
LSIS Research Report (UMR CNRS 6168) Marseille France

A time-space trade-off for constraint networks decomposition
Research Report Number LSIS/2004/005, July 1st 2004

Philippe Jégou and Cyril Terrioux

LSIS - Université d’Aix-Marseille 3
Avenue Escadrille Normandie-Niemen
13397 Marseille Cedex 20 (France)
{philippe.jegou, cyril.terrioux}@univ.u-3mrs.fr

Abstract
We study here a CSP decomposition method introduced in [1] and called Cyclic-Clustering. Its purpose
was to make a trade-off between two decomposition methods by exploiting their respective advantages.
The first one was the Cycle-Cutset scheme [2] which does not require a lot of space memory, while the
second was Tree-Clustering [3] which is theoretically more efficient for time complexity but is inefficient
in practice due to its space requirement.
While [1] only presents the principles of the method, this paper explains how this method can be made
operational by exploiting good properties of triangulated induced subgraphs. After, we give formal
results which show that Cyclic-Clustering proposes a time-space trade-off w.r.t. theoretical complexities.
Indeed, we prove here that its time complexity is less than one of the Cycle-Cutset scheme while its space
complexity is less than Tree-Clustering’s one. Finally, we present some preliminary experiments which
show that Cyclic-Clustering based on an hybrid adaptation of Tree-Clustering called BTD [4] may be
efficient in practice.

Key words : Constraint satisfaction problem, decomposition, time-space trade-off

1. Introduction

The CSP formalism (Constraint Satisfaction Problem) offers a powerful framework for representing and
solving efficiently many problems. In particular, many academic or real problems can be formulated in
this framework which allows the expression of NP-complete problems. Generally, CSPs are solved by
different versions of backtrack search whose complexity is then exponential in the size of the instance.
Nevertheless, theoretical results as presented in [5] have shown that, for some particular instances, we
can provide better complexity bounds. These new bounds are often obtained by applying decomposition
methods which exploit topological properties of constraint networks which are then represented by graphs
(or hypergraphs). For example, in [2, 3], two decomposition strategies have been proposed, the Cycle-
Cutset method (CCM) and the Tree-Clustering scheme (TC). Nevertheless, while their theoretical interest
seems significant (see [6] for an analysis), their practical advantages have not been proved yet.
Firstly in [1] and recently in [7], trade-offs between time and space complexity have been proposed to
make this class of approaches usable. Moreover, in [4], an hybrid approach, which combines backtracking
with structural decomposition has shown its practical interest for solving hard CSPs. So, it seems that
trade-offs and hybrid approaches allow to propose realistic implementations of structural methods. This
paper studies this direction by analyzing and trying to make usable the Cyclic-Clustering method (CC
[1]). Note that [1] only describes the motivations and principles of this method. For example, it does
not provide any indication for using the method in practice. Moreover, neither theoretical nor practical
analysis of this method was given in [1]. So, with regard to recent developments of approaches which
exploit time-space trade-off, it seems interesting to study CC now.
The first step of this method consists in finding all maximal cliques of the initial constraint network (a
graph). This approach can have a limited interest because the number of maximal cliques in a constraint

LSIS Research Report (UMR CNRS 6168) Marseille France

network can be exponential in the number of vertices [8]. So, exploiting in practice CC requires an
additional study. While TC runs by approximating a tree-decomposition of the constraint network,
our approach of CC proposes to find an induced subgraph of the considered constraint network whose
structure is already tree-structured. So, this part of the CSP has desirable properties and then can be
easily solved. Moreover, a nice property of hypergraphs allows us to establish a new equivalent CSP
whose a part is tree-structured while the other one forms a cycle-cutset. This analysis of the network is
based on the properties of triangulated graphs, and more precisely, on properties of triangulated induced
subgraphs.
Our description of CC allows us to give complexity results, which prove that this method can actually
make a compromise between TC and CCM. For example, we demonstrate that the theoretical time and
space complexities of CC are located between ones of TC and CCM. Finally, we present an implementation
based on BTD [4] which allows CC to obtain interesting practical results.
The paper is organized as follows. Section 2 introduces the main definitions about the CSP formalism
and decomposition methods like TC and CCM. Section 3 presents theoretical foundations of CC and give
formal comparisons w.r.t. TC and CCM. Section 5 deals with an efficient implementation of CC and
presents some preliminary experimental results. Finally, we conclude in section 6.

2. Constraint networks and decomposition methods

2.1. Constraint satisfaction problems
A constraint satisfaction problem (CSP) also called a constraint network, consists of a set of variables
which must be assigned with a value from finite domains such that each constraint is satisfied. Formally,
a CSP is defined by a tuple (X, D, C,R). X is a set {x1, . . . , xn} of n variables. Each variable xi takes its
values in the finite domain Di from D. Variables are subject to constraints from C. Each constraint Ci

is defined as a set {xi1 , . . . , xiji
} of variables. A relation Ri (from R) is associated with each constraint

Ci such that Ri represents the set of allowed tuples over Di1 × · · · ×Diji
.

A solution of a CSP is an assignment of a value to each variable which satisfies all the constraints. For
a CSP P, the hypergraph (X, C) is called the constraint hypergraph. A CSP is said binary if all the
constraints are binary, i.e. they involve only two variables, so (X, C) is a graph (called constraint graph)
associated to (X, D, C,R). For a given CSP, the problem is either to find all solutions or one solution,
or to know if there exists any solution. The decision problem (existence of solution) is known to be
NP-complete.
Generally, CSPs are solved by different versions of backtrack search whose complexity is then exponential
in the size of the instance. Consequently, many works try to improve the search efficiency. They mainly
deal with binary CSPs. In [5], Freuder gives a preprocessing procedure for selecting a good variable
ordering prior to running the search. One of his main results is a sufficient condition for backtrack-free
search. This condition concerns on the one hand a structural property of the constraint graph, and on
the other hand a local consistency. The most interesting property is the next one:

Theorem 1 ([5]) An arc-consistent binary CSP whose constraint graph is acyclic admits a solution and
there is a backtrack-free search order (this property also holds for arbitrary CSPs with hypergraphs [9]).

