
LSIS Research Report (UMR CNRS 6168) Marseille France

Exchanging nogoods: an efficient cooperative search for solving
constraint satisfaction problems
Research Report Number LSIS/2003/002, March 11th 2003

Cyril Terrioux

Laboratoire des Sciences de l’Information et des Systèmes
LSIS (UMR CNRS 6168)
Campus Scientifique de St Jérôme
avenue Escadrille Normandie Niemen
13397 MARSEILLE Cedex 20

Abstract
We propose a new cooperative concurrent search for solving the constraint satisfaction problem. Our
approach consists in running independently many solvers (each one being associated with a process).
These solvers exploit the algorithm Forward-Checking with Nogood Recording and they differ from each
other in the heuristics they use for ordering variables and values. The cooperation is then based on
exchanging nogoods (i.e. instantiations which cannot be extended to a solution). It is realized by two
cooperation forms. On the one hand, we record every produced nogood in a shared memory. Thanks to
these nogoods, each solver can then prune its own search tree. On the other hand a solver communicates
directly a nogood to some other solvers by sending a message. We propose three different schemes for
implementing the second cooperation form. Two of them reduce the communication cost by only sending
to a solver the nogoods which are useful for it. Furthermore, we add to each solver a interpretation phase
whose role is to limit the size of the search tree according to the received nogoods. Finally, we explain
why a trade-off between cooperation and concurrency is required, before proposing such a trade-off.
From a practical point of view, the interest of our approach is shown experimentally on random instances
and on real-world instances. First, we establish that exchanging nogoods appears to be an efficient
cooperation form. In particular, on random instances, we obtain linear or superlinear speed-up for
consistent problems, like for inconsistent ones, up to about ten solvers. Then, we compare our approach
with some classical state-of-the-art enumerative algorithms. In a multiprocessor system, our approach
with at least two or four solvers is faster than these classical algorithms. In a monoprocessor system, in
most cases, it is equivalent to or better than Forward-Checking with Nogood Recording but it is often
worse than the other classical algorithms. However, in a few cases, in particular for some real-world
instances, it outperforms the classical algorithms.

Key words : Constraint satisfaction problem, concurrent search, cooperative search

1. Introduction

Constraint satisfaction problems (CSPs) define a powerful formalism for representing knowledge. The
CSP formalism enables us to express different kinds of problems like configuration, design, scene labeling,
planning, graph coloring, . . . A CSP consists of a set of variables (each one having a finite domain)
and a set of constraints. Each constraint forbids some combinations of values for a subset of variables.
Solving a CSP requires to assign a value to each variable such that the assignment satisfies all constraints.
Unfortunately, determining whether a CSP has a solution is a NP-complete task.
In the past years, a lot of methods have been developed for solving constraint satisfaction problems. The
basic one is Chronological Backtracking (noted BT). BT is well known for its practical inefficiency. So,
several techniques have been proposed to improve BT by reducing the size of the search tree. The first
ones are look-ahead techniques which simplify the problem by filtering before or during the resolution like

LSIS Research Report (UMR CNRS 6168) Marseille France

Forward-Checking (noted FC [9]) or Maintaining Arc-Consistency (noted MAC [17]). Then, look-back
techniques have been developed. They consist in analyzing the failure and then coming back as higher as
possible in the search tree, like Backjumping [8], Graph-based Backjumping [7] or Conflict-Directed Back-
jumping [16]. Finally, learning techniques have been proposed like, for instance, Constraint Learning [7] or
Nogood Recording [19]. They avoid some redundancies in the search tree by recording some informations.
From these three kinds of improvements, hybrid methods have been produced like Forward-Checking with
Nogood Recording (noted FC-NR [19]) or Forward-Checking with Conflict-directed Backjumping (noted
FC-CBJ [16]). Jointly, many heuristics have been defined for the purpose of guiding the algorithms for the
choice of variables and values to assign first. All these improvements aim to reduce the computation time.

