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Abstract. Let (W,d) be a metric space and S = {s1 . . . sk} an ordered
list of subsets of W . The distance between p ∈ W and si ∈ S is d(p, si) =
min{ d(p, q) : q ∈ si }. S is a resolving set forW if d(x, si) = d(y, si) for all
si implies x = y. A metric basis is a resolving set of minimal cardinality,
named the metric dimension of (W,d). The metric dimension has been
extensively studied in the literature when W is a graph and S is a subset
of points (classical case) or when S is a partition of W ; the latter is
known as the partition dimension problem. We have recently studied
the case where W is the discrete space Z

n for a subset of points; in this
paper, we tackle the partition dimension problem for classical Minkowski
distances as well as polyhedral gauges and chamfer norms in Z

n.

Keywords: dimension partition, metric dimension, distance geometry,
discrete distance, norm.

1 Introduction

The partition dimension of a set is a combinatorial problem which generalizes
the metric dimension of a set. These notions are classically studied in graph
theory, and more generally in the field of distance geometry. Distance geometry
is the characterization and study of sets of points based on the distance values
between member pairs. Most of the notions of this field can be studied in the
discrete space Z

n, which adds digital and/or Euclidean geometry properties, as
well as properties depending on the chosen distance. In this paper, we propose
to tackle the partition dimension problem in Z

n for some classical norms.
Let W be a (finite or infinite) set endowed with a metric d. We first consider

the metric dimension and recall some results. Let S = (v1, v2, . . . , vk) an ordered
subset of points in W . The representation of p ∈ W with respect to S is the
k-tuple r(p|S) = {d(p, v1), d(p, v2), . . . , d(p, vk)}, also called the coordinates of
p. The set S is a resolving set for W if every two elements of W have distinct
representation. A resolving set having minimal cardinality is called a metric basis
for W ; its cardinality is the metric dimension dim(W ) of W .

Harary and Melter gave in [7] the intrinsic metric dimension of any path,
complete graph, cycle, wheel and complete bipartite graph. They also proposed
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an algorithm for finding a metric basis of a tree T , which gives an explicit formula
for the dimension of T . Khuller et al. showed in [10] that all graphs having
dimension 1 are paths and that there are non-planar graphs having dimension 2.
The intrinsic metric dimension of trees can be efficiently solved in linear time, but
finding the metric dimension of an arbitrary graph is NP-hard. The dimension of
an arbitrary graph with n nodes can be approximated within a factor O(logn)
in polynomial time. Collections of bounds or exact values of metric dimensions
are presented in [4][9]. For other results on graphs, see [1][2].

A number of results in digital geometry have also been established. Melter
and Tomescu showed in [11] that whenW is the digital plane, the metric bases are
sets of three non-collinear points for the Euclidean distance d2, whereas there are
no finite metric bases for the city block distance d1 and the chessboard distance
d∞. The d1 metric dimension of a n-dimensional axes-parallel rectangle is n [10],
and the d∞ metric dimension of a square is 3. If non axes-parallel rectangles are
considered, there exists for both distances a rectangle in the digital plane such
that its dimension is n, for any given n > 3. In [12], we have shown that the metric
dimension in R

n is infinite for any polyhedral (or partially polyhedral) central
symmetric gauge; the metric dimension in Z

n is also infinite for any chamfer
norms. However, the metric dimension is finite in axes-parallel rectangles for
both kind of spaces and distances.

The notion of partition dimension has been proposed in [5][6]. We recall the
definition in a more general manner: let S = {s1 . . . sk} be an ordered list of sub-
sets of W . The distance between p ∈W and si ∈ S is d(p, si) = min{ d(p, q) : q ∈
si }. The representation of p with respect to S is r(p|S) = {d(p, s1), . . . , d(p, sk)}.
As previously, S is a resolving set for W if every two elements of W have distinct
representation.

