
A generalized Cyclic-Clustering Approach for Solving Structured
CSPs
Cédric Pinto and Cyril Terrioux
LSIS - UMR CNRS 6168
Université Paul Cézanne (Aix-Marseille 3)
Avenue Escadrille Normandie-Niemen
13397 Marseille Cedex 20 (France)
cedric.pinto@lsis.org, cyril.terrioux@univ-cezanne.fr

Abstract

We propose a new method for solving structured CSPs which generalizes and improves the Cyclic-Clustering
approach [1]. First, the cutset and the tree-decomposition of the constraint network, which are used for taking
advantage of the CSP structure, are computed independently of the notion of triangulated induced subgraph.
Then, unlike Cyclic-Clustering, our method can try to solve the tree-decomposition part of the problem without
having assigned all the variables of the cutset. Regarding the solving of the tree-decomposition part, we use the
BTD method [2] like in [3]. As BTD records and exploits structural (no)goods, we provide some conditions
which make possible the use of structural (no)goods recorded during previous calls of BTD and we implement
them in a dedicated version of BTD. By so doing, from a theoretical viewpoint, we can provide a theoretical time
complexity bound related to parameters of the cutset and the tree-decomposition and, from a practical viewpoint
we expect to detect failures earlier and to avoid more redundancies in the search. This practical interest is assessed
in some preliminary experiments.

1 Preliminaries

The CSP formalism (Constraint Satisfaction Problem) offers a powerful framework for representing and solving
efficiently many problems, in particular, many academic or real problems (e.g. graph coloring, planning, frequency
assignment problems, . . .). A finite constraint satisfaction problem (X, D, C, R) is defined as a set of variables
X = {x1, . . . xn}, a set of domains D = {d1, . . . dn} (the domain di contains all the possible values for the
variable xi), and a set C of constraints. A constraint ci ∈ C on an ordered subset of variables, ci = (xi1 , . . . xiai

)
is defined by an associated relation rci ∈ R of allowed combinations of values for the variables in ci (rci ⊆
di1 × . . . × diai

). Note that we take the same notation for the constraint ci and its scope. Let Y = {x1, . . . xk}
be a subset of X . An assignment A on Y is a tuple (v1, . . . , vk) of d1 × . . . × di. We also write A in the form
{x1 ← v1, ..., xi ← vi}. Then we denote A1 ⊆ A2 if the assignment A2 is an extension of A1 (i.e. we have
A1 = {x1 ← v1, ..., xi ← vi} and A2 = {x1 ← v1, ..., xi ← vi, ..., xi+j ← vi+j} with j ≥ 0). An assignment
A on Y satisfies a constraint c ∈ C s.t. c ⊆ Y if A[c] ∈ rc with A[c] the restriction of A to the variables involved
in c. A is said consistent if it satisfies each constraint c ⊆ Y . A solution is an assignment of each variable which
satisfies all the constraints. Determining if a solution exists is an NP-complete problem. We denote Sol(P) the set
of solutions of the CSP P . In the following, for sake of simplicity, we only consider binary CSPs (i.e. CSPs whose
each constraint involves exactly two variables). Of course, this work can be extended to non-binary CSPs.
The usual methods for solving CSPs (e.g. Forward Checking [4] or MAC [5]) are based on backtracking search.
This approach, often efficient in practice, has an exponential theoretical time complexity in O(m.dn) (denoted
O(exp(n))) for an instance having n variables and m constraints and whose largest domain has d values. Several
works have been developed to improve this theoretical complexity bound thanks to particular features of the in-
stance. Generally, they exploit some structural properties of the CSP. The structure of a CSP (X, D, C, R) can be
represented by the graph (X, C), called the constraint graph. In this context, the tree-decomposition notion [6]
plays a central role. A tree-decomposition of a graph G = (X, C) is a pair (E, T) where T = (I, F) is a tree with
nodes I and edges F and E = {Ei : i ∈ I} a family of subsets of X , s.t. each subset (called cluster) Ei is a node
of T and verifies: (i) ∪i∈IEi = X , (ii) for each edge {x, y} ∈ C, there exists i ∈ I with {x, y} ⊆ Ei, and (iii)

1

LSIS (UMR CNRS 6168) Research Report number LSIS.RR.2009.004, Marseille France

for all i, j, k ∈ I , if k is in a path from i to j in T , then Ei ∩ Ej ⊆ Ek. We will denote Sj the separator Ei ∩ Ej