This property shows that the tractability of CSPs is intimately connected to the topological structure of
their underlying constraint graphs. This property has led authors to propose methods for solving cyclic
CSPs, as the cycle-cutset method [2] and tree-clustering [3] which are presented in the next subsections.

2.2. Tree-clustering (TC)
Among the decomposition methods based on a tree-decomposition [10] of the constraint network, we
have chosen, for sake of simplicity and without loss of generality, to describe TC. However, this work
can be applied to other decomposition methods based on tree-decomposition [6, 11]. TC consists in
forming clusters of variables such that the interactions between the clusters are tree structured. The new
CSP is equivalent to the first one (i.e. it has the same set of solutions), but the associated constraint
hypergraph is acyclic. So, the property about acyclic CSPs holds for this CSP. To present TC and after
cyclic-clustering, we need to recall some definitions on graph and hypergraph theory:

2

LSIS Research Report (UMR CNRS 6168) Marseille France

Definition 1 The primal graph of a hypergraph (X, C) is the graph (X, E) with E = {{Xi, Xj} | ∃Ck ∈
C s.t. {Xi, Xj} ⊆ Ck}.

Definition 2 A graph is triangulated if every cycle of length at least four has a chord, i.e. an edge
joining two non-consecutive vertices along the cycle.

Several equivalent definitions have been proposed for acyclic hypergraphs in the literature. Here we
consider one related to triangulated graphs:

Definition 3 A hypergraph is conformal if every maximal clique of its primal graph corresponds to an
edge in the original hypergraph (an original constraint).

Definition 4 ([12, 13]) A hypergraph is acyclic if it is conformal and its primal graph is triangulated.

The TC procedure involves several steps. The first one is based on the triangulation of the primal
graph. This operation, which is run if this graph is not already triangulated, adds new edges to generate
a triangulated primal graph [14]. The second step identifies the maximal cliques {C′1, . . . , C′m} in the
triangulated primal graph [15]. The next step establishes an acyclic hypergraph whose edges are the
maximal cliques of the new primal graph (so, this hypergraph has a triangulated primal graph and is
conformal). The time complexity for these different steps is O(n + e′) where n is the number of vertices
and e′ the number of edges in the triangulated graph. Then, we define the resultant CSP by solving the
subproblems defined by the clusters C′1, . . . , C′m using the constraints belonging to each cluster, i.e. listing
all the consistent tuples for the variables in each cluster. The time complexity for these different steps is
O(m.dW) where d is the size of the largest domain and W the arity of the largest constraint in the new
CSP (equal to the size of the maximum clique in the triangulated primal graph). Finally, we obtain a
globally consistent CSP using a pairwise-consistent filtering [9] which is equivalent to executing directional
arc-consistency on tuples; its time complexity is O(n.dW .W.log(d)). Note that its space complexity is
O(m.dW) but can be limited to O(m.dS) (like, for instance, Cluster Tree Elimination [11]) where S is the
size of the largest intersection between two clusters, that is the maximal size between minimal separators
in the graph. Finally, note that the problem of finding the best tree decomposition, that is with the
minimal value of W is NP-hard. For more details, see [11]. In the sequel, we will call TC methods based
on tree decomposition as TC [3], Join Tree Elimination [11] or Cluster Tree Elimination [11].
While these methods seem to be the most efficient methods to solve binary CSPs w.r.t. their time
complexity (see [6]), their practical interest is really limited. The reason is related to the fact that the
time computation is too expensive and the required memory size too large in practical cases. So, in [4],
an alternative approach called BTD has been proposed which limits the size of the required memory
and also avoids some redundancies in the search. While TC computes all solutions on each cluster and
memorizes the corresponding assignments on the intersections between clusters, BTD only computes a
part of these solutions and so only records some assignments on the intersections. These assignments are
called goods if they can be extended to consistent assignments on the part of the CSP which is connected
to this intersection, and nogoods if they cannot. So, as for other tree-decomposition methods based on
TC, the space complexity of BTD is limited since it is bounded by O(m.dS) but this worst case is not
generally achieved in practice thanks to the recorded goods and nogoods. With this trade-off, BTD can
solve instances than TC nor its optimizations can solve.

2.3. The cycle-cutset method (CCM)
A cycle-cutset of a graph (respectively hypergraph) is a set of vertices such that the deletion of these
vertices induces an acyclic graph (resp. acyclic hypergraph). CCM [2] is based on the fact that assigned
variables change the effective connectivity of the constraint graph. So, as soon as all the variables of the
cycle-cutset are assigned, all the cycles of the constraint graph are cut. Therefore, the resulting problem
is acyclic and the theorem 1 can be applied.
So, if we look for a solution, we can consider that the size of cycle-cutset corresponds to the height of
the backtracking. More precisely, for binary CSP, time complexity of CCM is O(e.dK+2) where e is the
number of constraints and K the size of cycle-cutset. The cost for looking for a consistent assignment
in the cycle-cutset is O(dK). For every solution in the cycle-cutset (i.e. a consistent assignment), it is

3

LSIS Research Report (UMR CNRS 6168) Marseille France

6

1 2 3 4 5

7891011

1 2 3 4 5

7891011

(b)(a)

6

Figure 1: Example of cyclic-clustering decomposition.

necessary to solve the induced acyclic CSP. The time complexity is then O((n − K).d2), therefore, we
obtain globally O(e.dK+2). We can note that the most important parameter in this complexity is K, and
the optimization problem which consists in minimizing K is NP-hard [16]. This method can be extended
to non-binary CSPs and then its time complexity is O(e.r.log(r).dK) where r is the size (number of
tuples) of the largest relation associated to constraints in the CSP [17]. Note that after the assignment
of the cycle-cutset, the induced acyclic CSP can be solved using the same kind of procedure than TC.

