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Abstract

For a set T of n points in a metric space (X, d),
a point y ∈ X is dominated by a point x ∈ X
if d(x, t) ≤ d(y, t) for all t ∈ T and there exists
t′ ∈ T such that d(x, t′) < d(y, t′). The set of non-
dominated points of X is called the Pareto envelope
of T. H. Kuhn (1973) established that in Euclidean
spaces, the Pareto envelopes and the convex hulls co-
incide. Chalmet et al. (1981) characterized the Pareto
envelopes in the rectilinear plane (R2, d1) and con-
structed them in O(n log n) time. In this note, we in-
vestigate the Pareto envelopes of point-sets in simple
polygons P endowed with geodesic d2- or d1-metrics
(i.e., Euclidean and Manhattan metrics). We show
that Kuhn’s characterization extends to Pareto en-
velopes in simple polygons with d2-metric, while that
of Chalmet et al. extends to simple rectilinear poly-
gons with d1-metric. These characterizations provide
efficient algorithms for construction of these Pareto
envelopes.

1 Introduction

Convex hulls, in particular convex hulls in 2- and
3-dimensional spaces, are used in various applica-
tions and represent a basic object of investigations
in computational geometry. They host such remark-
able points as center, barycenter, and median as well
as the optimal solutions of some NP -hard problems
like the Steiner tree, the p-median, and the p-center
problems. H. Kuhn [13] noticed that conv(T ) can be
described in truly distance terms: a point p ∈ R

m

belongs to conv(T ) if and only if the vector of Eu-
clidean distances of p to the points of T is not dom-
inated by the distance vector of any other point of
R

m. Inspired by this characterization of conv(T ), one
can define analogous geometric objects by replacing
the Euclidean distance d2 by any other distance d on
R

m, or by replacing R
m by a polygonal or a polyhe-

dral domain endowed with an intrinsic distance. This
leads to the following general concept of Pareto en-
velope. Given a set T of n points in a metric space
(X, d), a point y ∈ X is dominated by a point x ∈ X
if d(x, t) ≤ d(y, t) for all t ∈ T and there exists t′ ∈ T

∗This research was partly supported by the ANR grant
BLAN06-1-138894 (projet OPTICOMB).
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such that d(x, t′) < d(y, t′). The set of non-dominated
points of X is called the Pareto envelope of T and is
denoted by Pd(T ).

Pareto envelopes have been investigated in several
papers under the name of “sets of efficient points”.
Thisse, Ward, and Wendell [17] proved that Pd2(T ) =
conv(T ) holds for all distances induced by round
norms. The investigation of Pareto envelopes for par-
ticular polyhedral norms has been initiated by Wen-
dell, Hurter, Lowe [21] and continued by Chalmet,
Francis, Kolen [2] and Durier, Michelot [6, 7]. The
main result of [2] is the following nice characteriza-
tion of Pareto envelopes in the Manhattan plane:

Pd1(T ) = ∩n
i=1(∪

n
j=1Id1(ti, tj)), (1)

where Id1(ti, tj) is the smallest axis-parallel rect-
angle with diagonal [ti, tj ]. This result was used
in [2] to establish the correctness of an optimal
O(n log n) sweeping-line algorithm for constructing
Pd1(T ) in R

2. Consequently, Pelegrin and Fernandez
[14] described an algorithm for constructing Pareto
envelopes in the plane endowed with a polygonal
norm. Recently, Chepoi and Nouioua [5] character-
ized Pd1(T ) in (R3, d1) and showed that the charac-
terization of Chalmet et al. [2] holds for Pd∞

(T ) in
(Rm, d∞). They also presented efficient algorithms for
constructing Pd1(T ) and Pd∞

(T ) in R
3. We refer to

[5] for other references on Pareto envelopes in normed
spaces and their applications.

