
The Npic library

Reference Manual

Edouard Thiel

9 december 2020

2

Contents

1 Npic Functions 5

1.1 Images in memory . 5

1.1.1 Creation of an image . 5

1.1.2 Duplication of an image . 8

1.1.3 Checks on images . 8

1.1.4 Type to name and vice-versa . 9

1.1.5 Accessing to the pixels . 10

1.1.6 Copying or converting pixels . 11

1.1.7 Cutting in slices . 12

1.2 More on image border . 12

1.2.1 Border size . 12

1.2.2 Setting border pixel values . 13

1.2.3 Mirroring . 13

1.3 Image Files . 14

1.3.1 By extension . 14

1.3.2 Npic compressed format NPZ . 15

1.3.3 PAN format for images and volumes 15

1.3.4 VOL format for volumes . 16

1.3.5 PNM format for 2D images (PBM/PGM/PPM) 17

1.3.6 Printing an image in ascii . 18

1.4 Masks . 19

1.4.1 Creation of a mask . 19

1.4.2 Checks on a mask . 20

1.4.3 Type to name and vice-versa . 21

1.4.4 Inserting vectors . 21

3

4 CONTENTS

1.4.5 Computing masks . 22

1.4.6 Accessing to vectors . 23

1.4.7 Printing . 24

1.4.8 NMASK format for masks . 24

1.4.9 G-symmetries . 25

1.5 Computations on images . 26

1.5.1 Comparison of pixels . 26

1.5.2 Changing values . 26

1.5.3 Thresholding pixel values . 27

1.5.4 Summing images . 28

1.5.5 Drawing into images . 29

1.5.6 Drawing lines . 30

1.6 Distance Transformations . 31

1.6.1 Front-end for Distance Transformations (DT) 31

1.6.2 Squared Euclidean Distance Transformation (SEDT) 32

1.6.3 Weighted Distance Transformation (WDT) 33

1.6.4 Medial Axis Extraction . 34

1.6.5 Medial Axis - LUT and Mlut . 35

1.7 Miscellaneous . 37

1.7.1 Error messages . 37

1.7.2 Computation time . 38

1.7.3 Text properties . 38

2 Npic Types 41

2.1 Pixels . 41

2.2 Images . 42

2.3 Masks . 43

2.4 Miscellaneous . 44

2.4.1 G-symmetries . 44

2.4.2 Vector . 45

2.4.3 Lut for medial axis . 45

2.4.4 Text Properties . 45

3 Npic File Formats 47

CONTENTS 5

3.1 Image file format NPZ . 47

3.2 Mask file format NMASK . 48

6 CONTENTS

Chapter 1

Npic Functions

In this chapter we describe all public functions from libNpic. In each section we give the
links to the sources, which are self-documented.

In the following, a function is said verbose if it prints something in the console, else it is
said silent.

Each object (image, mask, etc) has a field telling if it is ok or not. When created, an
object has ok set to true ; any failing operation will set ok to false. From the moment
that an object is not ok, all following operations will immediatly return, without doing
nothing (the object can just be destroyed).

1.1 Images in memory

1.1.1 Creation of an image

Sources: image creat.h , image creat.c .

• NpicCreateImage *

Npic_image *NpicCreateImage_2c (int ymax, int xmax,

int ybor, int xbor);

Npic_image *NpicCreateImage_2l (int ymax, int xmax,

int ybor, int xbor);

Npic_image *NpicCreateImage_2d (int ymax, int xmax,

int ybor, int xbor);

Npic_image *NpicCreateImage_2q (int ymax, int xmax,

int ybor, int xbor);

Npic_image *NpicCreateImage_3c (int zmax, int ymax, int xmax,

int zbor, int ybor, int xbor);

Npic_image *NpicCreateImage_3l (int zmax, int ymax, int xmax,

int zbor, int ybor, int xbor);

Npic_image *NpicCreateImage_3d (int zmax, int ymax, int xmax,

int zbor, int ybor, int xbor);

7

8 CHAPTER 1. NPIC FUNCTIONS

Npic_image *NpicCreateImage_3q (int zmax, int ymax, int xmax,

int zbor, int ybor, int xbor);

Npic_image *NpicCreateImage_4c (int tmax, int zmax, int ymax, int xmax,

int tbor, int zbor, int ybor, int xbor);

Npic_image *NpicCreateImage_4l (int tmax, int zmax, int ymax, int xmax,

int tbor, int zbor, int ybor, int xbor);

Npic_image *NpicCreateImage_4d (int tmax, int zmax, int ymax, int xmax,

int tbor, int zbor, int ybor, int xbor);

Npic_image *NpicCreateImage_4q (int tmax, int zmax, int ymax, int xmax,

int tbor, int zbor, int ybor, int xbor);

Npic_image *NpicCreateImage_5c

(int smax, int tmax, int zmax, int ymax, int xmax,

int sbor, int tbor, int zbor, int ybor, int xbor);

Npic_image *NpicCreateImage_5l

(int smax, int tmax, int zmax, int ymax, int xmax,

int sbor, int tbor, int zbor, int ybor, int xbor);

Npic_image *NpicCreateImage_5d

(int smax, int tmax, int zmax, int ymax, int xmax,

int sbor, int tbor, int zbor, int ybor, int xbor);

Npic_image *NpicCreateImage_5q

(int smax, int tmax, int zmax, int ymax, int xmax,

int sbor, int tbor, int zbor, int ybor, int xbor);

Npic_image *NpicCreateImage_6c

(int rmax, int smax, int tmax, int zmax, int ymax, int xmax,

int rbor, int sbor, int tbor, int zbor, int ybor, int xbor);

Npic_image *NpicCreateImage_6l

(int rmax, int smax, int tmax, int zmax, int ymax, int xmax,

int rbor, int sbor, int tbor, int zbor, int ybor, int xbor);

Npic_image *NpicCreateImage_6d

(int rmax, int smax, int tmax, int zmax, int ymax, int xmax,

int rbor, int sbor, int tbor, int zbor, int ybor, int xbor);

Npic_image *NpicCreateImage_6q

(int rmax, int smax, int tmax, int zmax, int ymax, int xmax,

int rbor, int sbor, int tbor, int zbor, int ybor, int xbor);

Full creation of an image. All pixels are set to 0, including border pixels.

Return the image on success, else NULL. Verbose.

The suffix of NpicCreateImage dt gives the dimension d (2, 3, 4, 5 or 6) and the pixels
type t (Npic c, Npic l, Npic d, Npic q):

⊲ c stands for unsigned char (8 bits integer);

⊲ l stands for signed long (32 bits integer);

⊲ d stands for double (floating 64 bits number);

⊲ q stands for quadri signed short (four 16 bits integer).

Each image can have an ”external border”, different for each coordinate. This kind of

1.1. IMAGES IN MEMORY 9

feature is especially useful with masks. The principle is the same for all coordinates,
so we just explain for x: the interior of the image is [0 .. xmax[, the left border is
[-xbor .. 0[, the right border is [xmax .. xmax+xbor[, the whole image is [-xbor
.. xmax+xbor[. For no border, set xbor to 0.

Usage:

Npic_image *np;

np = NpicCreateImage_.. (..., ymax, xmax, ..., 0, 0, ...);

if (np == NULL) exit (1);

....

NpicDestroyImage (np);

• NpicCreateImageNS

Npic_image *NpicCreateImageNS (int ntype, Npic_vec *size);

Creation of an image without borders, from image ntype and size, where ntype is one
of the constants:
NPIC IMAGE 2C, NPIC IMAGE 2L, NPIC IMAGE 2D, NPIC IMAGE 2Q, NPIC IMAGE 3C, NPIC IMAGE 3L,
NPIC IMAGE 3D, NPIC IMAGE 3Q, NPIC IMAGE 4C, NPIC IMAGE 4L, NPIC IMAGE 4D, NPIC IMAGE 4Q,
NPIC IMAGE 5C, NPIC IMAGE 5L, NPIC IMAGE 5D, NPIC IMAGE 5Q, NPIC IMAGE 6C, NPIC IMAGE 6L,
NPIC IMAGE 6D, NPIC IMAGE 6Q.

All pixels are set to 0. Return image on success, else return NULL. Verbose.

Usage:

Npic_image *np;

Npic_vec vs; vs.x = 100; vs.y = 200; vs.z = 150;

np = NpicCreateImageNS (NPIC_IMAGE_3C, &vs);

if (np == NULL) ...

....

NpicDestroyImage (np);

• NpicCreateImageDPS

Npic_image *NpicCreateImageDPS (int dim, int pixeltype, Npic_vec *size);

Creation of an image without borders, from dimension dim (in 2..6), pixeltype (NPIC C,
NPIC L, NPIC D or NPIC Q), and size. All pixels are set to 0.
Return image on success, else return NULL. Verbose.

Usage:

Npic_image *np;

Npic_vec vs; vs.x = 100; vs.y = 200; vs.z = 150;

np = NpicCreateImageDPS (3, NPIC_C, &vs);

10 CHAPTER 1. NPIC FUNCTIONS

if (np == NULL) ...

....

NpicDestroyImage (np);

• NpicDestroyImage

void NpicDestroyImage (Npic_image *np);

Free memory of an image (even if NULL or not ok). Silent.

1.1.2 Duplication of an image

Sources: image creat.h , image creat.c .

• NpicDupImage

Npic_image *NpicDupImage (Npic_image *src);

Create an image dest of same type, size and border than src. The pixels are not copied:
all pixels of dest are set to 0, including border pixels. Do nothing if src is not ok.

Return dest on success, else NULL. Verbose.

• NpicDupImageB

Npic_image *NpicDupImageB (Npic_image *src,

int tbor, int zbor, int ybor, int xbor);

Npic_image *NpicDupImageB6 (Npic_image *src,

int rbor, int sbor, int tbor, int zbor, int ybor, int xbor);

The same with other border sizes. Depending on dimension, rbor, sbor, tbor or zbor

are ignored.

• NpicSwapImage

void NpicSwapImage (Npic_image *np1, Npic_image *np2);

Swap all fields between images np1 and np2 (even if not ok). Silent.

1.1.3 Checks on images

Sources: image check.h , image check.c .

• NpicImageIsOK

int NpicImageIsOK (Npic_image *np, const char *funcname);

1.1. IMAGES IN MEMORY 11

Check if image is not NULL, has a correct type and is ok. On error, print an error message
containing funcname.

