
Storing learnt (no)goods in ROBDDs for solving structured CSPs

Karim Boutaleb and Philippe Jégou and Cyril Terrioux
LSIS - UMR CNRS 6168

Université Paul Cézanne (Aix-Marseille 3)
Avenue Escadrille Normandie-Niemen

13397 Marseille Cedex 20 (France)
{ karim.boutaleb, philippe.jegou, cyril.terrioux }@univ-cezanne.fr

Abstract
It was shown that constraint satisfaction problems (CSPs)
with a low width can be solved effectively by structural meth-
ods. In particular, the BTD method which exploits the con-
cepts of goods and nogoods makes it possible to solve effi-
ciently difficult instances. However, the memory space re-
quired for the storage of these (no)goods may make difficult
or impossible the resolution of certain problems. We pro-
pose here to represent goods and nogoods with Binary De-
cision Diagrams (BDD). BDDs are data structures which ef-
ficiently represent informations in a compact and canonical
form. Then, the practical interest of this trade-off which al-
lows to save space memory to the detriment of time is as-
sessed.

Introduction
The CSP formalism (Constraint Satisfaction Problem) of-
fers a powerful framework for representing and solving effi-
ciently many problems. Modeling a problem as a CSP con-
sists in defining a set X of variables x1, x2, . . . xn, which
must be assigned in their respective finite domain, by satisfy-
ing a set C of constraints which express restrictions between
the different possible assignments. A solution is an assign-
ment of every variable which satisfies all the constraints. De-
termining if a solution exists is a NP-complete problem.

The usual method for solving CSPs is based on back-
tracking search. This approach, often efficient in practice,
has an exponential theoretical time complexity in O(e.dn)
for an instance having n variables and e constraints and
whose largest domain has d values. Several works have been
developed, in order to provide better theoretical complex-
ity bounds according to particular features of the instance.
The best known complexity bounds are given by the ”tree-
width” of a CSP (often denoted w). This parameter is re-
lated to some topological properties of the constraint graph
which represents the interactions between variables via the
constraints. It leads to a time complexity in O(n.dw+1).
Different methods have been proposed to reach this bound
like Tree-Clustering (Dechter & Pearl 1989) (see (Gottlob,
Leone, & Scarcello 2000) for a survey and a theoretical com-
parison of these methods). They rely on the notion of tree-
decomposition of the constraint graph. They aim to cluster

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

variables such that the cluster arrangement is a tree. De-
pending on the instances, we can expect a significant gain
w.r.t. enumerative approaches. Yet, the space complex-
ity, often linear for enumerative methods, may make such
an approach unusable in practice. It can be reduced to
O(n.s.ds) with s the size of the largest minimal separators
of the graph (Dechter & Fattah 2001). Several works based
on this approach have been performed. Most of them only
present theoretical results. Except (Jégou & Terrioux 2003;
Gottlob, Hutle, & Wotawa 2002), no practical results have
been provided. Clearly, this lack of practical results is
mostly explained by the greediness of these methods in
terms of memory space. Even for implemented methods,
the question about the amount of required memory is raised
since these methods are not able to solve any instance.
For instance, the BTD method (Jégou & Terrioux 2003),
whose recorded informations (namely structural goods and
nogoods) are memorized in hash tables, requires sometimes
more memory than available for solving some instances.

A solution to this problem may consist in using Binary
Decision Diagram (BDD) (Bryant 1986). BDDs are data
structures which efficiently represent informations in a com-
pact and canonical form. They are used in many areas, like
circuit design, combinatorial logic, . . . This approach was
already used besides in solving Valued CSP with an exten-
sion of BTD (Sachenbacher & Williams 2005). However,
the presented results did not make it possible to precisely
evaluate the interest of this approach, in particular for the
case of structured problems. In this article, we empirically
study the use of BDDs for a method like BTD. We thus try
to better understand their contribution. We note in partic-
ular that the profit in space is very significant. It makes it
possible to solve problems by avoiding the saturation of the
memory. However, the time required for the management of
BDDs results in less interesting performances. That leads
us to propose orientations of research to optimize the use of
BDDs within this framework.