In this note, we characterize and efficiently con-
struct the Pareto envelopes of sets in simple poly-
gons endowed with the geodesic d2 and d1-distances.
Distance problems for simple polygons constitute a
classical subject in computational geometry; [9, 11,
15, 16, 18] is a small sample of papers devoted to
this subject. We show that, like in Euclidean spaces,
Pareto envelopes of finite sets in simple polygons with
d2-distance coincide with their geodesic convex hulls
and therefore can be constructed using an algorithm
of Toussaint [18]. On the other hand, we show that
Pareto envelopes in simple rectilinear polygons can
be characterized using equality (1). This characteri-
zation is used to design an efficient algorithm for con-
structing these envelopes. Due to space constraints,
the proofs of several results in last section are post-
poned to the full version.

We conclude this section with some definitions. Let
(X, d) be a metric space. The interval I(x, y) between
two points x, y ∈ X consists of all points between x
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Figure 1: Example of Pd2(T )

and y: I(x, y) := {u ∈ X : d(x, u)+d(u, y) = d(x, y)}.
A set M of X is convex if I(x, y) ⊆ M for all x, y ∈ M.
The convex hull conv(S) of a set S ⊂ X is the smallest
convex set containing S.

2 Simple polygons

In this section, P is a simple polygon with m sides
endowed with the geodesic d2-metric. For two points
x, y ∈ P, γ(x, y) is the unique geodesic path inside
P between x and y, and d2(x, y) is the length of
this path. For a set of n points T ⊂ P, we denote
by conv(T ) and Pd2(T ) the geodesic convex hull and
the Pareto envelope of T. Since two points of a sim-
ple polygon P are connected by a unique geodesic,
(P, d2) is a metric space of global non-positive curva-
ture, i.e. a CAT(0)-space [1]. CAT(0) spaces are char-
acterized in several ways (in particular, by uniqueness
of geodesic paths, convexity of the distance function,
etc.) and have many important properties, placing
them in the center of modern geometry; for results
and definitions the reader can consult the book [1].
Below we will show that Pd(T ) ⊆ conv(T ) holds for
any finite subset of a CAT(0)-space (X, d) and we
conjecture that in fact Pd(T ) = conv(T ) holds.

2.1 Pd2(T ) = conv(T )

We aim to establish the following result:

Proposition 1 Pd2(T ) = conv(T ). Consequently,
Pd2(T ) can be constructed in O(m + n logm)-time.

The inclusion Pd2(T ) ⊆ conv(T ) follows from the
following more general result:

Lemma 1 Pd(T ) ⊆ conv(T ) for any finite set of a
CAT(0) metric space (X, d).

Proof. Let x /∈ conv(T ). By Proposition 2.4(1) of [1]
there exists a unique point π(x) (the metric projection
of x) such that d(x, π(x)) = infy∈conv(T ) d(x, y). As in
the case of Euclidean spaces, π(x) can be viewed as
the orthogonal projection of x on conv(T ), because
by Proposition 2.4(3) the Alexandrov angle α at π(x)
between the geodesics γ(x, π(x)) and γ(y, π(x)) is at
least π/2 for any point y ∈ conv(T ), y 6= π(x). By
law of cosines which holds in CAT(0) spaces (page
163 of [1]), if a = d(x, π(x)), b = d(y, π(x)), and c =

d(x, y), then c2 ≥ a2 + b2 − 2ab cosα ≥ a2 + b2 >
b2 for any y ∈ conv(T ), y 6= π(x). Hence d(x, y) >
d(π(x), y), i.e., x is dominated by π(x). Since x is
an arbitrary point outside conv(T ), this implies that
Pd(T ) ⊆ conv(T ). �

Now we show the converse inclusion conv(T ) ⊆
Pd2(T ). Pick q ∈ conv(T ). If q belongs to the bound-
ary of conv(T ), then q belongs to the geodesic path
γ(t, t′) between two vertices t, t′ of conv(T ). Since
t, t′ ∈ T, if q is dominated by some point p, then
d2(p, t) ≤ d2(q, t) and d2(p, t′) ≤ d(q, t′). Since q ∈
γ(t, t′), this is possible only if these inequalities hold
as equalities, thus p ∈ γ(t, t′), yielding p = q. Thus
q ∈ Pd2(T ) in this case. Now, suppose that q be-
longs to the interior of the simple polygon conv(T ).
Suppose by way of contradiction that q is dominated
by some point p′ ∈ P . By Lemma 1 of [15] the dis-
tance function d2 on P is convex. This means that
for any point t ∈ T, as p varies along the geodesic
γ(p′, q), d2(t, p) is a convex function of p. Since q be-
longs to the interior of conv(T ), one can select a point
p ∈ γ(p′, q) ∩ conv(T ) which still dominates q and is
visible from q (i.e., [p, q] ⊆ P ). Denote by q′ the first
intersection of the boundary of conv(T ) with the ray
with origin p which passes via the point q. By the
definition of q′, we infer that q ∈ [p, q′] = γ(p, q′).
Pick any point t ∈ T. By second part of Lemma
1 of [15], d2(t, q) < max{d2(t, q

′), d2(t, p)}. Since
d2(t, p) ≤ d2(t, q) by the choice of p, we obtain that
d2(t, q) < d2(t, q

′). Since this inequality holds for all
points of T , q and p both dominate the boundary
point q′, a contradiction with q′ ∈ Pd2(T ).

G. Toussaint [18] presented an O(m+n log m)-time
algorithm for constructing the geodesic convex hull of
an n-point set T of a simple polygon P with m sides.
Together with Proposition 1 this shows that Pd2(T )
can be constructed within the same time bounds.

3 Simple rectilinear polygons

In this section, P is a simple rectilinear polygon (i.e.,
a simple polygon having all edges axis–parallel ) with
m edges endowed with the geodesic d1-metric.. A rec-
tilinear path is a polygonal chain consisting of axis–
parallel segments lying inside P . The length of a rec-
tilinear path in the d1-metric equals the sum of the
lengths of its constituent segments. For two points
x, y ∈ P, the geodesic d1-distance d1(x, y) is the length
of the minimum length rectilinear path (i.e., rectilin-
ear geodesic) connecting x and y. An axis–parallel
segment c is a cut segment of P if it connects two
edges of P and lies entirely in P . One basic property
of resulting metric space (P, d1) is that its axis-parallel
cuts and the two subpolygons defined by such cuts are
convex and gated [4]. A subset M of a metric space
(X, d) is called gated [19] provided every point v ∈ X
admits a gate in M , i.e. a point g(v) ∈ M such that
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Figure 2: Example of Pd1(T )

g(v) ∈ I(v, u) for all u ∈ M .

3.1 Characterization

We extend the characterization of [2] to Pareto en-
velopes Pd1(T ) in rectilinear polygons:

Proposition 2 Pd1(T ) = ∩n
i=1(∪

n
j=1I(ti, tj)).

Proof. One direction of the proof is obvious: if p
is not Pareto, then p /∈ ∪n

j=1I(ti, tj). To prove the
converse, let p ∈ Pd1(T ) but p /∈ ∪n

j=1I(ti, tj) for some
ti. Let cv = [q′, q′′] and ch = [p′, p′′] be the maximal
vertical and horizontal cuts which pass through the
point p. Denote by P1, P2, P3 and P4 the subpolygons
of P defined by these cuts. Let P1∩P3 = P2∩P4 = {p}
and ti ∈ P1. Obviously, P1, . . . , P4 are gated. Note
that p is the gate in P1 of any point of P3. As p /∈
∪n

j=1I(ti, tj), we conclude that P3∩T = ∅. Set Pj,k :=
Pj ∪ Pk, where j, k ∈ {1, 2, 3, 4} and j 6= k. Note that
the four subpolygons Pj,j+1(modj) are gated sets of P
as intersection of gated sets. We distinguish two cases:
(i) p is the gate of ti in one of the cuts ch or cv, say
the first, and (ii) the gates q and z of ti in cv and ch

