Laboratoire d'Analyse Appliquée et Optimisation

Observation and Identification for Nonlinear Systems

Eric Busvelle and Jean-Paul Gauthier

http://www.u-bourgogne.fr/monge/e.busvelle/cocv.html

Introduction

$$\Sigma : \begin{cases} \frac{dx}{dt} = f(x, u(t), \varphi \circ \pi(x(t))) \\ y = h(x, u(t), \varphi \circ \pi(x(t))) \end{cases}$$

where
$$\varphi \circ \pi : X \to Z \to I \subset \mathbf{R}$$

 $x \to z = \pi(x) \to \varphi(\pi(x))$

and $P_{\Sigma}: X \times L^{\infty}[U] \times L^{\infty}[I] \rightarrow L^{\infty}[\mathbf{R}^{d_y}]$ $(x_0, u(.), \hat{\varphi}(.)) \rightarrow y(.)$

 φ is an unknown function of $\pi(x)$ $\hat{\varphi}$ is a function of time P_{Σ} is the input/output function of Σ

Identifiability

Definition 1: Σ is identifiable at

 $(u(.), y(.)) \in L^{\infty}[U] \times L^{\infty}[\mathbf{R}^{d_y}]$

if there is at most a single couple

 $(x_0, \hat{\varphi}) \in X \times L^{\infty}(I)$

such that for almost all t

 $P_{\Sigma}(x_0, u, \hat{\varphi})(t) = y(t)$

and $\hat{\varphi}(t) = \varphi \circ \pi(x(t))$ for some smooth function $\varphi : Z \to I$.

 Σ is identifiable if it is identifiable at any admissible (u(.), y(.)).

Infinitesimal Identifiability

Definition 2:

$$T\Sigma : \begin{cases} \frac{d\xi}{dt} = T_{x,\varphi}f(x, u, \varphi; \xi, \eta) \\ \hat{y} = d_{x,\varphi}h(x, u, \varphi; \xi, \eta) \end{cases}$$

where $(\xi,\eta) \in T_x X \times T_{\varphi} I$, we set

$$P_{T\Sigma}^{t}(\xi_{0},\eta) = d_{x,\varphi}h(x,u,\widehat{\varphi};T_{x,\varphi}\phi_{t}(x,u,\widehat{\varphi};\xi_{0},\eta),\eta)$$

= $T_{x,\varphi}P_{\Sigma}^{t}(\xi_{0},\eta)$

 Σ is infinitesimally identifiable at $(x_{0}, u, \hat{\varphi}) \in X \times L^{\infty}[U] \times L^{\infty}[I]$ if $P_{T\Sigma}^{t}$ is injective $\forall t > 0$ Σ is uniformly infinitesimally identifiable if this is true at all $(x_{0}, u, \hat{\varphi})$ **Differential Identifiability**

Let
$$D_k \Phi = X \times (U \times \mathbf{R}^{(k-1)d_u}) \times (I \times \mathbf{R}^{k-1})$$
 be
the space of k-jets of the system Σ
 $(j^k(u) = (u(0), u'(0), \dots, u^{(k-1)}(0)))$, we set
 $\Phi_k^{\Sigma} : D_k \Phi \longrightarrow \mathbf{R}^{kdy}$
 $(x_0, j^k(u), j^k(\widehat{\varphi})) \longrightarrow j^k(y)$
 $\Phi_{k,2}^{\Sigma,*} : D_k \Phi \times D_k \Phi \longrightarrow \mathbf{R}^{kdy} \times \mathbf{R}^{kdy}$
 $(z_1, z_2) \longrightarrow (\Phi_k^{\Sigma}(z_1), \Phi_k^{\Sigma}(z_2))$

Definition 3: Σ is differentially identifiable of order k if $\Phi_{k,2}^{\Sigma,*}(z_1, z_2) \in \Delta_k \Rightarrow (x_1, \hat{\varphi}_1(0)) = (x_2, \hat{\varphi}_2(0))$ **Genericity (without control)**

Theorem 1.

• If $d_y \ge 3$, differential identifiability of order 2n + 1 is a **generic property** in the class of C^{∞} systems.

• If $d_y < 3$, differential identifiability is not a generic property.