between the clusters Ei and Ej such that Ej is a son of Ei, and Desc(Ej) the set of variables belonging to the
descent of the cluster Ei rooted in Ej . The width w of a tree-decomposition (E, T) is equal to maxi∈I |Ei| − 1.
The tree-width w∗ of G is the minimal width over all the tree-decompositions of G. On the one hand, it leads
to one of the best known theoretical time complexity bounds, namely O(exp(w∗ + 1)) with w∗ the tree-width.
Different methods (e.g. [7, 2]) have been proposed to reach this bound. They aim to cluster variables s.t. the cluster
arrangement is a tree.
From a theoretical viewpoint, reach the best theoretical complexity bound requires to compute an optimal tree-
decomposition (i.e. a tree-decomposition with a minimum width), which is an NP-hard problem [8]. In practice,
it is clear that solving an NP-hard problem as a preliminary step of the solving of an NP-complete problem is not
reasonable. So heuristic methods are generally used. They often provide a relevant approximation of an optimal
tree-decomposition when the constraint graph has a small tree-width. Methods like BTD [2] are then well-suited for
solving such problems. In contrast, when the constraint graph does not have a small tree-width, heuristic methods
may often produce a poor approximation of an optimal tree-decomposition. In such a case, instead of running
a structural method on a tree-decomposition with an excessive width, exploiting a method like Cyclic-Clustering
[1] may be more interesting and more adapted. Cyclic-Clustering relies on a subset V of vertices, called a cutset
of the graph (X, C), such that the graph (X − V, {{x, y} ∈ C s.t. x, y ∈ X − V }) induced by X − V is
triangulated (i.e. it has no cycle of length greater than 3 without an edge joining two non consecutive vertices
in the cycle). The triangulated part of the constraint graph corresponds to a tree-decomposition. For instance,
Figure 1(a) presents a graph having 19 vertices. The set {y1, y2} forms a cutset of this graph s.t. the induced
graph involving the vertices x1, . . . , x17 is triangulated, which corresponds to a tree-decomposition with 7 clusters
E1, . . . , E7. We have S2 = E1 ∩ E2 = {x3}, Desc(E1) = {x1, x2, x3, x4, x5} and Desc(E2) = {x3, x5}.
In [3], two implementations of Cyclic-Clustering, called CC-BTD1 and CC-BTD2 are proposed. They solve the
cutset part of the problem with a classical enumerative algorithm and the triangulated part with BTD. CC-BTD2

differs from CC-BTD1 in calling BTD before solving the cutset part. By so doing, the nogoods recorded during
this preliminary call can be exploited in the following calls of BTD. Unfortunately, the Cyclic-Clustering approach
has some limits. For instance, informations recorded during the search are not fully exploited to avoid redundant
parts of the search space. Moreover, the triangulated part must be computed thanks to the notion of Triangulated
Induced Subgraph (TIS).
In this paper, we propose a generalization of CC-BTD, called CC-BTD-gen. Like the Cyclic-Clustering approach,
CC-BTD-gen relies on a cutset and a tree-decomposition. Yet, it uses a tree-decomposition computed thanks to
any method and so not necessarily related to the TIS notion, unlike Cyclic-Clustering. Regarding the solving,
CC-BTD-gen exploits a specialized version of BTD which allows it to exploit some part of (no)goods recorded in
previous calls to BTD, what leads to avoid more redundancies in practice. Finally, we have noted that CC-BTD
assigns consistently all the variables of the cutset before solving the triangulated part even if after having assigned
some of them, the triangulated part has no solution. So, in order to avoid this drawback, CC-BTD-gen can call
BTD after having assigned consistently some variables of the cutset. If the subproblem associated to the tree-
decomposition has a solution, the search keeps on the remaining variables of the cutset. Otherwise a backtrack
occurs. In both cases, some (no)goods are recorded and may be exploited later.
The paper is organized as follows. Section 2 presents the theoretical framework of CC-BTD-gen while section 3
describes the CC-BTD-gen algorithm. Then section 4 deals with the experimental results. Finally, we conclude
and discuss about related or future works in section 5.

2 Theoretical framework

In this section, we describe the theoretical framework required to present formally CC-BTD-gen. This framework
is presented in a general way before focusing in the next section on a special case where Y will be the cutset and
X − Y the variables belonging to the associated tree-decomposition used by CC-BTD-gen. In the following, we
consider a CSP P = (X,D, C, R). First, we define the notion of subproblem induced by a subset Y of variables.

Definition 1 Let Y ⊆ X be a subset of variables. The CSP induced by Y is the CSP (Y,DY , CY , RY) where
DY = {di ∈ D|xi ∈ Y }, CY = {cij = {xi, xj} ∈ C|xi, xj ∈ Y } and RY = {rcij

∈ R|cij ∈ CY }.

2

LSIS (UMR CNRS 6168) Research Report number LSIS.RR.2009.004, Marseille France

x11

y1

x1 x2

x3

x4x5

x16

x14

x15

x6

x7

x17

y2

x10 x9

x8

x13

x12

E
E

E
EE

E

7

6

5

4

3

2

1E
x1 x2 x3

x3 x5
x3 x4

x6

x7
x17 x14

x15
x16

x12
x13

x11

x8
x9
x10

y2

y1

(a) (b)

Figure 1: (a) A constraint graph (b) An example of tree-decomposition with clusters E1, . . . , E7 and cutset
{y1, y2} for this graph.

In the next definitions and properties, we consider the following notations:

• Y1, Y2, Y and Z will be subsets of X such that Y1 ⊆ Y , Y2 ⊆ Y , Y ⊆ X and Z ⊆ X − Y .

• A1, A2 and A will be assignments respectively on Y1, Y2 and Y .

• TD will be the considered tree-decomposition of the CSP P(X − Y).

Now, we propose a limited (but sufficient) definition of the deletion of some values by Forward-Checking (FC [4]).

Definition 2 The resulting filtering of an assignmentA performed by FC is the operation which consists in deleting
the values from the domain di of each unassigned variable xi, which become incompatible with respect to at least a
constraint {xi, y}where y is an assigned variable inA. More formally, dAi = {v ∈ di|∀c = {xi, y} ∈ C, (v, w) ∈
rc with w the value assigned to y in A}.