Return NPIC SUCCESS on success, else error code.

• NpicImageIsOK DS*

int NpicImageIsOK_DS1 (Npic_image *dest, Npic_image *src1,

char const *funcname);

int NpicImageIsOK_DS2 (Npic_image *dest, Npic_image *src1,

Npic_image *src2, const char *funcname);

int NpicImageIsOK_DS3 (Npic_image *dest, Npic_image *src1,

Npic_image *src2, Npic_image *src3,

const char *funcname);

Check if all images are ok. On error, set not ok for dest, and print an error message
containing funcname.

Return NPIC SUCCESS on success, else error code.

• NpicSameImage

int NpicSameImage (Npic_image *np1, Npic_image *np2, int what);

Test if the two images have same type, dimension, size or border (even if they are not ok).
what is a binary OR between NPIC TYPE, NPIC DIM, NPIC SIZE, NPIC BORD.

Return NPIC SUCCESS on success, else error code. Silent.

• NpicImageIsSquare

int NpicImageIsSquare (Npic_image *np1, const char *funcname);

Test if the image is square. On error, set not ok for dest, and print an error message
containing funcname.

Return NPIC SUCCESS on success, else error code.

1.1.4 Type to name and vice-versa

Sources: image ntype.h , image ntype.c .

• NpicImageNtype

int NpicImageNtype (int dim, int pixeltype);

Describe the image type corresponding to dim and pixeltype, where dim is in 2..6 and
pixeltype is one of NPIC C, NPIC L, NPIC D or NPIC Q.

Return one of these constants: NPIC IMAGE 2C, .. NPIC IMAGE 6Q, else NPIC NONE on error.
Silent.

• NpicImagePixelType

12 CHAPTER 1. NPIC FUNCTIONS

int NpicImagePixelType (int ntype)

Describe the pixel type from the image type ntype, where ntype is one of NPIC IMAGE 2C

.. NPIC IMAGE 6Q.
Return one of these constants: NPIC C, NPIC L, NPIC D or NPIC Q, else NPIC NONE on error.
Silent.

• NpicImageTypeName

const char *NpicImageTypeName (int ntype);

Return a static string containing the name of the image type, such as "NPIC IMAGE 2C",
else "ERROR". ntype is one of NPIC IMAGE 2C .. NPIC IMAGE 6Q. Silent.

1.1.5 Accessing to the pixels

Sources: image creat.h , image creat.c .

• NpicCastImage

void *NpicCastImage (Npic_image *np1);

Return the typed image inside the n-image np1 (even if not ok). Silent.

We call n-image a variable of type Npic image, which can store an image having any of
the allowed dimensions and pixel types. A typed image is a variable of type Npic image dt

having a determined dimension d and pixel type t.

The pixels cannot be accessed in a n-image. Since Npic image is a union of structs, we
normally should write Npic image dt*p1 = &np1->im dt to get the typed image p1 from
np1; thanks to this function, we can simplier write Npic image dt*p1 = NpicCastImage

(np1). How does it work ? This is actually a simple cast of the Npic image* type to
void*.

Of course, NpicCastImage must be called after successful creation of an image:

Npic_image *np1; /* the n-image */

Npic_image_2c *p1; /* the typed image */

...

np1 = NpicCreateImage_2c (ymax, xmax, 0, 0);

if (np1 == NULL) return;

p1 = NpicCastImage (np1);

for (y = 0; y < p1->ymax; y++)

for (x = 0; x < p1->xmax; x++)

p1->tab[y][x] = x+y;

...

NpicDestroyImage (np1);

1.1. IMAGES IN MEMORY 13

1.1.6 Copying or converting pixels

Sources: image copy.h , image copy.c .

• NpicCopyImageI

void NpicCopyImageI (Npic_image *dest, Npic_image *src);

Copy the value of each interior pixel from dest to the corresponding pixel in src. The
two images must have same dimension and size.

Do not copy nor modify border pixels. Do nothing if dest or src is not ok. set not ok for
dest on error. Verbose.

This function is also usefull for conversion between 2 different images types. Values can
be truncated during conversion; no warning is done.

Usage:

Npic_image *src, *dest;

src = NpicReadImage ("file.npz");

...

dest = NpicDupImage (src);

NpicCopyImageI (dest, src);

• NpicCopyImageIB

void NpicCopyImageIB (Npic_image *dest, Npic_image *src);

The same, including border pixels. The two images must also have same border widths.

• NpicCopyImageB

void NpicCopyImageB (Npic_image *dest, Npic_image *src);

The same, only on border pixels. The two images must have same border.

• NpicConvertImage *

void NpicConvertImage_c (Npic_image *np1);

void NpicConvertImage_l (Npic_image *np1);

void NpicConvertImage_d (Npic_image *np1);

Convert image pixels to Npic c, Npic l or Npic d format (border pixels excluded).

Do nothing if np1 is not ok, or if pixels already have the expected type. Set not ok for
np1 on error. Verbose.

Values can be truncated during conversion; no warning is done.

14 CHAPTER 1. NPIC FUNCTIONS

1.1.7 Cutting in slices

Sources: image slice.h , image slice.c .

• NpicCreateSlice *

Npic_image *NpicCreateSlice_r (Npic_image *np1, int t);

Npic_image *NpicCreateSlice_s (Npic_image *np1, int t);

Npic_image *NpicCreateSlice_t (Npic_image *np1, int t);

Npic_image *NpicCreateSlice_z (Npic_image *np1, int z);

Npic_image *NpicCreateSlice_y (Npic_image *np1, int y);

Npic_image *NpicCreateSlice_x (Npic_image *np1, int x);

Create an image of dimension-1, containing the slice for the coordinate.

Return new image or NULL.

1.2 More on image border

Images can be created with an external border or not, see section 1.1.1 . This border can
be added, changed or canceled after image creation.

1.2.1 Border size

Sources: image border.h , image border.c .

• NpicSetBorderWidth

void NpicSetBorderWidth (Npic_image *np,

int tbor, int zbor, int ybor, int xbor);

void NpicSetBorderWidth6 (Npic_image *np,

int rbor, int sbor, int tbor, int zbor, int ybor, int xbor);

Change border width of image np. The image pixels are unchanged; the border pixels are
set to 0. Depending on dimension, rbor, sbor, tbor or zbor are ignored.

Do nothing if np is not ok. set not ok on error. Verbose.

• NpicSetBorderWidthSame

void NpicSetBorderWidthSame (Npic_image *np, int bord);

Change all border widths of np to same value bord. The image pixels are unchanged; the
border pixels are set to 0.

Do nothing if np is not ok. set not ok on error. Verbose.

• NpicSetBorderWidthMin

void NpicSetBorderWidthMin (Npic_image *np, int bord);

1.2. MORE ON IMAGE BORDER 15

Change the border widths of np which are smaller than bord to the value bord. The image
pixels are unchanged; the border pixels are set to 0.

Do nothing if np is not ok. set not ok on error. Verbose.

1.2.2 Setting border pixel values

Sources: image border.h , image border.c .

Depending on image type, use function i for integer pixels, function d for double pixels,
function q for 4 short pixels.

• NpicFillWholeZero

void NpicFillWholeZero (Npic_image *np);

Set each pixel to zero, including border pixels.

Do nothing if np is not ok. set not ok on error. Verbose.

• NpicFillWhole *

void NpicFillWhole_i (Npic_image *np, int val1);

void NpicFillWhole_d (Npic_image *np, double val1);

void NpicFillWhole_q (Npic_image *np, int a, int b, int c, int d);

Set all pixels to the value val1, including border pixels.

Do nothing if np is not ok. set not ok on error. Verbose.

• NpicFillBorder *

void NpicFillBorder_i (Npic_image *np, int val1);

void NpicFillBorder_d (Npic_image *np, double val1);

void NpicFillBorder_q (Npic_image *np, int a, int b, int c, int d);

Set border pixels to the value val1. The image pixels are unchanged.

Do nothing if np is not ok. set not ok on error. Verbose.

1.2.3 Mirroring

Sources: image border.h , image border.c .

• NpicMirrorBorder

void NpicMirrorBorder (Npic_image *np);

16 CHAPTER 1. NPIC FUNCTIONS

Fill the border with image pixels. The image pixels are unchanged. The Line 1 is copied
on line -1, line 2 on line -2, etc; same for rows, etc. Useful for linear filters.

Do nothing if np is not ok. set not ok on error. Verbose.

As an example, see test-mirror.c.

1.3 Image Files

Npic knows a number of image formats, which are listed in this section.

1.3.1 By extension

Sources: files byext.h , files byext.c , files hints.h , files hints.c , files gz.h , files gz.c .

The easiest way to read or write a file is to let Npic guess the format from the file extension.
If the extension ends by ”.gz”, ”.bz2” or ”.7z”, then the file is (un)compressed on fly.

Some file formats allow hints at the end of the file name (currently, formats: pnm, pbm,
pgm, ppm). A hint is a list of comma-separated words after a ”:” and without blanks.
The hints are memorized and suppressed from the name. For instance in a file named
"tmp1.pnm.gz:16-bit,little-endian", the real name is "tmp1.pnm.gz" and the hints
are "16-bit" and "little-endian".

• NpicWriteImage

int NpicWriteImage (Npic_image *np, const char *filename);

Write image in file according to its extension. Do nothing if image is not ok.

Return NPIC SUCCESS on success, else return error code. Verbose.

• NpicReadImage

Npic_image *NpicReadImage (const char *filename);

Read image from file according to its extension and create appropriate image.

Return image on success, else return NULL. Verbose.

• NpicInfoImage

int NpicInfoImage (const char *filename);

Print image informations according to its extension.

Return NPIC SUCCESS on success, else return error code. Verbose.

Usage:

Npic_image *np;

1.3. IMAGE FILES 17

np = NpicReadImage ("image1.pgm.gz");

if (np == NULL) exit (1);

if (NpicWriteImage (np, "image2.npz") != NPIC_SUCCESS) exit (1);

NpicDestroy (np);

As an example, see npic-conv.c which converts any image file format in another (if possi-
ble), and npic-info.c which prints informations of image files.

1.3.2 Npic compressed format NPZ

Sources: files npz.h , files npz.c .

The NPZ file format (with .npz extension) is the proposed format to read and save Npic
images, whatever the dimension, the pixel type and the endianness.

