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Abstract

In this paper we present a new method for three dimensional reconstruction
from incomplete data-set on a cryogenic hydrogen-isotopes layer.

On the shadowgraphic image, we observe bright rings, that are intersec-
tions between caustics and the CCD sensor. Caustics contain informations
on the inner cryogenic-layer surface but also on its tangent plane. From
the bright ring deformation, we can reconstruct the 3D perturbation along a
curve on the considered surface.

Combining interferometric measurements with the shadowgraphic data,
an algorithm for the 3D estimation of the inner-surface perturbation is de-
signed. The final reconstruction is based upon a combination of spherical
harmonics.



Keywords : cryogenic microshells, shadowgraphy, caustics, data recon-
ciliation, 3D reconstruction.

1 INTRODUCTION

The Laser-Mégajoule project (LMJ) is the french project on inertial confine-
ment fusion [1]. The thermonuclear fusion or ignition shall be obtained by the
implosion of solid deuterium-tritium (DT) fuel layer inside a plastic spherical
shell. This cryogenic target is a 100 µm thick layer of solid deuterium-tritium
at 18.2K uniformly distributed around the inner surface of a 175 µm thick
spherical polymer shell with diameter 2430 µm. This one is located at the
center of a cylindrical hollow cavity.

The ice layer is approximately conformed by natural self heating due to
the radioactive decay to tritium, called β-layering. The DT sublimates from
the thicker parts of the layer and recrystallizes and deposits on the thinner
parts of the layer. More details about the β-layering process can found in [2]
and [3]. The final conformation of the DT-layer will be optimized by precise
control of the thermal environment of the shell.

In order to achieve ignition by inertial confinement fusion, the physicist’s
requirements, that are due to theoretical modeling, for DT-layer thickness
and ”roughness”1 are extremely stringent (on shadowgraphic images, the
”roughness” must be less than 1 µm [4] and the accuracy on the thickness
less than 1 µm). If the DT layer is perturbed by any thermal effect, or if the
roughness is too important, some hydrodynamics instabilities could happen
during the implosion. This target will be positioned to be shot by the laser
only when the specification of the roughness and the homogeneity of the
layer will be obtained. For these reason, the DT-ice quality has to be known
precisely.

The DT-layer can be observed only through a pair of laser entry holes in
the lateral faces of the cylindrical cavity. This is the major constraint that
restricts the possibility to get informations on the thickness of the solid DT
layer.

Therefore backlit optical shadowgraphy is relevant to measure the DT
inner surface along an equator d located in a plane perpendicular to the
optical axis.

Other measurements are obtained by interferometry [5] (optical coherent
tomography) and provide direct measures of the thickness of the DT-layer in

1The ”roughness” along an equator is, following the CEA, the square root of the energy
of harmonics of order ≥ 2.



two small regions along the optical axis (called the poles here in).
However, up to now in practice, we have only the shadowgraphic measure-

ments. Here in, the interferometric measurements come from simulations.

Figure 1: Different methods to obtain information on the cryogenic layer

The content of the paper is as follows:

• First of all, the principle of the backlit optical shadowgraphy will be
recalled in the case of our system. We will notice the appearance of
a series of bright rings (caustics) corresponding to several types of
optical paths. In the paper, we will focus on the main bright ring only.
We will show how to establish the equation of this ring in the ideal case
of a perfectly spherical and centered DT-layer.

• The ideal bright ring is subject to certain perturbations that we assume
to be small. The detection of the perturbed bright ring and its analysis
will be detailed.



Figure 2: Shadowgraphic picture of a cryogenic layer in an experimental
cryostat

• There is a link between these perturbations and the perturbations of
the inner surface of the DT-layer. The main fact is that, as caustics,
the rings give informations not only on the shape of the inner surface,
but also on its tangent plane. Linearized formulas of this link will
be stated.

• At the end, we will conciliate two types of informations: 1) the infor-
mations along the equator, of the perturbations of the DT-layer and
the perturbation of its tangent plane, and 2) the direct interferomet-
ric measurements at the pole. We will therefore obtain, by certain
interpolation–approximation procedure, a final expansion of the inner
surface of the DT-layer in terms of spherical harmonics.