In other words, dAi is the current domain of the unassigned variable xi obtained thanks to the filtering achieved
after each assignment of a variable in the assignment A. We then define the set of deleted values by the filtering.

Definition 3 Let Y ⊆ X be such that |Y | = k and A = {x1 ← v1, ..., xk ← vk} an assignment on Y . The set of
deleted values of P(X − Y) by the filtering related to A is FA(X − Y) = {(xi, v) ∈ (X − Y)× (di − dAi)}.

Next, we refine the definition 1 by introducing the notion of filtered subproblem.

Definition 4 The filtered subproblem PA(X−Y) refers to the induced CSP (X−Y, DAX−Y , CX−Y , RAX−Y) with
DAX−Y = {dAi |xi ∈ X − Y } and RAX−Y = {rAc = rc ∩ (dAj × dAk)|c = {xj , xk} ∈ CX−Y and rc ∈ R}.

We can note that the filtering of FC does not change the structure defined by the constraint graph of a problem.

Property 1 A tree-decomposition of P(X − Y) is a tree-decomposition of PA1(X − Y) and conversely.

Proof: A tree-decomposition is only dependent of the considered graph. As P(X−Y) and PA1(X−Y) have the
same constraint graph (namely (X − Y, CX−Y)), they have the same tree-decompositions. 2

Henceforth, thanks to the following property, we aim to measure the effect of a filtering on the domains and
relations of a given problem.

Property 2 If FA1(Z) ⊆ FA2(Z), then ∀zi ∈ Z, dA2
i ⊆ dA1

i and ∀cjk ∈ CZ , rA2
cjk
⊆ rA1

cjk
.

Proof: For each pair (zi, vi) ∈ FA1(Z), the filtering consists in deleting the value vi from the domain of zi.
Therefore ∀dA1

i ∈ DA1
X−Y , dA1

i = di − {vi ∈ di|(zi, vi) ∈ FA1(Z)}. Likewise, we have ∀dA2
i ∈ DA2

X−Y ,
dA2

i = di − {vi ∈ di|(zi, vi) ∈ FA2(Z)}. Yet, as FA1(Z) ⊆ FA2(Z), we have {vi ∈ di|(zi, vi) ∈ FA1(Z)} ⊆
{vi ∈ di|(zi, vi) ∈ FA2(Z)}. So, we have dA2

i ⊆ dA1
i .

3

LSIS (UMR CNRS 6168) Research Report number LSIS.RR.2009.004, Marseille France

Let cjk ∈ CZ be a constraint between two variables xj , xk ∈ Z and let rA1
cjk

and rA2
cjk

be the associated relations ob-
tained after the resulting filtering ofA1 andA2. According to the definition 4, we have rA1

cjk
= rcjk

∩ (dA1
j × dA1

k)
and rA2

cjk
= rcjk

∩(dA2
j ×dA2

k). Furthermore, dA2
j ×dA2

k ⊆ dA1
j ×dA1

k since ∀zi ∈ Z, dA2
i ⊆ dA1

i . So, rA2
cjk
⊆ rA1

cjk
.

2

We compare now the set of solutions of two subproblems induced by the same set of variables but with any different
filtering.

Property 3 IfFA1(Z) ⊆ FA2(Z), then we have Sol(PA2(Z)) ⊆ Sol(PA1(Z)) and |Sol(PA2(Z))| ≤ |Sol(PA1(Z))|.

Proof: Let S be a solution of PA2(Z). Let us prove that S is solution of PA1(Z) too. By definition, S is a
consistent assignment on the set of variables Z such that ∀cjk ∈ CZ , S[cjk] ∈ rA2

cjk
. Yet, FA1(Z) ⊆ FA2(Z) and

according to property 2, ∀cjk ∈ CZ , rA2
cjk
⊆ rA1

cjk
. So, ∀cjk ∈ CZ , S[cjk] ∈ rA1

cjk
. So, S is a solution of PA1(Z).

Therefore, Sol(PA2(Z)) ⊆ Sol(PA1(Z)) and so |Sol(PA2(Z))| ≤ |Sol(PA1(Z))|. 2

In the next corollary, we present the specific case where A2 is an extension of A1.

Corollary 1 If A2[Y1] = A1, then Sol(PA2(Z)) ⊆ Sol(PA1(Z)) and |Sol(PA2(Z))| ≤ |Sol(PA1(Z))|.

Proof: Let us observe that the assumptionA2[Y1] = A1 implies FA1(Z) ⊆ FA2(Z). So, using the property 3, we
have Sol(PA2(Z)) ⊆ Sol(PA1(Z)) and |Sol(PA2(Z))| ≤ |Sol(PA1(Z))|. 2

We will then exploit these properties and corollary in order to decide whether structural (no)goods can be reused
validly. But, first, we remind the notion of structural (no)good which is used in the BTD algorithm [2].

Definition 5 Given a cluster Ei and Ej one of its sons, a good (resp. nogood) of Ei with respect to Ej is a
consistent assignment A on Sj = Ei ∩Ej such that A can (resp. cannot) be extended to a consistent extension of
A on Desc(Ej).

We see now the cases where the (no)goods for the subproblemP(X−Y) can stay valid if we change the assignment
on Y .

Theorem 1 If FA1(X − Y) ⊆ FA2(X − Y) and ng(Sj) is a nogood for the problem PA1(X − Y) then ng(Sj)
is a nogood for PA2(X − Y) too.