Proof of genericity 1/2

$$Z_{i} = (x_{i}, \varphi_{i}, \varphi_{i}', \dots, \varphi_{i}^{k}, j_{\Sigma}^{k}(x_{i}, \varphi_{i})), i = 1, 2$$

$$Z = (Z_{1}, Z_{2})$$

$$\Phi(Z) = \Phi_{k}^{\Sigma}(Z_{1}) - \Phi_{k}^{\Sigma}(Z_{2}) \in \mathbb{R}^{k d_{y}},$$

$$k = 2n + 1, d_{y} \ge 3$$

Let us suppose that Φ is a submersion $\operatorname{codim} \Phi^{-1}(0) = k d_y$ Let $\Pi \Phi^{-1}(0) = (x_i, \varphi_i, j_{\Sigma}^k(x_i, \varphi_i))_{i=1,2}$

codim $\Pi \Phi^{-1}(0) \ge k d_y - 2(k-1) = k (d_y - 2) + 2$ $\ge k+2 \ge 2n+3$

Proof of genericity 2/2

$$\rho_{\Sigma} : (X \times I)^{2} \setminus \Delta \rightarrow (J_{\Sigma}^{k})^{2}$$
$$(x_{1}, \varphi_{1}, x_{2}, \varphi_{2}) \rightarrow (x_{i}, \varphi_{i}, j_{\Sigma}^{k}(x_{i}, \varphi_{i}))_{i=1,2}$$

Multijet transversality theorem: the set of Σ such that ρ_{Σ} is transversal to $\Pi \Phi^{-1}(0)$ is residual.

dim
$$(X \times I)^2 \setminus \Delta = 2n + 2$$

 $\downarrow \downarrow$
generically, ρ_{Σ} avoids $\Pi \Phi^{-1}(0)$

Single-output case

Theorem 2. If Σ is uniformly infinitesimally identifiable then i) $\frac{\partial}{\partial \varphi} \left\{ h, L_{f_{\varphi}}h, \dots, (L_{f_{\varphi}})^{n-1}h \right\} \equiv 0$ ii) $\frac{\partial}{\partial \varphi} L_{f_{\varphi}}^{n} h \neq 0$ iii) $d_x h \wedge \ldots \wedge d_x L_{f_{(2)}}^{n-1} h \neq 0$, Therefore, locally, the system can be written $\begin{cases} \dot{x}_1 = x_2 \\ \vdots \\ \dot{x}_{n-1} = x_n \\ \dot{x}_n = \psi(x,\varphi) \\ y = x_1 \end{cases} \text{ and } \frac{\partial}{\partial\varphi}\psi(x,\varphi) \neq 0$

Single-output case, pseudo-converse

Theorem 3. If Σ meets the following conditions,

- i) $\frac{\partial}{\partial \varphi} \left\{ h, L_{f\varphi}h, \dots, (L_{f\varphi})^{n-1}h \right\} \equiv 0$ ii) $\frac{\partial}{\partial \varphi} L_{f\varphi}^n h \neq 0$ iii) $d_x h \wedge \dots \wedge d_x L_{f\varphi}^{n-1} h \neq 0$, then Σ is 1) locally identifiable, 2) loc. unif. infinitesimally identifiable,
- 3) loc. diff. identifiable of order n + 1.

Proof of the single-output case 1/2

Let k < n be the first k such that $d_{\varphi}L_{f}^{k}h \neq 0$:

$$\Sigma \begin{cases} y = x_1 \\ \dot{x}_1 = x_2 \cdots \\ \dot{x}_{k-1} = x_k \\ \dot{x}_k = L_f^k(x,\varphi) = f_k(x,\varphi) \cdots \\ \dot{x}_n = f_n(x,\varphi) \end{cases}$$
$$T\Sigma \begin{cases} \dot{x} = f(x,\varphi) \\ \hat{y} = \xi_1 \\ \dot{\xi}_1 = \xi_2 \cdots \\ \dot{\xi}_{k-1} = \xi_k \\ \dot{\xi}_k = d_x f_k(x,\varphi) \xi + d_\varphi f_k(x,\varphi) \eta \end{cases}$$

Proof of the single-output case 2/2

A feedback $\eta = -\frac{d_x f_k(x,\varphi_0)\xi}{d_{\varphi} f_k(x,\varphi_0)}$ in φ_0 s.t. $d_{\varphi} f_k(x,\varphi_0) \neq$ 0 gives $\frac{d\xi_k}{dt} = 0$ which contradict observability. If $\frac{\partial}{\partial u} L_{f_n}^n h = 0$ at (x, φ) $X \times I \supset E = \left\{ (x, \varphi) ; d_{\varphi} L_f^n h = 0 \right\}$ $X \supset \Pi E$ Hardt's theorem $\Rightarrow \exists \hat{\varphi}$