2.4. Comparison of the methods
The most important advantage of TC concerns the form of the result: it is possible to obtain every
solution without backtracking after the preprocessing phase. On the contrary, the same possibility does
not exist for CCM: each solution must be processed with a backtrack search bounded by the size of the
cycle-cutset.
Firstly in [18] and more recently in [6], it has been shown that for optimal values of W and K, we have
W ≤ K + 2, and then, TC is theoretically better than CCM for time complexity. Moreover, neither
TC nor CCM has shown their practical interest. As indicated in [4], this is due to the practical space
complexity for TC, while it is probably due to the time complexity for CCM.

3. Running cyclic-clustering (CC)

3.1. Principles of the method
To avoid drawbacks of TC and CCM, an alternative approach called cyclic-clustering (CC) has been
introduced in [1]. Note that [1] only presents the ideas of the approach without any indication on
carrying out the method. CC runs in four steps. The first step consists in finding all maximal cliques
of the initial constraint graph. The second step considers each maximal clique and then solves the
associated subproblems. The result is a constraint hypergraph whose constraints correspond to the
solved subproblems. The two last steps consist in finding a minimal cycle-cutset and then running
CCM on this new CSP. Unfortunately, running CC is not easy because of some theoretical and practical
problems. For example, it is well known that in an arbitrary graph, the number of maximal cliques can
be exponential in the number of vertices [8] and then achieving the first step is practically impossible.
So, in this section, we introduce another way for running CC, which is based on good combinatorial and
algorithmic properties of triangulated graphs. Figure 1 summarizes our approach. The first step of CC
(a) identifies a Triangulated Induced Subgraph (TIS) of the graph (all the vertices and edges belong to
the TIS, except vertices 2 and 4 and dotted edges). The second step generates an acyclic n-ary CSP
based on the TIS (b). So the last step solves the initial CSP by applying the cycle-cutset method on the
new problem, since the vertices which do not belong to the TIS define a cycle-cutset of the new problem.
In this example, these vertices are vertices 2 and 4. Theoretical justifications of this approach are based
on properties of TIS.

Definition 5 Given a graph G = (X, C), if T is a subset of X, G(T) = (T,C(T)) is the subgraph of G
induced by vertices of T , that is C(T) = {{xi, xj} ∈ C : xi, xj ∈ T}. The graph G(T) is a Triangulated
Induced Subgraph (TIS) of G if and only if G(T) is triangulated. G(T) is a Maximal TIS (MTIS) if T is
maximal for inclusion, that is if 6 ∃T ′ such that T 6⊆ T ′ ⊆ X and G(T ′) is triangulated.

In [19], Balas and Yu defined an efficient algorithm called TRIANG to find a MTIS; its time complexity is
O(n + e). Note that the computed MTIS is not necessary a maximum size induced subgraph w.r.t. the

4

LSIS Research Report (UMR CNRS 6168) Marseille France

number of vertices, but it is always a maximal subgraph w.r.t. the inclusion in the set of vertices. This
is not surprising because the task of finding such a maximum subgraph is a NP-hard problem [16, 20].
To simplify, and without loss of generality, we only present our approach on constraint graphs. To extend
this method to non-binary CSPs, it is sufficient to consider the primal graph used in TC. Given the initial
constraint graph, the first step consists in finding a TIS. Based on properties of acyclic hypergraph, the
second step generates a hypergraph which has two kinds of edges. The first kind of edges corresponds to
the maximal cliques of the TIS and the second one to the edges of the initial graph that do not belong
to the subgraph. The primal graph of this hypergraph is the initial constraint graph and we know a
cycle-cutset of this hypergraph which corresponds to the vertices that do not appear in the TIS. From
this hypergraph, CC produces a new CSP. Some edges of the new CSP correspond to new constraints.
For these new constraints, we must compute all their consistent tuples (w.r.t. the original constraints).
The last step consists in applying CCM.

Definition 6 Given a graph G = (X, C):

• Hmax(G) = (X, C′) denotes the hypergraph induced by maximal cliques of G, that is C′ is the set of
maximal cliques in G.

• given a subset Y of X, EG(Y) = {c ∈ C : c ∩ Y 6= ∅}, i.e. EG(Y) is the set of edges which contain
at least one vertex in Y .

Definition 7 Given a hypergraph H = (X, C) and a subset Y of X:

• H(Y) = (Y, C ′) denotes the hypergraph induced by the set of vertices Y , where C ′ = {c′ ⊆ Y : ∃c ∈
C, c′ ⊆ c and c′ is maximal }.

• if Y is such that H(X \ Y) is acyclic, then Y is a cycle-cutset of H.

Property 1 Given a graph G = (X, C) and a subset T of X such that G(T) is triangulated, then the
hypergraph Hmax(G(T)) is acyclic.