Proof: TD is a tree-decomposition associated to the CSPs PA1 and PA2 . Furthermore, Sj = Ei ∩Ej is a separa-
tor of TD between the cluster Ei and one of its sons Ej . We know that ng(Sj) is a nogood for PA1(X − Y), so
|Sol(PA1(Desc(Ej)))| = 0 if Sj is assigned by this nogood. Yet, FA1(X−Y) ⊆ FA2(X−Y) and Desc(Ej) ⊆
X − Y . So, we can apply the property 3 which results |Sol(PA2(Desc(Ej)))| ≤ |Sol(PA1(Desc(Ej)))| and so
|Sol(PA2(Desc(Ej)))| = 0. Therefore, ng(Sj) is a nogood for PA2(X − Y). 2

The previous theorem lays a condition (inclusion) on the set of values which are filtered to deduce the validity of
a nogood already recorded. However, from an algorithmic and practical viewpoint, exploiting this theorem may
leads to an expensive check (with respect to time). Hence, in the next corollary, we propose a restriction on the
resulting filtering of the two assignments.

Corollary 2 If A2[Y1] = A1 and ng(Sj) is a nogood for the problem PA1(X − Y) then ng(Sj) is a nogood for
PA2(X − Y) too.

Proof: By observing that A2[Y1] = A1 implies FA1(Z) ⊆ FA2(Z), we apply the theorem 1. 2

Then, we are interested in preserving the validity of goods.

Theorem 2 If FA2(Desc(Ej)) ⊆ FA1(Desc(Ej)) and g(Sj) is a good for the problem PA1(X − Y) then g(Sj)
is a good for PA2(X − Y) too.

4

LSIS (UMR CNRS 6168) Research Report number LSIS.RR.2009.004, Marseille France

Algorithm 1: CC-BTD-gen(in : A, V, NGp, in/out : Gp)

Cons← true1
if ChoiceBTD(V) or V = ∅ then2

G← ∅ ; NG← ∅3
Cons← BTD-gen(∅, E1, VE1 , NGp, Gp, NG, G)4
Gp ← Gp ∪G ; NGp ← NGp ∪NG5

if Cons and V 6= ∅ then6
Choose xi ∈ V ; di ← Di ; Cons← false7
while di 6= ∅ and ¬Cons do8

Choose v ∈ di ; di ← di − {v}9
if Filtering(A ∪ {xi ← v}, xi) then10

Cons← CC-BTD-gen(A ∪ {xi ← v}, V − {xi}, NGp, Gp)11

Unfiltering(A, xi)12

return Cons13

Proof: As FA2(Desc(Ej)) ⊆ FA1(Desc(Ej)) and Desc(Ej) ⊆ X − Y , we can apply the property 3. So,
Sol(PA1(Desc(Ej)) ⊆ Sol(PA2(Desc(Ej))). Moreover, we know that g(Sj) is a good for PA1(X − Y), so
PA1(Desc(Ej)) possess at least a solution S (by definition of a good). Therefore, S is a solution ofPA2(Desc(Ej))
too. So, g(Sj) is a good for PA2(X − Y). 2

All these properties can be applied by the CC-BTD-gen algorithm to deduce the informations remaining true
between different calls to BTD. For that, Y will be the cutset and so X−Y the variables belonging to the associated
tree-decomposition. The theorem 1 allows to conclude that considering two partials assignmentsA1 andA2 on the
cutset such that A2 filters at least the same values as A1, then the nogoods recorded by BTD on PA1 stay valid on
PA2 . However, due to the limited memory space, we cannot record the effects of resulting filtering generated by
each consistent partial assignment on the cutset. Therefore, we exploit the corollary 2 which allows to record and
reuse the nogoods in the case where we extend a consistent partial assignment of cutset. Likewise, for the reuse
of goods, we keep all recorded goods and check their validity when we use them. In the next section, we describe
and study the CC-BTD-gen algorithm.

3 A generalization of Cyclic-Clustering

The CC-BTD-gen algorithm (algorithm 1) relies on a cutset and a tree-decomposition of the constraint graph.
The tree-decomposition and the cutset can be computed thanks to any method, and so are not necessarily related
to the TIS notion, unlike in Cyclic-Clustering. The CC-BTD-gen algorithm consists in assigning consistently the
variables of the cutset while checking, thanks to a dedicated version of BTD, whether the current partial assignment
can be extended consistently on the tree-decomposition part. As this check can be expensive, after having assigned
a value to a variable of the cutset, CC-BTD-gen decides thanks to the heuristic function ChoiceBTD if it must
be performed or not. If BTD returns true, CC-BTD-gen keeps on the search on the cutset. Otherwise, it tries a
new value for the current variable (if any) or a backtrack occurs. We iterate this process until a solution is found
(i.e. a consistent assignment of the cutset which can be consistently extended to the tree-decomposition part) or
the whole search space is explored.
First, in order to be able to reuse (no)goods recorded by different executions of BTD, we propose a variant of
BTD, called BTD-gen (algorithm 2), which implements the properties highlighted in the previous section. BTD-
gen only differs from BTD in its ability to exploit (no)goods recorded during previous calls to BTD-gen. So, it has
two additional parameters, namely the set Gp of goods and the set NGp of nogoods recorded by previous calls to
BTD-gen while G and NG denote respectively the set of goods and nogoods recorded by the current execution to
BTD-gen. As we keep all the goods recorded previously, some of them cannot be reuse validly into some calls to
BTD-gen. Therefore, before reusing such a good, BTD-gen must first check its validity for the current problem in
order to respect the theorem 2. This test is performed by the function CheckGood (algorithm 3). This function
returns true whether each variable of the descent of Ei can be assigned with the value it had when the good g
had been recorded. In order to check easily this property, we need to record the extension of the good on the