The beginning of the file is a text header describing the content (use Unix command head

to watch it) and the text properties, the next is the bitmap compressed with gzip. See
section 3.1 for specifications.

The NPZ file format can store text properties; they are not limited in number neither in
size, see section 1.7.3

• NpicWriteNPZ

int NpicWriteNPZ (Npic_image *np, const char *filename);

Write file in NPZ format. Only interior pixels are saved. Do nothing if image is not ok.

Return NPIC SUCCESS on success, else return error code. Verbose.

• NpicReadNPZ

Npic_image *NpicReadNPZ (const char *filename);

Read file in NPZ format.

Return image on success, else return NULL. Verbose.

• NpicInfoNPZ

int NpicInfoNPZ (const char *filename);

Print infos of a file in NPZ format.

Return NPIC SUCCESS on success, else return error code. Verbose.

1.3.3 PAN format for images and volumes

Sources: files pan.h , files pan.c .

18 CHAPTER 1. NPIC FUNCTIONS

The PAN file format (extension .pan) is a file format for 2D/3D/3D+t images, proposed
by Regis Clouard and others from Greyc, in the Pandore library, and written in C++.

The PAN header is a binary struct, followed by attributes; the datas are raw. The format
doesn’t allow text properties. The PAN file format can also store objects as graphs, but
this is not implemented in Npic.

For non compressed files (with extension .pan), set comp = NPIC COMPRESS NONE. You can
directly read or write compressed files, having extension .pan.gz, .pan.bz2 or .pan.7z,
by setting comp = NPIC COMPRESS GZ, NPIC COMPRESS BZ2 or NPIC COMPRESS 7Z.

• NpicWritePAN

int NpicWritePAN (Npic_image *np, const char *filename, Npic_file_compress comp);

Write file in PAN format and save Npic image image, according to its type.

Return NPIC SUCCESS on success, else return error code. Verbose.

• NpicReadPAN

Npic_image *NpicReadPAN (const char *filename, Npic_file_compress comp);

Read file in PAN format and create Npic image image of corresponding type.

Return image on success, else return NULL. Verbose.

• NpicInfoPAN

int NpicInfoPAN (const char *filename, Npic_file_compress comp);

Print infos of a file in PAN format.

Return NPIC SUCCESS on success, else return error code. Verbose.

1.3.4 VOL format for volumes

Sources: files vol.h , files vol.c .

The VOL file format (extension .vol) is a file format for 3D images, proposed by David
Coeurjolly and Alexis Guillaume, in the SimpleVol library, written in C++.

The VOL header is a list of text properties, describing the dimensions, the endianness,
etc, some of these being mandatory. The total number of properties is limited to 64 and
their length to 128 char each. See section 1.7.3

For non compressed files (with extension .vol), set comp = NPIC COMPRESS NONE. You can
directly read or write compressed files, having extension .vol.gz, .vol.bz2 or .vol.7z,
by setting comp = NPIC COMPRESS GZ, NPIC COMPRESS BZ2 or NPIC COMPRESS 7Z.

• NpicWriteVOL

int NpicWriteVOL (Npic_image *np, const char *filename, Npic_file_compress comp);

1.3. IMAGE FILES 19

Write file in VOL format and save Npic image image of type NPIC IMAGE 3C or 3L.

Return NPIC SUCCESS on success, else return error code. Verbose.

• NpicReadVOL

Npic_image *NpicReadVOL (const char *filename, Npic_file_compress comp);

Read file in VOL format and create Npic image image of type NPIC IMAGE 3C or 3L.

Return image on success, else return NULL. Verbose.

• NpicInfoVOL

int NpicInfoVOL (const char *filename, Npic_file_compress comp);

Print infos of a file in VOL format.

Return NPIC SUCCESS on success, else return error code. Verbose.

1.3.5 PNM format for 2D images (PBM/PGM/PPM)

Sources: files pnm.h , files pnm.c , files hints.h , files hints.c .

The PNM file formats stand for ”Portable aNyMap file format” and have .pnm extension
in the general case, or .pbm, .pgm and .ppm extensions, respectively, for bitmap 1 bit
format, greylevel 8 or 16 bit format, pixmap 8+8+8 or 16+16+16 bit format. See man

pnm/pgm/pbm/ppm for specifications.

For non compressed files (with extension .pnm or others), set comp = NPIC COMPRESS NONE.
You can directly read or write compressed files, having extension .pnm.gz, .pnm.bz2 or
.pnm.7z, by setting comp = NPIC COMPRESS GZ, NPIC COMPRESS BZ2 or NPIC COMPRESS 7Z.

• Hints

This file format can be managed with hints at the end of the file name. A hint is a list of
comma-separated words after a ”:” and without blanks. The hints are memorized and sup-
pressed from the name. For instance in a file named "tmp1.pnm.gz:16-bit,little-endian",
the real name is "tmp1.pnm.gz" and the hints are "16-bit" and "little-endian".

To get the available hints list, try writing or saving with the hint help. This prints a help
message and stops with an error.

The allowed hints when writing a PNM file with NpicWriteImage are:

⊲ bitmap (default is greymap or pixmap);

⊲ ascii (default is binary);

⊲ 16-bit (default is 8-bit);

⊲ little-endian (for 16-bit pixels; default is big-endian).

The allowed hints when reading a PNM file with NpicReadImage are:

20 CHAPTER 1. NPIC FUNCTIONS

⊲ little-endian (for 16-bit pixels; default is big-endian).

Hints should only be used with NpicReadImage and NpicWriteImage, but not with the
functions below.

• NpicWritePNM

int NpicWritePNM (Npic_image *np, const char *filename, Npic_file_compress comp,

Npic_pnm_format format, Npic_pnm_option option)

Save a 2C, 2L or 2Q image np in a PNM file.

format is one of NPIC PNM BITMAP ASCII, NPIC PNM GREYMAP ASCII, NPIC PNM PIXMAP ASCII,
NPIC PNM BITMAP BINARY, NPIC PNM GREYMAP BINARY, NPIC PNM PIXMAP BINARY, NPIC PNM AUTO DETECT.
In the latter case, the format is guessed from the options.

option is either NPIC PNM OPTION NONE, either a bitwise union of NPIC PNM BITMAP (de-
fault is greymap), NPIC PNM ASCII (default is binary), NPIC PNM ALLOW 16 BIT (default is
8 bit), NPIC PNM LITTLE ENDIAN (default is big endian).

Return NPIC SUCCESS on success, else return error code. Verbose.

• NpicReadPNM

Npic_image *NpicReadPNM (const char *filename, Npic_file_compress comp,

Npic_pnm_option option)

Read a PNM file and create a 2C, 2L or 2Q image.

option is NPIC PNM OPTION NONE, or NPIC PNM LITTLE ENDIAN (default is big endian).

Return image on success, else return NULL. Verbose.

• NpicInfoPNM

int NpicInfoPNM (const char *filename, Npic_file_compress comp);

Print infos about a PNM file.

Return NPIC SUCCESS on success, else return error code. Verbose.

As an example, see test-pnm.c

1.3.6 Printing an image in ascii

Sources: files print.h , files print.c .

Work only on 2D images.

• NpicPrintImage*

int NpicPrintImage (Npic_image *np);

int NpicPrintImageB(Npic_image *np);

1.4. MASKS 21

Print whole image to stdout, without or with border pixels.

Return NPIC SUCCESS on success, else return error code. Verbose.

• NpicPrintImage*F

int NpicPrintImageF (Npic_image *np, FILE *f);

int NpicPrintImageBF (Npic_image *np, FILE *f);

Print whole image to a file f, without or with border pixels. The file must be opened
before calling, and closed after.

Return NPIC SUCCESS on success, else return error code. Verbose.

• NpicPrintImageF YX

int NpicPrintImageF_YX (Npic_image *np, FILE *f,

int y1, int y2, int x1, int x2);

The same for a bounding box y1 <= y <= y2 and x1 <= x <= x2.

Return NPIC SUCCESS on success, else return error code. Verbose.

As an example, see test-mirror.c.

1.4 Masks

1.4.1 Creation of a mask

Sources: mask creat.h , mask creat.c.

• NpicCreateMask

Npic_mask *NpicCreateMask (int ntype);

Creation of a mask, with current number of vectors set to 0.

Return the mask on success, else return NULL. Verbose.

The allowed types are NPIC MASK 2L, NPIC MASK 2D, NPIC MASK 3L, NPIC MASK 3D, NPIC MASK 4L,
NPIC MASK 4D, NPIC MASK 5L, NPIC MASK 5D, NPIC MASK 6L, NPIC MASK 6D.

Usage:

Npic_mask *nm1;

nm1 = NpicCreateMask (NPIC_MASK_..);

if (nm1 == NULL) ...

....

NpicDestroyMask (nm1);

• NpicCreateMaskDP

22 CHAPTER 1. NPIC FUNCTIONS

Npic_mask *NpicCreateMaskDP (int dim, int pixeltype);

Creation of a mask, having dimension dim (in 2..6), and pixeltype being NPIC C or
NPIC L. The current number of vectors is set to 0.

Return the mask on success, else return NULL. Verbose.

Usage:

Npic_mask *nm1;

nm1 = NpicCreateMaskDP (2, NPIC_L);

if (nm1 == NULL) ...

....

NpicDestroyMask (nm1);

• NpicDestroyMask

void NpicDestroyMask (Npic_mask *nm1);

Destruction of a mask (even if it is not ok). Silent.

• NpicCopyMask

Npic_mask *NpicCopyMask (Npic_mask *src);

Copy a mask src to a mask dest. Do nothing if src is not ok. Do not copy text properties;
for that, use NpicMaskCopyProps.

Return the mask on success, else return NULL. Verbose.

1.4.2 Checks on a mask

Sources: mask check.h , mask check.c.

• NpicMaskIsOK

int NpicMaskIsOK (Npic_mask *m, const char *funcname);

Check if mask is not NULL, has correct type and is ok.

Return NPIC SUCCESS on success, else print a message containing funcname and return
error code.

• NpicMaskCompat

int NpicMaskCompat (Npic_mask *m, Npic_mask *np);

Check if mask type and mask type are compatible (even if not ok).

Return NPIC SUCCESS, else error code. Silent.

1.4. MASKS 23

1.4.3 Type to name and vice-versa

Sources: mask ntype.h , mask ntype.c .