When S is a set of points, we turn back again to the metric dimension
problem. If S is a partition of W , we obtain new objects: a partition (metric)
base is a resolving set of minimal cardinality, called the partition dimension
pd(W ). For any nontrivial connected graph G we have pd(G) 6 dim(G) + 1
[5]. It should be noted that the partition dimension may be much smaller than
the metric dimension [13]. In particular, the partition dimension of the digital
plane with respect to d1 and d∞ is 3 and 4, respectively. For other relationships
between metric and partition dimension and graph diameter, as well as results
on coloring and chromatic number, see [3].

The paper is organized as follows. In section 2, we define partition classes
and study the combinatorics of the partition dimension problem. Then, in section
3, we present algorithms allowing to decide if a partition is resolving, and we
evaluate their complexities. Next in section 4, we present specific properties
of partition dimensions for gauges in Euclidean and digital spaces. We finally
conclude in section 5.
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2 Preliminaries

In this part, we reformulate the problem of partition dimension to understand
the relationship between the latter and the metric basis problem. Moreover, we
express their differences in combinatorics.

We first introduce a simple example, in which W is the set of elements
(e1, e2, e3, e4, e5). Each partition can be expressed in several manners. For in-
stance, the partition {{e2}, {e3, e1, e5}, {e4}}, is equivalent to the partition
{{e1, e3, e5}, {e2}, {e4}}. To avoid ambiguity, we write each of them using the
canonical notation defined as follows: in each part, the elements are sorted by
their index; the parts are sorted by decreasing cardinal; parts having same car-
dinal are sorted in lexicographic order.

2.1 Partition class

Given a partition we define its partition class as the vector of cardinalities of
its parts. In our example, the partition {{e1, e3, e5}, {e2}, {e4}} belongs to the
class [3, 1, 1].
The set of partition classes corresponds to the integer partition. The num-
ber of partitions of an integer n is given by the function p(n) [8]. The
function p(n) grows extremely fast: as the first values for n = 1 . . . 9 are
1, 2, 3, 5, 7, 11, 15, 22, 30, we have p(100) = 190 569 292.

Given a metric basis M = {m1, . . . ,mn}, we can obtain a partition basis
P =

{

W \M, {m1}, . . . , {mn}
}

written in canonical form. The partition classes
for metric basis problem are those which have at most one class with more
than one element (i.e. [x, 1, . . . , 1], x > 1). It only exists one class of partition
representing a metric basis for each dimension of partition. This means that for
a set of 100 points, there are only 100 classes of metric basis among the 190
millions available classes.

Definition 1. The distance between two classes of partition is the sum of the
difference between the coordinates of their vectors:

d(C1, C2) =
∑

i

∣

∣

∣
C1[i]− C2[i]

∣

∣

∣
.

If both vectors do not have the same number of part, the smallest one is
completed by parts of size zero. The coordinate vectors are completed by zeros
if needed. The distance between classes of partitions is a ℓ1 distance between
vector coordinates. We remark that two partition classes with a distance of 1 do
not exist for a given number of points. Indeed, the only way to have a distance
of 1 between two classes is to have only one part where the number of points is
different, so the total number of points is not the same.
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Two classes are called adjacent if their distance is 2, which means that there
are only two parts whose cardinals differ, one gaining a point and one missing a
point.

We define a distance between two partitions as follows:

Definition 2. The distance between two partitions is given by the Hamming
distance of their coordinate vectors.

Once again, if partitions do not have the same size, the smallest one is padded
by empty parts (Hamming distance is defined for two vectors of the same size).
Two partitions will be named adjacent if one of the properties is fulfilled:
i) their partition distance is 1;
ii) the partition class distance is 0 and the partition distance is 2.

2.2 Counting

The number of partitions of n labeled objects into k non-empty unlabeled subsets
is given by the Stirling number of the second kind

{

n

k

}

(see sequence A008277 in
OEIS): {

n

k

}

=
1

k!

k
∑

j=0

(−1)k−j

(

k

j

)

jn .

