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Abstract

In this paper, we are interested in discrete distance
functions and more precisely in the chamfer distances.
These distances are based on the definition of masks
whose size can change depending on the quality of the
approximation which is expected, compared to the
Euclidean distance. We show the induced geometrical
properties of the generated distance images, and calculate
the required properties of the mask to ensure that they
define a distance function. Then we present how to
optimize the masks directly in discrete space, and finally,
we show some main applications.

1 - Chamfer Masks and Distances

In image analysis measuring distances between objects
is often essential. Because acquisition devices and images
are based on sampling and quantitation, and computers
process discrete information, the data are also discrete, and
consequently we prefer distances which generate integer
values.

Since the Euclidean distance dg gives floating
numbers, and neither (dg)? nor Round(dg) defines a
distance in the mathematical sense, we will not use them.

Working on the square lattice, he well-known d4 (City
Block) and dg (Chessboard) distances are easy to compute
[10], but they are not isotropic. This leads to some errors
in many applications, for instance the separation of cell
aggregates. We will not consider the octogonal distance
which differs from dp less than dg, but cannot be
improved.

Two categories of distances hold our attention: rational
distances [8), precursors of the chamfer distances family
[4l.

U. Montanari introduced distances where a few
displacements are weighted with the equivalent Euclidean
distance values. The selected points are choosen among
the visible pomnts of the square lattice (that is the points
whose coordinates are prime factors between them), and
the value of any other point is assigned with the minimal
path through the so defined network to reach it. Analytical

expressions are computed with the Farey series of integers
[6].
The main disadvantage 1s the use of rational numbers.
G. Borgefors adapted them to the discrete space,
3pproaching square roots by fractions (for example 1, V2,
5 by 1, 7/5, 11/5). In this case, a chamfer mask depicts
the weighted distances (see Figure 1); it is 8-symmetrical
and thus defined by the first octant.
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We call a, b, ¢ .. the visible points. For examples;
a=3, b=4, in a 3*3 mask, and a=5, b=7, ¢=11 1n a 5%5
mask.

2 - Theoretical Study

These chamfer masks have been existing for ten years,
but no one took any interest to demonstrate that such a
mask induces a distance in mathematical sense (triangular
mequality and separability), and more generally, to obtain
the exact constraints between the values a, b, ¢ .. in the
selected neighbourhood.

We name My, My, .. the n affected points in the first
octant of the mask, sorted out by increasing angles with
{Ox) line (remark: M| = a and My, = b). We note [M;j] the
weight and |[M]| = v(x;2+y;2). This order corresponds
exactly with Farey series yy/X; < vi+1/Xi+1-

An influence cone is the set of pixels between the
lines (O,M}) and (O,M;+1).




Theorem 1:

In an influence cone My/Mj4 1, the only points of the
mask which are necessary to find of the nunimum for
computing the distance from O are the local distances
M| and (M)

- By shifting, |M;| provides the values 2{M;|, 3|M;l,
and so on;

- similarly for M+ q;

- all the points between the discrete lines (O,M;) and
(O,M;+1), and beyond the parallelogram (O, M;, Mj+1,
M;+Mj4q) are obtained by using M; or Mj.1.

Elementary displacements dx and dy from a point (x,y)
are corresponding to the cost of a one square displacerent
(see Figure 2). We will now evaluate their values.
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Theorem 2:
If the points My/M;41 are consecutive (i.e. if X3.yi+1 -
X;34+1.¥; = 1), then
(a) elementary displacements dx and dy are constant in
the whole interior of the influence cone.
{b) their weights are given by
dx:= yiv 1Ml - ¥i M q]
dy:= x;{M; 1] - x341-IM4]

The second theorem is rigorously demonstrated in
{12]. Hence we can say that chamfer disks are polygons
with 8.(n-1) sides, and these sides are discrete lines, whose
equations are defined by dx and dy.

Theorem 3:
A chamfer mask induces a distance if and only if, in
sach of its influence cones, the corresponding
elementary displacements dx and dy, computed with

theorem 2, respect the inequalities: dx 2 dy 2 0 and
dx > 0.