Proof: By definition Hmax(G(T)) is conformal because it is defined by the maximal cliques of its pri-
mal graph G(T). Since G(T) is triangulated and Hmax(G(T)) is conformal, by definition of acyclicity,
Hmax(G(T)) is acyclic. 2

Property 2 Given a graph G = (X, C), T a subset of X and C′ the set of maximal cliques in G(T),
that is Hmax(G(T)) = (T, C′); if G(T) is triangulated, then X \ T is a cycle-cutset of the hypergraph
HT = (X, C′ ∪ EG(X \ T)).

Proof: Since no edge in EG(X \T) is included in T , and since Hmax(G(T)) = (T, C′) = HT (T) is acyclic,
it is clear that X \ T is a cycle-cutset of HT . 2

Property 3 Given a graph G = (X, C) and T a subset of X; if G(T) is a maximal TIS of G, then
Y = X \ T is a minimal cycle-cutset of HT = (X, C′ ∪ EG(Y)) where C′ is the set of maximal cliques in
G(T).

Proof: We prove this proposition by contradiction: If Y = X \ T is not a minimal cycle-cutset of HT ,
necessarily, there exists a subset Y ′ of Y such that Y 6= Y ′ and Y ′ is a cycle-cutset of HT . Consequently,
if T ′ = X \ Y ′, then HT (T ′) is an acyclic hypergraph, and its primal graph is triangulated. Therefore
G(T ′) is triangulated and then G(T) is not a maximal TIS of G. 2

Definition 8 Given a binary CSP PG = (X, D, C,R) with a graph G = (X, C), and T a subset of X
such that G(T) is a triangulated graph, the CSP induced by T on PG is PHT

= (X, D, CT , RT) defined
by:

5

LSIS Research Report (UMR CNRS 6168) Marseille France

• CT = C′ ∪EG(Y) where C′ is the set of maximal cliques of G(T), that is Hmax(G(T)) = (T, C′) and
Y = X \ T

• RT = {Ri ∈ R : Ci ∈ EG(Y)} ∪ {R′
i : C′i ∈ C′ and R′

i =1Cj⊆C′
i
Rj} where the symbol 1 denotes the

join operator of relational databases theory.

• HT = (X, CT).

If G(T) is a maximal TIS of G, then PHT
is called the maximal CSP induced by T on PG.

We apply this definition to the example given in figure 1. Here, T = X\{2, 4} and then CT =
{{1, 2}, {1, 11}, {2, 3}, {2, 10}, {3, 4}, {3, 9}, {4, 5}, {4, 6}, {4, 8}, {5, 6, 7}, {6, 7, 8}, {8, 9}, {9, 10}, {10, 11}}.
The relations associated to binary constraints correspond to initial relations while new constraints, defined
by ternary relations, are obtained by solving associated subproblems. So we have R{5,6,7} = R{5,6} 1

R{5,7} 1 R{6,7} and R{6,7,8} = R{6,7} 1 R{6,8} 1 R{7,8}.
Actually, the maximal induced CSP PHT

has exactly the same set of solutions as PG.

Theorem 2 Let PG = (X, D, C,R) be a binary CSP with a graph G = (X, C), T a subset of X such
that G(T) is a TIS, and PHT

= (X, D, CT , RT) the CSP induced by T on PG. The set of solutions of
PG, denoted SolPG

, is equal to the set of solutions of PHT
, denoted SolPHT

.

Proof: By definition, SolPG
=1Ci∈C Ri and since C = EG(Y) ∪ (C \ EG(Y)), we have SolPG

=
(1Ci∈EG(Y) Ri) 1 (1Ci∈(C\EG(Y)) Ri).
Then SolPG

= (1Ci∈EG(Y) Ri) 1 (1C′
i∈C′ (1Cj⊆C′

i
Rj)) where C′ is defined as in definition 8, because

∪Ci∈(C\EG(Y)){Ci} = ∪C′
i∈C′(∪Cj⊆C′

i
{Cj})

Finally, SolPG
= (1Ci∈EG(Y) Ri) 1 (1C′

i∈C′ (1Cj⊆C′
i
Rj)) =1CTi

∈CT
RTi

= SolPHT
. 2

3.2. The method
Theorem 2 summarizes the method: given a binary CSP PG = (X, D, C,R) with graph G, it is sufficient
to determine a set T of vertices such that G(T) is a TIS of G. To find the set T , we use the procedure
TRIANG(G, T). After, we consider G(T) and we compute its maximal cliques C′ thanks to an appropriate
procedure CliquesMaxTriangulated(G(T), C′). At the next step, we generate the CSP induced by T
on PG, PHT

= (X, D, CT , RT) by solving each subproblem corresponding to each clique in C′. We denote
this procedure Generate(PG, T, C′,PHT

). Finally, since the subset X \ T is a minimal cycle-cutset of
the hypergraph HT , we can apply the general cycle-cutset method to solve PHT

, using the procedure
CycleCutsetMethod(PHT

, X \ T, SolPG
).

1. CyclicClustering(PG, SolPG
)

2. Begin

3. TRIANG(G, T);

4. CliquesMaxTriangulated(G(T), C′);
5. Generate(PG, T, C′,PHT

);

6. CycleCutsetMethod(PHT
, X \ T, SolPG

)

7. End

Figure 2: Cyclic Clustering.

Theorem 3 Given a binary CSP PG, the procedure CyclicClustering computes SolPG
.

Proof: By theorem 2, we know that PG and PHT
have the same set of solutions. Thus, by property

3, we know that the subset X \ T is a minimal cycle-cutset of the hypergraph HT . So, applying the
cycle-cutset method to solve PHT

with the cycle-cutset X \ T produces the set of solutions SolPG
. 2

6

LSIS Research Report (UMR CNRS 6168) Marseille France

Theorem 4 The time complexity of CyclicClustering is O(e + n.a.da+k) while its space complexity
is O(n.s.ds) where s is the size of the largest intersection between two clusters, that is the maximal size
between minimal separators in the TIS and k the cycle-cutset size.