This number is important to evaluate the difficulty to find a resolving partition
of n points for a given dimension k. If we look only at metric basis classes, the
number of partitions is reduced to the binomial coefficient

(

n

k

)

.

Now in the case where we need to enumerate all of the possible partitions
(up to size n), the cardinal will be the sum

Bn =

n
∑

k=0

{

n

k

}

,

known as the Bell number Bn (see sequence A000110 in OEIS).
The first 10 numbers of Bell are 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147; we

have B(20) = 5 832 742 205 057, and B(100) is given by a 116 digital number.
The number of possible metric basis is given by the sum of the binomial
coefficient

∑n

i=0

(

n
i

)

= 2n. As a comparison, 220 = 1 048 576 is much smaller
than B(20).

An other interesting comparison can be made between classes of the same
dimension. The number of partition in each classes can be computed by this
recursive function:

#[ pi, pi+1, . . . , pk ] =
1

Ai

(∑k

j=i pj

pi

)

#[ pi+1, . . . , pk ] ,

where Ai is the number of parts in [ pi, pi+1, . . . , pk ] which value equals pi.
The number of classes of dimension n is highly unevenly distributed; the

cardinal of the metric bases class is minimal and is far smallest than the cardinal
of the other classes.

http://oeis.org/A008277
http://oeis.org/A000110
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3 Algorithm

In this section we describe some methods to determine if a given partition is
resolving. We consider W = (e1, e2, . . . , ek) and we denote D[ei][ej ] its distance
matrix between each pair of points.
The notation {p1, p2, . . . , pk} formalizes a representation of a partition where ei
belongs to the part pi. The dimension of the partition is by definition given by
dim = maxi (pi).

Algorithm 1: MinimumResolvingPartition

Input: D[ ][ ] : a distance matrix of n points
Output: Partition : a resolving partition

1 for dim← 2 to m do

2 Partition← FirstPartitionOfSize(dim)
3 if IsResolvingPartition(Partition) then

4 return Partition

5 while Partition← NextPartitionOfSize(dim) do

6 if IsResolvingPartition(Partition) then

7 return Partition

The first algorithm that we give is simple and natural. Then we show several
properties, helping to give an improved version with lower complexity.

3.1 Natural method

Our aim is to determine if for a given partition, all points of W have different
coordinates. We first compute all of the coordinates with the following algorithm:

Algorithm 2: GetCoordList computes the list of coordinate vectors

Output: Coord[ ][ ] : the list of coordinate vectors
Input: D[ ][ ] : the distance matrix ; Partition = {p1, p2, . . . , pm} : the

partition

1 Initialization.
2 Coord[ ][ ]←∞

3 Computing the coordinate vectors.
4 foreach point A ∈ W do

5 foreach point B ∈W do

6 part B← Partition[point B]
7 if Coord[point A][part B] > D[point A][point B] then
8 Coord[point A][part B]← D[point A][point B]

9 return Coord
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Each coordinate of a point q is given by the minimum distance from q to
points of the corresponding part. Every points belong to a part, so we need to
compute the distance between each couple of points. The complexity is O(n2),
where n is the number of points.

Now we need to know if all points are distinguished by coordinates. The
answer is given by using a sorting algorithm that stops and returns false if two
vectors are identical, but returns true if it ends sorting. Logically, the complexity
of this step is in O(dim ∗ n log2(n)) comparisons of n vectors of size dim.

Finally this method requires O(n2 + dim ∗ n ∗ log2(n)) to determine if the
partition is resolving.

3.2 Computing coordinate vectors in efficient time

Lemma 1. Only two coordinates may change for each point from a partition to
an adjacent one.

Proof. Coordinates are given by a distance to a part (a set of points), so if this
part does not change, the coordinate remains. Adjacent partitions are either
in the same class with a distance of 2, which means that two points exchanged
their part number, or partitions are in different classes with a distance 1, meaning
that a single point has changed its part number. In both cases, two parts have
changed, so two coordinates may change for any given point. �

Lemma 2. Computing coordinate vectors for a given partition, knowing the co-
ordinate vectors of an adjacent partition, can be made in O(n log2(n)) time.