2 SHADOWGRAPHY AND IDEAL CAUS-



TIC

The backlit optical shadowgraphy is a technique which consists of putting
the studied object between a light source and a camera. The collimated
light comes from a source and goes across the cavity before the camera. The
pictures that are obtained show the shadow of the lighted object, as we can
see on the Figure 2. Due to permeability to light, with different refraction
indices, of both the spherical shell and the DT-layer, a single light ray from
the source gives rise to several optical paths, of different energy. Then the
final light rays intersect the sensor of the camera (which is located after some
optical device) and we get the images.

The studied object is a hydrocarbon polymer microshell (with refractive
index of 1.54) that contains a solid layer of Deuterium-Tritium (with refrac-
tive index of 1.16). The distance between the center of the microshell and the
lens of the camera is twice the focal of the lens, denoted by f (f = 197.5mm).
The device has an axial symmetry (an optical axis). The camera can be con-
sidered as the couple of a lens and a plane-optical-sensor (perpendicular to
the optical axis) with 1964*2048 pixels. The size of the pixels is 6 ∗ 6 µm.
The numerical aperture of the lens is 0.084 and the magnitude we get is
−3. To observe the shadowgraphic pictures, the light source is a lamp with
green-filtered monochromatic spectrum that has no effect on the temperature
distribution of the target.

Figure 3 shows the optical paths that will be considered in the shadowg-
raphy system: light rays go from the left to the right. The rays on the right
of Figure 3, after crossing the optical system (a lens) determine a caustic
(their envelope). The intersection of this caustic with the sensor plane is the
bright ring on Figure 2.

As explained before, we exploit only the main ring, i.e. the one with
maximum energy. The corresponding ideal caustic is a perfect circle due to
the cylindrical symmetry of the system around the optical axis.

Let us now give the form of the parametric equation of the ideal caus-
tic. Due to the cylindrical symmetry, calculations can be done in any plane
containing the optical axis (all optical paths stay in such planes).

Let the sensor plane be located at a distance equal to 4f + u from the
centre of the microshell.

Let ρ −→ R∗
u (ρ) be the map which to a ray from the left (at distance ρ of

the optical axis) associates the distance to the optical axis of the intersection
of the corresponding ray on the right (after the lens) with the plane of the
sensor.



Figure 3: The optical pathes of interest

This map has the following form:

R∗
u (ρ) = h1 (ρ) + uh2 (ρ) ,

were h1(ρ) and h2(ρ) are smooth functions with respect to the variable ρ,
depending on the optical system only. They are calculated as a composition
of several maps corresponding to the different refraction and reflection steps
of the path under consideration, and are given by:

h1 (ρ) =
ρ

cos 2Ψ
(1)

h2 (ρ) =
1

f
h1 (ρ) + tan 2Ψ (2)

with,

Ψ = arcsin
ρ

rext

− arcsin
nextρ

nµbrext

+ arcsin
nextρ

nµbrint

(3)

− arcsin
nextρ

nDT rint

+ arcsin
nextρ

nDT rDT

where next, nµb and nDT are respectively optical indices of exterior environ-
ment, microshell and DT; rext and rint are external and internal radius of the
microshell, and rDT is the radius of the DT-layer.

Then, the intersection of the caustic in the u-plane has equation:

∂R∗
u

∂ρ
= 0. (4)



In fact, this equation comes from the Jacobian of the ray-tracing map, which
is a map from R3 to R3. It reduces to this simple equation due to symmetry
and to the parametrization (See [6]).

For our fixed ideal u (equals to zero in practice), we get the solution ρ∗

of equation 4, determining the ray on the left, such that the corresponding
ray on the right intersects the u-plane exactly on the (ideal) caustic.