This paper is organized as follows. The next section pro-
vides the basic notions about CSPs and methods based on
the tree-decomposition notion. In the third section, we re-
mind of the BDD framework. The fourth section explains
how BDDs are exploited in the BTD method. Before the
conclusion, we give some experimental results to assess the
practical interest of our propositions. In the last section, we



conclude and discuss about relevant works.

Preliminaries
A constraint satisfaction problem (CSP) is defined by a tu-
ple (X, D,C). X is a set {x1, . . . , xn} of n variables. Each
variable xi takes its values in a finite domain from D (d de-
notes the size of the largest domain). The variables are sub-
ject to the constraints from C. Given an instance (X, D,C),
the CSP problem consists in determining if there is an as-
signment of each variable which satisfies each constraint.
This problem is NP-complete. In this paper, without loss
of generality, we only consider binary constraints (i.e. con-
straints which involve two variables). So, the structure of a
CSP can be represented by the graph (X, C), called the con-
straint graph. The vertices of this graph are the variables of
X and an edge joins two vertices if the corresponding vari-
ables share a constraint.

Tree-Clustering (Dechter & Pearl 1989) is the reference
method for solving CSPs thanks to the structure of its con-
straint graph. It is based on the notion of tree-decomposition
of graphs (Robertson & Seymour 1986). Let G = (X, C)
be a graph, a tree-decomposition of G is a pair (E, T )
where T = (I, F ) is a tree with nodes I and edges F and
E = {Ei : i ∈ I} a family of subsets of X , such that each
subset (called cluster) Ei is a node of T and verifies:

• ∪i∈IEi = X ,

• for each edge {x, y} ∈ E, there exists i ∈ I with
{x, y} ⊆ Ei,

• for all i, j, k ∈ I , if k is in a path from i to j in T , then
Ei ∩ Ej ⊆ Ek.

The width of a tree-decomposition (E, T ) is equal to
maxi∈I |Ei|−1. The tree-width w of G is the minimal width
over all the tree-decompositions of G.

The time complexity of Tree-Clustering is O(n.dw+1)
while its space complexity can be reduced to O(n.s.ds) with
s the size of the largest minimal separators of the graph
(Dechter & Fattah 2001). Note that Tree-Clustering does not
provide interesting results in practical cases. So, an alterna-
tive approach, also based on tree-decomposition of graphs
was proposed in (Jégou & Terrioux 2003). This method is
called BTD and seems to provide empirical results among
the best ones obtained by structural methods.

The BTD method (for Backtracking with Tree-
Decomposition) proceeds by an enumerative search
guided by a pre-established partial order induced by a
tree-decomposition of the constraint-network. So, the first
step of BTD consists in computing a tree-decomposition.
The computed tree-decomposition induces a partial variable
ordering which allows BTD to exploit some structural
properties of the graph and so to prune some parts of the
search tree, what distinguishes BTD from other enumerative
methods. More precisely, such a variable ordering is
produced thanks to a depth-first traversal of the cluster
tree. So, BTD begins with the variables of the root cluster
E1. Inside a cluster Ei, it proceeds classically like any
backtracking algorithm by assigning a value to a variable,
checking constraints and backtracking if a failure occurs.

When all the variables of the cluster Ei are assigned, BTD
keeps on the search with the first son of Ei (if there is one).
More generally, let us consider a son Ej of Ei. Given the
current assignment A on Ei ∩ Ej , BTD checks whether the
assignmentA corresponds to a structural good or nogood. A
structural good (respectively nogood) of Ei with respect to
Ej is a consistent assignment A on Ei ∩ Ej such that there
exists (respectively does not exist) a consistent extension
of A on Desc(Ej). Desc(Ej) denotes the variables which
belong to the descent of the cluster Ei rooted in Ej . If A
corresponds to a good, we already know that the assignment
A can be consistently extended on Desc(Ej) and so BTD
does not solve again the subproblem corresponding to
Desc(Ej). It keeps on the search with the next cluster
according to the considered depth-first traversal of the root
cluster. In case A corresponds to a nogood, we already
know that there exists no consistent extension of A on
Desc(Ej). Then BTD does not solve again the subproblem
corresponding to Desc(Ej) and a backtrack occurs. Finally,
if A corresponds neither to a good nor to a nogood, BTD
solves the subproblem rooted in Ej . If BTD succeeds in
extending consistently A on Desc(Ej), A is recorded as a
new structural good on Ei∩Ej . Otherwise, A is memorized
as a new structural nogood. Note that a structural nogood is
a particular kind of nogood justified by structural properties
of the constraint network. Thanks to the recording and the
exploitations of both goods and nogoods which allow it
to prune some redundant parts of the search space, BTD
offers an interesting theoretical time complexity bound in
O(n.dw+1) while classical enumerative algorithms have a
time complexity in O(e.dn) (w+1 ≤ n). Unfortunately, the
space complexity, generally linear for classical enumerative
algorithms, is in O(n.s.ds), what is the main drawback of
structural methods like BTD. Due to the amount of required
memory, few structural methods have been implemented
and used successfully. The experimental results about
BTD given in (Jégou & Terrioux 2003) have been obtained
by using an hash table for each separator. However, this
solution does not allow to solve any problem. In some
cases, the amount of available memory is not sufficient
for solving some problems. Hence, the use of BDDs for
recording goods and nogoods may allow us to reduce the
amount of required memory.