 $\begin{cases} y = x_1, \dot{x}_1 = x_2, \dots \dot{x}_n = \psi(x, \hat{\varphi}(x)) \\ \hat{y} = \xi_1, \dot{\xi}_1 = \xi_2, \dots \dot{\xi}_n = d_x \psi(x, \hat{\varphi}(x)) + 0 \end{cases}$

Two output case: definitions of k and r

Define
$$E_l = \left\{ d_x h_i, d_x L_{f_{\varphi}} h_i, \dots, d_x L_{f_{\varphi}}^{l-1} h_i, i = 1, 2 \right\}$$

and $N(l) = \text{rank}(E_l)$ at a generic point:

 \boldsymbol{k} is defined by

The **order** of the system is the first integer r such that $d_{\varphi}L_{f_{\varphi}}^{r}(h_{1},h_{2}) \neq 0$.

Classification

Lemma: If Σ is uniformly infinitesimally identifiable then (1) 2k + m = n(2) r < k + m**Proof:** (1) $\varphi = \varphi_0 = \operatorname{cte} \begin{cases} \dot{x} = f(x, \varphi_0) \\ \dot{\xi} = g(x, \xi, \varphi_0) \\ y = h(x, \varphi_0) \end{cases}$ contradict observability (2) $\begin{cases} \dot{x} = f(x) \\ y = h(x) \end{cases}$ contradict identifiability

Définition 5. A system Σ is regular if (1) and (2) holds.

Type 3: *r*=*k* **and** *n*=*2k*

$$\begin{cases} y_1 &= x_1 & y_2 &= x_2 \\ \dot{x}_1 &= x_3 & \dot{x}_2 &= x_4 \\ \vdots & & \vdots \\ \dot{x}_{n-3} &= x_{n-1} & \dot{x}_{n-2} &= x_n \\ \dot{x}_{n-1} &= f_{n-1}(x,\varphi) & \dot{x}_n &= f_n(x,\varphi) \end{cases}$$

with $\frac{\partial}{\partial \varphi}(f_{n-1}, f_n) \neq 0$

N(l) increases by steps of 2 until the last derivative and apparition of φ .

Type 1: *r*>*k*

$$\begin{cases} y_1 &= x_1 \quad y_2 &= x_2 \\ \dot{x}_1 &= x_3 \quad \dot{x}_2 &= x_4 \\ \vdots &\vdots \\ \dot{x}_{2k-3} &= x_{2k-1} \quad \dot{x}_{2k-2} &= x_{2k} \\ \dot{x}_{2k-1} &= f_{2k-1}(x_1, \dots, x_{2k+1}) \\ \dot{x}_{2k} &= x_{2k+1} \\ \vdots \\ \dot{x}_{n-1} &= x_n \\ \dot{x}_n &= f_n(x, \varphi) \end{cases}$$

with $\frac{\partial f_n}{\partial \varphi} \neq 0.$

N(l) increases by steps of 1 when φ appears for the first time, \simeq single-output case.

Type 2: *r*<*k*

 $\dot{x}_{2r-3} = x_{2r-1} \quad \dot{x}_{2r-2} = x_{2r}$ $\dot{x}_{2r-1} = \psi(x, \varphi) \quad \dot{x}_{2r} = F_{2r}(x_1, \dots, x_{2r+1}, \psi(x, \varphi))$ $\dot{x}_{2r+1} = F_{2r+1}(x_1, \dots, x_{2r+2}, \psi(x, \varphi))$ $\begin{aligned} \dot{x}_{n-1} &= F_{n-1}(x, \psi(x, \varphi)) \\ \dot{x}_n &= F_n(x, \varphi) \end{aligned}$ with $\frac{\partial \psi}{\partial \omega} \neq 0, \frac{\partial F_{2r}}{\partial x_{2r+1}} \neq 0, \dots, \frac{\partial F_{n-1}}{\partial x_n} \neq 0$

 φ appears when N(l) increases by steps of 2.

retour

retour FCC

r = k and 2k < n

If
$$r = k$$
 before the last derivative:
 $d_x h_1 \wedge \cdots \wedge d_x L_{f\varphi}^{k-1} h_1 \wedge d_x L_{f\varphi}^{k-1} h_2 \wedge d_x L_{f\varphi}^k h_2 \not\equiv 0$