• NpicMaskNtype

int NpicMaskNtype (int dim, int pixeltype);

Describe the mask type corresponding to dim and pixeltype, where dim is in 2..6 and
pixeltype is one of NPIC L, NPIC D.

Return one of these constants: NPIC MASK 2L, .. NPIC MASK 6D, else NPIC NONE on error.
Silent.

• NpicMaskPixelType

int NpicMaskPixelType (int ntype)

Describe the pixel type from the mask type ntype, where ntype is one of NPIC MASK 2D ..
NPIC MASK 6D.
Return one of these constants: NPIC L, NPIC D, else NPIC NONE on error. Silent.

• NpicMaskTypeName

const char *NpicMaskTypeName (int ntype);

Return a static string containing the name of the mask type, such as "NPIC MASK 2L", else
"ERROR". ntype is one of NPIC MASK 2L .. NPIC MASK 6D. Silent.

• NpicMaskDim

int NpicMaskDim (int type);

Return the dimension from the type, or -1. Silent.

1.4.4 Inserting vectors

Sources: mask creat.h , mask creat.c.

• NpicMaskInsert *

void NpicMaskInsert_2l (Npic_mask *m, int y, int x, Npic_l h);

void NpicMaskInsert_2d (Npic_mask *m, int y, int x, Npic_d h);

void NpicMaskInsert_3l (Npic_mask *m, int z, int y, int x, Npic_l h);

void NpicMaskInsert_3d (Npic_mask *m, int z, int y, int x, Npic_d h);

void NpicMaskInsert_4l (Npic_mask *m,

int t, int z, int y, int x, Npic_l h);

void NpicMaskInsert_4d (Npic_mask *m,

int t, int z, int y, int x, Npic_d h);

void NpicMaskInsert_5l (Npic_mask *m,

24 CHAPTER 1. NPIC FUNCTIONS

int s, int t, int z, int y, int x, Npic_l h);

void NpicMaskInsert_5d (Npic_mask *m,

int s, int t, int z, int y, int x, Npic_d h);

void NpicMaskInsert_6l (Npic_mask *m,

int r, int s, int t, int z, int y, int x, Npic_l h);

void NpicMaskInsert_6d (Npic_mask *m,

int r, int s, int t, int z, int y, int x, Npic_d h);

Insert a vector in the mask m, and expand its internal list if necessary. h is a weight
associated to the vector.

Do nothing if m is not ok. set not ok on error. Verbose.

1.4.5 Computing masks

Sources: mask comp.h , mask comp.c.

• NpicCompHalfMask

Npic_mask *NpicCompHalfMask(Npic_mask *mg);

Create and compute the half mask corresponding to the mask generator mg, by inserting
all the G-symmetrical vectors of mg which are in the half space in scan line order "for t,

for z, for y, for x".

Do nothing if mg is not ok. Do not copy text properties; for that, use NpicMaskCopyProps.

Return the new mask on success, else NULL. Verbose.

• NpicCompFullMask

Npic_mask *NpicCompFullMask(Npic_mask *mg);

Create and compute the full mask corresponding to the mask generator mg, by inserting
all the G-symmetrical vectors of mg.

Do nothing if mg is not ok. Do not copy text properties; for that, use NpicMaskCopyProps.

Return the new mask on success, else NULL. Verbose.

• NpicCompGeneMask

Npic_mask *NpicCompGeneMask(Npic_mask *m);

Create and compute the mask generator corresponding to the half or full mask m. Assume
m is G-symmetric.

Do nothing if m is not ok. Do not copy text properties; for that, use NpicMaskCopyProps.

Return the new mask on success, else NULL. Verbose.

• NpicMaskLargestCoord

1.4. MASKS 25

int NpicMaskLargestCoord (Npic_mask *m);

Compute the largest coordinate r of the vectors in the mask (even if m is not ok).

Return r on success, else 0. Silent.

1.4.6 Accessing to vectors

Sources: mask creat.h , mask creat.c.

• NpicCastMask

void *NpicCastMask (Npic_mask *m);

Return the mask which is inside the Npic mask structure (even if not ok). Silent.

We call n-mask a mask of type Npic mask, which can store a mask having any of the
allowed dimensions and pixel types. A typed mask is a variable of type Npic mask dt

having a determined dimension d and pixel type t.

The vectors cannot be accessed in a n-mask. Since Npic mask is a union of structs, we
normally should write Npic mask dt*m1 = &nm1->dm dt to get the typed mask m1 from
nm1; thanks to this function, we can simplier write Npic mask dt*m1 = NpicCastMask

(nm1). How does it work ? This is actually a simple cast of the Npic mask* type to
void*.

Of course, NpicCastMask must be called after successful creation of a mask:

Npic_mask *nm1; /* the n-mask */

Npic_mask_2l *m1; /* the typed mask */

nm1 = NpicCreateMask (NPIC_MASK_2L);

if (nm1 == NULL) return;

NpicMaskInsert_2l (nm1, 0, 1, 5);

NpicMaskInsert_2l (nm1, 1, 1, 7);

m1 = NpicCastMask (nm1);

for (i = 0; i < m1->nb; i++)

printf ("y = %d x = %d h = %"NPIC_LP"\n",

m1->v[i].y, m1->v[i].x, m1->v[i].h);

NpicDestroyMask (nm1);

To printf a weight of type Npic d, use format %lf ; when the type is Npic l, use format
%"NPIC LP" (NPIC LP is a macro, its value is d or ld, depending on the actual type of
Npic l: int or long).

26 CHAPTER 1. NPIC FUNCTIONS

1.4.7 Printing

Sources: mask creat.h , mask creat.c.

• NpicPrintMask

void NpicPrintMask (Npic_mask *m);

Print a mask to stdout. Do not print if not ok. Verbose.

As an example, see test-mask.c

1.4.8 NMASK format for masks

Sources: files nmask.h , files nmask.c .

The NMASK file format (extension .nmask) is a proposed file format for storing masks,
such as distance masks, medial axis test neighbourhood, convolution masks, etc, whatever
the dimension and the pixel type.

The beginning of the file is a text header describing the content and the text properties,
the next is a text list of vectors and weights. See section 3.2 for specifications.

The properties allow to store additionnal datas, such as the purpose of the mask, or
if symmetries must be computed before use, etc. Properties are not limited in number
neither in size, see section 1.7.3

• NpicWriteMask

int NpicWriteMask (Npic_mask *m, const char *filename);

Save Npic mask mask in a file with extension ”.nmask” of ”.nmask.gz” (compressed on
fly).

Return NPIC SUCCESS on success, return error code. Verbose.

• NpicReadMask

Npic_mask *NpicReadMask (const char *filename);

Read a file with extension ”.nmask” of ”.nmask.gz” (uncompressed on fly) and create a
mask.

Return mask on success, else NULL. Verbose.

• NpicInfoMask

int NpicInfoMask (const char *filename);

Print infos of a file in ”.nmask” of ”.nmask.gz” format.

Return NPIC SUCCESS on success, else error code. Verbose.

• NpicReadDistanceMask

1.4. MASKS 27

Npic_mask *NpicReadDistanceMask (const char *filename);

Read a file in ”.nmask” of ”.nmask.gz” format, check in its properties if it is a distance
mask, create appropriate mask and add G-symmetries if needed.

Return mask on success, else NULL. Verbose.

• NpicReadMedialAxisMask

Npic_mask *NpicReadMedialAxisMask (const char *filename);

Read a file in ”.nmask” of ”.nmask.gz” format, check in its properties if it is a medial axis
mask (a.k.a MLut or neighbourhood test), create appropriate mask.

The ”RVerified” text property stores the largest verified radius. If absent, or less than the
largest radius, the latter is stored.

Return mask on success, else NULL. Verbose.

To create and manage masks, see npic-mask.c .

1.4.9 G-symmetries

For sources, see mask gsym.h , mask gsym.c .

• NpicGsymPermu Init / Next

void NpicGsymPermuInit (Npic_gsym *gs);

int NpicGsymPermuNext (Npic_gsym *gs);

Johnson’s algorithm to compute all permutations in [1 .. dim] see (Johnson 1963) and
(R. Seroul 1995). This function also check if (x[1], .., x[dim]) is unique.

• NpicGsymCombi Init / Next

void NpicGsymCombiInit (Npic_gsym *gs);

int NpicGsymCombiNext (Npic_gsym *gs);

Compute all the distinct sign combinations of (x[1], .., x[dim]) which are in the half-
mask in scan line order (when half==1), or in the full-mask (when half==0).

The scan line order is : for t[dim], for t[dim-1], .., for t[1]. A point (x[1],
.., x[j], 0 ... 0) belongs to the half mask iff x[j] > 0.

• NpicGsym Init / Next

void NpicGsymInit (Npic_gsym *gs);

int NpicGsymNext (Npic_gsym *gs);

Compute all the distinct G-symmetries of (x[1], .., x[dim]) in the half (or full) mask.
The G-symmetries are all the permutations and sign combinations.

• NpicGsymPrint

28 CHAPTER 1. NPIC FUNCTIONS

void NpicGsymPrint (Npic_gsym *gs);

Print positions pos[], directions dir[] and coordinates x[].

Usage:

Npic_gsym gs;

gs.x[1] = 1; gs.x[2] = 3; gs.x[3] = 0; gs.dim = 3; gs.half = 1;

NpicGsymInit (&gs);

while (NpicGsymNext (&gs))

NpicGsymPrint (&gs);

As an example, see test-gsym.c

1.5 Computations on images

1.5.1 Comparison of pixels

Sources: calc diff.h , calc diff.c .

• NpicCompare

int NpicCompare (Npic_image *np1, Npic_image *np2, int n);

Compare two images, pixel per pixel (border pixels excluded).

Return <0 if images are not ok, or do not have same type and size, 0 if same pixel values,
>0 the number of pixels which differ.

Print at most n differences. Verbose.

• NpicCompareBin

int NpicCompareBin (Npic_image *np1, Npic_image *np2, int n);

The same, but compare pixel binary values (== 0 or != 0).

1.5.2 Changing values

Sources: calc values.h , calc values.c .

The following functions do not modify border pixels; they do nothing if np is not ok, set
not ok on error, and are verbose.

Depending on image type, use function i for integer pixels, function d for double pixels,
function q for 4 short pixels.

• NpicFillVal *

1.5. COMPUTATIONS ON IMAGES 29

void NpicFillVal_i (Npic_image *np, int val1);

void NpicFillVal_d (Npic_image *np, double val1);

void NpicFillVal_q (Npic_image *np, int a, int b, int c, int d);

Set all pixels to the value val1.