In order to prove this lemma, we explain the algorithm and show its
complexity. We use a data structure to maintain up-to-date some information
for a partition. Each point needs to know an ordered list by distance to each
point of each part. The more convenient structure is an indexed binary heap.

A heap is a classical data structure in computer science. This structure is
based on the heap property for a binary tree: if the node A is a parent of the
node B then we have key(A) < key(B).
A binary heap has also the property to be always compact, i.e. all the leafs of
the tree have their depths different by at most 1. In an n elements heap, the
depth is log2 n.

Operations like FindMin, in constant time O(1), DeleteMin and Insert,
in log2 n time, are classically defined for min-heap. We need to define two new
operations: DeleteRandom and ChangeKey.
The first one is provided by an index for points in a heap. We can directly
find the location of a key in a heap in constant time O(1). Without the index,
finding a random key in a heap may take O(n) operations.

ChangeKey can be decomposed in two operations: IncreaseKey or De-
creaseKey. Decreasing a key in a min-heap is done by switching a node by its
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father while the father’s key is greater than the node’s one. IncreaseKey is
the reverse operation: it consists in exchanging the node by its smaller son until
the son’s key is greater or equal to its own key.

DeleteRandom, which removes a random node r, can be easily defined
knowing ChangeKey, in two steps. First, we switch the node r with the last
node l of the heap, knowing that the last node is always removable. Second, we
consider that the kept node l has just changed its key.

These two operations are made in the worst case in O(log2(n)) time.

For each point of W , we keep up-to-date dim min-heaps, one for each parts
of Partition. The coordinate vectors are given through a series of FindMin.
There exist two kinds of adjacent partitions. The first one is two partitions of the
same class with distance of 2, i.e. two points from the first partition switch their
parts number to become the second partition. The second kind is constituted
by partitions having distance of 1, i.e. going from the first one to the second
one is simply made by picking a point from a part and moving it to an other part.

Considering adjacent partitions of the first kind, the operation can be
assimilated to changing a key of a point. Indeed, removing a point from a heap,
then directly adding an other point is equivalent to consider that the key of the
leaving point is changed by the key of the incoming point.
This operation requires two calls of ChangeKey for each point, so its complex-
ity can be approximated by O(n log2(n)) operations. This is an upper bound
because the number of points contained in two heaps is always smaller than n

since each point belongs to one and only one heap.

Considering now the second kind of adjacent partitions, the update opera-
tions are made by a call of DeleteRandom on the heap containing the leaving
node, and a call of Insert into an other part.
The complexity of this update is in O(n log2(n)), which is an upper bound for
the same reasons explained just before.

3.3 Comparing coordinate vectors in efficient time

We now show how to improve the step of determining if two coordinate vectors
are identical.

Lemma 3. Two points of distinct parts of a partition are always distinguished.

Proof. Every points of a part are at zero distance from it, while outer points
have positive distance from it. Thus coordinates are different. �

Thanks to the lemma 3, we could improve the second part of the sorting
algorithm, described in section 3.1. Indeed, the sorting step can be split into
dim independent subproblems.
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Lemma 4. Comparing coordinate vectors for a given partition knowing the coor-
dinate vectors can be made in optimal time O(n∗dim) (the size of the coordinate
vectors).

All of the coordinates are bounded by [0, dmax], where dmax is the diameter
of W . Since we restrict to discrete distances, which have integer values, the
maximum number of distinct distances is dmax. This number is lower than n for
rectangles in Z

k, due to the fact that Z
k is a module (a discrete vector space)

and the maximum number of distinct vectors (up to a symmetry) is bounded
by the number of vectors from a corner. This is also true in general case (not
a rectangle) for distances d1 and d∞, for which dmax is exactly the number of
different possible distance values.