If $d_{\varphi}L_{f_{\varphi}}^{k}h_{1} \neq 0$, we obtain φ using y_{1} and x_{2k}, \ldots, x_{n} using y_{2} **Type 2**

If $d_{\varphi}L_{f_{\varphi}}^{k}h_{1}\equiv 0$, we obtain φ using y_{2}

→ <u>Type 1</u>

Canonical form for observer construction

to appear

Canonical form of observability

$$\begin{cases} \frac{dx}{dt} = A(t)x + b(x, u) \\ y = C(t)x \end{cases}$$

$$A(t) = \begin{pmatrix} 0 & a_2(t) & 0 & \cdots & 0 \\ & a_3(t) & \cdots & i \\ \vdots & \ddots & \ddots & 0 \\ & & & a_n(t) \\ 0 & & \cdots & 0 \end{pmatrix}$$

$$C(t) = \begin{pmatrix} a_1(t) & 0 & \cdots & 0 \end{pmatrix}$$

$$0 < a_m \le a_i(t) \le a_M$$

$$b(x, u) = b_1(x_1, u)\frac{\partial}{\partial x_1} + b_2(x_1, x_2, u)\frac{\partial}{\partial x_2} + b_n(x_1, \dots, x_n, u)\frac{\partial}{\partial x_n}$$

Modified Extended Kalman filter

$$\frac{dz}{dt} = A(t)z + b(z, u) - S(t)^{-1}C(t)'r^{-1}(C(t)z - y(t))$$

$$\frac{dS}{dt} = -(A(t) + b^{*}(z, u))'S - S(A(t) + b^{*}(z, u))$$

$$+C(t)'r^{-1}C(t) - SQ_{\theta}S$$

$$\Delta = \begin{pmatrix} 1 & & \\ & \frac{1}{\theta} & & \\ & & \ddots & \\ & & & (\frac{1}{\theta})^{n-1} \end{pmatrix}$$

$$Q_{\theta} = \theta^{2}\Delta^{-1}Q\Delta^{-1}$$

If θ is large, high-gain observer (HGEKF) If $\theta \approx 1$, Classical Extended Kalman filter (EKF)

Modified Extended Kalman filter

$$\frac{dz}{dt} = A(t)z + b(z,u) - S(t)^{-1}C(t)'r^{-1}(C(t)z - y(t))$$

$$\frac{dS}{dt} = -(A(t) + b^*(z,u))'S - S(A(t) + b^*(z,u))$$

$$+C(t)'r^{-1}C(t) - SQ_{\theta}S$$

$$\frac{d\theta}{dt} = \lambda(1-\theta)$$

$$\Delta = \begin{pmatrix} 1 & & \\ & \frac{1}{\theta} & & \\ & & \ddots & \\ & & & (\frac{1}{\theta})^{n-1} \end{pmatrix} \qquad Q_{\theta} = \theta^2 \Delta^{-1}Q \Delta^{-1}$$

If θ is large, high-gain observer (HGEKF) If $\theta \approx 1$, Classical Extended Kalman filter (EKF)

Theorem

There exist $\lambda_0 > 0$ such that for any $0 \le \lambda \le \lambda_0$, there exist θ_0 such that for any $\theta(0) > \theta_0$, for any $S(0) \ge c \ Id$, for any compact $K \subset \mathbb{R}^n$, for any $z(0) \in K$ then if we set $\varepsilon(t) = z(t) - x(t)$ for any $t \ge 0$

 $||\varepsilon(t)||^{2} \leq R(\lambda, c)e^{-at} \Lambda(\theta(0), t, \lambda)||\varepsilon(0)||^{2}$ (1)

where

$$\Lambda(\theta(0), t, \lambda) = \theta(0)^{2(n-1) + \frac{a}{\lambda}} e^{-\frac{a}{\lambda}\theta(0)(1 - e^{-\lambda t})}$$

and a is a positive constant and $R(\lambda, c)$ is a decreasing function of c.

Proof

Change of variables
$$\begin{cases} \widetilde{x} &= \Delta x \\ \widetilde{P} &= \frac{1}{\theta} \Delta P \Delta \end{cases} \quad (P = S^{-1})$$

+ time change $d\tau = \theta(t) dt$

We set $\varepsilon = z - x = error$ then we calculate ${}^{T}\varepsilon(\tau)S(\tau)\varepsilon(\tau)$.