• NpicChangeVal *

void NpicChangeVal_i (Npic_image *np, int val1, int val2);

void NpicChangeVal_d (Npic_image *np, double val1, double val2);

void NpicChangeVal_q (Npic_image *np, int a1, int b1, int c1, int d1,

int a2, int b2, int c2, int d2);

Set each pixel having value val1 to the value val2.

• NpicExchangeVal *

void NpicExchangeVal_i (Npic_image *np, int val1, int val2);

void NpicExchangeVal_d (Npic_image *np, double val1, double val2);

void NpicExchangeVal_q (Npic_image *np, int a1, int b1, int c1, int d1,

int a2, int b2, int c2, int d2);

Set each pixel having value val1 to the value val2, and vice versa.

• NpicMin/MaxValue

double NpicMaxValue (Npic_image *np1);

double NpicMinValue (Npic_image *np1);

Return the max or min of pixels values in image interior.

1.5.3 Thresholding pixel values

Sources: calc threshold.h , calc threshold.c .

The following functions do not modify border pixels; they do nothing if np is not ok, set
not ok on error, and are verbose.

Depending on image type, use function i for integer pixels, function d for double pixels,
function q for 4 short pixels.

• NpicThresholdLT *

void NpicThresholdLT_i (Npic_image *np, int val1, int val2);

void NpicThresholdLT_d (Npic_image *np, double val1, double val2);

void NpicThresholdLT_q (Npic_image *np, int a1, int b1, int c1, int d1,

int a2, int b2, int c2, int d2);

Set each pixel having value < val1 to the value val2.

• NpicThresholdLE *

30 CHAPTER 1. NPIC FUNCTIONS

void NpicThresholdLE_i (Npic_image *np, int val1, int val2);

void NpicThresholdLE_d (Npic_image *np, double val1, double val2);

void NpicThresholdLE_q (Npic_image *np, int a1, int b1, int c1, int d1,

int a2, int b2, int c2, int d2);

Set each pixel having value <= val1 to the value val2.

• NpicThresholdGT *

void NpicThresholdGT_i (Npic_image *np, int val1, int val2);

void NpicThresholdGT_d (Npic_image *np, double val1, double val2);

void NpicThresholdGT_q (Npic_image *np, int a1, int b1, int c1, int d1,

int a2, int b2, int c2, int d2);

Set each pixel having value > val1 to the value val2.

• NpicThresholdGE *

void NpicThresholdGE_i (Npic_image *np, int val1, int val2);

void NpicThresholdGE_d (Npic_image *np, double val1, double val2);

void NpicThresholdGE_q (Npic_image *np, int a1, int b1, int c1, int d1,

int a2, int b2, int c2, int d2);

Set each pixel having value >= val1 to the value val2.

1.5.4 Summing images

Sources: calc algeb.h , calc algeb.c .

The following functions do not modify border pixels. The images must have same type
and size; they can have same address in memory.

The functions do nothing if one of the image is not ok; they set not ok for dest on error,
and are verbose.

• NpicLinearSum

void NpicLinearSum (Npic_image *dest, Npic_image *src1, double c1, double c2);

Set each pixel of dest to a linear combination of corresponding pixels in src1 :
dest := src1 * c1 + c2 .

• NpicBilinearSum

void NpicBilinearSum (Npic_image *dest, Npic_image *src1, Npic_image *src2,

double c1, double c2, double c3);

Set each pixel of dest to a linear combination of corresponding pixels in src1 and src2 :
dest := src1 * c1 + src2 * c2 + c3 .

• NpicTrilinearSum

1.5. COMPUTATIONS ON IMAGES 31

void NpicTrilinearSum (Npic_image *dest, Npic_image *src1, Npic_image *src2,

Npic_image *src3, double c1, double c2, double c3, double c4);

Set each pixel of dest to a linear combination of corresponding pixels in src1, src2 and
src3 :
dest := src1 * c1 + src2 * c2 + src3 * c3 + c4 .

• NpicQuadraticSum

void NpicQuadraticSum (Npic_image *dest, Npic_image *src1,

double c1, double c2, double c3);

Set each pixel of dest to a quadratic combination of corresponding pixels in src1 :
dest := src12̂ * c1 + src1 * c2 + c3 .

• NpicBiQuadraticSum

void NpicBiQuadraticSum (Npic_image *dest, Npic_image *src1, Npic_image *src2,

double c1, double c2, double c3, double c4, double c5);

Set each pixel of dest to a quadratic combination of corresponding pixels in src1 and
src2 :
dest := src12̂ * c1 + src1 * c2 + src22̂ * c3 + src2 * c4 + c5 .

1.5.5 Drawing into images

Sources: calc draw.h , calc draw.c .

The following functions do not modify border pixels; they do nothing if np is not ok, set
not ok on error, and are verbose.

Depending on image dimension and pixels type, use appropriate function.

• NpicDrawRect *

void NpicDrawRect_?c (Npic_image *np,

..., int yP, int xP, ..., int yQ, int xQ,

Npic_c val1);

void NpicDrawRect_?l (Npic_image *np,

..., int yP, int xP, ..., int yQ, int xQ,

Npic_l val1);

void NpicDrawRect_?d (Npic_image *np,

..., int yP, int xP, ..., int yQ, int xQ,

Npic_d val1);

void NpicDrawRect_?q (Npic_image *np,

..., int yP, int xP, ..., int yQ, int xQ,

int a1, int b1, int c1, int d1);

32 CHAPTER 1. NPIC FUNCTIONS

Draw a rectangle bounded by P and Q, with pixel value val1. P and Q can be outside
image. Replace ? by dimension: 2, 3, 4, 5 or 6.

• NpicDrawEllipse *

void NpicDrawEllipse_?c (Npic_image *np,

..., int yP, int xP, ..., int yQ, int xQ,

Npic_c val1);

void NpicDrawEllipse_?l (Npic_image *np,

..., int yP, int xP, ..., int yQ, int xQ,

Npic_l val1);

void NpicDrawEllipse_?d (Npic_image *np,

..., int yP, int xP, ..., int yQ, int xQ,

Npic_d val1);

void NpicDrawEllipse_?q (Npic_image *np,

..., int yP, int xP, ..., int yQ, int xQ,

int a1, int b1, int c1, int d1);

Draw an ellipse bounded by P and Q, with pixel value val1. P and Q can be outside
image. Replace ? by dimension: 2, 3, 4, 5 or 6.

1.5.6 Drawing lines

Sources: calc bresenham.h , calc bresenham.c .

The following functions do not modify border pixels; they do nothing if np is not ok, set
not ok on error, and are verbose.

Depending on image dimension and pixels type, use appropriate function.

• NpicDrawLine *

void NpicDrawLine_?c (Npic_image *np,

..., int yP, int xP, ..., int yQ, int xQ,

Npic_c cP, Npic_c cQ);

void NpicDrawLine_?l (Npic_image *np,

..., int yP, int xP, ..., int yQ, int xQ,

Npic_l cP, Npic_l cQ);

void NpicDrawLine_?d (Npic_image *np,

..., int yP, int xP, ..., int yQ, int xQ,

Npic_d cP, Npic_d cQ);

void NpicDrawLine_?q (Npic_image *np,

..., int yP, int xP, ..., int yQ, int xQ,

1.6. DISTANCE TRANSFORMATIONS 33

int aP, int bP, int cP, int dP, int aQ, int bQ, int cQ, int dQ);

Draw a discrete segment from P and Q, with pixel values from cP to cQ, using generalized
Bresenham’s algorithm. P and Q must be inside image. Replace ? by dimension: 2, 3,
4, 5 or 6.

1.6 Distance Transformations

1.6.1 Front-end for Distance Transformations (DT)

Sources: dist dt.h , dist dt.c .

A distance transform (DT) is a copy of a binary image where each foreground point (non-
zero points) is labelled to its distance to the background (zero points).

This section presents a front-end for distance transformations, allowing to compute DTs
for weighted distances or Euclidean distances. The distance is defined by a mask mh,
which is either a half weighted distance mask (the property DistanceType is Weighted),
or a Euclidean distance mask, that is an empty mask with property DistanceType set to
SquaredEuclidean, etc. See section 3.2 for available distance types.

A number of distance masks is available in masks/. The weighted distance masks are
starting with ”d-”, followed by integer weights; the Euclidean distance masks are starting
with ”d-sed” or ”d-ced” or ”d-fed” (Squared, Ceil, Floor Euclidean Distance, resp.).

The following functions do nothing if np is not ok. They set not ok on error and are
verbose. They return computation time in second.microsecond. Available for images 2L,
3L, 4L, 5L, 6L and 2D, 3D, 4D, 5D, 6D.

• NpicDT

double NpicDT (Npic_image *np, Npic_mask *mh);

Compute the distance transform (DT) on image np.

• NpicDT inf

double NpicDT_inf (Npic_image *np, Npic_mask *mh);

Compute the distance transform (DT inf) on image np, with ”infinite border”, i.e border
pixels propagating no distance value.

• NpicDT rev

double NpicDT_rev (Npic_image *np, Npic_mask *mh);

Compute the reverse distance transform (DT rev) on image np.

The functions which actually perform the computations are presented bellow.

34 CHAPTER 1. NPIC FUNCTIONS

1.6.2 Squared Euclidean Distance Transformation (SEDT)

Sources: dist sedt hirata.h , dist sedt hirata.c , dist sedt saito.h , dist sedt saito.c , dist sedt quadra.h
, dist sedt quadra.c .

The following functions do nothing if np is not ok. They set not ok on error and are
verbose. They return computation time in second.microsecond . Available for images 2L,
3L, 4L, 5L and 6L.

All these function are multi-threaded with OpenMP (if enabled, see README).

• NpicSEDT *

double NpicSEDT_Hirata (Npic_image *np);

double NpicSEDT_Saito (Npic_image *np);

double NpicSEDT_quadra (Npic_image *np);

Compute the Squared Euclidean Distance Transform (SEDT) on image np :

- Use the optimal in time linear algorithm from Hirata [2] (and some fixes);
- use the separable algorithm from Saito [1];
- quadratic algorithm.