Then, the radius of the (ideal) bright ring in the u-plane is (u = 0)

Rc = h1 (ρ∗)

Since we consider a single type of optical path, the energy of each ray is
the same. Hence we can compute, (by numerical simulation), an irradiance
map, giving the ideal lighting of the plane-optical-sensor. Along a radial ray
in the sensor plane, we get an intensity profile. The following fact holds:

Fact F: The position of the intersection of the caustic with the sensor
plane corresponds to a jump of intensity. Since we are in the case of the
simplest stable caustic, this fact will still be true in the perturbed case and
exploited for practical detection of the caustic.

3 BRIGHT RING ANALYSIS

We have to perform some image analysis: from the picture in the sensor-
plane, we have to reconstruct the main caustic. The purpose of this recon-
struction is twofold.

• First, with the results of the next paragraph, using the caustic, we will
reconstruct precise information about the inner surface of the DT-layer
and its tangent plane on a circle close to the equator plane.

• Second, the physicists define the 2D–roughness (in the equatorial plane
perpendicular to the optical axis) as follows. Let r (θ) be the polar
equation of the intersection of the inner surface of the DT-layer with
the equator plane.

The 2D–roughness is defined as the fraction of the power spectral
density of the Fourier decomposition of r (θ) corresponding to high
harmonics.

Intuitively, as a first approximation, this r (θ) is proportional to the
polar equation of the main caustic. Therefore, having reconstructed



the main caustic, we can perform standard Fourier analysis to compute
some approximation of the 2D–roughness.

Due to the Fact F above, standard zero-crossing technique can be used
to detect precisely the caustic (at the end, with these standard techniques,
we will reach the accuracy of 0.1 pixel approximately). We used the very
classical method of [9], because of its invariance with respect to 2D–rotations-
translations, which is very important in our case, due to the global character
of the problem.

Starting from the outer board of the microshell, we encounter a certain
number of zeros of the laplacian: the first one corresponds to the shell, the
second one to the outer smooth board of the concentration of rays close to
the caustic, the third one corresponds to the vertical jump of the caustic, the
other zeros correspond to other caustics from different optical paths. Hence
we have to detect the third zero crossing.

This one is determined by taking a pixel with positive value and another
with negative value around the zero on the profile. Thereby the zero is
defined as the weighted barycentre of these two pixels. Using an algorithm
following the zeros in the neighborhood of a starting point, the caustic-shape
is extracted.

This set of points is unfolded in polar coordinates. Thereafter the points
are approximated–interpolated with C2–splines on the circle using the least
square method (it happens that there are large holes on the bright ring,
presumably due to non–C1 perturbations of the surface).

The resulting approximation will be used in the next sections for the
global reconstruction of the inner shape of the DT-layer. Moreover, Fourier
analysis of this approximation provides the 2D–roughness.

This analysis method has been compared to another one, developed at
University of Rochester (see [12]). The results are very similar.

Figure 4 shows a picture from the sensor plane, with a very visible main
bright ring.

Figure 5 shows a radial profile corresponding to the red line on the figure
4.

Figure 6 shows the superposition of the reconstructed caustic (its inter-
section with the sensor plane) and the image.

4 SHADOWGRAPHIC ANALYSIS



Figure 4: A visible first bright ring

In this section, which contains our most important theoretical results, we
give only the main ideas of computations and proofs. Detailed proofs
and further explanations are given in the Ph.D. thesis [6].

The solid DT layer will always get perturbations on the inner surface, thus
the main bright ring will be disturbed. Disturbances on the inner surface
can be modelled by a perturbation ε1 on the radius of the inner sphere, a
perturbation ε2 on the normal vector in the plane (P ) determined by the
point and the optical axis, and another ε3 in the perpendicular plane to the
previous. In fact, ε2 is the component (in a natural moving orthonormal
frame) of the perturbation, in the direction which is parallel to the tangent
of our surface in the direction determined by (P ). At first order, it is the
same as a (natural) angle between the ideal normal and its perturbation.
These perturbations are assumed to be smooth and small in the C1 sense.

In the following, the notation Oi refers to expressions of order i in ε1 ,ε2 ,ε3

and their first derivatives.