Observability give us $\alpha I \leq S(\tau) \leq \beta I$ then

$$^{T}\varepsilon(\tau)S(\tau)\varepsilon(\tau) \longrightarrow 0 \iff \varepsilon(\tau) \longrightarrow 0$$

When $\tau \leq T$

 $\|\varepsilon(\tau)\|^2 \le \theta(\tau)^{2(n-1)} H(c) e^{-(a_1\theta(T)-a_2)\tau} \|\varepsilon(0)\|^2$

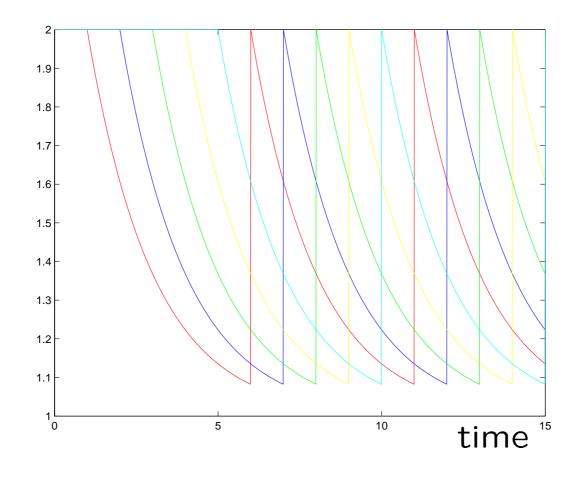
Parallel high-gain and non-high-gain EKF

We use N observers in parallel. At times kT:

- a new observer is initialized with $\theta(kT) = \theta_0$,
- the older observer is killed. Therefore, at any time t, we have N observers initialized at times kT, $(k-1)T \dots (k-N+1)T$ where $k = \left\lfloor \frac{t}{T} \right\rfloor$.

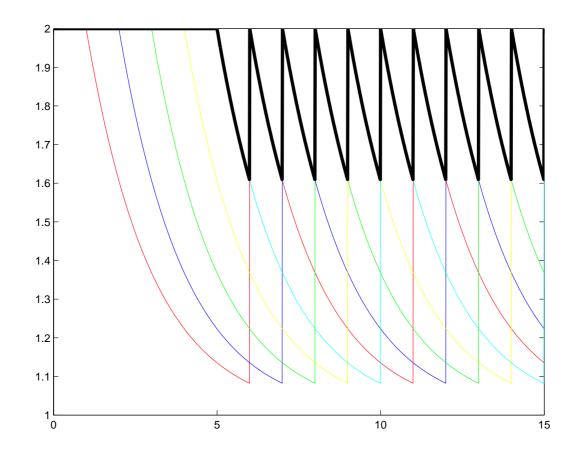
State estimation: the estimation given by the observer with smallest innovation $||y - C\hat{x}||$.

Parallel Extended Kalman Filter



 θ for 5 observers

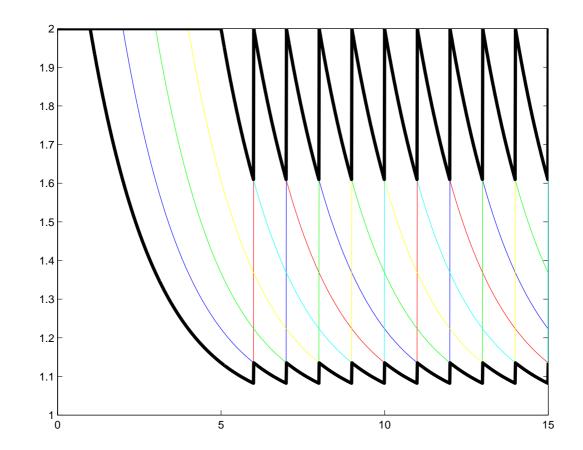
High-gain Extended Kalman Filter



 $\boldsymbol{\theta}$ for the youngest observer is

$$1 + e^{-\lambda(t-kT)} (\theta_0 - 1) \ge 1 + e^{-\lambda T} (\theta_0 - 1)$$

Standard Extended Kalman Filter



 $\boldsymbol{\theta}$ for the oldest observer is

$$1 + e^{-\lambda(t-kT+(N+1)T)} (\theta_0 - 1) \approx 1$$

Extended Kalman filtering equations

$$\frac{dx}{dt} = F(x, u)$$

Our <u>diffeomorphism</u> $\xi = \varphi(x, u)$ depend on u supposed to be smooth, hence:

$$\frac{d\xi}{dt} = D_{\varphi} \left(\varphi_u^{-1}(\xi) \right) f \left(\varphi_u^{-1}(\xi), u \right) + \frac{\partial \varphi \left(\varphi_u^{-1}(\xi), u \right)}{\partial u} \dot{u}$$
$$= F \left(\xi, u, \dot{u} \right)$$

$$\begin{cases} \frac{d\hat{\xi}}{dt} = F\left(\hat{\xi}, u, \dot{u}\right) + PC^{T}R^{-1}\left(y - C\hat{\xi}\right) \\ \frac{dP}{dt} = F^{*}\left(\hat{\xi}, u, \dot{u}\right)P + PF^{*}\left(\hat{\xi}, u, \dot{u}\right) + Q_{\theta} - PC^{T}R^{-1}CP \end{cases}$$

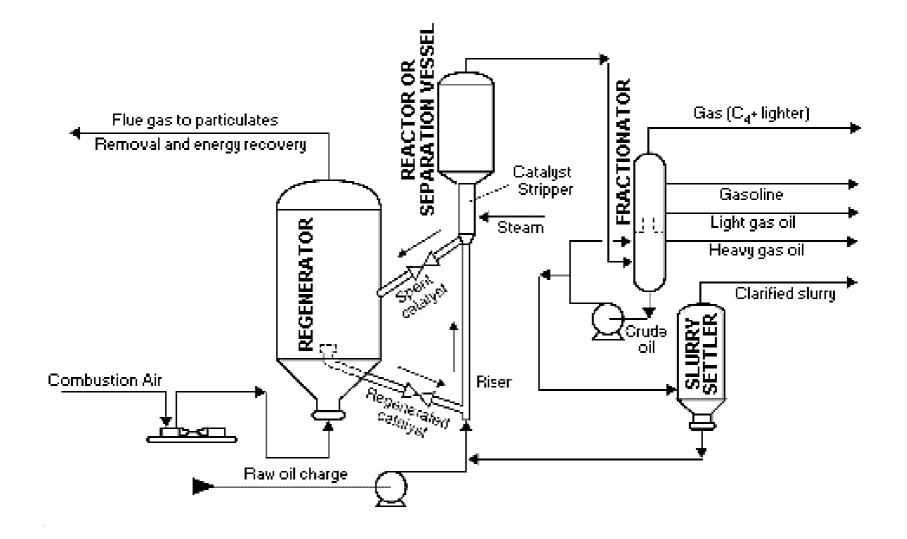
In the original coordinates

Since $C\varphi_u(x) = Cx$, equations are those of a modified extended Kalman filter

$$\begin{cases} \frac{d\hat{x}}{dt} = f(\hat{x}, u) + pC^{T}R^{-1}(y - C\hat{x}) \\ \frac{dp}{dt} = f^{*}(\hat{x}, u)p + pf^{*}(\hat{x}, u)^{T} + q_{\theta}(\hat{x}) \\ -ph^{*}(\hat{x}, u)^{T}R^{-1}h^{*}(\hat{x}, u)p \\ +D_{\psi_{u}}^{-1}(\hat{x})D_{\psi_{u}}^{2} \cdot \left(ph^{*}(\hat{x}, u)^{T}R^{-1}(h(\hat{x}, u) - y)\right)p \\ +pD_{\psi_{u}}^{2} \cdot \left(ph^{*}(\hat{x}, u)^{T}R^{-1}(h(\hat{x}, u) - y)\right)D_{\psi_{u}}^{-1}(\hat{x})^{T} \end{cases}$$
where $q_{\theta}(\hat{x}) = D_{\varphi_{u}}(\hat{x})^{-1}Q_{\theta}\left(D_{\varphi_{u}}(\hat{x})^{-1}\right)^{T}$

The two last lines (transposed) correspond to the change of coordinate.

Application: Fluid Catalytic Cracker (FCC)



