
High-gain observers and Kalman filtering in hard real-time

Nicolas Boizot
SCE, LASSY, CSC, Université du Luxembourg

6 rue coudenhove-Kalergi, L-1953 Luxembourg

nicolas.boizot@uni.lu

Eric Busvelle
Le2i, Université de Bourgogne

Le2I, IUT, route des plaines de l’Yonne, F-89000 Auxerre

busvelle@u bourgogne.fr

Juergen Sachau
SCE, LASSY, CSC, Université du Luxembourg

juergen.sachau@uni.lu

Abstract

In the framework of our research on high-gain observers for nonlinear systems we have reached the
final development step consisting of a real-time implementation in Linux. The results presented in this
paper were obtained using RTAI-lab and the Scilab/Scicos CACSD environment on a series-connected
DC motor. We introduce the three algorithms we implemented as 1) the classic high-gain Luenberger, 2)
the high-gain extended Kalman filter, and 3) our newly proposed adaptive-gain extended Kalman filter
(AEKF). This article is a comprehensive description of our real-time applied mathematics experiment.

1 Introduction

Observer theory is a subset of control theory. In
control theory, one wants to control system outputs
using its actual state in order to reach a target or
to optimize some cost function. In order to achieve
this task, it is necessary to estimate the state of the
process using measurements. The main goal of the
observer is to provide an estimation of internal vari-
ables of the process using measurements and a dy-
namic model. If one consider linear systems the Lu-
enberger observer and the Kalman filter naturally
come to mind. Those two solutions and particularly
the Kalman-Bucy approach have been adapted to
the nonlinear case for which linearised equations of
the dynamic model are used to obtain the extended
Kalman filter or some sort of extended Luenberger
observer. However the fact that this linearisation is

made in a neighborhood of the estimated trajectory
prevent us from producing general convergence re-
sults, in particular when the initial error between the
actual state and its estimation is high. In the case of
a small initial error the extended Kalman filter has
been proven (in the deterministic setting) to be an
exponentially converging observer (see[1] Thm.8 and
[2] part 3.2.3). This result together with its good fil-
tering properties in the presence of small noise (see
Picard, e.g.[3]) indicates that this solution is a good
local observer.

High-gain observers where introduced and their
nice theoretical properties emphasised a long time
ago, first in the form of observers with non-varying
correction gain [4] and then as an adaption of the ex-
tended Kalman filter [5]. With time, a whole theoret-
ical framework was established around the notions of
uniform observability and high-gain observers show-

1



ing how, starting from a given process, globally expo-
nentially converging observers can be designed and
implemented [6]. The structure or such observers
relies on special ways of writing the system, the ob-
servability forms, and a modification of the tuning
matrices used to design the observer by mean of a
single parameter, θ, called the high-gain parameter.
By choosing an appropriate value for this parameter,
the user may obtain an observer whose estimation of
the state converges (theoretically) to the real state of
the system as quickly as desired. In practice, the sit-
uation in not as ideal since the price paid for a faster
convergence is a higher sensibility to noise, which
may render the estimation useless.

We therefore focused our work on the design of
a globally exponentially converging observer having
the following general behavior:

• when the estimation is close to the true state
we want the observer to act as an extended
Kalman filter (local convergence and noise re-
jection)

• when the estimation is far from the true state
or is facing non-measured perturbations, the
observer should evolve so as to reach the be-
havior of a high-gain observer (ensuring global
convergence).