• NpicSEDT * inf

double NpicSEDT_Hirata_inf (Npic_image *np);

double NpicSEDT_Saito_inf (Npic_image *np);

double NpicSEDT_quadra_inf (Npic_image *np);

Do the same, but with ”infinite border”, i.e border pixels propagating no distance value:

- Derived from the optimal in time linear algorithm from Hirata [2];
- derived from the separable algorithm from Saito [1];
- quadratic algorithm.

• NpicSEDT * rev

double NpicSEDT_Hirata_rev (Npic_image *np);

double NpicSEDT_Saito_rev (Npic_image *np);

double NpicSEDT_quadra_rev (Npic_image *np);

Compute the Reverse Squared Euclidean Distance Transform (RevSEDT) on image np:

- Derived from the optimal in time linear algorithm from Hirata [2] (see also [3]);
- derived from the separable algorithm from Saito [1];
- quadratic algorithm.

As an example, see npic-sedt.c

The Hirata’s [2] and Saito’s et al. [1] algorithms belongs to the family of separable trans-
forms: they operate independently in each dimension. [1] was the first n-dimensional,
exact and efficient SEDT, but still a non-linear algorithm. [2] is the linearized version of
[1], and [3] is an extension of [2].

1.6. DISTANCE TRANSFORMATIONS 35

For SEDT and SEDT inf, [1] is a little faster than [2] for small images, while [2] becomes
much faster than [1] for large images. For SEDT rev, [2] is generally much faster than [1]
for all sizes.
The quadratic algorithms are very slow, but given for checks.

References:

1 T. Saito et J.I. Toriwaki, 1994. ”New algorithms for Euclidean distance transforma-
tion of an n-dimensional digitized picture with applications”. Pattern Recognition,
27(11):1551-1565.

2 T. Hirata, 1996. ”A unified linear-time algorithm for computing distance maps”.
Information Processing Letters, 58:129-133.

3 D. Coeurjolly, 2003. ”d-Dimensional Reverse Euclidean Distance Transformation
and Euclidean Medial Axis Extraction in Optimal Time”. In 11th DGCI, LNCS vol.
2886, Springer-Verlag, p. 327-337, Naples, Italy.

1.6.3 Weighted Distance Transformation (WDT)

Sources: dist wdt.h , dist wdt.c .

The following functions do nothing if np is not ok. They set not ok on error and are
verbose. They return computation time in second.microsecond . Available for images 2L,
3L, 4L, 5L, 6L and 2D, 3D, 4D, 5D, 6D.

• NpicWDT

double NpicWDT (Npic_image *np, Npic_mask *mh);

Compute the weighted distance transform (WDT) on image np for the half chamfer mask
mh.

• NpicWDT inf

double NpicWDT_inf (Npic_image *np, Npic_mask *mh);

Compute the weighted distance transform (WDT inf) on image np for the half chamfer
mask mh, with ”infinite border”, i.e border pixels propagating no distance value.

• NpicWDT rev

double NpicWDT_rev (Npic_image *np, Npic_mask *mh);

Compute the reverse weighted distance transform (WDT rev) on image np for the half
chamfer mask mh.

As an example, see npic-wdt.c

References:

1 A. Rosenfeld and J.L. Pfaltz, 1966. Sequential operations in digital picture process-
ing. Journal of ACM, 13(4):471-494.

36 CHAPTER 1. NPIC FUNCTIONS

2 U. Montanari, 1968. A method for obtaining skeletons using a quasi-euclidean dis-
tance. Journal of ACM, 15:600-624.

3 G. Borgefors, 1984. Distance transformations in arbitrary dimensions. Computer

Vision, Graphics and Image Processing, 27:321-345.

1.6.4 Medial Axis Extraction

Sources: mlut ma.h , mlut ma.c .

The Medial Axis (MA) of shape S is the set of maximal balls in S, a ball B being maximal
in S if B is included in S, and if B is not included in any other ball included in S. As MA
is a covering of S, MA is a reversible transform.

The MA can be efficiently extracted from a DT, using a test neighbourhood (denoted
Mlut) and a look-up-table (denoted Lut). The easiest way to compute MA is to use the
first function bellow (NpicExtractMA bin).

The following functions are available for images 2L, 3L, 4L, 5L and 6L.

• NpicExtractMA bin

void NpicExtractMA_bin (Npic_image *np1, Npic_image *nMA,

Npic_mask *nMdist, Npic_mask *nMlut)

Compute a DT for a binary object, then extract Medial Axis from this DT.

Input: np1 a binary image, nMdist a distance mask (half weighted or Euclidean), nMlut
a MA test neighboorhood or NULL.
Output: np1 contains the DT, nMA contains the medial axis, nMlut (if it wasn’t NULL) is
computed or updated.

Do nothing if images or masks are not ok. set not ok for MA on error. Verbose.

As an example, see npic-dtma.c.

• NpicExtractMA DT

void NpicExtractMA_DT (Npic_image *nDT, Npic_image *nMA,

Npic_mask *nMdist, Npic_mask *nMlut)

Extract the Medial Axis from a DT.

Input: nDT a DT, nMdist a distance mask (half weighted or Euclidean), nMlut a MA test
neighboorhood or NULL.
Output: nMA contains the medial axis, nMlut (if it wasn’t NULL) is computed or updated.

Do nothing if images or masks are not ok. set not ok for MA on error. Verbose.

• NpicExtractMA Lut

void NpicExtractMA_Lut (Npic_image *nDT, Npic_image *nMA,

Npic_mask *nMlut, Npic_Lut *Lut, Npic_l Rmax);

1.6. DISTANCE TRANSFORMATIONS 37

Extract Medial Axis from a DT having Lut completely pre-computed.

Do nothing if nDT, nMA or nMlut is not ok. set not ok for MA on error. Verbose.

• NpicExtractMA Mlut

void NpicExtractMA_Mlut (Npic_image *nDT, Npic_image *nMA,

Npic_mask *nMlut, Npic_image *nCTg, Npic_l Rmax);

Extract Medial Axis from a DT having Mlut pre-computed, compute and store one Lut
column at a time.

Do nothing if nDT, nMA or nMlut is not ok. set not ok for MA on error. Verbose.

References:

1 G. Borgefors, I. Ragnemalm, and G. Sanniti di Baja, 1991. ”The Euclidean Dis-
tance Transform : finding the local maxima and reconstructing the shape”. In 7th
Scandinavian Conf. on Image Analysis, volume 2, pages 974-981, Aalborg, Denmark.

2 G. Borgefors, 1993. ”Centres of maximal disks in the 5-7-11 distance transform”. In
8th Scandinavian Conf. on Image Analysis, pages 105-111, Tromso, Norway.

3 E. Remy and E. Thiel, 2005. Exact Medial Axis with Euclidean Distance. Image
and Vision Computing, 23(2):167-175. Link.

4 E. Remy and E. Thiel, 2002. Medial axis for chamfer distances: computing look-up
tables and neighbourhoods in 2D or 3D. Pattern Recognition Letters, 23(6):649-661.
Link.

1.6.5 Medial Axis - LUT and Mlut

Sources: mlut remy.h , mlut remy.c .

Additionnal sources: mlut sedtg.h , mlut sedtg.c , mlut wdtg.h , mlut wdtg.c.

These functions show the detail of the Medial Axis, Mlut and Lut computations.

The following functions are available for images 2L, 3L, 4L, 5L and 6L.

• NpicMlutCompLutCol

double NpicMlutCompLutCol (Npic_image *nCTg, Npic_vec *vg,

Npic_l Rmax, Npic_l *LutCol);

Lut column Computation Algorithm. See [3, chap.5 p.79], [1], [2].

Input: nCTg the distance cone to origin, vg the vector, Rmax the greatest radius to be
verified in Lut.
Output: The Lut column LutCol is filled with the correct values.

Assume that nCTg is a Ln̂ image and that LutCol is [0..Rmax].
Do nothing if nCTg is not ok. set not ok on error. Verbose.

Return computation time in second.microsecond

• NpicMlutInitLut

38 CHAPTER 1. NPIC FUNCTIONS

int NpicMlutInitLut (Npic_Lut *Lut, Npic_l Rtarget);

Initialize the Lut structure with no column. The future columns will have [0..Rtarget]

bounds.

Return NPIC SUCCESS or error code. Verbose.

• NpicMlutNewCol

int NpicMlutNewCol (Npic_Lut *Lut);

Create and Insert a column in Lut.

Return NPIC SUCCESS or error code. Verbose.

• NpicMlutFreeLut

void NpicMlutFreeLut (Npic_Lut *Lut);

Free Lut and its columns. Verbose.

• NpicMlutCompLutMask

int NpicMlutCompLutMask (Npic_image *nCTg, Npic_mask *nMlut, Npic_Lut *Lut,

Npic_l Rknown, Npic_l Rtarget, Npic_mask *nMg);

Full Computation Algorithm of Lut and Mlut for SEDT [1] or WDT [2].

Input: nCTg a Ln̂ image, nMlut the generator of the Lut mask, Lut the look-up table,
Rknown the last verified radius, Rtarget the maximum radius to be verified, nMg == NULL

for SEDT, else the generator of the WD mask.
Output: nMlut and Lut are filled with the correct values.

Do nothing if nCTg is not ok. Verbose. Return error code.

Usage: To compute nMlut and Lut from beginning to Rtarget with L such that L*L >
Rtarget for SED :

Npic_mask *nMlut = NpicCreateMask (NPIC_MASK_..);

Npic_image *nCTg = NpicCreateImage_.. (L, L, ..., 0, 0, ...);

Npic_Lut Lut;

char s[200];

NpicMaskAddProp (nMlut, "Nature", "MedialAxis");

NpicMaskAddProp (nMlut, "RVerified", "0");

NpicMlutCTg_SED (nCTg);

NpicMlutInitLut (&Lut, Rtarget);

NpicMlutCompLutMask (nCTg, nMlut, &Lut, 0, Rtarget, NULL);

sprintf (s, "%d", Rtarget);

1.7. MISCELLANEOUS 39

NpicMaskAddProp (nMlut, "RVerified", s);

NpicWriteMask (nMlut, "name.nmask");

NpicDestroyMask (nMlut);

NpicDestroyImage (nCTg);

NpicMlutFreeLut (&Lut);

• NpicAllocAndCompLutCol

Npic_l *NpicAllocAndCompLutCol (Npic_mask *nMlut, Npic_image *nCTg,

Npic_l Rmax, int n);

Create and compute one Lut column. Return the column or NULL. The result must be
freed after use.