ROBDDs for partial assignments
In the framework of BDDs, Reduced Ordered Binary De-
cision Diagrams (ROBDD (Bryant 1986; 1992)) are com-
monly exploited. ROBDDs aim to represent boolean func-
tions under the shape of oriented graphs without circuit.
The OBDDs offer a powerful setting for solving boolean
equation systems or for the treatment of various opera-
tions on boolean functions. More generally, they make
it possible to represent sets in a concise way, such as
for example of the sets of assignments. Their principles
and mechanisms are described in details in (Akers 1978;
Bryant 1986; Brace, Rudell, & Bryant 1990; Bryant 1992;
Madre & Billon 1988) which are giving some building op-
timization. We recall in this sections, their principles and
mechanisms of construction.



Given a boolean formula F and X its set of variables, we
consider a total order (x1, . . . xn) on X . The decision tree
associated to F is a labeled path to nodes representing all in-
terpretations of F . Internals nodes are labeled by elements
of X , while leaves or terminal nodes are labeled by 0 or 1.
These labels are noted var(s) for each node s compatible
with the order on X: a node of the ith level in the graph is
labeled var(s) = xi, the root is labeled x1. The internal
nodes s possess two children corresponding to the interpre-
tations of var(s): the left child lc(s) (var(s) is interpreted
to 0) and the right child rc(s) (var(s) is interpreted to 1).
One calls vertices (s, lc(s)) and (s, rc(s)) respectively the
left vertex and the right vertex. Thus, every maximal path
joining the root to a leaf is equivalent to an interpretation; it
is a model if the label of the leaf is 1 (positive maximal path)
and an counter-model if the label is 0.

The OBDD representing a boolean function F corre-
sponds to one concise expression of the decision tree of F .
It is a directed graph without circuit but can possess cycles.

Figure 1: Function and decision tree for the formula (x ⇔
y)∧(z ⇔ t) according to the order (x, y, z, t) (Bryant 1986).
The left edges are in dotted lines, the right edges in solid
lines.

The OBDD is the smallest graph which satisfies the fol-
lowing properties:
• it contains at most two terminal nodes: one labeled 1 and

the other 0 ; if the represented function is a tautology (or a
function with no model), the graph is reduced to an unique
node labeled 1 (or 0).

• for any internal node s, var(s) < var(lc(s)) and
var(s) < var(rc(s)), but if var(s) = xi, we do not have
necessarily neither var(lc(s)) = xi+1, nor var(rc(s)) =
xi+1, nor var(lc(s)) = var(rc(s)).
Figure 1 gives an example of an OBDD. Every maximal

path of the OBDD corresponds to a partial instantiation, re-
stricted to variable labels of nodes of the path. If the label
of the last node is 1 (or 0), all the extensions of this inter-
pretation are models (or counter-models) of the represented
function. Conversely, to any interpretation corresponds an
unique maximal path in the OBDD. We will note Ic the in-
terpretation associated to the maximal path c. The consis-
tency check of a function F is achieved by verifying if the
OBDD is reduced to the terminal node 0. To verify if an in-
terpretation is a model, it is sufficient to browse the OBDD
from the root while achieving the branchings corresponding
to the interpretation. The time complexity is linear in the

number of variables. A model can be obtained by searching
a positive maximal path. Its complexity is O(|BF |) where
|BF | is the size of the OBDD associated to F .