Since the extended Kalman filter corresponds to
a high-gain Kalman filter for which θ = 1, the pre-
cited behaviour will be reached when a proper way
to adapt this parameter is defined. A first result in
that direction is the high-gain and non high-gain ex-
tended Kalman filter proposed by Busvelle and Gau-
thier [2] where the parameter decays exponentially
to one. Global convergence is reached when the ini-
tial value of θ is taken high enough and is not de-
creasing too fast. This system is made persistent
by running multiples observers with their parameter
θ re-initialised alternatively which ensures that at
each time step one of the observer will have a high-
gain behavior and another one will be close to an ex-
tended Kalman filter. The authors recently proposed
another solution in which the high-gain parameter
may increase or decrease depending on the estima-
tion error ([7], [8]). The adaption is driven by a
quantity denoted innovation whose computation im-
plies the simulation of the model over a (small) time
window (def.3 ). The computation of this quantity
is time consuming compared to other calculations in
the same task and a major problem when actually
implementing it in a real-time setting. We therefore
studied the possibility of a hard realtime implemen-
tation on a simple system, namely a series connected
DC machine, having a representative time constant.
This was done using the RTAI-lab computer aided

control system design environment. In order to test
one step further the accessibility of this tool we used
the RTAI-Knoppix distribution proposed by Gian-
luca Palli [9].

2 Three observers

The three nonlinear observers we implemented are:
the high-gain Luenberger observer (sometimes de-
noted as the classic high-gain observer), the high-
gain extended Kalman filter, and the adaptive-gain
extended Kalman filter. This choice was motivated
by the increase in the computational effort that is
needed to perform an update of the state estimates,
with the computational time of the first observer be-
ing used as a reference for the two others.

When designing a high-gain observer, the model
is assumed to be in an observability form. In the case
of SISO systems, the observability canonical form is
given by

{

ẋ = A(u).x + b(x, u)
y = C.x

(1)

where

A(u) =













0 a2(u) 0 ... 0
0 0 a3(u) ... 0
... ... ... ... ...
0 0 0 an(u) 0
0 0 0 ... 0













b(x, u) =













b1(x1, u)
b2(x1, x2, u)

b3(x1, x2, x3, u)
...

b(x, u)













C = ( a1(u) 0 ... 0 )

together with the following hypotheses:

• ai(.), i = 1, ..., n are positive smooth functions,
bounded from above and from below as follows
0 < amin < ai(u) < amax

• b is a smooth, u-dependent vector field with
components bi(.) that depend triangularly on
x and are compactly supported.

Of course not all models will naturally appear under
this normal form and some work will be needed to
find an appropriate change of coordinates that will
put it under the normal form. Readers interested in
the topic of observability and normal forms may refer
to [6], [8]. Some practical remarks concerning the as-
sumptions made on the SISO observability form may

2



be found in [2, section 2]. Keeping those notations
and denoting the estimation of state by z we now
give the following definitions.

Definition 1 Given system 1, we define the high-
gain Luenberger observer as the dynamical system

ż = A(u).z + b(z, u) − Kθ(C.z − y)

where Kθ = θ∆θK, ∆θ = diag{1, θ, ..., θn−1} and K
is such that (A−KC) < 0 in the sense of symmetric
matrices.

Definition 2 The extended Kalman filter is defined
as a dynamical system composed of a set of two equa-
tions that are







ż = A(u).z + b(z, u) − PC
′

R−1(C.z − y)

Ṗ = P (A(u) + b∗(z, u))
′

+ (A(u) + b∗(z, u))P...

−PC
′

R−1CP + Qθ

where b∗(z, u) = ∂b
∂z

(z, u), Qθ = θ2∆θQ∆θ. Q
and R are symmetric definite positive matrices. In
the stochastic setting, they respectively correpond to
the covariance matrices of the state and measurement
noise. The second equation of this observer is a dy-
namical version of the Riccati equation.

This next observer self-adapts to the perturba-
tions it detects. This adaption should be driven by
a quantity which measures such perturbations. In-
stead of using the estimation error on the measured
state variables, we use innovation as it is defined be-
low.

Definition 3 (Innovation) Innovation is the
quantity

I(t) =

∫ t

t−d

‖y(s) − ŷ(s)‖2 ds

where y(s) corresponds to the measurements
made over the time interval [t − d; t] and ŷ(s) is the
solution over the time interval [t− d; t] of the system

˙̂x = A(u).x̂ + b(x̂, u)
y = Cx̂

x̂(t − d) = z(t − d)

that is the simulation over a time window of length d
of the model of the system with the estimation given
by the observer at time t-d as the initial state.