Do nothing if nDT, nCTg or nMlut is not ok. Verbose.

References:

1 E. Remy and E. Thiel, 2005. Exact Medial Axis with Euclidean Distance. Image
and Vision Computing, 23(2):167-175. Link.

2 E. Remy and E. Thiel, 2002. Medial axis for chamfer distances: computing look-up
tables and neighbourhoods in 2D or 3D. Pattern Recognition Letters, 23(6):649-661.
Link.

3 E. Thiel, 1994. Les distances de chanfrein en analyse d’images : fondements et
applications. These de Doctorat, Universite Joseph Fourier, Grenoble 1. Link.

1.7 Miscellaneous

1.7.1 Error messages

Sources: errors.h , errors.c .

• NpicStrErr

const char *NpicStrErr (int err);

Return the string message corresponding to error-code err.

• NpicError

int NpicError (const char *funcname, int err, const char *format, ...);

Return err and, if err != NPIC SUCCESS, print error message on stderr:

⊲ the string ”libNpic”, then

⊲ the name funcname of the function if non empty, then

40 CHAPTER 1. NPIC FUNCTIONS

⊲ the string message corresponding to err, then

⊲ the formatted message, if non empty (same usage as printf), then

⊲ a newline.

Usage:

err = myfunc();

if (err != NPIC_SUCCESS) return NpicError ("myfunc", err, "");

err = loadfile (filename);

if (err != NPIC_SUCCESS) return NpicError ("loadfile", err, " in \"%s\"", filename);

1.7.2 Computation time

Sources: misc.h , misc.c .

• NpicGetTime

double NpicGetTime ();

Return time since Epoch (1970, january the 1st at 00:00) in seconds.microseconds .

Usage:

double time1, time2;

time1 = NpicGetTime ();

...

time2 = NpicGetTime ();

printf ("Computation time : %.6lf s\n", time2-time1);

1.7.3 Text properties

Sources: props.h , props.c , image prop.h , image prop.c , mask prop.h , mask prop.c .

A property is a couple (key, val) where key and val are strings. A property list is a list
of properties where each key is unique.

The key and val are not limited in size neither in number; but they must be 7-bit ANSI
strings, to avoid internationalization problems. More precisely :

⊲ A key is valid if it is a non-empty string only composed of chars in [33,126] and
different from ’:’. In particular, chars ’\t’, ’ ’ and ’\n’ are forbidden. This is
checked with NpicPropKeyIsValid.

⊲ A val is valid if it is a possibly empty string only composed of chars in [32,126]

or a ’\t’. In particular, char ’\n’ is forbidden, ’ ’ and ’:’ are allowed. This is
checked with NpicPropValIsValid.

1.7. MISCELLANEOUS 41

To manage a list of properties, declare Npic props props, initialize with NpicInitProps

(&props), then use one of the functions NpicAddProp, NpicSupprProp, NpicGetProp,
NpicHasProp, NpicPrintProps, and finally, free with NpicFreeProps (&props).

Each image and each mask has its own property list, which is automatically initialized at
creation and freed at destruction. For images use the fonctions NpicImage... ; for masks
use the fonctions NpicMask.... These functions do nothing if the object is not ok.

• NpicInitProps

void NpicInitProps (Npic_props *props);

Initialize Npic props structure. Silent.

• Npic*FreeProps

void NpicFreeProps (Npic_props *props);

void NpicImageFreeProps (Npic_image *m);

void NpicMaskFreeProps (Npic_mask *m);

Free Npic props structure. Silent.

• Npic*CopyProps

int NpicCopyProps (Npic_props *dest, Npic_props *src);

int NpicImageCopyProps (Npic_image *dest, Npic_image *src);

int NpicMaskCopyProps (Npic_mask *dest, Npic_mask *src);

Copy properties from src to dest ; free dest before if non empty. On success return
NPIC SUCCESS, else error code. Silent.

• NpicProp*IsValid

int NpicPropKeyIsValid (const char *key);

int NpicPropValIsValid (const char *val);

Test if a key or a val is valid. Return 1 if valid, else 0. Silent.

• Npic*AddProp

int NpicAddProp (Npic_props *props, const char *key, const char *val);

int NpicImageAddProp (Npic_image *np, const char *key, const char *val);

int NpicMaskAddProp (Npic_mask *m, const char *key, const char *val);

Insert a property (key, val) in properties list (only if key and val are valid, else they are
rejected). If key is already in list, the val is overwritten. The list is sorted by key, to allow
fast dichotomic search. The list is enlarged if necessary. On success return NPIC SUCCESS,
else error code. Verbose.

• Npic*SupprProp

42 CHAPTER 1. NPIC FUNCTIONS

int NpicSupprProp (Npic_props *props, const char *key);

int NpicImageSupprProp (Npic_image *np, const char *key);

int NpicMaskSupprProp (Npic_mask *m, const char *key);

Remove a property (key, val) from properties list. The list is kept sorted, without hole.
The list is shortened if necessary. On success return NPIC SUCCESS, else error code. Ver-
bose.

• Npic*GetProp

const char *NpicGetProp (Npic_props *props, const char *key);

const char *NpicImageGetProp (Npic_image *np, const char *key);

const char *NpicMaskGetProp (Npic_mask *m, const char *key);

Search a property from its key. Return property value if found, else "". Silent. To know
if a property is set, use NpicHasProp.

• Npic*GetPropD

const char *NpicGetPropD (Npic_props *props, const char *key, const char *default_val);

const char *NpicImageGetPropD (Npic_image *np, const char *key, const char *default_val);

const char *NpicMaskGetPropD (Npic_mask *m, const char *key, const char *default_val);

Same as NpicGetProp, except that it returns default val if property is not found.

• Npic*HasProp

int NpicHasProp (Npic_props *props, const char *key);

int NpicImageHasProp (Npic_image *np, const char *key);

int NpicMaskHasProp (Npic_mask *m, const char *key);

Search a property from its key. Return 1 if found, else 0. Silent.

• Npic*PrintProps

void NpicPrintProps (Npic_props *props);

void NpicImagePrintProps (Npic_image *np);

void NpicMaskPrintProps (Npic_mask *m);

Print all properties.

As an example, see test-props.c

Chapter 2

Npic Types

2.1 Pixels

Sources: pixels.h

• Basic types

Npic sint8 and Npic uint8 are signed and unsigned 8 bits integers (generally defined as
char).

Npic sint16 and Npic uint16 are signed and unsigned 16 bits integers (generally defined
as short).

Npic sint32 and Npic uint32 are signed and unsigned 32 bits integers. On 32 bits
systems, they are defined as long; on 64 bits systems, they are defined as int. To printf
such an integer in a portable way, use %"NPIC PL" instead of %d (the macro NPIC PL is
defined as ld or d).

• Byte swap

The macros NPIC BSWAP16(x), NPIC BSWAP32(x), NPIC BSWAP64(x) swap the bytes on
integers or floating numbers.

• Pixels definition

The pixel types are defined as follows:

typedef Npic_uint8 Npic_c;

typedef Npic_sint16 Npic_s;

typedef Npic_sint32 Npic_l;

typedef double Npic_d;

• Quadri-color pixels

The type Npic q is defined as follows, with alternatives:

typedef struct { Npic_uint16 a, b, c, d ; } Npic_q;

typedef struct { Npic_uint16 r, g, b, a ; } Npic_rgba;

43

44 CHAPTER 2. NPIC TYPES

typedef struct { Npic_uint16 c, m, y, k ; } Npic_cmyk;

typedef struct { Npic_uint16 h, s, v, a ; } Npic_hsva;

2.2 Images

Sources: images.h

• Npic image

The Npic image type is a union of structs :

typedef union {

int type;

Npic_image_gen gen;

Npic_image_2c im_2c;

Npic_image_2l im_2l;

Npic_image_2d im_2d;

Npic_image_2q im_2q;

Npic_image_3c im_3c;

Npic_image_3l im_3l;

Npic_image_3d im_3d;

Npic_image_3q im_3q;

Npic_image_4c im_4c;

Npic_image_4l im_4l;

Npic_image_4d im_4d;

Npic_image_4q im_4q;

Npic_image_5c im_5c;

Npic_image_5l im_5l;

Npic_image_5d im_5d;

Npic_image_5q im_5q;

Npic_image_6c im_6c;

Npic_image_6l im_6l;

Npic_image_6d im_6d;

Npic_image_6q im_6q;

} Npic_image;

• Nature

The field type is one of: NPIC IMAGE 2C, NPIC IMAGE 2L, NPIC IMAGE 2D, NPIC IMAGE 2Q,
NPIC IMAGE 3C, NPIC IMAGE 3L, NPIC IMAGE 3D, NPIC IMAGE 3Q, NPIC IMAGE 4C, NPIC IMAGE 4L,
NPIC IMAGE 4D, NPIC IMAGE 4Q, NPIC IMAGE 5C, NPIC IMAGE 5L, NPIC IMAGE 5D, NPIC IMAGE 5Q,
NPIC IMAGE 6C, NPIC IMAGE 6L, NPIC IMAGE 6D, NPIC IMAGE 6Q,
where 2,3,4,5,6 stands for the dimension, and the letter stands for the pixel type: C for
Npic c, L for Npic l, D for Npic d, Q for Npic q.

• Generic access

The field gen is a generic field for accessing to the struct fields, which is possible because

2.3. MASKS 45

all the image structs are strictly identical in memory. Some fields are protected with a
’ ’, they should not be used.

typedef struct {

int type, /* Nature : NPIC_IMAGE_2C, .. */

ok, /* status of image */

pixsize, /* Memory size of one pixel */

dim, /* Dimension : 2 .. 6 */

xbor, ybor, zbor, tbor, sbor, rbor, /* Width of the borders : >= 0 */

xmax, ymax, zmax, tmax, smax, rmax, /* Width, height, .. : > 0 */

xtot, ytot, ztot, ttot, stot, rtot; /* Total width, .. : > 0 */

size_t pixtot; /* Total number of pixels: > 0 */

void **vy_, **vz_, **vt_, **vs_, **vr_; /* Base addr of lines, plans .. */

void *vec_, /* Linear array of pixels */

pix_; / Access [y][x] or [z][y][x] or .. [r][s][t][z][y][x] */

Npic_props props; /* To store a list of text properties, see props.h */

} Npic_image_gen;

2.3 Masks

Sources: masks.h

• Npic mask

The Npic mask type is a union of structs :

typedef union {

int type;

Npic_mask_gen gen;

Npic_mask_2l dm_2l;

Npic_mask_2d dm_2d;

Npic_mask_3l dm_3l;

Npic_mask_3d dm_3d;

Npic_mask_4l dm_4l;

Npic_mask_4d dm_4d;

Npic_mask_5l dm_5l;

Npic_mask_5d dm_5d;

Npic_mask_6l dm_6l;

Npic_mask_6d dm_6d;

} Npic_mask;

• Nature

The field type is one of: NPIC MASK 2L, NPIC MASK 2D, NPIC MASK 3L, NPIC MASK 3D,
NPIC MASK 4L, NPIC MASK 4D, NPIC MASK 5L, NPIC MASK 5D, NPIC MASK 6L, NPIC MASK 6D,
where 2,3,4,5,6 stands for dimension, L stands for Npic l, D for Npic d.