In a cone (Mj, Mj+1, dx, dy) we can state that d¢ =
dy.dyq + (dx-dy).dg. Hence we deduce theorem 3 using the
result that n.dg + v.dg is a distance if and only ifu 2 0, v
20, (u,v) # (0,0).

We emphasize the possibility to state directly the
constraints for the affected points of the mask, by theorem
2 and 3:
dx>2dy20anddx>0 =
IMil.(Ri+17Yi+1) 2 IMir1l-(Xit Y3
Mir1lxi 2 Mjlxiey and  [Milyisr > Mjslyi

In other words, for any M; et My where yi/x; > vi/xg

v BV > My > ML and MG AR > My
ity Xi Vi

Application in 7*7 neighbourhood: we sort out by
increasing angles with the line (Ox) points a-b-c-d-e, and
we obtain:

name | Mj X Vi | Xityi
a My 1 0 1
d Mo 3 1 4
¢ M3 2 1 3
e My 3 2 5
b Ms 1 1 2

According to theorem 3, an a-b-c-d-e mask will induce
a distance only when the following inequalities are true:

4az d23a a>0
9d212.c2 8d d>c¢
10c2 6,29 2c>e
6e215b25e e>2b

General case: to compute a chamfer mask we choose
a neighbourhood of visible points and the value M| =a.

Then we set for any point Mi(x3,y1) (1 = 2..n) of the mask
the value |M;} = Round( a*Y/\ (x12+y12). it is very simple to
find the a-values forbidden by theorem 3, depending on the
size of the mask:

3*3  noone

55 2

T 1,2,3,4,6,9

99 1,2,3,4,6,9, 11, 16,23

11*11 1,2, 3,4, 5, 6,9, 11, 16, 21, 23, 26, 28, 33, 40

Every chamfer mask involving at least points a and b,
whose affected points are all visible and weighted like
described above, respects the inequalities of theorem 3 and
thus infers a distance in mathematical sense if and only 1f
the a-value is not forbidden.

3 - Optimizations

Chamfer distances can provide very good
approximations of Euclidean distance, particularly the
property of being isotropic. Several criteria can be used to
compute chamfer masks.

G. Borgefors proposed in {4] that chamfer distances




approximate the Euclidean distance by resolving systems

of insquations; she finds floar intervals for a, b, ¢, ..
values, and then computes fractions of integers b/a, ¢/a .. .
Finally the relative error is tested with regard to the
Euclidean distance, on a vertical line limitating the
discrete 1mage.

This criterion is contested by JH. Verwer in [13],
who recommends to minimize the relative error on oblique
lines or even Euclidean circles (which do not correspond
any more with the image borders).

In these papers, the authors search rheoretical values,
and find the upper limit of errors; but they do not
determine the effective errors on the discrete lattice. In
discrete space the minimization criterion can be choosen
among maximum of error, amplitude, or minimality on
chamfer weights themselves. This latter is equivalent to
minimize the errors on small distances; the two others
walk on large distances. A way to unify the minimization
is to process on the whole set of points of the picture
{discrete integral).

We propose a new kind of optimization in [12]. Our
purpose is to compute chamfer masks in larger
neighbourhoods, and to minimize the effective errors on
the image of integer distances (noted DT).

We know that chamfer disks are polygons, whose
angles are supported by the assigned visible points in the
mask. We will approximate the Euclidean circle with the
most regular polygons we can find, choosing carefully the
visible points to be affected, and then optimizing their
value, according to one of the criteria above-mentionned.

Hence we check all the a-values from 2 to 255,
calculating the weights of the choosen points p(x,y) of the
mask with the formula p:= round(a.v (x2+y2))9 and finally
we test the effective errors on the DT, on a vertical line
limitating the picture.
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Figure 3.