The size of a OBDD can be significantly reduced using
other reductions in order to obtain a ROBDD, that is a Re-
duced OBDD. The reduction of the graph associated to a
formula F relies on an elimination of redundant nodes. This
reduction does not modify the satisfiability of the formula
coded, but allows to reduce considerably the OBDD size
compared to the decision tree. The elimination of redun-
dancy in the graph representing the coded function is defined
by this three transformations:
1. duplicated external node elimination: all external nodes

labeled 0 (or 1) are merged in only one node labeled 0 (or
1).

2. duplicated internal node elimination: if two internal nodes
u and v are such that var(u) = var(v), lc(u) = lc(v) and
rc(u) = rc(v), then these nodes are merged.

3. redundant internal node elimination: an internal node u
verifying lc(u) = rc(u) is eliminated, the retractable in-
cident edge of u being directed towards lc(u).
The graph representing a boolean function is reduced if it

contains no internal node u such that lc(u) = rc(u), and if
it does not contain two distinct internal nodes u and v such
that the sub-graphs rooted by u and v are isomorphic (i.e.
they represent a same function). A ROBDD is a reduced
graph representing a boolean function. The reduced graphs
possess some properties (Bryant 1986):
• For every reduced graph, for every node u of this graph,

the sub-graph rooted by u is a reduced graph.
• Given a boolean function F and an order on the variables

of F , there is an unique (up to isomorphism) reduced
graph representing this function ; it is the ROBDD repre-
senting F . Any other graph representing F contains more
nodes.
The ROBDD reduction depends on the variable ordering.

The order impact on the size of the ROBDD can be sig-
nificant (Bryant 1992). For example, for boolean functions
representing the addition of integer numbers, the size of the
ROBDD can grow linear to exponential. Furthermore, there
are some pathological cases, as boolean functions represent-
ing the multiplication of integer numbers, for some order,
the size of the ROBDD is exponential. Figure 2 provides
two examples of reduction according to two different orders
for the formula considered in Figure 1.

In order to build the ROBDD associated to a function
F writing itself by f < op > g where < op > is an
boolean operator, one has to compose the sub-graphs Bf

and Bg associated to f and g. The time complexity is in
O(|Bf |.|Bg|) where |Bf | and |Bg| denote respectively the
number of ROBDDs nodes for Bf and Bg . Especially, if
F is a function having a variable x in its scope, the com-
putation of the ROBDD coding the restriction of F to x,
F < and > x (case where x = 1) will be linear in the size
of the ROBDD.

There exist several extension of BDD. Each extension de-
pends on its application area. We can cite, for example,



Figure 2: Influence of the order in BDD size.

FDD, ADD, BED, MTBDD, BMD, KMDD, BGD,... In
our approach, we use the MDD extension (Srinivasan et al.
1990). It represents a discrete function whose input vari-
ables are multi-valued. MDD is a rooted, directed, ordered
acyclic graph. Each internal node corresponds to a multi-
valued variable and each leaf node represents one value of
the function. Each internal node has d edges such that each
edge corresponds to one of the d possible values for a vari-
able.

Good and nogood represented by BDD
Solving a CSP instance thanks to the BTD method often
requires to record a large amount of informations (namely
goods and nogoods). The goods and the nogoods allow to
save significantly time but consume a great quantity of mem-
ory. In fact, currently, for the empirical results presented in
(Jégou & Terrioux 2003; Jégou, Ndiaye, & Terrioux 2005),
goods and nogoods are vectors of values memorized in hash
tables. When we use the hash tables, we often memorized
redundant informations. Indeed, in most cases, as shown in
the next paragraphs, partial instantiations can appear several
times in the assignments. So, we clearly see the interest to
use a compact and effective structure which makes it pos-
sible to reduce the size of the recorded data. Our choice is
related to an extension of BDD to finite domains.