• Generic access

46 CHAPTER 2. NPIC TYPES

The field gen is a generic field for accessing to the struct fields, which is possible because
all the mask structs are strictly identical in memory.

typedef struct {

int type, /* Nature : NPIC_MASK_2L, .. */

ok, /* Status of mask */

size, /* Memory size of one vector */

nb, /* Current number of vectors */

tot, /* Total number of allocated vectors */

step; /* Increment for realloc */

void *v; /* Allocated list of weightings */

Npic_props props; /* To store a list of properties, see props.h */

} Npic_mask_gen;

• Weightings

A weighting is a vector (..,y,x) and a value h (a weight, a radius, etc).

typedef struct { int y, x; Npic_l h; } Npic_weighting_2l;

typedef struct { int y, x; Npic_d h; } Npic_weighting_2d;

typedef struct { int z, y, x; Npic_l h; } Npic_weighting_3l;

typedef struct { int z, y, x; Npic_d h; } Npic_weighting_3d;

typedef struct { int t, z, y, x; Npic_l h; } Npic_weighting_4l;

typedef struct { int t, z, y, x; Npic_d h; } Npic_weighting_4d;

typedef struct { int s, t, z, y, x; Npic_l h; } Npic_weighting_5l;

typedef struct { int s, t, z, y, x; Npic_d h; } Npic_weighting_5d;

typedef struct { int r, s, t, z, y, x; Npic_l h; } Npic_weighting_6l;

typedef struct { int r, s, t, z, y, x; Npic_d h; } Npic_weighting_6d;

2.4 Miscellaneous

2.4.1 G-symmetries

Sources: mask gsym.h

The struct Npic gsym is used for computing the G-symmetries.

#define NPIC_GSYM_MAX 20

typedef struct {

int dim, /* Dimension and coordinates */

x[NPIC_GSYM_MAX], /* (x[1], x[2], ..., x[dim]) */

half, /* Compute 1: half, 0: full mask */

dir[NPIC_GSYM_MAX], /* Direction and position for */

pos[NPIC_GSYM_MAX], /* Johnson’s permutation algorithm */

k, kmax, /* Number of sign combination */

bin_mask; /* Binary mask to forbid combinations */

} Npic_gsym;

2.4. MISCELLANEOUS 47

2.4.2 Vector

Sources: misc.h

The struct Npic vec stores the coordinates of a vector. The use of fields z, t, s, r is
dimension dependent.

typedef struct { int x, y, z, t, s, r; } Npic_vec;

2.4.3 Lut for medial axis

Sources: mlut remy.h

The struct Npic Lut is used for storing the look-up table in medial axis extraction.

typedef struct {

int col_nb, /* Number of allocated columns */

col_tot, /* size of vector of column addresses */

col_len; /* size of one column */

Npic_l **v;

} Npic_Lut;

2.4.4 Text Properties

Sources: props.h

The followings structs are used for storing text properties.

typedef struct { char *key, *val; } Npic_atom;

typedef struct { int nb, tot; Npic_atom *list; } Npic_props;

48 CHAPTER 2. NPIC TYPES

Chapter 3

Npic File Formats

3.1 Image file format NPZ

The NPZ file format (with .npz extension) is the proposed format to read and save Npic
images, whatever the dimension, the pixel type and the endianness. The beginning of the
file is a text header describing the content (use Unix command head to watch it) and the
text properties, the next is the bitmap compressed with gzip. The library file functions
are described in section 1.3.2 .

The NPZ file format can store text properties. A text property is a couple of strings
"keyword: value" on a single line. Properties are not limited in number neither in size,
see section 1.7.3 .

Here is an exemple with the header of a 3-d image having one text-property:

NPZ-11
Image file generated by libNpic - Mon Dec 3 16:24:17 2007
TYPE NPIC_IMAGE_3C
COMP GZIP
XMAX 50
YMAX 50
ZMAX 50
PROP Alpha-Color: 0
DATA

The command-line tool npic-new allows to create an image; npic-draw draws pixels in it.

Format specification

The format file begins with a text header and ends with the binary compressed datas.
The header mandatory starts by NPZ-11. Then, in any order, you can find :

⊲ Comments, starting by # at any position in the line, ending with the line.

⊲ The word TYPE then a blank (a sequence of spaces, tabs and carriage returns), then
one of the words : NPIC IMAGE 2C, NPIC IMAGE 2L, NPIC IMAGE 2D, NPIC IMAGE 2Q,
NPIC IMAGE 3C, NPIC IMAGE 3L, NPIC IMAGE 3D, NPIC IMAGE 3Q, NPIC IMAGE 4C, NPIC IMAGE 4L,
NPIC IMAGE 4D, NPIC IMAGE 4Q, NPIC IMAGE 5C, NPIC IMAGE 5L, NPIC IMAGE 5D, NPIC IMAGE 5Q,
NPIC IMAGE 6C, NPIC IMAGE 6L, NPIC IMAGE 6D, NPIC IMAGE 6Q, (2,3,4,5,6 stands

49

50 CHAPTER 3. NPIC FILE FORMATS

for the dimension, C for unsigned int8, L for signed int32, D for double, Q (quadri-
color) for 4 unsigned int16); finally a blank.

⊲ The word COMP followed by the compression mode and a blank; currently, only GZIP

is accepted.

⊲ The word XMAX followed by an integer (the image side length in x) and a blank. The
same with YMAX, ZMAX, TMAX, SMAX and RMAX, depending on dimension.

⊲ The word PROP, followed by a blank and a text property, which is a keyword, a ”:”,
a space, then the value which is the rest of the line. For more details, see section
1.7.3 . Note that no property is currently reserved.

Giving TYPE, COMP and image side lengths is mandatory. The text header ends with DATA,
followed by exactly one char.

The second part is the binary datas compressed through a pipe to gzip (or gunzip when
reading). If you suppress the text header, you can then uncompress the resulting file with
gzip.

The binary datas (before compression) starts with a magic value depending on pixel type
(C : no magic value ; Q : 0x1234 ; L : 0x12345678 ; D : 1.2345678987654321e-279). The
intent is to test if the endianness of the source program and the destination program is
the same. If not, every int16 or int32 or double will be byte-swapped on reading. This
way, no care about endianness is taken on writing, only on reading if necessary.

Following the magic value, come the raw datas, which are binary pixels values in scan line
order (for r, for s, for t, for z, for y, for x).

3.2 Mask file format NMASK

The Npic file format NMASK allows to store a mask in a file (with extension .nmask or
.nmask.gz). The mask functions are described in section 1.4 , the file functions in 1.4.8 ,
and the mask type in 2.3 .

A mask is a list of vectors, each vector being associated to a weight (a local distance, an
appearance radius, etc). The vectors must have integral coordinates, in dimension 2 to 6.
The weights can be signed int32 or double.
Text properties can also be stored in the file. A text property is a couple of strings
"keyword: value" on a single line. Properties are not limited in number neither in
size, see section 1.7.3 . Some properties are already reserved, see below, but any other
properties can be added as you need.

Here is an exemple with the 2D mask of the distance chamfer 5-7-11 :

NMASK-11
Mask file generated by libNpic - Thu Jan 6 17:06:19 2011
TYPE NPIC_MASK_2L
PROP AddSym: GSymToHalfMask
PROP DistanceType: Weighted
PROP Nature: Distance
y x h
DATA

3.2. MASK FILE FORMAT NMASK 51

0 1 5
1 1 7
1 2 11

The command-line tool npic-mask allows to generate or manipulate masks; npic-wdt com-
putes weigthed distance transforms.

Format specification

The format is a full text file beginning with a header and ending with the datas. The
header mandatory starts by NMASK-11. Then, in any order, you can find :

⊲ Comments, starting by # at any position in the line, ending with the line.

⊲ The word TYPE then a blank (a sequence of spaces, tabs and carriage returns),
then one of the words : NPIC MASK 2L, NPIC MASK 2D, NPIC MASK 3L, NPIC MASK 3D,
NPIC MASK 4L, NPIC MASK 4D, NPIC MASK 5L, NPIC MASK 5D, NPIC MASK 6L, NPIC MASK 6D,
(2,3,4,5,6 stands for the dimension, L for signed int32, D for double); finally a blank.

⊲ The word PROP, followed by a blank and a text property, which is a keyword, a ”:”,
a space, then the value which is the rest of the line. For more details, see section
1.7.3 .

Giving the TYPE of the mask is mandatory. The header ends with DATA\n, followed by the
list of vectors coordinates and weights. Depending on the dimension, each line stores ”y
x h” or ”z y x h” or ”t z y x h” or ”s t z y x h” or ”r s t z y x h” (h is the weight). The
order of vectors is kept in the file.

Reserved properties

Some text properties are specified :

⊲ The property Nature describes the nature of the masks: Distance for a half distance
mask, MedialAxis for a medial axis test neighbourhood (sometimes denoted MLut
in the literature), Convolution for a convolution mask; Unknown else.

⊲ The property AddSym tells if vectors must be added after reading by making sym-
metries. Current supported value is GSymToHalfMask to make all grid symmetries
from Generator to the half mask, or None.

⊲ The property DistanceType is used to define the distance: Weighted (default),
SquaredEuclidean, CeilEuclidean, FloorEuclidean. Note that for the Euclidean
distances, the DATA part of the file is empty.

⊲ The property DistanceMask is used in medial axis masks, to store the name of the
distance mask.

⊲ The property RVerified is used in medial axis masks, to store the largest verified
radius for that distance.