5

LSIS (UMR CNRS 6168) Research Report number LSIS.RR.2009.004, Marseille France

Algorithm 2: BTD-gen(in : A, Ei, VEi
, NGp, Gp, in/out : NG, G)

if VEi
= ∅ then1

Cons← true ; F ← Sons(Ei)2
while F 6= ∅ and Cons do3

Choose Ej ∈ F ; F ← F − {Ej}4
Sj ←Ei ∩ Ej ;5
ifA[Sj] is a nogood into NG then Cons← false6
else7

ifA[Sj] is a nogood into NGp then Cons← false8
else9

ifA[Sj] is a good into G then Cons← true10
else11

ifA[Sj] is a good into Gp and CheckGood(Ej ,A[Sj]) then12
Cons← true13

else14
Cons← BTD-gen(A, Ej , Ej\(Ej ∩ Ei), NGp, Gp, NG, G)15
if Cons then Save the goodA[Sj] into G16
else Save the nogoodA[Sj] into NG17

else18
Choose xk ∈ VEi

; dk ← Dk ; Cons← false19
while dk 6= ∅ and ¬Cons do20

Choose w ∈ dk ; dk ← dk − {w}21
ifA ∪ {xk ← w} satisfies each constraint then22

Cons←BTD-gen(A ∪ {xk ← w}, Ei, VEi
− {xk}, NGp, Gp, NG, G)23

return Cons24

Algorithm 3: CheckGood(Ei, g)

Let S be the assignment g and its recorded extension on Ei1
forall y ∈ Ei do2

if S[y] 6∈ dy then return false3

V alidGood← true ; F ← Sons(Ei)4
while F 6= ∅ and V alidGood do5

Choose Ej ∈ F ; F ← F − {Ej}6
gF ← good on Ej such that gF [Ei ∩ Ej] = S[Ei ∩ Ej]7
V alidGood←CheckGood(Ej , gF)8

return V alidGood9

remaining variables of the cluster. Like BTD, BTD-gen returns the consistency of the subproblem associated to
the tree-decomposition TD and rooted in the cluster Ei.
This dedicated version of BTD is exploited in CC-BTD-gen to check if the current partial assignment on the cutset
can be extended consistently on the tree-decomposition part of the problem. If BTD-gen(∅, E1, VE1 , NGp, Gp, NG,G)
returns false, then CC-BTD-gen tries another value for the last assigned variable in the cutset (if any) or a back-
track occurs. Otherwise, it keeps on the search by assigning a new variable of the cutset. In both cases, the set G
of goods recorded by BTD-gen is added into the set Gp. The process is similar for the nogoods except that NGp

cannot be modified out of the current call to CC-BTD-gen. In other words, when we come back from a call to
CC-BTD-gen, we forget the nogoods recorded, during this call, by BTD-gen in order to respect the corollary 2.
Finally, in algorithm 1, the Boolean heuristic function ChoiceBTD defines, after each assignment of a variable in
the cutset, if BTD-gen must be called or not. If it returns false and some cutset’s variables are not yet assigned,
CC-BTD-gen tries to assign one of them with Forward-Checking algorithm (lines 7-12). If ChoiceBTD returns
true, we run BTD-gen and we keep the new goods and nogoods recorded (lines 3-5). Note that this heuristic can
be entirely dynamic since it can decide to call BTD-gen anytime during the assignment of the cutset.
Now, we illustrate the CC-BTD-gen algorithm with an example. Let us consider the constraint graph of Figure
1(a) and a possible tree-decomposition with 5 connected components and a cutset with 2 variables (y1 and y2) as
depicted in Figure 1(b). CC-BTD-gen assigns some variables of the cutset. For instance, if it only assigns y1, the
filtering of FC can reduce the domains of the unassigned neighboring variables of y1, namely x1, x2, x4, x5, x7

and x16. Next, the ChoiceBTD heuristic can decide to solve the tree-decomposition part of the problem with

6

LSIS (UMR CNRS 6168) Research Report number LSIS.RR.2009.004, Marseille France

BTD-gen. If BTD-gen returns false then CC-BTD-gen will change the assignment on y1. Otherwise CC-BTD-
gen will assign the variable y2 of the cutset. In this case, if it successes in assigning consistently y2, a new call to
BTD-gen is performed since the cutset is entirely assigned. If BTD-gen returns true then the CSP is consistent.
Otherwise CC-BTD-gen looks for a new assignment for y2.

Theorem 3 BTD-gen is sound, complete and finishes.