Considering this, we can use a specific data structure: a trie. A trie (or prefix
tree) is an ordered tree data structure commonly used to store strings. In this
specific structure, unlike in a binary tree, a node is not associated to a specific
key but the position of the node in the trie determines a specific prefix of the
key.
In our case, we define a node as a structure containing two fields: a table of size
dmax pointers of nodes, and an integer which indicates the current number of
nodes contained in the table. This allows us to create a table containing all the
coordinate vectors where the depth i in the trie corresponds to the coordinate
i in a vector. Each leaf of the created trie will have a depth of dim, considering
that the coordinates are given by the parts of a partition.

This data structure provides InsertKey, DeleteKey and FindKey in
O(m) where m is the size of the key. Finally, we can search in optimal time for
identical coordinate vectors, because we only consider once each vector and each
of its coordinates.

3.4 Complexity

We just described structures and procedures to improve the research of a re-
solving partition using properties of local changes; we now study the complexity
in time and space.

We have previously seen that each point needs a min-heap indexed structure
of size 2n for each of the dim part, and finally a trie composed by nodes of
size n. A larger upper bound of the number of nodes is given by the number
of points n multiplied by the depth dim in the trie and the size of a node.
We consider sizeof (node) ≈ n because we are interested in discrete geometry
problems and then we can use an index table for distances in order to use less
memory as possible by compacting the table pointer of each node.
So the complexity in space is O(n ∗ dim+ n2 ∗ dim).

Analyzing the complexity in time is done in two steps: analyze the initial-
ization, then analyze the looping steps (given by the described procedures).
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For recall, a looping step is composed in two stages: updating structures in
order to change the coordinate vectors from a partition to an adjacent one; then
updating the trie in order to search undistinguished points. For each of the n

points, 2 min-heap with combined size less than n will be updated. Updating
the trie is in the worst case: changing every of the n key of size dim, by removing
a key and adding a new one.
So the complexity in time for local changes is O(n log2 n+ n ∗ dim).

Time complexity for the initialization is bigger because it is not a local
change, indeed every point will be attributed to a part and all parts will change.
In the worst case every points are added to the same part, so for each point, we
will create a min-heap of size n by successively pushing each point. This is done
in O(n log2 n). Once made, the coordinate vectors are added to the trie, so
time complexity for initialization is O(n2 log2 n+ n ∗ dim).

4 Dimension for gauges

We have seen in previous section that searching partition dimension by enu-
meration is actually time consuming. Enumerating is not mandatory for simple
cases; we establish in this section the resolving partitions for common distances
in rectangles and convex shapes.

We briefly recall the definition of a gauge. Given a convex C containing
the origin O in its interior, a gauge for C is the function γC(x) defined by
the minimum positive scale factor λ, necessary for having x ∈ λC. Formally,
γC(x) = inf

{

λ ∈R+ : x∈ λC
}

. When C is a polyhedron, γC is called a polyhe-
dral gauge. By definition, all norms are gauges for their unit ball. Conversely, a
gauge for C is a norm, denoted nC , iff C is central-symmetric. We call distance
gauge, denoted dC , the metric induced by a central-symmetric gauge γC . We only
consider central-symmetric gauges in the paper.

4.1 Dimension in rectangles

Lemma 5. The partition dimension of gauges in a rectangle is 3 or 4.

We have shown in [12] that the metric dimension for gauges is always 2 in
a rectangle except for the polyhedral gauges which have a vertical or horizontal
facet in their ball. Hence, the partition dimension is at most 2+1 for that kind of
gauges. For the others gauges we can provide a simple pattern which always gives
a resolving 4-partition (see figure 1): the first part is the bottom-left corner of
the considered rectangle; the second part is the remaining points of the bottom
line; the third part is the remaining points of the first column; the fourth part
is constituted by all other points.

Note that the coordinates given by the fourth part are useless for the resolving
problem, but are necessary to get an actual partition of the rectangle.