Proof: We analyze each step, giving their time and space complexity:

• TRIANG(G, T). Its time complexity is O(n + e). [19]

• CliquesMaxTriangulated(G(T), C′). The time complexity of this algorithm is O(n + e) [15] and
we can give a bound for |C′| with |T | [21].

• Generate(PG, T, C′,PHT
). The difficulty is in the computation of RT . Indeed, it is necessary

to solve all the subproblems associated to the maximal cliques of G(T), i.e. edges of CT that
do not belong to EG(X \ T). For each RTi

, the cost is O(dai) if ai = |CTi
|. Consequently, the

time complexity for this step is O(|CT |.da) if a = maxCTi
∈CT

|CTi
|. Space complexity is then

O(|CT |.a.da).

• CycleCutsetMethod(PHT
, X \ T, SolPG

). It is exactly the extended method of cycle-cutset for
non-binary CSPs. If k = |X \T |, the cost of searching the consistent assignment on X \T is O(dk).
So, we obtain the time complexity O(|C′|.da.log(da).dk), that is O(|C′|.a.da.dk) = O(|C′|.a.da+k).

Finally, we obtain O(n + e + |C′|.da + |C′|.a.da+k); since |C′| ≤ |T | ≤ n, we can give a bound to this
expression: O(e + n.a.da+k) for time complexity while it is O(n.s.ds) for space complexity. 2

Note that the first step of this approach allows to compute the complexity of parameters a and k in
O(n + e) and then gives a new measure of the complexity of a CSP whose computation can be made
in linear time. Another advantage of this approach of CC is that the total height of backtracking is
decomposed in two different parts: one for solving subproblems (parameter a), and the other one for
solving the cycle-cutset (parameter k). Finally, we see that complexity is bounded by exp(a + k).
To apply efficiently this method, we must solve an optimization problem since the first step serves to
compute the most important parameters of the complexity: a and k. So, it can be interesting to minimize
k, that is equivalent to maximize |T |, searching to minimize a. It seems to us that the algorithm TRIANG
may not be the best approach to realize that; however, we do not know any result on this optimization
problem.

4. Relations between a, s, k and other structural parameters

In this section, we present a comparison between CC and other decomposition methods, namely TC and
CCM. We prove that the time complexity of CC is less than one of the Cycle-Cutset scheme while its
space complexity is less than Tree-Clustering’s one.
So, we consider here W and S for TC, K for CCM and a, s and k for CC. Though optimal values for W ,
S, K, a, s and k are difficult to obtain in practice because all the associated optimization problems are
NP-hard, the analysis proposed here takes into account optimal values for these parameters.
Firstly, it is clear that s ≤ S. Note that it is easy to find some examples of CSPs such that k + a �
K. More generally and formally, the first result allows us to claim that cyclic-clustering theoretically
outperforms CCM for time complexity.

Theorem 5 Given a binary CSP PG = (X, D, C,R), if there exists a cycle-cutset of size K, then there
exists a cyclic-clustering decomposition with parameters a and k satisfying k + a ≤ K + 2.

Proof: Consider a cycle-cutset Y of the graph G = (X, C). The induced subgraph G(X \ Y) is an
acyclic graph, precisely a forest since Y is a cycle-cutset (the size of the set Y is K). Since the subgraph
G(X \ Y) is a triangulated graph (a forest is a triangulated graph), this subgraph allows us to define a
basic cyclic-clustering decomposition. Nevertheless, X \ Y is not necessarily a maximal TIS. Consider T
such that T ⊃ (X \ Y) and G(T) is a maximal TIS. Since the forest G(X \ Y) is a subgraph of G(T),
necessarily, the maximum size a for maximal cliques in G(T) is bounded by 2 + |T \ (X \ Y)| because

7

LSIS Research Report (UMR CNRS 6168) Marseille France

2 is the maximal size for maximal cliques in G(X \ Y), and because added vertices - that are vertices
appearing in T \ (X \ Y) - do not necessarily belong to the same clique of G(T). Moreover, the value
k is exactly the number of vertices that do not appear in T , so k = |X \ T |. We obtain the inequality
a + k ≤ 2 + |T \ (X \ Y)|+ |X \ T |. Since X \ Y is a subset of T , T is a subset of X, and Y a subset of
X, this inequality can be rewritten as a + k ≤ 2 + |T | − |X \ Y |+ |X| − |T |, and since |X \ Y | = n−K
and |X| = n, we obtain finally a + k ≤ 2 + K. 2

Note that for space complexity, CCM is better than CC since the required space is limited to n.
The next theorem allows us to affirm that cyclic-clustering decomposition always outperforms tree-
clustering decomposition considering worst-case space complexity. Its proof is based on the fact that
the value W is always greater than the size of the clique of maximum size in a graph.

Theorem 6 Given a binary CSP PG = (X, D, C, R), for all cyclic-clustering decomposition with param-
eters a and k, and for all tree-clustering decomposition with parameter W we have a ≤ W .

The next theorem is clearly more interesting since it establishes the link between the theoretical time
complexities of TC and CC.

Theorem 7 Given a binary CSP PG = (X, D, C,R), if there is a cyclic-clustering decomposition with
parameters a and k, then there is a tree-clustering decomposition with parameter W satisfying W = k+a.