The reason why we chose this quantity comes
from a lemma [7] which states that, up to a multipli-
cation by a constant, the innovation upper bounds
the state error.

Definition 4 We finally define the adaptive-gain
extended Kalman filter as the three equations















ż = A(u).z + b(z, u)− PC
′

R−1
θ (C.z − y)

Ṗ = P (A(u) + b∗(z, u))
′

+ (A(u) + b∗(z, u))P...

−PC
′

R−1
θ CP + Qθ

θ̇ = λ [(1 − s(I)) + s(I)θmax − θ]

where Qθ = θ∆θQ∆θ and Rθ = 1
θ
R.

The meaning of this third equation is that the pa-
rameter θ will converge exponentially to a value that
lies in the interval [1; θmax] depending on the value
s(I) which is a function of the innovation. The func-
tion we use is the sigmoid:

s(I) =
1

(1 + e−β(I−m))
, s(I) : ]−∞; +∞[ → ]0; 1[

where β is chosen to determine how fast the tar-
geted parameters will change (i.e. as fast as possi-
ble or gradually) and m is used to discrime the val-
ues taken by the innovation only due to measurement
noise from the influence of real pertubations, the only
case against which we want the parameter to change.

The first observer is easy to implement as the
task demands only the resolution of n differential
equations corresponding to the number of variables
that are to be reconstructed. The two other algo-
rithms are more demanding in computational terms
because in addition to the n differential equations, a
Riccati equation has to be dynamically solved, which
represents n(n+1)/2 more equations due to the sym-
metry of the matrix P . Finally the part we expect to
be much more time consuming is the computation of
the innovation because of the simulation (i.e. at each
time step n differential equations are to be solved on
a time interval of length d).

3 Apparatus

As stated in the introduction our goal is to use
a high-gain observer to reconstruct the speed of a
series-connected DC machine from the measures of
the current (Fig.1 ).

Physical 
system

I

ObserverControler

Load torque

I
Wr

V

control system

3



FIGURE 1: General diagram of the testbed

3.1 Testbed

Our testbed is composed of a DC motor from Lucas
Nuelle (ref. SE2665-5C) coupled on one end with
a tachometer and on the other end with a propeler.
The tachometer (ref.2662-5U) is used only for a com-
parison of the estimated speed to the real one and
to calibrate the mathematical model. The propeler
(47.0 x 30.5 cm, together with a 5 ◦ pitch) attached to
a 52mm center hub is from Aero-naut (ref.7234/97)
and is expected to generate a significant resistive load
torque [14]. Power is supplied by a DC source from
Delta Electronika (SM-300-10D). Finally the phys-
ical system communicates with the control system
by means of an I/O card from National Instruments
(6024E-DACA): measurements of the current, volt-
ages and speed are fed to the control system while
set values for the current are delivered to the power
supply (3 inputs/1 output).

The control system consist of a Dell PC (P.IV
3 GHz, 512 Mb DDR2 - SDRAM) running under a
RTAI-knoppix distribution provided [9] with the fol-
lowing features:

• Linux kernel version 2.6.17 (SMP enabled ker-
nel is available)

• RTAI version 3.4[10]

• Scilab-4.0/Scicos CACSD platform[13]

• comedi support[11]

• xrtailab graphic interface[12]

3.2 Modeling

The mathematical model of a series-connected DC
machine presented in the litterature is the following
one ([18]):

{

İ = 1
L

(V − R.I − Laf1Iωr)
ω̇r = 1

J
(Laf2I − Tres)

It is based on several assumptions although we
did not keep the one of ideal efficiency of the ma-
chine. This is expressed by the use of two different
mutal inductances (i.e. Laf1and Laf2). The expres-
sion Tres of the second equation is a resistive torque
modeled as a viscous friction torque (Bωr) generated
by the contacts inside the motor, a torque due to the
propeler (pω2.08

r [14]), and an unknown perturbation
load torque denoted Tl. This unknown variable is
made identifiable by the addition of a third equation
(Ṫl=0) and only I is considered to be measured. This
system is uniformly observable and therefore there is
a change of coordinates that puts it under the SISO

observability canonical form (see [8] for details). Cal-
ibration of the model is made once the parameters
R, L, B, J, Laf1, Laf2, p have been set to proper val-
ues. We followed the procedure:

• R represents the resistance of the motor we
physically measured

• from data samples (voltage, current and speed)
a first estimation is obtained with the least
mean squares

• a nonlinear optimisation routine (simplex
method) is used with the previuously found pa-
rameters estimation as starting point (the func-
tion to minimize associates the set of param-
eters to the distance between the data sample
and a simulation of the model)

• remaining modeling errors are lessened by tun-
ing the parameters around the peviously found
values (those values probably correspond to a
local minimum).

3.3 IMPLEMENTATION

In order to fully activate the real-time environment,
we performed three steps:

1. the loading of the different RTAI and COMEDI
modules is done following the commands indi-
cated in[12]

2. the input/output signals are calibrated with a
routine from Comedi. Since during this cali-
bration big step impulses are sent to the motor,
it is essential to safety that the power supply
BE OFF. In addition to this a step is still active
when the routine ends, therefore a (dummy)
program should have been prepared in advance
so that when run for a few seconds the signal
will be set back to zero. Calling this program
end of load, gives the following commands
comedi config /dev/comedi0 ni pcimio
comedi calibrate –no-calibrate -S ni6024e.calibration
chmod 666 /dev/comedi*
./end of load -f 10

3. The first time we tried to get measurements
using the A/D, D/A and FIFO block of the
RTAI-lib palette in Scilab [12] we encountered
a problem when tring to use more than one
A/D channel (input of the control system).
After some discussion with the RTAI commu-
nity, it appeared that there was a small error
in the file rtai4 comedi datain.sci which has to
be replaced with the code given in the annex
[15]. The files to be replaced are located in the

4



virtual file system UNIONFS in the following
repositories:
/UNIONFS/usr/src/rtai-3.4/rtai-lab/...
...scilab/macros/RTAI/
/UNIONFS/usr/local/scilab-4.0/macros/RTAI/
It is also necessary to recompile the file in the
second repository with
scilab -comp rtai4 comedi datain.sci

Since we can sample the I/O signal quickly enough
compared to the physical system time constant we
choose to implement the whole control strategy in
the quasi-continuous setting which was straightfor-
ward following Fig.1 and [12], withstanding the ob-
servers. Their implementation was done using the
RTAICblock bkock which appears in the RTAI-lib
palette and is an adaption of the Cblock2 block of the
palette Others. The code developped for the Scicos
simulation can then be reused for the realtime pro-
gram up to a multiplication of the signals exchanged
with the I/O card by a scaling factor. As its name
implies the computational function of this block has
to be written in C with a structure similar to Mat-
lab S-function [19]. It appears from the definitions of
the three observers that matrix mutliplications will
be needed. We actually tried two solutions to solve
this:

1. we used the routines already present in the
Scilab code and may be called with respectively
the header and the two functions
#include <routines/machine.h>
extern int C2F(dmmul)();
extern int C2F(dmmul1)();
Those two functions take the matrices A, B, C
as inputs and output respectively C = A ∗ B
and C = C + A ∗ B. Computations are done
with combinations of those two functions. In
addition to this one has to consider that the Ri-
catti matrix appearing in the Kalman-like fil-
ters is square symmetric. Then for a dim(n×n)
matrix, only n(n + 1)/2 computations have to
be done. A small program that trasforms the
square matrix into a corresponding column vec-
tor and vice versa, has to be written.

2. it appears that the matrices used in the com-
putations above have some particular structure
(e.g. A(u) is an upper diagonal matrix, Q, R
are often choosen diagonal, b∗(z, u) is lower
triangular...). Consequently developping the
equations on paper gives us simplified equa-
tions which will prevent the system from do-
ing useless computations. The Ricatti equation
will demand some effort but the other ones are
straightforward.