The adequate version of BDD to our problem is Multi-
valued Decision Diagrams (MDD) (Srinivasan et al. 1990).
This extension makes it possible to represent canonically
a set of finite domains. We exploit the package extracted
from VIS1. This package has been developed at the Col-
orado University. It also uses the CUDD package2. We
note that, in most of the applications, MDDs are built with
sets of ROBDDs in the internal structures. Each multi-
valued variable is then decomposed in a set of binary vari-
ables. For example, in figure 3, we represent x ∈ {0, 1, 2}
by two binary variables. More generally, we decompose
x in log2(maxa∈Dx(a)) binary variables (Dx denotes the

1Verification Interacting with Synthesis.
http://vlsi.colorado.edu/˜vis

2Colorado University Decision Diagrams:
http://vlsi.colorado.edu/˜fabio

value domain of x). In this manner, the set of the values
taken by a multi-valued variable is built on a micro-structure
ROBDD. Of course, there exist packages that implement di-
rectly MDDs without passing by ROBDD structure (Miller
& Drechsler 1998). Unfortunately they suffer in general
from the problem of optimization (Schmiedle, Günther, &
Drechsler 2000).

Figure 3: Mapping from a MDD to a ROBDD (Kam et al.
1998).

In order to obtain good results, the variables are or-
dered according to the variable ordering induced by the tree-
decomposition. This order is static. Indeed, we have ob-
served that the results with dynamic orders for all binary
variables which optimize the required memory space do not
show a great usefulness: the saved amount of memory space
with a dynamic order does not exceed 15% with respect to a
static order, while we may spend 40% of additional time.

Experimental results
Before presenting the empirical results, we first describe the
experimental protocol.

Experimental protocol Applying a structural method on
an instance generally assumes that this instance presents
some particular topological features. So, our study is per-
formed on instances having a close to ideal structure. In
practice, the two current ways of recording goods and no-
goods are compared here on random partial structured CSPs
in order to point up the best one w.r.t. the CSP solving
runtime and the required amount of memory space. For
building a random partial structured instance of a class
(n, d, w, t, s, ns, p), the first step consists in producing ran-
domly a structured CSP according to the model described in
(Jégou & Terrioux 2003). This structured instance consists
of n variables having d values in their domain. Its constraint
graph is a clique tree with ns cliques whose size is at most w
and whose separator size does not exceed s. Each constraint
forbids t tuples. Then, the second step removes randomly
p% edges from the structured instance. The experimenta-
tions are performed on a Linux-based PC with a Pentium
IV 2.8GHz and 512MB of memory. For each considered
class, the presented results are the average on 50 instances.
We limit the runtime to 30 minutes. Above, the solver is
stopped and the involved instance is considered as unsolved.



In the following tables, the symbol > denotes that at least
one instance cannot be solved within 30 minutes and so the
mean runtime is greater than the provided value. The letter
M means that at least one instance cannot be solved because
it requires more than 512MB of memory.

In (Jégou, Ndiaye, & Terrioux 2005), a study was per-
formed on triangulation algorithms to find out the best way
to compute a good tree-decomposition w.r.t. CSP solving.
As MCS (Tarjan & Yannakakis 1984) obtains the best re-
sults, we use it to compute tree-decompositions in this study.

Given a tree-decomposition, we choose as root cluster the
cluster which minimizes the ratio of the expected number of
partial solutions of the cluster over its size. Likewise, for
each cluster, its sons are ordered according this decreasing
ratio. Inside a cluster, the unassigned variables are ordered
thanks to the dom/deg heuristic. This heuristic chooses as
next variable the variable x which minimizes the ratio num-
ber of the remaining values for x over the degree of x in the
constraint graph.
Experimental results In this part, we compare two ver-
sions of the BTD method. These two versions differ in the
way they store the goods and the nogoods. On the one hand,
the goods and nogoods are stored in several hash tables (one
per separator). It is the initial version of BTD (Jégou & Ter-
rioux 2003). On the other hand, in the version proposed in
this paper, these informations are recorded in several MDDs
(one per separator). This comparison only focuses on the
runtime and the required amount of memory space. In par-
ticular, we do not need to consider other datas like the num-
ber of visited nodes or the number of performed constraint
checks. Indeed, the two versions exactly obtain the same
results if they exploit the same heuristics for choosing the
root cluster, the next son cluster or the next variable to visit.
Regarding the required amount of memory space, for the
version based on hash tables, we assess it by counting the
total number of recorded values. For instance, we count 3
for a good which involves 3 variables. For the version based
on MDDs, we count the total number of binary nodes. For
instances, the MDD of figure 3 is represented by 5 binary
nodes.

