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Abstract: In this paper, we recall definition of identifiability of nonlinear systems.
We prove equivalence between identifiability and smooth identifiability. This
new result justifies our definition of identifiability.
In a previous paper (Busvelle and Gauthier, 2003), we have established that

• If the number of observations is three or more, then, systems are generically
identifiable.

• If the number of observations is 1 or 2, then the situation is reversed.
Identifiability is not at all generic.

Also, we have completely classified infinitesimally identifiable systems in the second
case, and in particular, we gave normal forms for identifiable systems. Here, we
will give similar results in the first case. Copyright c©2004 IFAC
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We consider smooth (Cω or C∞, depending on
the context) systems of the form

Σx0,ϕ

{
dx

dt
= f (x, ϕ (x))

y = h (x, ϕ (x))
(1)

where the state x = x (t) lies in a n–dimensional
analytic manifold 1 X , x (0) = x0, the observation
y is Rdy–valued, and f , h are respectively a
smooth (parametrized) vector field and a smooth
function. The function ϕ is an unknown function
of the state. In this paper, each trajectory is
supposed to be defined on some interval [0, Tx0,ϕ[.

Our goal is to estimate both state variable x and
unknown function ϕ : X −→ I, I being a compact
interval of R. More precisely, we want to recon-
struct the piece of the graph of ϕ visited during
any experiment. Without ϕ, the problem is an
observation problem and we refer to the book from

1 analytic manifold stands for analytic connected para-

compact Hausdorf manifold

Gauthier–Kupka (Gauthier and Kupka, 2001). In
presence of the unknown function ϕ, the problem
is an identification problem, which has been in-
troduced in (Busvelle and Gauthier, 2003). Let us
recall some definitions and results from this last
paper. For this introduction, we will only consider
uncontrolled systems such as Σ. Some results can
be extended to controlled systems.

Let Ω = X × L∞ [I], where

L∞ [I] = {ϕ̂ : [0, Tϕ̂] 7→ I, ϕ̂ measurable}

Then we can define the input/output mapping

PΣ : Ω −→ L∞
[
Rdy

]

(x0, ϕ̂ (·)) −→ y (·)

Definition 1. Σ is said to be identifiable if PΣ is
injective.

As for observability, we define an infinitesimal
version of identifiability. Let us consider the first
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variation of Σx0,ϕ (where ϕ̂ (t) = ϕ ◦ x (t)):

TΣx0,ϕ̂,ξ0,η






dx

dt
= f (x, ϕ̂)

dξ

dt
= Txf (x, ϕ̂) ξ + dϕf (x, ϕ̂) η

ŷ = dxh (x, ϕ̂) ξ + dϕh (x, ϕ̂) η

and the input/output mapping of TΣ

PTΣ,x0,ϕ̂ : Tx0X × L∞ [R] −→ L∞
[
Rdy

]

(ξ0, η (·)) −→ ŷ (·)

Definition 2. Σ is said to be infinitesimally identi-
fiable if PTΣ,,x0,ϕ̂ is injective for any (x0, ϕ̂ (·)) ∈ Ω
i.e. ker (PTΣ,x0,ϕ̂) = {0} for any (x0, ϕ̂ (·)).

1. Equivalence between “identifiabil-
ity” and “identifiability for smooth
functions”

Both identifiability and infinitesimal identifiabil-
ity mean injectivity of some mapping. Clearly
injectivity depends on the domain. Therefore, it
seems that these notions are not well defined. In
fact we show that these notions do not depend on
the domain, at least for analytic systems.

Theorem 1. (Cω–case) If Σ is infinitesimally iden-
tifiable in the class of analytic functions then it
is infinitesimally identifiable in the class of L∞–
functions.

To be more explicit, if Σ is not infinitesimally
identifiable because there exists (x0, ϕ̂ (·)) ∈ Ω
such that (ξ0, η) ∈ ker (PTΣ,x0,ϕ̂), (ξ0, η) 6= 0,

then there exists also
(
x̃0, ˜̂ϕ (·)

)
∈ Ω where ˜̂ϕ is

analytic, and
(
ξ̃0, η̃

)
∈ ker (PTΣ,x0,ϕ̂),

(
ξ̃0, η̃

)
6=

0, with η̃ analytic.

We have also the following result

Theorem 2. (Cω–case) If Σ is identifiable in the
class of analytic functions then it is identifiable in
the class of L∞–functions.

The proofs of both results are based upon the fol-
lowing lemma which is an immediate adaptation
of a lemma in (Gauthier and Kupka, 2001):

Lemma 1. Let
dx

dt
= f (x, u) an analytic system

Σ̄ defined on X × U where X is an analytic
manifold and U a compact subanalytic subset of
Rd. Let S be a closed 2 subanalytic subset of
X ×U . Let (x (t) , u (t))t∈[0,T [ a L∞–trajectory of

2 This lemma is also true if S is not closed but this is much

harder to prove.