Remark 1 Note that these three perturbations are not independent. This
fact has no consequence in the theoretical results in this section. But, it
will be implicitly taken into account when we will merge the whole data by a



Figure 5: A radial profile

least square method. Since the εi’s are not independent, these C1 assumptions
correspond to the assumption of a small C2 perturbation of the inner
surface of the DT-layer. Hence, ε1 has in fact to be assumed C2 small
for ε2, ε3 be C1 small.

Let ρ ∈ R and θ ∈ [0, 2π[ be the polar coordinates of the starting colli-
mated light ray in a plane perpendicular to the optical axis.

Let R ∈ R and α ∈ [0, 2π[ be the polar coordinates of the light ray
crossing the optical sensor (in its own plane).

Let R∗ (ρ) denote the distance to the origin of the intersection point
of a ray (starting with coordinate ρ) with the sensor-plane, in the ideal
unperturbed situation.

The following theorem is a consequence of both the axial symmetry of
the ideal situation and the required smoothness of the perturbation. The
proof is just writing explicitly the expansion of the successive refractions and
reflections. It is a straightforward but tedious computation. It has been
checked by using Mathematica.



Figure 6: Superposition of the detected caustic.

Theorem 2

R(ρ, θ) = R∗(ρ) + a1(ρ)ε1(ρ, θ) + a2(ρ)ε2(ρ, θ) + O2, (5)

α(ρ, θ) = θ + a3(ρ)ε3(ρ, θ) + O2, (6)

for certain smooth real functions a1,a2,a3.

Note that the functions a1, a2, a3 depend only on the properties of the
optical system.

For the same reasons (symmetry of the ideal situation, and smoothness
of the perturbations), the following theorem is easily proved:

Theorem 3 The equation of the caustic is

∂R

∂ρ
= 0.

A standard fixed point argument shows that we can solve equation (6) in
order to get:

θ(ρ, α) = α− a3(ρ)ε3(ρ, α) + O2. (7)

Then replacing (7) in (5) gives:



Theorem 4 The equation of R in the coordinates (ρ, α) is:

R(ρ, α) = R∗(ρ) + a1(ρ)ε1(ρ, α) + a2(ρ)ε2(ρ, α) + O2, (8)

and the equation of the caustic is still given by
∂R

∂ρ
= 0 in these coordinates.

Remark 5 Let us point out that:
1) computations to obtain the three previous theorems are not obvious,
2) for the proofs of theorem 4, the fact that we are on a point of a

caustic is crucial.
3) the perturbation ε3 has no effect at order 1 on the radius of the caustic.

Now, using the expansion (8) of Theorem 4, we will compute the first
order expansion of the caustic of the perturbed system. Let ρ∗ denote the
radial coordinate of the starting rays of the unperturbed system, intersecting
the sensor plane on the ideal caustic. Let ϕ∗ denote the corresponding angle
between the ideal ray [from the center of the microshell to the DT-layer] and
the optical axis.

Theorem 6 The equation at order 1 of the perturbed caustic, in the coordi-
nates (ρ, α) is given by:

Rc(α) = R∗(ρ∗) + a1(ρ
∗)ε1(ρ

∗, α) + a2(ρ
∗)ε2(ρ

∗, α) + O2. (9)

Proof. The proof again uses deeply the fact that we deal with a caustic.
Let us use Theorem 4. If Rc(α) denotes the radius in the sensor plane of the
point of the caustic, of angle α, we get, if ρ∗ + δρ is the radial value of ρ for
the point of the inner DT-layer corresponding to the perturbed caustic:

0 =
∂R∗

∂ρ
(ρ∗ + δρ) +

∂a1

∂ρ
(ρ∗ + δρ)ε1(ρ

∗ + δρ, α) + a1(ρ
∗ + δρ)

∂ε1

∂ρ
(ρ∗ + δρ, α)

+
∂a2

∂ρ
(ρ∗ + δρ)ε2(ρ

∗ + δρ, α) + a2(ρ
∗ + δρ)

∂ε2

∂ρ
(ρ∗ + δρ, α) + O2.