are different from p.
First, consider the case (i). Since p is the gate of ti

in ch, obviously it is also the gate of ti in P3,4. From
the choice of p and ti we conclude that P3,4 ∩ T = ∅.
Let g1, . . . , gn be the gates of t1, . . . , tn of T in cv.
First, suppose that these gates are all different from p.
Then all g1, . . . , gn belong to the segment [q′, p] ⊂ cv

which separates P1 and P2. Let gk be the closest to p
such gate. Then gk ∈ I(p, gj) and, since gj ∈ I(p, tj),
we infer that gk ∈ ∩n

j=1I(p, tj), thus gk dominates p,
contradiction that p is Pareto. Now assume that p is
the gate of some point tj 6= ti in cv. If tj ∈ P2, then p
is the gate of tj in P1,4, contrary to p /∈ I(ti, tj). Thus
tj ∈ P1. Let u and w be the gates of ti and tj in cv and
ch. Pick some rectilinear geodesics γ(ti, u), γ(tj, w),
and γ(ti, tj) between the pairs ti, u; tj, w, and ti, tj ,
respectively. Since p /∈ I(ti, tj), γ(ti, tj) cannot share
common points with both segments [u, p] and [p, w].
Let γ(ti, tj)∩ [u, p] = ∅. Let u′ be a closest to u point
of γ(ti, u) ∩ γ(ti, tj). Necessarily u′ 6= u. Let w′ be
a closest to w point of γ(tj , w) ∩ γ(ti, tj). Since P is
a simple polygon, the region of the plane bounded
by [u, p], [p, w], the part of γ(ti, u) between u, u′, the

part of γ(ti, tj) between u′, w′, and the part of γ(tj , w)
between w′, w, is contained in P. Let [u′′, u] be the
last link in the subpath of γ(ti, u) between u′ and u.
Then for some δ > 0, the segment [v′, v′′] belongs
to P, where v′ ∈ [u′′, u], v′′ ∈ [p, w] and d(u, v′) =
d(p, v′′) = δ. This contradicts that p is the gate of ti
in ch.

Now, consider case (ii). Let u be the furthest from
ti point of I(ti, q) ∩ I(ti, z). Pick rectilinear geodesics
γ(u, q) and γ(u, z) between u, q and u, z. Let [q′, q]
and [z′, z] be the last links of these paths. Let q′′

be the point of ch with the same x-coordinate as q′.
Let z′′ be the point of cv with the same y-coordinate
as z′. Since P is a simple polygon, the region between
[q, p], [z, p] and γ(u, q), γ(u, z) belongs to P. Moreover,
since q, z ∈ I(p, ti) and I(p, ti) is convex, this region
necessarily belongs to I(p, ti). In particular, both rect-
angles R′ = [q′, q, p, q′′] and R′′ = [z′, z, p, z′′] belong
to I(p, ti). As we already stated, all points of T are
outside P3. Let gv be the closest to p gate in cv of
a point of T ∩ P2, while gh be the closest to p gate
in ch of a point of T ∩ P4. Since p /∈ ∪n

j=1I(ti, tj),
we conclude that gv and gh are different from p. Let
0 < δ < min{d(p, gv), d(p, gh), d(z′, z), d(q′, q)}. Con-
sider a point p′ ∈ R′ ∩ R′′ whose coordinates differ
by δ from those of p. Since p′ ∈ I(p, ti), we obtain
that d(p′, ti) = d(p, ti) − 2δ. For any other tj we
have d(p′, tj) ≤ d(p, tj). This contradicts that p is
Pareto. �

A subset S of P is ortho-convex if the intersection
of S with any axis–parallel cut of P is connected.

Lemma 2 Pd1(T ) is a closed ortho-convex set of P .