Σ̄ such that E = {t ∈ [0, T [ ; (x (t) , u (t)) ∈ S}
has strictly positive Lebesgue measure (we say
that “the trajectory visits S”). Then there exists
an analytic trajectory (x̃ (t) , ũ (t))

t∈[0,T̃ [ of Σ̄ such

that (x̃ (t) , ũ (t)) lies in S for each t ∈
[
0, T̃

[
.

Proof of the theorem 1.

Let Z (·) = (x (·) , ξ (·) , ϕ (·) , η (·)) be a trajectory
of TΣ such that yTΣ (t) ≡ 0, t ∈ [0, T ] but
(ξ (·) , η (·)) 6= 0.

If ξ (t) 6= 0 for some t ∈ [0, T ], we consider on
TX \ {0 section}

TΣ

{
ẋ = f (x, ϕ)

ξ̇ = Txf (x, ϕ) ξ + Tϕf (x, ϕ) η

and the set

ZA = {dxh (x, ϕ) ξ + dϕh (x, ϕ) η = 0, |η| ≤ A}

By the lemma, since we have a trajectory of TΣ
that remains in ZA for some A > 0, we can find a
Cω one that remains also in ZA.

If ξ (·) ≡ 0, then (x (·) , ϕ (·)) is a trajectory of
Σ such that (dϕh, Tϕf) (x (t) , ϕ (t)) vanishes on
a set of strictly positive measure because since
ξ (t) ≡ 0, yTΣ (t) = 0 then dϕh (x, u) η (t) = 0
and Tϕf (x, ϕ) η (t) = 0 for almost all t ∈ [0, T ],
and η (t) is non zero on a set of strictly positive
measure set

Z = {(x, ϕ) , (dϕh, Tϕf) (x (t) , ϕ (t)) = 0}

By lemma 1, we find a Cω–trajectory of Σ in Z

(taking ξ0, and arbitrary η (·) non zero). �

Proof of the theorem 2.

Assume that Σ is not identifiable for L∞–function
ϕ̂ (·). It means that we can find (x1, ϕ̂1 (·)) 6=
(x2, ϕ̂2 (·)) such that the corresponding outputs
y1 (·) and y2 (·) are equal on [0, T ]. Let x1 (·) and
x2 (·) be the corresponding trajectories defined
for t ∈ [0, T ]. Then if x1 (t) 6= x2 (t) for some
t ∈ [0, T ], we consider on (X ×X \ ∆X)× (I × I)
the system

Σ2

{
ẋ1 = f (x1, ϕ1)
ẋ2 = f (x2, ϕ2)

and the set

Z = {(x1, x2, ϕ1, ϕ2) ∈ (X ×X \ ∆X) × I × I,

h (x1, ϕ1) − h (x2, ϕ2) = 0}

Z is analytic closed.We apply the lemma above to
Σ2 and we obtain an analytic trajectory (x̂1, x̂2) of
Σ2 with x̂1 (0) 6= x̂2 (0), but y1 (·) = y2 (·). Then
Σ is not identifiable in the Cω– class.
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Now assume that x1 (t) = x2 (t) for each t ∈ [0, T ].
For A > 0, we define the closed semianalytic
subset of (X ×X) × (I × I)

Z ′
A = {(x1, x2, ϕ1, ϕ2) , ϕ1 − ϕ2 ≥ A,

x1 = x2, h (x1, ϕ1) − h (x2, ϕ2) = 0}

For a certain A > 0, our given trajectory visits Z ′
A

for a set of times of positive Lebesgue measure in
[0, T ] (eventually reversing the role of ϕ1 and ϕ2).
By the lemma again, we find a Cω–trajectory in
Z ′
A. As a consequence, theorem 2 is proved.�

2. Normal forms

We consider again a system Σ of the form (1).
In (Busvelle and Gauthier, 2003), we have shown
that identifiability is a generic property if and
only if the number of observation dy is greater
or equal to 3 (Theorem 5 below). On the con-
trary, if dy is equal to 1 or 2, identifiability is a
very restrictive hypothesis (infinite codimension)
and we have completely classified infinitesimally
identifiable systems by giving certain geometric
properties that are equivalent to the normal forms
presented in Theorems 3 and 4 (Busvelle and
Gauthier, 2003) below.