Proof: BTD is sound, complete and finishes [2]. As BTD-gen only differs from BTD in exploiting (no)goods
recorded during previous calls to BTD-gen, we only have to prove that the use of these (no)goods is valid. If we
denote Y the cutset, X − Y corresponds to the variables of the tree-decomposition. According to corollary 2, if
A is a consistent assignment on Y then each nogood for PA(X − Y) is a nogood for PA′(X − Y) where A′
is a consistent extension of A on the cutset. Moreover, when it backtracks from A′ = A ∪ {xk ← w} to A,
CC-BTD-gen forgets the nogoods recorded since xk is assigned to w. So the corollary 2 holds and using a nogood
from NGp is valid. Regarding the use of the goods of Gp, if the function CheckGood returns true, it ensues that
the use of the good is valid thanks to theorem 2. As BTD-gen uses only valid (no)goods, it is sound, complete and
finishes. 2

Theorem 4 CC-BTD-gen is sound, complete and finishes.

Proof: In outline, CC-BTD-gen solves the cutset part of the problem with a modified version of FC and the tree-
decomposition part with BTD-gen when all the variables in the cutset are assigned. The modified version of FC
consists in using FC and, when ChoiceBTD returns true, BTD-gen. This call to BTD-gen can be seen as an
additional consistency check (we check whether the current assignment of the cutset can be extended consistently
to the variables of the tree-decomposition). As BTD-gen and FC are sound, complete and finish, it is the same for
CC-BTD-gen. 2

In the following theorems, n denotes the number of variables of CSP, m the number of constraints, d the size of
the largest domain, k the size of the cutset, w the width of the considered tree-decomposition, and s the size of the
largest intersection between two clusters.

Theorem 5 BTD-gen has a time complexity in O(n(n + m)dw+1) and a space complexity in O(nwds).

Proof: The proof is similar to one of BTD [2]. We have just to take into account the additional time required for
checking the validity of goods of Gp and the additional space required for recording the extension of each good on
the related cluster. 2

Theorem 6 CC-BTD-gen has a time complexity in O(n(n + m)dw+k+2) and a space complexity in O(nwds).

Proof: In the worst case, CC-BTD-gen calls BTD-gen for each partial assignment of the cutset. As the num-
ber of partial assignments on the cutset is bounded by dk+1, CC-BTD-gen has a time complexity in O(n(n +
m)dw+1.dk+1 + nm.dk+1), i.e. in O(n(n + m)dw+k+2). Its space complexity only depends on one of BTD-gen.
So CC-BTD-gen has a space complexity in O(nwds). 2

4 Experimental results

In this section, we assess the practical interest of CC-BTD-gen with respect to the classical Cyclic-Clustering
algorithms (namely CC-BTD1 and CC-BTD2), BTD and FC. The tests are performed on random structured prob-
lems. More exactly, we use a generator of binary CSPs which constructs a triangulated constraint graph. Then, it
constructs another graph which represents the cutset. Finally, it adds some constraints in order to link these two
graphs. We need ten parameters to generate this kind of problems: n the number of variables of the triangulated
graph, d the size of the largest domain, r the size of the largest clique of triangulated graph, t1, t2 and t3 the number
of forbidden tuples by the constraints respectively between two variables into the triangulated part, between two
variables of the cutset and between a variable of the triangulated part and one of the cutset, s the size of the largest
separator, k the size of the cutset, e1 the number of constraints into the cutset and e2 the number of constraints
between the cutset and the triangulated graph.

7

LSIS (UMR CNRS 6168) Research Report number LSIS.RR.2009.004, Marseille France

Classes BTD CC-BTD

min-fill Merging (1,2,gen)

(n, d, r, t1, t2, t3, s, k, e1, e2)
CCgen BY BY

w s w s w s k w s
(a) (120, 15, 15, 65, 70, 40, 5, 15, 80, 30) 40.7 7 40.8 9.2 54.5 9.1 13.9 13.9 4.9
(b) (120, 15, 15, 65, 80, 30, 5, 15, 80, 30) 40.7 7 27.2 14.4 38.3 14.1 13.9 13.9 4.9
(c) (150, 15, 15, 65, 70, 40, 5, 15, 65, 30) 54 6 42.3 9.3 59 9.5 14.2 13.9 5
(d) (150, 15, 15, 65, 80, 20, 5, 15, 50, 30) 38.6 7 42 9.2 56.2 9.7 13.3 14 5
(e) (150, 15, 15, 64, 60, 60, 5, 15, 50, 30) 30 8 42 9.2 56.2 9.7 13.3 14 5
(f) (200, 15, 15, 64, 30, 30, 5, 15, 30, 20) 36 6 34.2 9.3 42.1 9.7 12 13.9 5

Table 1: Parameters of the different classes and the corresponding structural parameters for the different considered
algorithms. The cutset and the tree-decomposition part are computed from the algorithm of Balas and Yu (BY) or
are ones used by the instance generator (CCgen).

Classes FC BTD CC-BTD CC-BTD-gen
min-fill Merging CC-BTD1 CC-BTD2 Hk H2 H1

(a) >8 281 >23 585 >10 240 >27 649 >1 25.3 >1 25 3.51 1.80
(b) >8 264 >19 489 4.99 24.6 0.84 1.05 5.49 6.44
(c) >8 260 >26 643 >20 625 >32 773 >3 76 >3 74.8 14.28 0.70
(d) >5 195 >41 993 >33 839 >31 748 >2 52.4 >2 51.9 4.13 0.34
(e) >10 317 >41 986 >41 986 >33 795 >5 124 >5 121 >3 82.1 15.91
(f) >15 605 >42 1008 >39 953 >34 816 >6 144 >6 144 >5 120 >1 24.4

Table 2: Runtime (in seconds) for the different methods on the considered classes. The cutset and the tree-
decomposition part are ones used by the instance generator.