Tables 1 and 2 provide the obtained results for a limited
separator size and an unlimited one. One of the main inter-
ests of the restriction of the separator size consists in limiting
the amount of required memory space. Indeed, with smaller
separators, the size of goods and nogoods and their potential
number decrease. Without such a limitation, the BTD ver-
sion based on hash tables turns sometimes to be unable to
solve some instances by lack of memory space.

Table 1 highlights the great performances of the version
based on MDDs in terms of memory space. Such a result
is not surprising because the recorded goods and nogoods
often share values. MDDs consume at least 15 times less
memory space as hash tables. For the considered classes of
instances, this rate is often greater than 50. The comparison
between the number of recorded values in the hash tables
and the number of binary nodes in the MDDs clearly shows
how much the informations related to (no)goods are com-
pressed in MDDs. From a practical viewpoint, several bi-

nary nodes are required for representing a value. However,
a binary node can be used in the representation of several
values which appear in different (no)goods. In particular, in
some cases, a binary node can be used several times in the
representation of a single value which belongs to different
(no)goods. That explains the small number of binary nodes
with respect to the number of recorded values and so the
significant gain in memory we have observed.

Regarding the runtime presented in Table 1, we observe
an inverse behaviour but the rate is less important. The ver-
sion based on MDDs is at most twice as slow than one based
on hash tables due to the cost of the main operations. For
hash tables, the memorization of a new good or nogood can
be achieved in linear time (w.r.t. the size of the considered
good or nogood) while checking if a good or a nogood is
present in the hash table requires a time close to linear as
soon as the goods and nogoods are fairly distributed in the
hash table. For MDDs, the addition or the check can be
performed in O(a ∗ log2(a)) where a is the size of the con-
sidered good or nogood. The log2(a) factor comes from the
decomposition of the multi-valued variables in binary vari-
ables. Hence, a direct representation as a MDD (i.e. without
a mapping to BDD) would be more interesting here. How-
ever, if, by so doing, we save a log2(a) factor for the run-
time, we consume more memory with the same factor. We
note that the two versions solve all the instances, except one
instance of the class (250,20,20,99,10,25,0.1) for the version
based on MDDs. This instance cannot be solved within the
time limit.

Given the promising results obtained thanks to MDDs in
terms of required memory space, we assess the behaviour
of the two versions for an unlimited separator size. By so
doing, the size and the number of goods and nogoods in-
crease and so we can expect a greater benefit from MDDs.
Table 2 presents the observed results. Like previously, the
version based on MDDs outperforms one based on hash ta-
bles w.r.t. the required memory space while it spends more
time for solving the instances. This additional time corre-
sponds again to the cost of managing goods and nogoods in
the MDDs. Nonetheless, unlike for a limited separator size,
the version based on hash tables does not succeed in solv-
ing all the instances. The amount of required memory space
prevents from solving several instances. Note that the com-
pactness of the MDD representation allows to solve these
same instances.

The compactness of recorded informations allows to re-
duce the amount of required memory space but it requires
some additional runtime. Hence, unlike the results about the
memory space, the runtime obtained by using MDDs is not
competitive enough with respect to one of the initial version
of BTD based on hash tables. As explained above, this addi-
tional cost results from the construction and the management
of MDDs mapped to BDDs. However, in spite of the non-
competitive runtime, the BTD version based on MDDs re-
mains interesting. Indeed, it is often possible to spend more
time for solving an instance whereas we cannot consume
more memory than available and, unfortunately, we cannot
foresee the amount of needed memory space.