In the case of the DC machine where the number of
state equations is equal to 3, the second solution is
definitely the one to use.

As shown in Fig.2, the implementation of the
adaptive-gain extended Kalman filter has been dev-
ided into three parts: computation of the observer
equations as for the high-gain Kalman filter, a time
delay block, and computation of the innovation. This
latter operation is done in discrete time mainly be-
cause

• the computation of y(s) for s ∈ [t−d; t] requires
a simulation of the model which will implies a
non-negligible amount of computational time

• computation of the integral (by a trapezoidal
method) is easier to handle when data (y(t))
are updated at given and apriori-known sam-
ple times.

As in the case of matrix multiplication, the simula-
tion of the model over a time window of length d
may be done using an external routine. As a first
atempt we used lsode which already exists in Scilab
source code. Here again the machine.h header and
a function call identical to the ones above are to be
included (for more information on how to use this
routine [16]). Unfortunately it appeared that unlike
dmmul and dmmul1, the use of lsode was not sup-
ported by the realtime compiler. We then replaced it
by a fourth order Runge-Kutta algorithm (e.g.[17]).

dz/dt=...
dS/dt=...
dθ/dt=...

V(t)

I(t)

Innovationd-delay

z(t)

z(t-d)

FIGURE 2: Decomposition of the adaptive-
gain extended Kalman filter

4 Results

We implemented the three observers both in simu-
lation and realtime compilation. Several simulations
were done in order to find correct values for the high-
gain parameters for the Luenberger observer and the
Kalman filter. The parameters were estimated at a
low speed (ωr=180rad.s−1) and the three observers
tested according to the following scenario:

• the machine is fed 54 V for 30 seconds

• at t=30 the input voltage is switched to 42 V
for another 30 seconds

5



• the voltage is then raised to 66 V and shut
down after 30 seconds.

During each step, for a period of about 10 sec-
onds a a non measured friction force perturbation is
applied to the shaft of the motor: here appears the
importance of low speed.

Fig.3 shows the estimations given by the Luen-
berger observer in open loop. The high-gain param-
eter was set to θ=2.5 and the application was ran
with a 0.001 seconds sampling time.

(-p)(+p)

(ic)

(-p)(+p)

(ic) (-p)(+p)

FIGURE 3: Speed estimation using a high-
gain extended Luenberger observer.
(+p): begining of perturbation, (-p): end of
perturabtion, (Ic): change of the input

The high-gain Kalman filter because of the ad-
ditional computations needed to dynamically solve
the Ricatti equation (representing n(n = 1)/2 more
equations when n is the dimension of the state vec-
tor) is often seen as very slow observer. Compared
to a Luenberger filter this will actually be the case
as ran it at a sample time of 0.01 seconds. However
this observer is more efficient when dealing with sys-
tems for which the A matrix of the mathematical
model (see 1) depends on the input. The results pre-
sented in Fig.4 shows both the results of the estima-
tion of the speed delivered by an extended Kalman
filter (θ=1) and its high-gain counterpart (θ=2.5).
Since our perturbations are done by hand the only
way to present such kind of graph is to run both
those obsevers in parallel. We think that with some
efforts to efficiently tune the code of the Kalman fil-
ter it could be possible to run it at 0.001 seconds. As
expected the non high-gain filter is the slowest one.
As the measurement noise was not that big it is diffi-
cult to distinguish the (bad) influence of a high-value
of θ on the estimation but still it can be noticed in
the time windows [5;10] and [25;30].