Reactor model

$$S_{c}H_{ra}\dot{T}_{ra} = S_{c}R_{c} (T_{rg} - T_{ra}) + S_{tf}R_{tf} (T_{tf} - T_{ra}) -\Delta H_{fv}R_{tf} - \Delta H_{cr}R_{tf}C_{tf}$$

$$C_{tf} = \frac{1}{1 + \frac{R_{tf}}{R_{cr}}} \qquad R_{cr} = K_{cr}P_{ra}H_{ra}$$

$$C_{cat}^{2} = \frac{100P_{ra}H_{ra}}{R_{c}C_{rc}^{0.06}}k_{cc}\exp\left(-\frac{A_{cc}}{RT_{ra}}\right) \qquad K_{cr} = \frac{k_{cr}}{C_{cat}C_{rc}^{0.15}}\exp\left(-\frac{A_{cr}}{RT_{ra}}\right)$$

$$H_{ra}\dot{C}_{sc} = R_{c} (C_{rc} - C_{sc}) + R_{cf}$$

$$R_{cf} = R_{cc} + R_{ad} \qquad R_{ad} = F_{cf}R_{tf} \qquad R_{cc} = K_{cc}P_{ra}H_{ra}$$

$$K_{cc} = \frac{k_{cc}}{C_{cat}C_{rc}^{0.06}}\exp\left(-\frac{A_{cc}}{RT_{ra}}\right)$$

Regenerator model

$$S_c H_{rg} \dot{T}_{rg} = S_c R_c (T_{ra} - T_{rg}) + S_a R_{ai} (T_{ai} - T_{rg}) + \Delta H_{rg} R_{cb}$$

$$R_{cb} = \frac{R_{ai}}{242} \left(21 - O_{fg} \right) \qquad O_{fg} = 21 \exp\left(\frac{-\frac{P_{rg}H_{rg}}{R_{ai}}}{\frac{1}{K_{or}C_{rc}}}\right)$$

 $K_{or} =$ unknown function of T_{rg} .

 $K_{od} = 6.34 \ 10^{-9} R_{ai}^2$

$$H_{rg}\dot{C}_{rc} = R_c \left(C_{sc} - C_{rc} \right) - R_{cb}$$

New form of the system

$$\varphi(x; u) = \varphi\left(T_{rg}, T_{ra}, C_{rc}, C_{sc}, F_{cf}; R_{ai}\right)$$
$$= \left(T_{rg}, T_{ra}, C_{tf}\left(C_{rc}, T_{ra}\right), \frac{C_{sc}}{C_{rc}}, \frac{F_{cf}}{C_{rc}}\right) = \xi$$

$$\begin{cases} \dot{x}_{1} = \dot{T}_{rg} = \psi(x,\varphi(x_{1}),u) \\ \dot{x}_{2} = \dot{T}_{ra} = a_{3}(t)x_{3} + f_{2}(x_{1},x_{2}) \\ \dot{x}_{3} \simeq \dot{C}_{rc} = a_{4}(t)x_{4} \\ + f_{3}(x_{1},x_{2},x_{3},\psi(x,\varphi(x_{1}),u),u,\dot{u}) \\ \dot{x}_{4} \simeq \dot{C}_{sc} = a_{5}(t)x_{5} + f_{4}(x_{1},x_{2},x_{3},x_{4}) \\ \dot{x}_{5} \simeq \dot{F}_{cf} = F(x) \end{cases}$$

Here, $\psi = R_{cb}$, $\varphi = K_{or}$ and $\pi(x) = T_{rg} = x_1$. $u = (R_{ai}, P_{ra})$

Tuning

We use a second order system to estimate K_{or} i.e. $\frac{d^3 K_{or}}{dt^3} = 0$

We use three parallel extended Kalman filters such that

- $\theta_0 = 3$ (starting value for each observers)
- $\theta_{HG} = 2$ (minimal value of θ ensuring high-gain)
- Time between two consecutive initializations:
 2 hours