Instances Memory Space Time
Size

(n, d, w, t, s, ns, pr) Hash MDD Hash MDD
# values MB # nodes MB

(150,25,15,215,5,15,0.1) 16,168 6.75 6,795 0.11 2.30 2.69
(150,25,15,237,5,15,0.2) 22,799 7.64 7,652 0.12 1.79 2.38
(150,25,15,257,5,15,0.3) 29,448 9.46 7,412 0.18 1.01 1.80
(150,25,15,285,5,15,0.4) 5,418 13.12 3,764 0.06 0.40 0.52
(250,20,20,107,5,20,0.1) 47,836 9.11 8,558 0.14 10.39 11.70
(250,20,20,117,5,20,0.2) 59,392 10.33 9,516 0.15 8.52 10.46
(250,20,20,129,5,20,0.3) 48,135 11.63 5,408 0.09 5.82 7.91
(250,20,20,146,5,20,0.4) 90,180 14.83 8,250 0.13 3.81 6.03
(250,20,20,99,10,25,0.1) 1,554,308 25.22 100,696 1.61 58.21 >82.36
(250,25,15,211,5,25,0.1) 70,326 11.37 18,968 0.31 7.12 9.49
(250,25,15,230,5,25,0.2) 72,645 12.78 19,472 0.32 4.13 6.30
(250,25,15,253,5,25,0.3) 85,627 15.79 13,713 0.22 4.00 6.30
(250,25,15,280,5,25,0.4) 60,960 21.42 17,041 0.27 1.61 3.27

Table 1: Number of recorded value in hash tables, number of binary nodes in the MDDs, required memory space in MB for
hash tables and MDDs, and runtime in seconds for a separator size limited to 5. For the class (250,20,20,99,10,25,0.1), one
instance cannot be solved within the time limit by the version based on MDDs. For this class, the reported MDD size and the
ratio correspond to the mean over the 49 solved instances.

Conclusion and discussion
In this article, we have studied the resolution of structured
CSP. In particular, we have been interested in the BTD
method (Jégou & Terrioux 2003) whose efficiency results
from the exploitation of structural goods and nogoods learnt
and recorded during the search. Whereas, in its initial ver-
sion, BTD represented goods and nogoods in extension with
hash tables, we have studied here from a practical viewpoint
the interest which can present a memorization of these in-
formations in a compact structure like BDDs (MDDs pre-
cisely).

A similar work has already been performed by (Sachen-
bacher & Williams 2005) with an extension of BTD for solv-
ing Valued CSPs. However, this work does not make it pos-
sible to determine the real interest of the use of the BDDs
(ADDs in this work), in particular for the case of structured
CSPs. Here, we present a study which aims to better assess
this interest with respect to the saved amount of memory, but
also the runtime.

Concerning the structured CSP, we have observed a very
significant profit in terms of required memory space. In-
deed, several problems which could not be solved by BTD
with the hash tables are now manageable. More generally,
one observes a systematic profit for space on all the prob-
lems. We have also noted that this profit is still better when
the problems are inconsistent since, in this case, the search
space must be completely traversed. So, one can hope that
the potential profits will be increased if we consider opti-
mization problems for which the whole search space must
be treated.

Concerning the runtime, we have observed a degradation
of the efficiency. Indeed, the time devoted to the manage-
ment of BDDs, in particular for the addition of goods and
nogoods, slows down significantly the effectiveness of the

approach. This report leads us to continue this work while
trying to better manage space. In particular, we should pro-
pose an approach which would improve significantly the
runtime.

On the level of the other prospects to this work, we will
evaluate this approach on real problems. However, it still
seems more interesting to us to focus our study on optimiza-
tion problems like Valued CSP rather than decision ones.
That is possible by exploiting ADDs (Bahar et al. 1993)
like proposed in (Sachenbacher & Williams 2005). How-
ever, such an extension could also pass by the design of a
new kind of BDDs better adapted to the resolution of opti-
mization problems.

Acknowledgments
This work is supported by a ”programme blanc” ANR grant
(STAL-DEC-OPT project).

References
Akers, S. B. 1978. Binary decision diagrams. IEEE Trans.
Computers 27(6):509–516.
Bahar, R. I.; Frohm, E. A.; Gaona, C. M.; Hachtel, G. D.;
Macii, E.; Pardo, A.; and Somenzi, F. 1993. Alge-
braic decision diagrams and their applications. In Proceed-
ings of the 1993 IEEE/ACM international conference on
Computer-aided design, 188–191.
Brace, K. S.; Rudell, R. L.; and Bryant, R. E. 1990. Effi-
cient Implementation of a BDD Package. In Proceedings
of the ACM/IEEE Design Automation Conference (DAC),
40–45.
Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Computers
35(8):677–691.