So, a class of problems is defined by these ten parameters. For each considered class, the number of consistent
problems is approximately equal to the number of inconsistent ones. In our experiments, BTD and BTD-gen
exploit FC to solve the clusters. For ordering variables in FC or inside a cluster, we use the well-known dom/deg
heuristic which first chooses the variable xi which minimizes the ratio |dxi

|
|Γxi
| with dxi the current domain of xi

and Γxi the set of the variables sharing a constraint with xi. The tree-decomposition is computed thanks to the
well-known triangulation heuristic min-fill or thanks to the merging method proposed in [9]. This latter method
computes a tree-decomposition from a cutset and a triangulated subgraph (TIS), with the aim of fully exploiting
the informations recorded during the search, unlike CC-BTDi or CC-BTD-gen. Regarding the computation of the
cutset and the tree-decomposition part, we know that for efficiency reasons, the methods based on the classical
Cyclic-Clustering approach, like CC-BTDi, need a cutset with few solutions. Unfortunately, we do not have really
any method to recognize such a structure. We exploit the method of Balas and Yu [10] which computes a TIS from
which the cutset is deduced. We also consider the generated cutset and tree-decomposition part in order to assess
the behavior of the used algorithms when the structure is ideally detected.
Regarding CC-BTD-gen and, in particular, the function ChoiceBTD, we have tested many heuristics called Hi

with i = {1, ..., k}. Each heuristic Hi decides to solve the tree-decomposition part if, since the last call to BTD-
gen, at least i variables of the cutset have been consistently assigned and if at least a value has been deleted from a
domain of a variable belonging to the tree-decomposition part. Initially, each heuristic performs a preliminary call
to BTD-gen exactly like CC-BTD2 does with BTD. In this paper, we show only the results for H1, H2 and Hk.
The experimentations are performed on a linux-based PC with an Intel Pentium IV 3.2 GHz and 1 GB of memory
and the runtimes are expressed in seconds. For each class, we solve 50 instances and the presented results are then
the averages of results obtained for each instance. The notation >i indicates that i instances are unsolved by the
corresponding algorithm within the time limit (namely 1,200 s). In this case, as we do not know the real runtime,
we add penalty of 20 minutes, for each unsolved instance. Table 1 presents the classes and the corresponding
structural parameters while Tables 2 and 3 provide the runtime of the considered methods.
First, if we compare the results obtained by CC-BTD-gen according to the heuristic Hi used, we can generally
observe that the runtime and the number of instances which cannot be solved within the time limit significantly
increase with i. In particular, while H1 and H2 seem to be close theoretically, in practice, CC-BTD-gen performs
significantly better with H1 than with H2. From a theoretical viewpoint, in the worst case, if i < j then Hi is

8

LSIS (UMR CNRS 6168) Research Report number LSIS.RR.2009.004, Marseille France

Classes BTD CC-BTD CC-BTD-gen
Merging CC-BTD1 CC-BTD2 Hk H2 H1

(a) >21 574 >32 792 >6 168 >6 157 >3 107 >1 28.2
(b) >9 297 >22 617 >7 186 >5 155 >1 41.3 >1 35.5
(c) >28 712 >41 1016 >14 339 >13 313 >12 289 >6 197
(d) >31 771 >36 877 >7 181 >7 177 >4 106 >4 96.3
(e) >36 881 >33 795 >7 171 >7 170 >4 125 >3 77.4
(f) >40 981 >39 936 >13 312 >13 312 >11 264 >10 240

Table 3: Runtime (in seconds) for the different methods based on a cutset on the considered classes. The cutset
and the tree-decomposition part are computed from the algorithm of Balas and Yu.

likely to call BTD-gen more often than Hj . However, in practice, we remark that checking often the consistency
of the tree part allows to prune the search space related to the cutset solving. For this reason, H1 gives the best
times compared to other heuristics and to CC-BTDi. CC-BTD-gen with Hk and CC-BTD2 performed the same
processing: they assign consistently all the variables of cutset before to solve the tree-decomposition part with
BTD-gen. CC-BTD-gen with Hk differs from CC-BTD2 only in using the goods recorded during the different
calls to BTD-gen which is not possible for CC-BTD2. We can see that CC-BTD-gen with Hk and CC-BTD2

