification and not only parametric
estimation (see [4], [5]).

If we simulate a FHN-model rather than using actual
measurements of an electronic device, our identification

Figures 4 to 7 show the results obtained using thgrocedure will exhibity and 3 as perfect constants. Here,
previous algorithm on the electronic neuron, based upgge can see some periodic errors: these errors reflect
the measurements of Fig. 2. The piecewise linear bladinall modelling errors, due to the fact that the circuit

curve is the implemented functian The red dotted line
represents the trajectory ((ff/ (t) ,g(t)). On the first

figure (Fig. 4), the trajectory is plotted from tinie= 0 to
time ¢t ~ 200 us, corresponding t® cycles of the almost

does not implement exactly the FHN model, especially
aroundV = 0 since the switch between shapes is just
implemented with non ideal diodes. Once again, this
behavior is interesting because it exhausts the ranges
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Fig. 8. & and 3 estimationvs time

Nagumo is not good enough to quantitatively model the
main dynamic of a biological neuron. Hence we will use
the model which has been designed for this purpose: the
Hodgkin—Huley model. But if a function can be identified
then we will obtain a simple model of biological neuron.

The next step will be to study several connected
neurons. We have already studied the case of several
electronic neurons and estimated the unknown function
in this case.

(1]

(2]

where the model does not succeed to perfectly explairﬁs]

the system.
I1l. CONCLUSIONS AND FUTURE WORKS

(4]

In this paper, we have reconstructed an unknown func-
tion from electronic experimental data. In this way, we [5]
have validated our theoretical identification method by
comparing the identified function with the actual function, [,

in a noisy context.

Results obtained on an artificial neuron were very
promising. Despite the fact that the system is far less com-
plicated than a biological neuron, the Fitzhugh—Nagumdz]

model is good enough to represent main dynamics

(o)

a real neuron. Our method was able to estimate th
unknown function for an electronic circuit which simutale [9]

this model.

Therefore, we will be able to apply the identification

[10

b

]

procedure to actual measurements of a biological neuron.
If it is impossible to identify a function corresponding to[11]
measurements, then we will conclude that the Fitzhugh—
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