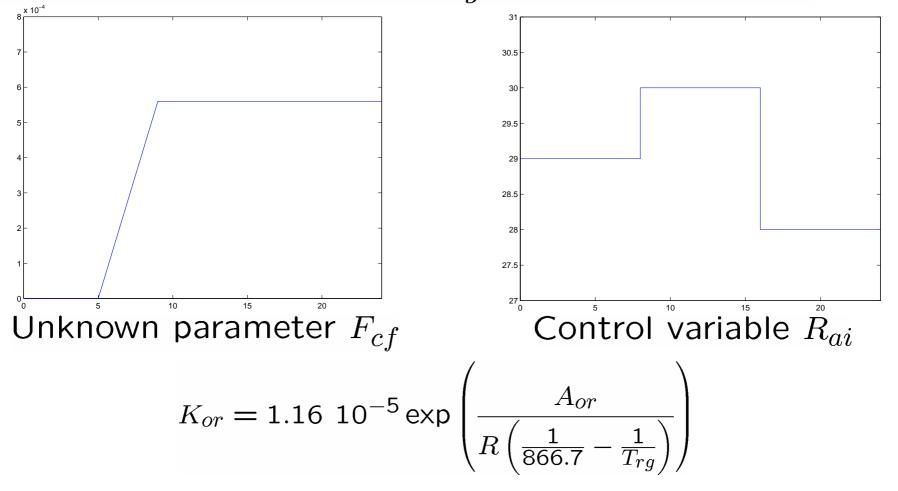
EKF with two outputs

At last,

$$\begin{aligned} \xi &= \left(T_{rg}, R_{cb}, \dot{K}_{or}, \ddot{K}_{or}, T_{ra}, C_{tf}, \frac{C_{sc}}{C_{rc}}, \frac{F_{cf}}{C_{rc}} \right) \\ \text{and} \\ \Delta^{-1} &= \text{diag} \left(1, \theta, \theta^2, \theta^3, 1, \theta, \theta^2, \theta^3 \right) \\ \text{with } Q_{\theta} &= \theta^2 \Delta^{-1} Q \Delta^{-1} \\ \text{and } R_{\theta} &= \left(C \Delta^{-1} C' \right) R \left(C \Delta^{-1} C' \right) \end{aligned}$$

Simulations

Colored noise (Ornstein–Uhlenbeck process) on both measured variables T_{rg} and T_{ra} .



Constants of the model

Reactor operating conditions

 $H_{ra} = 1.85 \ 10^{-4}, \ P_{ra} = 211.7,$ Feed properties

 $R_{tf} = 41, T_{tf} = 492.8, S_{tf} = 3140,$ Cat.recirculation

 $R_c = 290, S_c = 1047,$

Heat constants

$$\Delta H_{cr} = 4.65 \ 10^5, \ \Delta H_{fv} = 1.7410^5$$

 $\Delta H_{rg} = 3.02 \ 10^7, \ R = 8.314$
 $k_{cr} = 8.31 \ 10^{-2}, \ A_{cr} = 6.28 \ 10^4,$
 $k_{cc} = 2.66 \ 10^{-4}, \ A_{cc} = 4.18 \ 10^4$

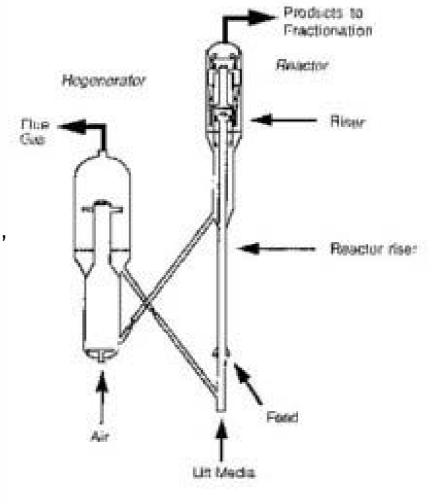
Regenerator operating conditions

$$H_{rg} = 1.53 \ 10^5, \ P_{rg} = 254.4,$$

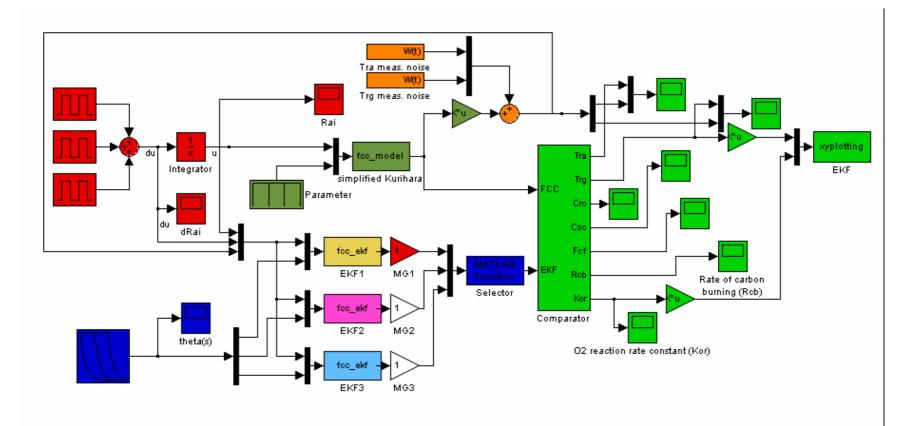
Air properties

$$R_{ai} = 26, T_{ai} = 394, S_{ai} = 1130$$

 $A_{or} = 1.47 \ 10^5$



Simulation using Matlab/Simulink



to be continued...