3.2 The algorithm

Now, we describe the algorithm for constructing the
Pareto envelope Pd1(T ) for a set T of n points in
a simple rectilinear polygon P with m vertices. In
the sequel, we will refer to points of T as terminals.
The algorithm uses Chazelle’s algorithm for comput-
ing all vertex-edge visible pairs of a simple polygon
[3] and the optimal point-location methods [8, 12].
Using Chazelle’s algorithm, we derive a decomposi-
tion of the polygon P into rectangles, employing only
horizontal cuts which pass through the vertices of P.
Using the optimal point-location methods [8, 12] we
compute in O(n log m) total time which rectangles of
the decomposition contain the terminals (notice that
the induced subdivision is monotone, hence the point-
location structure can be built in linear time). At the
next step, we sort by y all terminals from each rect-
angle. With these sorted lists, we refine the initial
subdivision by dividing each rectangle containing ter-
minals with the horizontal cuts passing via terminals.
The dual graph of this decomposition D is a tree T :
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the nodes of a tree are the rectangles of D, and two
nodes in T are adjacent iff the corresponding rectan-
gles are bounded by the common cut. We suppose
that T is rooted at some rectangle. Any cut c of our
subdivision divides the polygon P into two subpoly-
gons P ′

c and P ′′
c which correspond to two subtrees T ′

c

and T ′′
c of T . It can be easily shown that if P ′′

c ∩T = ∅
(in this case we say that P ′′

c is T -empty), then Pd1(T )
is contained in P ′

c ∪ c (any point of P ′′
c is dominated

by its gate in c). By proceeding the tree T , in lin-
ear time we can remove all T -empty subpolygons and
their corresponding subtrees. We will denote the re-
sulting polygon, subdivision, and tree also by P,D,
and T . The resulting decomposition D and its tree T
can be constructed in time O(m + n(log n + log m)).
If all terminals are vertices of P, then we avoid the
application of point-location methods and ranking of
terminals, requiring only O(n + m) time.

Given a non-root rectangle R, we denote by e′R and
e′′R the horizontal sides of R, so that e′R separates R
from to the root of T . The set of gates of all termi-
nals in R can be partitioned into the subset G′

R of
gates located on e′R and the subset G′′

R of gates lo-
cated on e′′R. Let g′l(R), g′r(R) be the leftmost and the
rightmost points from G′

R and let g′′l (R), g′′r (R) be the
leftmost and the rightmost points from G′′

R. In the full
version, we show how to compute the four extremal
gates g′l(R), g′r(R) g′′l (R) and g′′r (R) for all rectangles
R ∈ D in total linear time by using an upward and a
downward traversal of T .

For each rectangle R ∈ D, given the quadruplet of
gates QR = {g′l(R), g′r(R), g′′l (R), g′′r (R)}, at the next
step we compute the Pareto envelope Pd1(QR) of QR.
It consists of a box BR having its horizontal sides on
the sides of R and two horizontal segments which are
incident either to two points of the quadruplet lying
on the same horizontal side of R or to two opposite
points lying on different horizontal sides of R (one or
both these segments can be degenerated). In general,
these segments do not necessarily belong to the final
Pareto envelope Pd1(T ). On the other hand, as we will
show below, BR minus its horizontal sides is exactly
the set Pd1(T )∩R0, where R0 := R\(e′R∪e′′R) (clearly,
the horizontal sides of BR belong to Pd1(T ) as well
because Pd1(T ) is closed). Now, if we consider any
horizontal cut c, then we show that Pd1(T ) ∩ c is the
smallest segment sc ⊆ c spanned by the terminals
and/or the horizontal sides of all boxes BR located
on c. Clearly, having at hand the four gates of each
rectangle, the sets BR and sc can be determined in
O(n + m) time. To conclude, it remains to prove the
correctness of two last steps of the algorithm. This
follows from the following two lemmata whose proof
is given in the full version.

Lemma 3 Pd1(T ) ∩ R0 = BR ∩ R0.

Lemma 4 Pd1(T ) ∩ c = sc.
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Figure 3: Pd1(QR)

Summarizing the results of this section, we obtain
our main result:

Theorem 5 The Pareto envelope of n terminals lo-
cated in a simple rectilinear polygon P with m edges
can be constructed in time O(n + m(log n + log m))
(O(n + m) if all terminals are vertices of P ).
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