Proof: Based on the cyclic-clustering decomposition, we exhibit a tree-clustering decomposition with
the parameter W satisfying W = k + a. Consider a cyclic-clustering decomposition with set of vertices
T , and parameters a and k. That is T is a subset of vertices such that the graph G(T) is a TIS of the
graph G = (X, C) such that a is the maximum size for the maximal cliques of G(T) and |X \ T | = k.
Associated to G(T), the set of maximal cliques is C′ = {C′1, . . . C′m}. Consider the set Y = X \ T . Based
on Y and C′, we can define a triangulation of G, by adding a set of edges E to C, defined as:

E = (∪1≤i≤m{{x, y} : x ∈ C′i and y ∈ Y })
⋃
{{x, y} : x, y ∈ Y }

That is, for every maximal clique C′i in C′, we add edges allowing to define new maximal cliques defined
as C′i ∪ Y . Then, we can prove that the graph (X, C ∪ E) is triangulated and that {C′1 ∪ Y, . . . , C′m ∪ Y }
is the set of its maximal cliques. Consequently, we can consider a tree-clustering decomposition based
on the sets C′1 ∪ Y, . . . , C′m ∪ Y where every set C′i ∪ Y is a cluster of variables. For this decomposition,
parameter W is exactly equal to a + k since the maximum size for the maximal cliques C′i in G(T) is a,
and since k is the size of the set Y = X \ T . 2

The proof of this theorem indicates a way to optimize TC using cyclic-clustering decomposition. Suppose
that for a given CSP and for an application of the two decompositions, we have W , a and k such that
k + a < W . By applying the principle described in the proof, we can define a new tree-clustering
decomposition such that k + a = W . It is sufficient to add, in every maximal clique induced by the TIS,
all the vertices appearing in the cycle-cutset.
Note that the comparison with other structural methods is easy from a theoretical viewpoint. Unfor-
tunately, from a practical viewpoint, CCM and TC have seldom shown their interest for solving hard
problems (even if the theoretical parameters seem interesting). Moreover, if we consider other trade-offs
methods as [7] which use TC and CCM in another way (w.r.t. CC), no practical validation has been
given. Indeed, only the values of the structural parameters are computed and presented by the authors.

5. Implementing cyclic-clustering with BTD

This section reports preliminary practical results on CC. Our first objective is to assess the interest of
CC. So we analyze it on two kinds of instances. On the one hand, we check if applying CC on problems
which do not have a particular structure degrades or not its performances. On the other hand, we show
than for well structured problems, CC may significantly outperform other approaches.

8

LSIS Research Report (UMR CNRS 6168) Marseille France

5.1. Two natural approaches: CC-BTD1 and CC-BTD2

Because of the limited practical interest of TC, it is natural to implement CC by replacing TC, after the
assignment of the cycle-cutset, by BTD whose efficiency is better than TC’s one. So, we will show here
how it is possible to exploit BTD and we present an optimization of its use in CC.
For implementing CC, a natural approach should consist in running BTD when the cycle-cutset has
been assigned. This approach, denoted CC-BTD1, is clearly possible and guarantees the complexity
bounds given for CC. Nevertheless, this approach is not necessarily the most efficient. Indeed, each time
CC has consistently assigned the cycle-cutset, it must run BTD for computing and recording goods and
nogoods again. But it is clear that a part of this processing can be avoided. Let us consider a consistent
assignment of the cycle-cutset. BTD will compute and record goods and nogoods which are related to
the considered assignment. Indeed, some nogoods are obtained because the assignment of a particular
variable of the cycle-cutset causes the inconsistency of a part of assignments of future variables. For
another assignment of the cycle-cutset, the same assignment of the same variable can now give a good.
So, given a new consistent assignment of the cycle-cutset, it seems impossible to exploit the goods and
nogoods produced by a previous call of BTD. Nevertheless, it is possible to exploit the nogoods produced
by a preliminary call of BTD. We will denote this second approach as CC-BTD2. Now, before running
CC, we first consider a call to BTD. It is clear that all the recorded nogoods correspond to assignments
which cannot be extended to a complete consistent assignment, in particular including variables belonging
to the cycle-cutset. So, these nogoods can be exploited for all consistent assignments of the cycle-cutset
to cut search. On the other hand, computed goods cannot be exploited directly because they have been
computed on subproblems which are not necessarily compatible with any assignment of the cycle-cutset.
Before providing experiments about these two approaches, note that the integration of BTD in CC offers
already a theoretical interest:

Theorem 8 Given a CSP P = (X, D, C,R) and a cyclic-clustering decomposition with a TIS G(T) and
parameters a and k, the time complexity of CC-BTDi (i = 1, 2) is O(e + n.a.da+k) while its space
complexity is O(n.s.ds) where s is the size of the largest intersection between two maximal cliques of
G(T).

5.2. Experimental results
First, before presenting some preliminary empirical results, we must note that the efficiency of CC mostly
depends on the number of solutions of the cycle-cutset. Indeed, in the worst case, CC computes all the
solutions of the cycle-cutset. So, for efficiency reasons, CC needs a cycle-cutset with few solutions,
what raises the question about the computation of a suitable cycle-cutset. A solution may consist in
computing a MTIS thanks to the Balas and Yu’s algorithm [19]. By so doing, we obtain cycle-cutsets
with a reasonable size, but they often have a lot of solutions. So, we have preferred build a larger but more
constrained cycle-cutset which has fewer solutions by using a heuristic method. This method consists
in choosing a variable, removing it from the constraint graph and repeating this process until the graph
is triangulated. The selected variables form the cycle-cutset. To limit the number of solutions of the
cycle-cutset, at each step, we choose the variable which shares most constraints with previously selected
variables.
We first experiment CC-BTDi on binary classical random instances and we compare them with Forward-
Checking [22], MAC [23] and FC-BTD [4]. For ordering variables in FC, MAC or inside a cluster for
FC-BTD and CC-BTDi, we use the dom/deg heuristic[24]. This heuristic first chooses the variable xi

which minimizes the ratio |dxi
|

|Γxi
| with dxi

the current domain of xi and Γxi
the set of the variables sharing

a constraint with xi. The classical random instances are produced thanks to the generator written by
D. Frost, C. Bessière, R. Dechter and J.-C. Régin. This generator takes 4 parameters n, d, e and t. It
builds a CSP of class (n, d, e, t) with n variables, each having a domain of size d, and e binary constraints
(0 ≤ e ≤ n(n−1)