Theorem 3. (dy = 1) If Σ is uniformly infinites-
imally identifiable, then, there is a subanalytic
closed subset Z of X, of codimension 1 at least,
such that for any x0 ∈ X\Z, there is a coordinate
neighborhood (x1, . . . , xn, Vx0), Vx0 ⊂ X\Z in
which Σ (restricted to Vx0) can be written:

Σ1






ẋ1 = x2

...
ẋn−1 = xn
ẋn = ψ(x, ϕ)
y = x1

and
∂

∂ϕ
ψ(x, ϕ) 6= 0

Theorem 4. (dy = 2) If Σ is uniformly infinites-
imally identifiable, then, there is an open-dense
semi-analytic subset Ũ of X × I, such that each
point (x0, ϕ0) of Ũ , has a neighborhood Vx0 ×Iϕ0 ,
and coordinates x on Vx0 such that the system Σ
restricted to Vx0 × Iϕ0 , denoted by Σ|Vx0×Iϕ0

, has
one of the three following normal forms:

-type 1 normal form:

Σ2,1






y1 = x1 y2 = x2

ẋ1 = x3 ẋ2 = x4

...
...

ẋ2k−3 = x2k−1 ẋ2k−2 = x2k

ẋ2k−1 = f2k−1(x1, ..., x2k+1)
ẋ2k = x2k+1

...
ẋn−1 = xn
ẋn = fn(x, ϕ)

with ∂fn

∂ϕ
6= 0.

-type 2 normal form:

Σ2,2






y1 = x1 y2 = x2

ẋ1 = x3 ẋ2 = x4

...
...

ẋ2r−3 = x2r−1 ẋ2r−2 = x2r

ẋ2r−1 = ψ(x, ϕ) ẋ2r = F2r(x1, . . . ,

x2r+1, ψ(x, ϕ))
ẋ2r+1 = F2r+1(x1, . . . ,

x2r+2, ψ(x, ϕ))
...

ẋn−1 = Fn−1(x, ψ(x, ϕ))
ẋn = Fn(x, ϕ)

with ∂ψ
∂ϕ

6= 0, ∂F2r

∂x2r+1
6= 0, ...., ∂Fn−1

∂xn

6= 0

-type 3 normal form:

Σ2,3






y1 = x1

ẋ1 = x3

...
ẋn−3 = xn−1

ẋn−1 = fn−1(x, ϕ)

y2 = x2

ẋ2 = x4

...
ẋn−2 = xn
ẋn = fn(x, ϕ)

with ∂
∂ϕ

(fn−1, fn) 6= 0

In fact, see (Busvelle and Gauthier, 2003), these
sufficient conditions are also almost (in a local
sense) necessary.

In (Busvelle and Gauthier, 2003), we did not
give an identifiability normal form for identifiable
systems with dy ≥ 3, but we proved the following
result:

Theorem 5. If dy ≥ 3, identifiability is a generic
property.

We will now gives normal forms for generic iden-
tifiable systems. Let us consider a smooth system
Σ with 3 observations (we present the case dy = 3
but all results below are also true for systems with
more than 3 measurements, i.e. dy ≥ 3):

Σ






dx

dt
= f (x, ϕ)

y1 = h1 (x, ϕ)
y2 = h2 (x, ϕ)
y3 = h3 (x, ϕ)

2.1. Injectivity

First, let S∗ be the open dense set of systems
Σ = (f, h) such that the set

Z̄ =

{
x ∈ X,

∂h

∂ϕ
(x, ϕ) 6= 0 ∀ϕ ∈ I

}
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has the following Property (P): it is a connected
open dense subset of X wich is also locally con-
nected in X (in the strong sense that its inter-
section with any open connected subset of X is
connected). For a system Σ ∈ S∗, we consider
Σ̄ = Σ|Z̄ the restriction of Σ to Z̄. If Σ̄ is dif-
ferentially identifiable of order k (in the sense of
(Busvelle and Gauthier, 2003)) then the mapping

ΦΣ̄
k :

(
x, ϕ, . . . , ϕ(k−1)

)
7→

(
y, . . . , y(k−1)

)

is injective: this follows from the fact that if

jky1 = jky2 then (x1, ϕ1) = (x2, ϕ2)
def.
= (x̄, ϕ̄) by

identifiability and then

ẏ1 = Lfh (x̄, ϕ̄) +
∂h

∂ϕ
(x̄, ϕ̄) ϕ̇1

= Lfh (x̄, ϕ̄) +
∂h

∂ϕ
(x̄, ϕ̄) ϕ̇2

and since
∂h

∂ϕ
does not vanishes on Z̄, we conclude

that ϕ̇1 = ϕ̇2. By induction jkϕ1
= jkϕ2

. The
following theorem is now a consequence of the
genericity of differential identifiability, proved in
(Busvelle and Gauthier, 2003):

Theorem 6. There is a residual set S∗∗ of systems
such that Σ̄ = Σ|Z̄ has the following property:

ΦΣ̄
2n+1 is injective

2.2. Immersivity (We give only the sketch of the
proof)

Let us fix h3 : X × I 7→ R, h3 ∈ H where
H is the open–dense subset of C∞ (X × I) of

mappings such that
∂h3

∂ϕ
does not vanishes out of

a closed submanifold of codimension 1 of X × I.