have a similar behavior, even if when we use the Balas and Yu’s method, CC-BTD-gen performs slightly better.
More precisely, we have observed that CC-BTD-gen with Hk develops less nodes than CC-BTD2 when solving
the tree-decomposition part. However, the gain in nodes is not sufficient to offset the additional cost of checking
the validity of goods. As it was shown in [3], the use of nogoods recorded during the preliminary call to BTD
makes it possible to solve more instances which explains the large deviation between CC-BTD1 and CC-BTD2.
Concerning BTD, in most cases, the structure of problems is not well-suited for tree-decomposition based methods.
This is the case, for instance, when the cutset is sparse and when the cutset and the tree-decomposition part
are weakly connected. It ensues that BTD has a behavior significantly worse than most of the other structural
methods except sometimes CC-BTD1 when the tree-decomposition used by BTD relies on the merging algorithm.
Regarding FC, we can remark that it does not succeed in solving all the instances and that its runtime is greater
than one obtained by CC-BTD-gen with H1.
Finally, we can note that CC-BTDi and CC-BTD-gen perform better when they exploit the cutset and the tree-
decomposition part used during the generation step than when they use ones produced thanks to the algorithm
of Balas and Yu. Of course, such a result was foreseeable. But, it allows us to point out the lack of methods
for computing both relevant cutset and tree-decomposition with respect to CSP solving, what is clearly a main
problem for such structural methods. If the Balas and Yu’s algorithm allows to compute a triangulated subgraph
from which a cutset is then deduced, unfortunately, it does not take into account the solving. For instance, for the
random structured instances we use, the value of structural parameters k, w and s obtained by applying the Balas
and Yu’s algorithm are close to ones used for producing these instances. However, in practice, the solving produced
from the cutset and the tree-decomposition produced with the Balas and Yu’s algorithm is less efficient. Moreover,
in practice, this algorithm often leads to large cutsets with trivial tree-decompositions. For example, we have
experimented it on some frequency assignments problems (namely the fapp instances of the last CSP competition
[11]). It results that most of the variables are in the cutset and the size of the clusters of the tree-decomposition
does not exceed 3. In addition to the Balas and Yu’s algorithm, we have tried many heuristics (which exploit
or not the TIS notion) for computing the cutset and the tree-decomposition required by CC-BTDi and CC-BTD-
gen. Unfortunately, none of these heuristics has led to interesting results with respect to the CSP solving yet. So,
we think that a study like one proposed in [12] for tree-decomposition must be achieved in order to improve the
efficiency of such approaches. Likewise, if the heuristic H1 produces good results, it could be interesting to look
for more relevant or clever heuristics for ChoiceBTD.

5 Conclusions and future works

We have proposed a new method for solving structured CSPs. This method generalizes and improves the Cyclic-
Clustering approach [1]. More precisely, it exploits a cutset and a tree-decomposition whose computation is made

9

LSIS (UMR CNRS 6168) Research Report number LSIS.RR.2009.004, Marseille France

independent of the notion of triangulated induced subgraph, what brings more freedom in a crucial step of the
method. Then, CC-BTD-gen can check whether the current assignment on the cutset can be consistently extended
on the tree-decomposition part, even if all the variables of the cutset are not assigned yet. By so doing, it has a
more global view of the problem than CC-BTDi. Finally, it exploits a dedicated version of BTD which implements
some properties which make it possible to exploit some (no)goods recorded during previous calls to BTD and so to
avoid more redundancies in the search. Our preliminary experiments show the practical interest of our approach.
Namely, CC-BTD-gen often outperforms CC-BTDi.
In the CSP framework, few works related to cutset have been achieved. [13] presents a method close to Cyclic-
Clustering except that the tree-decomposition part is solved with Adaptive-Consistency. Likewise, in our knowl-
edge, the computation of both relevant cutset and tree-decomposition with respect to CSP solving has not been
studied yet. Such a work, like [12] for tree-decomposition, must be performed to improve the efficiency of such
approaches. It could turn to be very useful for solving efficiently structured real-world instances. Finally, exploiting
dynamic cutset and tree-decomposition could be promising.

Bibliography

1. P. Jégou. Cyclic-Clustering: a compromise between Tree-Clustering and the Cycle-Cutset method for improv-
ing search efficiency. In Proc. of ECAI, pages 369–371, 1990.

2. P. Jégou and C. Terrioux. Hybrid backtracking bounded by tree-decomposition of constraint networks. Artifi-
cial Intelligence, 146:43–75, 2003.

3. P. Jégou and C. Terrioux. A Time-space Trade-off for Constraint Networks Decomposition. In Proc. of ICTAI,
pages 234–239, 2004.

4. R. Haralick and G. Elliot. Increasing tree search efficiency for constraint satisfaction problems. Artificial
Intelligence, 14:263–313, 1980.

5. D. Sabin and E. Freuder. Contradicting Conventional Wisdom in Constraint Satisfaction. In Proc. of ECAI,
pages 125–129, 1994.

6. N. Robertson and P.D. Seymour. Graph minors II: Algorithmic aspects of treewidth. Algorithms, 7:309–322,
1986.

7. R. Dechter and J. Pearl. Tree-Clustering for Constraint Networks. Artificial Intelligence, 38:353–366, 1989.
8. S. Arnborg, D. Corneil, and A. Proskuroswki. Complexity of finding embeddings in a k-tree. SIAM Journal

of Discrete Mathematics, 8:277–284, 1987.
9. C. Pinto and C. Terrioux. A New Method for Computing Suitable Tree-decompositions with Respect to

Structured CSP Solving. In Proc. of ICTAI, pages 491–495, 2008.
10. E. Balas and C. Yu. Finding a maximum clique in an arbitrary graph. Siam Journal on Computing,

15(4):1054–1068, 1986.
11. M. R. C. van Dongen, C. Lecoutre, and O. Roussel, editors. Third International CSP Solver Competition,

2008. http://cpai.ucc.ie/08/.
12. P. Jégou, S. N. Ndiaye, and C. Terrioux. Computing and exploiting tree-decompositions for solving constraint

networks. In Proc. of CP, pages 777–781, 2005.
13. R. Dechter. Constraint processing. Morgan Kaufmann Publishers, 2003.

10