Expanding, and using the fact that ε1 is C2 small and ε2 is C1 small, we
obtain:

0 =
∂R∗

∂ρ
(ρ∗) + δρ

∂2R∗

∂ρ2
(ρ∗) +

∂a1

∂ρ
(ρ∗)ε1(ρ

∗, α) + a1(ρ
∗)

∂ε1

∂ρ
(ρ∗, α)

+
∂a2

∂ρ
(ρ∗)ε2(ρ

∗, α) + a2(ρ
∗)

∂ε2

∂ρ
(ρ∗, α) + δρO1 + O2.



Now, by definition of R∗ and ρ∗, and by the fact that the ideal caustic is
also characterized by ∂R∗

∂ρ
= 0, we have in fact ∂R∗

∂ρ
(ρ∗) = 0. Also, straight-

forward direct computations in the ideal situation show that ∂2R∗
∂ρ2 (ρ∗) is a

nonzero constant. From this, we get (using the implicit function theorem)
that δρ = O1. Replacing this relation in (8) gives:

Rc(α) = R∗(ρ∗+O1)+a1(ρ
∗+O1)ε1(ρ

∗+O1, α)+a2(ρ
∗+O1)ε2(ρ

∗+O1, α)+O2,

which, at first order gives, using again that ε1, ε2 are C1 small:

Rc(α) = R∗(ρ∗) +
∂R∗

∂ρ
(ρ∗)O1 + a1(ρ

∗)ε1(ρ
∗, α) + a2(ρ

∗)ε2(ρ
∗, α) + O2.

Since, because of the characterization of the ideal caustic, ∂R∗
∂ρ

(ρ∗) = 0,
we get the result of the theorem.

This (affine at order 1) relation (9), using practical measurements of Rc(α)
from Section 3 (in which the angle coordinate is α -the angle of a point of
the caustic in the sensor plane- this is very important), will allow us to
recover, by a method explained in the next section, the whole information
about the disturbances ε1(ρ

∗, α) and ε2(ρ
∗, α) of the ideal spherical surface.

It is also not so hard to prove that (since ε1 is assumed C2 small):

ε3(ρ
∗, θ) =

1

R cos2(ϕ∗)
∂ε1(ϕ

∗, θ)
∂θ

+ O2. (10)

Remark 7 (Important) Due to the relations (7, 10), if we know ε1(ρ
∗, α),

it is possible to reconstruct θ(ρ∗, α) at order 1 in terms of α (which is the
angle observed in practice). In fact, it seems that this order 1 correction of
the relation at order zero:

θ(ρ∗, α) = α + O1, (11)

is of no significant importance on the final results. Therefore, in the next
section, for the purpose of practical reconstruction of the inner surface of the
DT-layer, we will use only relation (11) in place of (10).

5 DT LAYER ESTIMATION

Let us consider the previous angle θ and complete it with the other angle ϕ,
in order to form Euler-like coordinates around the center of the microshell.
Then, the inner surface of the DT-layer is modelled as a perturbation ε(θ, ϕ)



of the ideal spherical inner surface of the DT-layer. As we said above, this
perturbation is assumed to be C2-small. It will be modelled a-priori as a
finite sum of spherical harmonics

ε (θ, ϕ) =
∑i=k

i=1
λi.ei (θ, ϕ) . (12)

where λi are constants and represent the magnitudes of each spherical har-
monics ei (θ, ϕ).

This is standard: disturbances of spheres are generally modelled by spher-
ical harmonics [7], [8]. What is not standard here is our choice of the
relevant spherical harmonics ei (θ, ϕ). Here, we introduce some a-priori
information. Practically, we consider only spherical harmonics that can oc-
cur in the physical configuration. Main perturbations have mainly three
origins: 1) the gravity (the optical axis is in practise vertical), 2) the thermal
disturbances coming from the two windows of the cylindrical cavity, that are
situated above and below the device, and 3) position errors of the centre of
the microshell w.r.t. the centre of the cylindrical cavity. Therefore, we will
only keep spherical harmonics that give rise to these perturbations.

Remark 8 (Important) Note that this C2-small disturbance ε (θ, ϕ) com-
pletely determines our perturbations ε1, ε2, ε3 above.