Instances Memory Space Time
Size

(n, d, w, t, s, ns, pr) Hash MDD Hash MDD
# values MB # nodes MB

(150,25,15,215,5,15,0.1) 188,510 16.04 90,042 1.44 2.57 8.25
(150,25,15,237,5,15,0.2) 340,683 20.58 123,594 1.98 2.70 12.65
(150,25,15,257,5,15,0.3) 252,311 23.60 86,961 1.39 1.55 8.71
(150,25,15,285,5,15,0.4) M - 55,573 0.89 M 3.44
(250,20,20,107,5,20,0.1) 1,898,500 31.82 317,018 5.07 18.17 43.30
(250,20,20,117,5,20,0.2) 2,614,225 41.70 274,648 4.39 13.67 37.91
(250,20,20,129,5,20,0.3) 2,731,434 46.86 363,931 5.82 12.54 61.26
(250,20,20,146,5,20,0.4) 463,786 39.54 150,649 2.41 2.37 15.64
(250,20,20,99,10,25,0.1) M - 960,291 15.36 M 139.00
(250,25,15,211,5,25,0.1) 317,138 26.26 202,155 3.23 6.04 18.07
(250,25,15,230,5,25,0.2) 2,235,933 45.53 356,295 5.70 24.90 33.04
(250,25,15,253,5,25,0.3) M - 236,044 3.77 M 30.84
(250,25,15,280,5,25,0.4) 3,173,339 64.89 452,737 7.24 12.81 81.27

Table 2: Number of recorded value in hash tables, number of binary nodes in the MDDs, required memory space in MB for
hash tables and MDDs, and runtime in seconds for an unlimited separator size.

Bryant, R. E. 1992. Symbolic Boolean manipulation with
ordered binary-decision diagrams. ACM Computing Sur-
veys 24(3):293–318.
Dechter, R., and Fattah, Y. E. 2001. Topological Pa-
rameters for Time-Space Tradeoff. Artificial Intelligence
125:93–118.
Dechter, R., and Pearl, J. 1989. Tree-Clustering for Con-
straint Networks. Artificial Intelligence 38:353–366.
Gottlob, G.; Hutle, M.; and Wotawa, F. 2002. Combin-
ing hypertree, bicomp and hinge decomposition. In Proc.
European Conference on Artificial Intelligence, 161–165.
Gottlob, G.; Leone, N.; and Scarcello, F. 2000. A Compar-
ison of Structural CSP Decomposition Methods. Artificial
Intelligence 124:343–282.
Jégou, P., and Terrioux, C. 2003. Hybrid backtracking
bounded by tree-decomposition of constraint networks. Ar-
tificial Intelligence 146:43–75.
Jégou, P.; Ndiaye, S. N.; and Terrioux, C. 2005. Computing
and exploiting tree-decompositions for solving constraint
networks. In Proc. of the 11th International Conference on
Principles and Practice of Constraint Programming, 777–
781.
Kam, T.; Villa, T.; Brayton, R. K.; and Sangiovanni-
Vincentelli, A. L. 1998. Multi-valued decision dia-
grams: Theory and applications. International Journal on
Multiple-Valued Logic 4(1-2):9–62.
Madre, J.-C., and Billon, J.-P. 1988. Proving circuit cor-
rectness using formal comparison between expected and
extracted behaviour. In Proceedings of the ACM/IEEE De-
sign Automation Conference (DAC), 205–210. IEEE Com-
puter Society Press.
Miller, D., and Drechsler, R. 1998. Implementing a
multiple-valued decision diagram package. In ISMVL ’98:
Proceedings of the The 28th International Symposium on

Multiple-Valued Logic, 52. Washington, DC, USA: IEEE
Computer Society.
Robertson, N., and Seymour, P. 1986. Graph minors II:
Algorithmic aspects of tree-width. Algorithms 7:309–322.
Sachenbacher, M., and Williams, B. C. 2005. Bounded
Search and Symbolic Inference for Constraint Optimiza-
tion. In Proceedings of IJCAI, 286–291.
Schmiedle, F.; Günther, W.; and Drechsler, R. 2000. Dy-
namic re-encoding during mdd minimization. In ISMVL,
239–244.
Srinivasan, A.; Kam, T.; Malik, S.; and Brayton, R. K.
1990. Algorithms for discrete function manipulation. In
ICCAD, 92–95.
Tarjan, R., and Yannakakis, M. 1984. Simple linear-time
algorithms to test chordality of graphs, test acyclicity of
hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM Journal on Computing 13 (3):566–579.