The lemma is still valid for non-gauge distances whose balls are all convex.
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Fig. 1. Illustration of the lemma 5. On the left a resolving 3-partition of the rectangle
for gauges which do not contain vertical nor horizontal facet built using metric basis
pattern (see [12]). On the right, the pattern used to prove that any convex distance
has at least a resolving 4-partition in a rectangle.

4.2 Dimension in convex sets

Tomescu studied partition dimension in space Z2 for d1 and d∞. Here we extend
that study to every gauges, and to another unusual family of distances: the
non-homogeneous distances whose every balls are convex.

Lemma 6. In the digital plane Z
2, the partition dimension for any gauge which

has no vertical nor horizontal facet is 3.

A proof of this lemma is given using the same pattern proposed by Tomescu:
a perpendicular split of the plane in three areas, as follows. A is composed by
points verifying (y < 0); B is the set of points corresponding to (y > 0 andx < 0);
finally C is the set of the remaining points (y > 0 andx > 0). Using lemma 3 we
need to prove that the points inside an area are distinguished (see figure 2).

– Points in B are distinguished: considering the line y = −1 as a centre of
a distance ball which gives the coordinate distance from the part A to the
part B, the frontier of the ball consists in a vertical line moving through
B. Distance from the C area are given by an horizontal line parallel to the
intersection between B and C. Intersection of both of the balls line results
in a single point, so each point in B has unique coordinates.

– Points in C are distinguished: for the exact same reasons explained for the
B area (B and C play symmetric roles), every point in C has unique coor-
dinates.

– Points in A are distinguished: in order to prove this, we look at the upper
part of A where points are closer to the C area. In this part, the front line
of the C ball consists in a vertical line, but the front line of the B ball is
a strictly monotonic curve which does not have any vertical not horizontal
part because we use gauges with these properties, and so intersection between
both of this front line results in a single point. The same result happens in
the lower part of A by symmetries of the B and C part. �

Lemma 7. In the digital plane Z
2, the partition dimension for any convex dis-

tance is lower than 4.
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Fig. 2. On the left, illustration of the pattern used to prove the lemma 6. This always
gives a resolving 3-partition of the space Z

2 for gauges which do not contain vertical
nor horizontal facet. On the right, the pattern used to prove the lemma 7. That pattern
gives a resolving 4-partition for any convex distance in Z

2.

To prove that we also use the same pattern that Tomescu used to prove the
dimension of d∞ in Z

2. It is nearly the same pattern used for demonstrating
the previous lemma using an additional area D which takes off the A area of its
lower points (y < −1), see figure 2.
It is clear that in this configuration, points in the areas C and D have unique
coordinates for the same reasons explained to prove uniqueness properties in the
area B and C in the previous lemma.

Both of the previous lemma 6 and 7 remain valid in the continuous space R2,
but a stronger property exists: indeed we have

Lemma 8. In the continuous space R
2, the partition dimension for d∞ is 3.

Proof. Applying a 45◦ rotation to the perpendicular pattern, we get the exact
same case presented for dim(d1,Z

2) (up to the rotation). �

Then it is clear that

Corollary 1. For any distance d, dim(d,Z2) > dim(d,R2) .

Considering lemma 8, we finally conjecture that

Conjecture 1. For any convex distance d, we have dim(d,R2) = 3 .

5 Conclusion

In this paper, we have studied the partition dimension problem in the Euclidean
and discrete spaces, for usual distance functions used in digital geometry. We
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have established combinatorial results for the problem, then we have proposed
algorithms verifying the resolving property of a partition and stated their com-
plexity. We have finally presented resolving partitions and bounds for geometrical
cases.

The procedures presented in the algorithmic section are applied for comput-
ing an enumeration algorithm. They could also be applied for a randomized local
search algorithm, because the adjacency notion is exactly the notion of locality
required by that kind of algorithm.

Unlike for the metric basis, the partition dimension seems to be only related
to the distance, while being independent from the considered convex W . The
combinatorics of the number of possible partitions explodes with the size of W ;
notwithstanding, the partition dimension is bounded by a low number, which
makes the enumeration achievable.
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