Figure 3 shows that in a 7%7 kernel, 12-17-0-38-43
chamfer (¢ means that the value ¢=27 is removed) is better
approximation than the Borgefors' chamfer 14-20-31-44.
That is because a/d/e/b are better distributed than a/d/c/b in
the first octant. Theorem 2 states that in both 38/27 and
27743, dx and dy are equal (dx=11,dy=5), thus the c-value
is not necessary.

Another example is chamfer 203-287-454-642-732-
837-1015-1035-1093 in a 11*11 kernel whose maximum
errors fall down to 0,47 % ! The resulting disk is a
polygon with 64 sides, very close to the Euclidean circle
(see Figure 4). The table below shows the progression
(factor 100) from d4 to d203. . We can observe that the
effective errors are not 8,09 % for 3-4 chamfer but
5,72 %, and not 2,02 % but 1,98 % for 5-7-11 chamfer
(as it was announced in [4]).

classic G. Borgefors E. Thiel
distance dq dg d3. ds . dig dio. doo3 .
INaX error 41,42 % 29,29 % 572 % 1,98 % 1,52 % 1,38 % 0,48 %
amplitude 41,42 % 29,29 % 11,13 % 3,59 % 2,49 % 2,00 % 0,51 %

(b)

©

Figure 4. (a) di4.. (b) d12.. (c) d2o3..




4 - Results

Chamfer distances are very satisfactory considering the
computing time of their distance transform, which requires
only two sequential scannings of the picture, and with a
discrete data structure (a matrix of 16-integers) [10].

Chamfer disk can be obtained by computing the
appropriate distance transform on an 'infinite’ size picture
in which all the points are initially assigned to 1, except
the center of the disk which is assigned to 0. A disk of
radius R is the set of points whose value is lower than
R*a+r, where a is the a-value of the mask and r belongs to
[0..a-1]. For a fixed radius R there exists a family of a
disks {when r varies) which induces a quasi-continuous
way of going from the disk of radius R to the disk of
radius R+1 (see Figure 5). This is of interest for
animation, and discrete topology [1, 7, 9].
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Figure 5. Chamfer 3-4 and R = 3

One of the most important applications of chamfers is
the medial axis (a shape representation method) based on a
covering of the shape by the maximal disks fitting in it
[2]. The computation is very fast (only one scanning of
the picture to identify the medial axis pixels). Of course
the process is reversible, and allow to compute the medial
line (a weighted skeleton) of the shape [3, 5, 11].

A very interesting application of this latter is shape
splitting. Indeed a narrowing area which is detectable for a
given metric squares with a neck point on the distance
transformed picture. It is sufficient to traverse the medial
line and to extract the local minima which do not locate at
a tip. An efficient approach builds a symbolic
representation of the original shape, and as the
transformation is reversible, all the manipulations can be
performed on this structure and are usually simple because
they are some graph analysis processes.

The main contribution of chamfers with regard to dg is
to provide moreover isotropic distances: several narrovings
undetectable with dg will be detected with dc.

Finally we mention an important contribution of
chamfers in gramulometry computation, in current use in
material studies. Iterative methods based on mathematical
morphology theory are usable, but the aumber of
iterations depends on the width of the shape. A distance
image enclose ar the beginning the equivalent of the
successive eroded pictures. As a comparison, a
morphological granulomeiry endures 1h 30mn against
2mm using chamfer distances.

5 - Conclusion

In this paper we have proved that chamfer distances,
under some conditions, are true distances in mathematical
sense. This is imaportant to justify the applications based
on them, such as medial axes and medial lines.

We obtained some resuilts concerning the geometry of
chamfer disks, which provide new ways of understanding
and optimizing chamfer masks on larger kernels.

The important point is that effective errors can now be
computed directly in discrete space, and the choice of the
assigned points is taken into account,

Finally we can state that chamfer distances provide
very good approximations of the Euclidean distance and
supply excellent alternatives to it. This study shows that
the resulting quasi-isotropy is particularly effective for
applications such as cytology or material studies.

Examples cited in § 4 are a few among the large field
of applications, in which chamfers give substancial
advantages in strength and efficiency.
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