At this point, our procedure for reconstructing the inner surface of the
DT-layer R + ε (θ, ϕ) is performed in two different steps:

• First, we will reconstruct ε1(ρ
∗, θ), ε2(ρ

∗, θ), (and eventually ε3(ρ
∗, θ),

but, as we said above, this looks unnecessary, the approximation θ = α
from relations (10, 11) being sufficient in practice).

Equivalently, we reconstruct ε1(ρ
∗, α), ε2(ρ

∗, α), ε3(ρ
∗, α), that

is we reconstruct 1) the intersection of the perturbed inner
surface of the DT-layer with the plane corresponding to ρ∗,
perpendicular to the optical axis, 2) the tangent planes to the
inner surface along this curve. This is 3D information (our
main contribution).

• Second, we will reconcile this information with the information ob-
tained at the poles, by direct interferometry measurements.

Both steps are achieved by standard least square procedures.
- In the first step, the a-priori expansion (12) is used in restriction to (the

plane) {ϕ = ϕ∗} : ε (θ, ϕ∗) =
∑i=k

i=1
λi.ei (θ, ϕ

∗) . As we said, we confuse this



relation with the relation ε (α, ϕ∗) =
∑i=k

i=1
λi.ei (α, ϕ∗) . Then, the practical

measurements are the values Rc(α), that are considered equal to Rc(θ), and
the main equation:

Rc(α) ≈ R∗(ρ∗) + a1(ρ
∗)ε1(ρ

∗, α) + a2(ρ
∗)ε2(ρ

∗, α),

from Theorem 6 gives rise to a set of linear equations, with unknown’s the
λi’s, i = 1, ..., k.

The number of equations is the number of values of α taken into account.
The corresponding values Rc(α) come from the method , described in section
3, to compute the inner part of the bright ring, corresponding to the caustic.

This overdimensioned system of linear equations is solved in the least-
squares sense, and provides the curve [on the inner DT-layer, associated
with the rays that intersect the caustic in the sensor plane] and the tangent
plane to the inner surface along this curve.

-After that, we use this first information together with the direct measure-
ments at the poles, and we reconcile both sets of data via a second standard
least-squares step.

To finish, we show now some results of the full 3D Reconstruction of the
inner surface of the DT-layer. Up to now, contrarily to the results of Section
3 for the detection of the caustic, these are only simulation results, since we
don’t have yet the interferometric measurements at the poles.

The figure 7 shows a reconstructed inner surface of the DT-layer. For the
same reconstruction, figure 8 shows the real surface compared to the recon-
structed surface, along a horizontal and a vertical cut. These deformations
are not realistic but have been highlighted on the figures.

6 CONCLUSION

To study the solid DT layer in a hollow cavity along some axial symmetry,
backlit optical shadowgraphy seems to be a relevant measurement method.
The shadowgraphic images show bright rings that are due to caustics. The
detection of the main bright ring provides some 3D information (tangent
planes along a certain closed curve close to the equator perpendicular to the
optical axis).



Figure 7: A reconstructed deformation

Because of our main theorem 6, the calculations remain rather reason-
able: calculations may be performed assuming that the optical path entirely
remains in a plane through the optical axis. These calculations link the dis-
tortion of the bright ring to the perturbation of the inner DT layer surface.

From this relation and the detection of the bright ring, the 3D perturba-
tion is partially estimated. Other optical measurements (interferometry) pro-
vide direct informations along the poles. A standard method (least-squares
on a representation by spherical harmonics), has been developed in order to
merge these direct informations with those from the shadowgraphy analysis.

It would be interesting, (and this is certainly possible, since some of them
have non negligible energy) to use also the caustics corresponding to
other optical paths. The main difficulty is that these paths (contrarily to
the one we analyzed) correspond to more than a single reflection on the inner
DT surface, and therefore will provide mixed information between tangent
planes at certain points.

We gratefully acknowledge Pr. V. Zakalyukin, from the Lomonosov Moscow
State University, for his intuition of Theorem 6, which is really crucial, since
it makes the computations possible in practice.



Figure 8: Comparison between cuts of original and reconstructed surfaces.
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