Let Zh3 =
{

(x, ϕ) , ∂h3

∂ϕ
(x, ϕ) = 0

}
and let Z̄h3

be the complement of Zh3 in X × I.

Consider the immersion ψ : Z̄h3 → X ×
R, (x, ϕ) 7→ (x, y3 = h3 (x, ϕ)). Let W̄h3 denote
the (open) image of ψ.

Consider now locally defined systems Σ̃ on W̄h3 :

Σ̃






ẋ = f̃ (x, y3)

ẏ1 = h̃1 (x, y3)

ẏ2 = h̃2 (x, y3)

By the book (Gauthier and Kupka, 2001), there
are bad sets B̃ in jk

Σ̃
(the set of k–jets of these

systems), relative to immersivity. These bad sets
are pulled back by ψ in the set of k–jets of systems

Σ on Zh3 , B = ψ−1
∗

(
B̃

)

Σ






ẋ = f (x, ϕ)
ẏ1 = h1 (x, ϕ)
ẏ2 = h2 (x, ϕ)

If k > 2n, codim (B) > n + 1. By the transver-
sality theorems, the set of Σ that avoid B is
residual. Notice that a system avoiding B has the
following property, in restriction to Z̄h3 : the map(
x, ϕ, . . . , ϕ(k−1)

)
7→

(
y, ẏ, . . . , y(k−1)

)
is immer-

sive (this point is not completely obvious).

Now, taking just the intersection of 3 residual sets
of this type (constructed with h1, h2 and h3), we
get the following theorem:

Theorem 7. (dy ≥ 3) The set of systems Σ ∈
S∗ such that, in restriction to Z̄ × I, ΦkΣ :(
x, ϕ, . . . , ϕ(k−1)

)
7→

(
y, ẏ, . . . , y(k−1)

)
is immer-

sive, is residual.

Corollary 1. The set S∗∗∗ of systems such that,
in restriction to Z̄ × I, ΦkΣ :

(
x, ϕ, . . . , ϕ(k−1)

)
7→(

y, ẏ, . . . , y(k−1)
)

is an injective immersion, is
residual.

It follows from this result that systems in S∗∗∗ can
be embedded into systems of the form

y = z1 =
(
z1
1 , z

1
2 , z

1
3

)

ż1 = z2

...

żk−1 = zk

żk = F
(
z1, . . . , zk−1, ϕ(k)

)

with (
x, jkϕ

)
= H

(
z1, . . . , zk−1

)

and

y(k) = G
(
x, ϕ, . . . , ϕ(k)

)

in restriction to arbitrary compact subsets of Z̄.

There is also another normal form, local only,
useful for the practical identification purpose:
systems are immersed by ΦkΣ into systems of the
form (generic canonical form, dy = 3):

y = z1 =
(
z1
1 , z

1
2

)

ż1 = z2

...

żk−1 = zk

żk = F
(
z1, . . . , zk−1, y3, . . . , y

(k)
3

)

and

x = Φ
(
z1, . . . , zk−1, y3, . . . , y

(k−1)
3

)

This normal form holds for the systems in
the residual set S∗∗∗ locally around each point
(x, ϕ) ∈ Z̄ × I.

Finally, we proved:
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Theorem 8. (dy ≥ 3) If Σ is an infinitesimally
identifiable generic system (Σ ∈ S∗∗∗), then there
is a very small subset Z of X (in the sense of
Property (P), Section 2.1), such that for any
x0 ∈ X\Z, there exist a smooth C∞–function
F and a

(
y̌, y̌′, . . . , y̌(2n)

)
–dependant embedding

Φy̌,...,y̌(2n) (x) such that outside Z, trajectories of
Σx0,ϕ are mapped via Φy̌,...,y̌(2n) into trajectories
of the following system

Σ3+






dz1

dt
= z2,

dz2

dt
= z3, . . . ,

dz2n

dt
= z2n+1

dz2n+1

dt
= F

(
z1, . . . , z2n+1, y̌, . . . , y̌

(2n+1)
)

ȳ = z1

where zi, i = 1, . . . , 2n+ 1 has dimension dy − 1,
and with {

x = Φ−1
y̌,...,y̌(2n) (z)

ϕ = Ψ (x, y̌)
(2)

(y̌ is a selected output, such as y3 in previous
proofs)

Practical considerations. Several explicit con-
structions of high–gain observers can be applied
to Σ3+ in order to recover an estimation ẑ (t) of
z (t) knowing y, y̌ and its derivatives ((Busvelle
and Gauthier, 2003; Gauthier and Kupka, 2001)).
Then x and ϕ are recovered using (2). In (Busvelle
and Gauthier, 2003), we explained how to apply
the same type of observers to non generic systems
Σ1 and Σ2,i.
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