Before solving a problem (or a collection of problems), the first task consists in choosing the method
and the heuristics we are going to use. These choices are very important since they determine our
ability to solve the problem. For instance, they are crucial for the computation time. The comparisons
between methods (or heuristics) turn out to be helpful for choosing. However, most of them are empirical
and concern only some benchmarks or some classes of random instances. With regard to theoretical
comparisons [14, 4], they often require some limitations like the use of a particular variable ordering.
Hence, in spite of some theoretical or empirical studies, choosing a method and/or an heuristic remains
a difficult task.
The concurrency concept consists in running several independent solvers on the same problem, each one
using a different method and/or a different heuristic. As solvers are independent, the search is finished as
soon as a solver solves the problem (by finding a solution or by proving there is none). This concept can be
used as a solution to avoid some bad choices. Indeed, such an approach allows us not to favor a particular
method or a particular heuristic. Namely, the different heuristics/methods are run independently in the
hope that one is well-adapted for the instance we want to solve. Furthermore, in the recent years, few
new efficient methods or heuristics have been proposed. So the concurrency may appear as an interesting
alternative approach.
In practice, concurrent searches are often efficient for solving consistent problems. On the other hand,
these methods are seldom useful for inconsistent problems. Indeed, solving such problems requires to
explore the whole search tree. Tested on the graph coloring problems [12], this approach obtains better
results than a classical method with a single solver, but the gains seem limited. Hogg and Williams then
recommend the use of cooperation to improve the efficiency of concurrent searches.

During the search, solvers explicit some informations which are the result of some amount of work. By
exchanging and exploiting such informations, solvers may save some work, and so some computation time.
For instance, exchanged informations can be exploited to guide solvers to a solution. Using cooperation
raises some questions. First, we have to choose the kind of informations the solvers are going to exchange.
Then, we have to decide when the solvers can (or must) send or receive informations and how they can
take advantage of these informations. Answering these questions is all the more difficult because the
addition of cooperation to an algorithm may modify its features like, for example, its soundness.
Experimental results on cryptarithmetic problems [5, 10] and on graph coloring problem [10, 11] show a
significant gain in time with respect to an independent search. In both cases, the exchanged informations
correspond to partial consistent instantiations. In [15], a cooperation based on exchanging nogoods (i.e.
instantiations which can’t be extended to a solution [19]) is proposed. Each solver runs the algorithm
Forward Checking with Nogood Recording (noted FC-NR [19]) with a different heuristic for ordering
values or variables. Each produced nogood is added as a new constraint to the initial problem. Then
any solver can use these constraints in order to remove some values by filtering. This constraint addition
corresponds to a cooperation form. Indeed, the nogoods produced by a solver can be exploited by other
ones for pruning their own search tree. So, one can expect to find more quickly a solution. The realized
implementation is turned to a monoprocessor system since it gathers all solvers in a single process which
simulates the parallelism. Experimentations on random CSPs show that cooperative search is better than
concurrent one. However, although this approach seems interesting and promising, the weak gain with
report to a single solver gives a doubt about the efficiency of such a method, in particular if we want to
use several processes.