2) in which t tuples are forbidden (0 ≤t≤ d2). Considered classes are close to the
satisfiability threshold. For each class, we solve 50 instances whose constraint graph is connected.
Table 1 presents the mean run-time of each method. We can remark that CC-BTD1 and CC-BTD2 obtain
similar results. Such a result is not surprising because, like observed in [4], few structural nogoods are
produced on classical random instances. So, few nogoods are exploited too, what explains that CC-BTDi

does not perform better than FC or FC-BTD. However, it outperforms MAC when FC appears better

9

LSIS Research Report (UMR CNRS 6168) Marseille France

Class FC MAC FC-BTD CC-BTD1 CC-BTD2

(50,15,245,93) 7.87 12.36 7.61 8.22 8.21
(50,15,306,78) 28.06 55.76 27.19 30.10 29.97
(50,15,368,68) 97.20 232.95 92.72 105.08 104.28
(50,25,150,397) 2.48 2.66 2.49 2.61 2.61
(75,10,277,43) 1.45 0.65 1.44 1.59 1.59

Table 1: Run-time (in seconds) of FC, FC-BTD, CC-BTD1 and CC-BTD2 for classical random instances.

Class FC MAC FC-BTD CC-BTD1 CC-BTD2

(50,15,15,75,5,15,80,50) 42.00 89.98 10.14 4.76 3.35
(50,15,15,76,5,15,80,50) 24.68 85.14 23.62 3.35 2.44
(50,15,15,71,5,20,130,50) 46.42 159.96 40.70 0.35 0.35
(50,15,15,72,5,20,130,50) 211.36 699.47 128.53 0.29 0.30
(50,15,15,77,5,15,80,30) 1.89 8.64 1.58 4.89 1.49
(50,15,15,78,5,15,80,30) 39.98 89.56 1.51 3.45 2.15

Table 2: Run-time (in seconds) of FC, FC-BTD, CC-BTD1 and CC-BTD2 for structured random in-
stances.

than MAC. Moreover, in spite of the absence of suitable properties, we do not observe a degradation of
performance with respect to FC or FC-BTD.
As it is well known that classical random instances do not have a particular structure, we assess the
interest of our method on binary structured random instances. By structured instances, we mean that
the constraint graph of produced instances presents some suitable properties for CC-BTDi. Formally, our
random generator takes 8 parameters. It builds a CSP of class (n, d, a, t, s, k, e1, e2) with n + k variables,
each having a domain of size d. For each constraint, t tuples are forbidden. We first build a clique-tree
(like in [4]) with a the size of the largest clique and s the size of the largest intersection between two
cliques. Note that a clique-tree is a TIS. Then, we build the cycle-cutset which contains k variables and
e1 constraints. Finally, we add e2 constraints between the cycle-cutset and the clique-tree. By so doing,
produced problems have a suitable structure. Unfortunately, we do not have any method to recognize
such a structure. So, as we aim to assess the interest of CC-BTDi for structured problems and not the
quality of the computed cycle-cutset, we provide the cycle-cutset to CC-BTDi. Selected classes are close
to the satisfiability threshold. For each class, we solve 50 instances whose constraint graph is connected.
Table 2 shows that CC-BTDi may outperform MAC, FC and FC-BTD when the problem structure has
the suitable properties. Note that this structure is not really suitable for FC-BTD, what may explain the
results obtained by FC-BTD. In particular, the cluster size for FC-BTD is significantly more important
than one for CC-BTDi. For instance, the largest cluster of FC-BTD often involves about 50 variables
while CC-BTDi’s one contains at most 15 variables. We can also observe that CC-BTD2 is better than
CC-BTD1. So the nogoods recorded during the preliminary call of BTD allow CC-BTD2 to prune some
parts of the search space.
To sum up, CC-BTDi may be an interesting approach for solving structured problems. The main difficulty
lies in recognizing the problem structure, that is computing a good cycle-cutset with only few solutions.
So, methods which compute such cycle-cutsets must be developed before we can fully assess the practical
interest of CC-BTDi (for instance, by solving real-world instances).

6. Discussion and Conclusion

In this paper, we have studied the Cyclic-Clustering decomposition method [1]. While [1] only presented
the principles of the method, we have explained here how this method can be made operational by ex-