(-p)(+p)

(ic)

(-p)(+p)

(ic) (-p)(+p)

FIGURE 4: Speed estimation using a high-
gain extended Kalman filter
(+p): begining of perturbation, (-p): end of
perturabtion, (Ic): change of the input

The implementation of the adaptive-gain ex-
tended Kalman filter was a little bit more demanding
than the previous ones, but in the end we managed
to have it running in real-time with a 0.01 seconds
sample time. The parameters specific to this ob-
server were set to (see [7],[8] for details)

• θmax=2.5, the value previously used for the
fixed high-gain

• λ=500, θ will quickly reach its target value

• β=2000, θ will switch from 1 to θmax almost
immediately

• m1=0.05, it determined by the choice we made
for β

• m2=σ2 ∗ d=0.004 where σ is the standard de-
viation of the measurment noise (0.2 is small)

• d=0.1 is the delay in the computation of the
innovation

• Dt=0.01 is the sampling time of the innova-
tion discrete block which will be updated at
each time step of the process. It also means
that the simulation needed to compute the in-
novation is made in d/DT=10 steps

Results of the estimation appear in Fig.5. Be-
cause this run was done with no other observer it
is not so easy to compare it to others but still we
see that when facing perturbations the observer has
a speed of convergence comparable to the high-gain
extended Kalman filter and presents a curve that is
as smooth as the one of the extended Kalman filter.

6



If we take a look at Fig.6 we see that the parameter
θ reacts 9 times during the experiment, i.e. once for
every modification plus one extra time corresponding
to a bad initialisation. Those reactions correspond
to (measured) changes of the input voltage or non-
measured changes in the load torque (perturbations).
It seems regular that changes occur in the second sit-
uation but not in first one. In fact this is due to mod-
eling errors because of which the innnovation may
not vanish. This problem is solved by filtering the

innovaton the following way:

{

İf = α(I − If )
I = I − If

where α fixes the maximum time θ will stay at its
maximum value.

(-p)(+p) (ic)

(-p)(+p)

(ic) (-p)(+p)

FIGURE 5: Speed estimation using the
adaptive-gain extended Kalman filter
(+p): begining of perturbation, (-p): end of
perturabtion, (Ic): change of the input

0 10 20 30 40 50 60 70 80 90 100
1.0

1.5

2.0

2.5

time

hi
gh

−
ga

in
 p

ar
am

et
er

FIGURE 6: Evolution of theta

5 Conclusion

The main objective of this work was to show that
the adaptive-gain extended Kalman filter can be im-

plemented in a hard real-time setting. Keeping in
mind that the system we used was small (three equa-
tions) we proved that this implementation was fea-
sible. Some interesting points came out concerning
modeling errors in particular the fact modeling errors
may trigger the high-gain parameter of the adaptive-
gain observer when no pertubation is occuring. In
the future we foresee the use of the observers at a
higher motor speed, to properly close the control
loop as we planned in Fig.1, the usage of RTAI-lab to
test the MIMO version of the adaptive-gain observer,
and also the implementation of a small program that
would automatically generate a C code to be copied
in the CRTAIblock so as to ease future utilisation.

Acknowledgements

The first author really wants to thanks his colleague
Kenneth D. Sebesta (at least i wrote your name prop-
erly) for his help during this long journey toward
”real life” application.

Annex [15]

function [x,y,typ] = rtai4 comedi datain(job,arg1,arg2)
x=[];y=[];typ=[];
select job
case ’plot’ then
exprs=arg1.graphics.exprs;
ch=exprs(1)
name=exprs(2)
standard draw(arg1)
case ’getinputs’ then
[x,y,typ]=standard inputs(arg1)
case ’getoutputs’ then
[x,y,typ]=standard outputs(arg1)
case ’getorigin’ then
[x,y]=standard origin(arg1)
case ’set’ then
x=arg1
model=arg1.model;graphics=arg1.graphics;
exprs=graphics.exprs;
while %t do
[ok,ch,name,range,aref,exprs]=..
getvalue(’Set RTAI-COMEDI DATA block parame-

ters’,..
[’Channel:’;
’Device:’;
’Range:’;
’Aref:’],..
list(’vec’,-1,’str’,1,’vec’,-1,’vec’,-1),exprs)
if ˜ok then break,end
if exists(’outport’) then out=ones(outport,1), in=[],

else out=1, in=[], end
[model,graphics,ok]=check io(model,graphics,in,out,1,[])
if ok then
graphics.exprs=exprs;