10

LSIS Research Report (UMR CNRS 6168) Marseille France

ploiting good properties of triangulated induced subgraphs. Then, we have shown that Cyclic-Clustering
proposes a time-space trade-off w.r.t. theoretical complexities. Indeed, we have proved that its time com-
plexity is less than one of the Cycle-Cutset scheme while its space complexity is less than Tree-Clustering’s
one. Finally, we have presented some preliminary experiments which show that Cyclic-Clustering based
on an hybrid adaptation of Tree-Clustering called BTD [4] may be efficient in practice as soon as the
instance to solve has the suitable structural properties.
The comparison with other decomposition methods is not easy. From a theoretical viewpoint, the methods
based on TC clearly outperform CC w.r.t. the time complexity. Nevertheless, if we analyze published
papers on this topic (see [11] for a complete survey), no practical validation of these approaches has been
made, but for BTD. For example, in [7] where another approach of a trade-off between TC and CCM is
presented, no practical validation is given. Indeed the authors limit their analysis of the practical interest
to an empirical assessment of structural parameters as S and W without solving any instance. Note
that in [7], CCM is only used in TC, instead of any enumerative method, for solving the subproblems
associated to clusters. Moreover, for other papers on TC, no study of the practical interest is provided.
This is not surprising since, when these methods are implemented, their space requirements prevent them
from running on small instances. So, it seems to us that the trade-off offered by CC constitutes a realistic
alternative to exploit structural features of well structured instances.
Nevertheless, from a practical viewpoint, many works must be developed, principally in two directions.
Firstly, we must study algorithmic tools for finding TIS. Indeed, experiments have shown that the quality
of the computed TIS (w.r.t. CC) is not necessary related to its size. The number of solutions of
the associated cycle-cutset is involved too. For instance, the algorithm TRIANG finds a maximal TIS
with a reasonable size, but, unfortunately, the associated minimal cycle-cutset has too many consistent
assignments, what implies a deterioration of the practical efficiency of CC.
The second direction concerns a better use of informations produced by BTD during the preliminary
phase of CC-BTD2. Indeed, the nogoods recorded before running CC allow to speed up CC. So, instead
of stopping BTD as soon as it finds a solution of the TIS, it should be more interesting to compute all
the possible nogoods. Another use of BTD could be to find a way for exploiting the goods produced
during the preliminary phase. While finding all nogoods is theoretically easy, using goods requires more
theoretical works.

Bibliography

1. P. Jégou. Cyclic-Clustering: a compromise between Tree-Clustering and the Cycle-Cutset method
for improving search efficiency. In Proceedings of the European Conference on Artificial Intelligence
(ECAI-90), pages 369–371, 1990.

2. R. Dechter. Enhancement Schemes for Constraint Processing: Backjumping, Learning, and Cutset
Decomposition. Artificial Intelligence, 41:273–312, 1990.

3. R. Dechter and J. Pearl. Tree-Clustering for Constraint Networks. Artificial Intelligence, 38:353–366,
1989.

4. P. Jégou and C. Terrioux. Hybrid backtracking bounded by tree-decomposition of constraint net-
works. Artificial Intelligence, 146:43–75, 2003.

5. E. Freuder. A Sufficient Condition for Backtrack-Free Search. JACM, 29:24–32, 1982.
6. G. Gottlob, N. Leone, and F. Scarcello. A Comparison of Structural CSP Decomposition Methods.

Artificial Intelligence, 124:343–282, 2000.
7. R. Dechter and Y. El Fattah. Topological Parameters for Time-Space Tradeoff. Artificial Intelligence,

125:93–118, 2001.
8. I. Tomescu. Sur le nombre de cliques maximales d’un graphe et quelques problèmes sur les graphes

parfaits. Revue roumaine de Mathématiques Pures et Appliquées, 16:1115–1126, 1970. In french.
9. P. Janssen, P. Jégou, B. Nouguier, and M.C. Vilarem. A filtering process for general constraint

satisfaction problems: achieving pairwise-consistency using an associated binary representation. In
Proceedings of IEEE Workshop on Tools for Artificial Intelligence, pages 420–427, 1989.

10. N. Robertson and P.D. Seymour. Graph minors II: Algorithmic aspects of tree-width. Algorithms,
7:309–322, 1986.

11. R. Dechter. Constraint processing. Morgan Kaufmann Publishers, 2003.

11

LSIS Research Report (UMR CNRS 6168) Marseille France

12. C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic database schemes.
J. ACM, 30:479–513, 1983.

13. C. Berge. Hypergraphes – Combinatoire des ensembles finis. Gauthier-Villars, 1987.
14. R. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs, test acyclic-

ity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal on Computing, 13
(3):566–579, 1984.

15. F. Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and
maximum independent set of a chordal graph. SIAM Journal on Computing, 1 (2):180–187, 1972.

16. M. Krishnamoorthy and N. Deo. Node deletion NP-complete problems. SIAM J. on Computing,
8(4):619–625, 1979.

17. P. Jégou. Contribution à l’étude des problèmes de satisfaction de contraintes : Algorithmes de prop-
agation et de résolution – Propagation de contraintes dans les réseau dynamiques. PhD thesis, Uni-
versité des Sciences et Techniques du Languedoc, January 1991. In french.

18. U. Bertele and F. Brioschi. Nonserial Dynamic Programming. Academic Press, 1972.
19. E. Balas and C. Yu. Finding a maximum clique in an arbitrary graph. Siam J. on Computing,

15(4):1054–1068, 1986.
20. M. Yannakakis. Node and Edge-deletion NP-complete problems. In Proceedings ACM Symp. on

Theory of Comput., pages 253–264, 1978.
21. D.R. Fulkerson and O. Gross. Incidence matrices and interval graphs. Pacific J. Math., 15:835–855,

1965.
22. R. Haralick and G. Elliot. Increasing tree search efficiency for constraint satisfaction problems.

Artificial Intelligence, 14:263–313, 1980.
23. D. Sabin and E. Freuder. Contradicting Conventional Wisdom in Constraint Satisfaction. In Pro-

ceedings of the European Conference on Artificial Intelligence (ECAI-94), pages 125–129, 1994.
24. C. Bessière and J.-C. Régin. MAC and Combined Heuristics: Two Reasons to Forsake FC (and

CBJ?) on Hard Problems. In Proceedings of CP’96, pages 61–75, 1996.

12