7



model.ipar=[ch;

range;

aref;

length(name);

ascii(name)’];

model.rpar=[];

model.dstate=[1];

x.graphics=graphics;x.model=model

break

end

end

case ’define’ then

ch=0

name=’comedi0’

range=0

aref=0

model=scicos model()

model.sim=list(’rt comedi datain’,4)

if exists(’outport’) then model.out=ones(outport,1),
model.in=[], else model.out=1, model.in=[], end

model.evtin=1

model.rpar=[]

model.ipar=[ch;

range;

aref;

length(name);

ascii(name)’]

model.dstate=[1];

model.blocktype=’d’

model.dep ut=[%t %f]

exprs=[sci2exp(ch),name,sci2exp(range),sci2exp(aref)]

gr i=[’xstringb(orig(1),orig(2),[”COMEDI A/D”;name+”
CH-”+string(ch)],sz(1),sz(2),”fill”);’]

x=standard define([3 2],model,exprs,gr i)

end

endfunction

References

[1] Dynamic Observers as Asymptotic Limits of Recur-
sive Filters: Special Cases, 1988, Baras J. S., Ben-
soussan A., System & Control Letters, Vol.. 52, no
1, 7-15.

[2] High-gain and Non High-gain Observers for Nonlin-
ear Systems, 2002, Busvelle E., Gauthier J-P., Con-
temporary Trends in Nonlinear Geometric Control
Theory and its Applications, World Scientific, 233-
256.

[3] Efficiency of the Extended Kalman Filter for Non-
linear Systems with Small Noise, 1991, Picard J.,
SIAM J. Appl. Math., 51, No 3, 843-885.

[4] A Simple Observer for for Nonlinear Systems, 1992,
Gauthier J-P., Hammouri H., Othman S., IEEE
Trans. Aut. Control, 37, 875-880.

[5] High-gain Estimation for Nonlinear Systems, 1992,
Deza F., Busvelle E., Gauthier J.P., Rakotopara D.,
Systems & Control Letters 18, 25-299.

[6] Deterministic Observation Theory, 2001, Gauthier
J-P., Kupka I., Cambridge university press.

[7] Adaptive-gain Extended Kalman Filter: Applica-
tion to a Series-connected DC Motor, 2007, Boizot
N., Busvelle E., Gauthier J-P., Sachau J., Confer-
ence on Systems and Control (CSC’07), Marrakech.

[8] Adaptive-gain Observers and Applications in Non-
linear Observers and Applications, 2007,Boizot N.,
Busvelle E., Lecture Notes in Control and Informa-
tion Sciences, Springer.

[9] http://www-lar.deis.unibo.it/people/gpalli/

[10] www.rtai.org/

[11] www.comedi.org/

[12] RTAI-Lab tutorial: Scilab, Comedi, and real-time
control, 2006, Bucher R., Mannori S., Netter T.,
www.rtai.org/RTAILAB

[13] Rapid Control Prototyping with Scilab/Scicos and
Linux RTAI, 2004, Bucher R., Dozio L., in Scilab-
2004, First Scilab International Conference.

[14] Hyperion Prop Talk, Connolly P., http://aircraft-
world.com/prod datasheets/hp/emeter/hp-
proptalk.htm

[15] Personal communication from Roberto Bucher

[16] Description and Use of LSODE, the Livermore
Solver for Ordinary Differential Equations, 1993,
Radhakrishnan K., Hindmarsh A. C., LLNL report
UCRL-ID-113855.

[17] Numerical Recipes: The Art of Scientific Com-
puting, Third Edition, 2007, Cambridge University
Press.

[18] Nonlinear Control of a Series DC Motor: Theory
and Experiment, 1988, Mehta S., Chiasson J., IEEE
transactions on idustrial electronics, Vol.45, No.1.

[19] Modeling and Simulation in Scilab/Scicos, 2006,
Campbell S. L., Chancelier J-P., Nikoukhah R.,
Springer.

8