2

LSIS Research Report (UMR CNRS 6168) Marseille France

In this article, we extend the Martinez and Verfaillie’s works [15]. Like Martinez and Verfaillie, we
propose a cooperative concurrent search whose all solvers run the same algorithm (namely FC-NR), use
different heuristics for ordering variables and/or values and exchange nogoods. We also add the produced
nogoods as new constraints and so these recorded nogoods are exploited during the filtering. However, we
associate a process to each solver (i.e. our approach is turned to multiprocessor systems). By so doing,
we assume that each process is able to access a shared memory which contains the instance we want
to solve. Then we exploit a second cooperation form, namely each solver communicates the nogoods it
finds to a part of the other solvers. Such communications between the solvers may raise some problems.
For instance, the global communication cost may penalize the practical efficiency of our approach. So,
in order to reduce the impact of such problems on the practical efficiency, we restrict the exchange of
nogoods such that a nogood is only conveyed to a solver if this solver is liable to use it immediately on
its receipt. Furthermore, in order to exploit the received nogoods, we add an interpretation phase to
the FC-NR algorithm. With regard to the heuristics, we explain why a trade-off is required between the
concurrency and the cooperation and we propose such a trade-off. From a practical point of view, we
experiment our approach with random instances and real-world instances. On the one hand, we focus on
the interest of our approach from a parallel viewpoint by assessing its speed-up and its efficiency. On the
other hand, we compare our method with four classical enumerative algorithms.
With respect to our previous work [20], this article provides many extensions. First, we propose three
schemes (instead of one) in order to realize the second cooperation form. Then, we present an improved
version of the interpretation phase. Furthermore, we propose a trade-off between the concurrency and the
cooperation and we explain why it is necessary. Finally, this paper significantly extends the experimental
section by using more classes of random instances, by testing on real-world instances and by comparing
our approach with classical state-of-the-art algorithm.

The plan is as follows. In section 2, we give some basic notions about CSPs, nogoods and the FC-NR
algorithm. Then, in section 3, we present our approach. Section 4 provides some experimental results.
Finally, after discussing about some possible extensions of this work in section 5, we conclude in section
6.

2. Definitions

2.1. Definitions about CSPs
A constraint satisfaction problem (CSP) is defined by a quadruplet (X, D, C,R). X is a set {x1, . . . , xn}
of n variables. Each variable xi takes its values in the finite domain dxi

from D. Variables are subject
to constraints from C = {c1, . . . , cm}. Each constraint ci is defined by a set {xi1 , . . . , xik

} of variables.
A relation rci (from R) is associated with each constraint ci such that rci represents the set of allowed
tuples over dxi1

× · · · × dxik
.

A CSP is called binary if each constraint involves at most two variables, n-ary otherwise. Let xi and xj

be two variables, we note cij the binary constraint involving xi and xj . In the remaining of this paper,
we consider only binary CSPs. However, our ideas can be extended to n-ary CSPs.
Given Y ⊆ X such that Y = {y1, . . . , yk}, an instantiation of variables from Y is a tuple (v1, . . . , vk)
from dy1 × · · · × dyk

. Given an instantiation A and Y ⊆ X, we note XA the set of variables which are
instantiated in A, and A[Y] the instantiation A restricted to variables appearing in both XA and Y .
An instantiation A is called consistent if ∀c ∈ C, c ⊆ XA,A[c] ∈ rc, inconsistent otherwise. In other
words, an instantiation A is consistent if it satisfies each constraint c such that every variable constrained
by c belongs to XA. We use indifferently the term assignment instead of instantiation. We note the
instantiation (v1, . . . , vk) in the more meaningful form {y1 ← v1, . . . , yk ← vk}. A solution is a consistent
instantiation of all variables. Given an instance P = (X, D, C,R), determine whether P has a solution is
a NP-complete problem.

Example 1 Let us consider the binary CSP P = (X, D, C,R) with:

- X = {x1, x2, x3, x4, x5, x6, x7},

- D = {d1, d2, d3, d4, d5, d6, d7} with d1 = d2 = d3 = d6 = d7 = {a, b, c} and d4 = d5 = {a, b},

3

LSIS Research Report (UMR CNRS 6168) Marseille France

- C = {c12, c13, c15, c23, c24, c35, c56, c57, c67},

- R = {r12, r13, r15, r23, r24, r35, r56, r57, r67} where r12 corresponds to x1 6= x2, r13 x1 6= x3, r15

x1 ≤ x5 (≤ is the alphabetical order), r23 x2 6= x3, r24 x2 ≤ x4, r35 x3 ≤ x5, r56 x5 6= x6, r57

x5 6= x7 and r67 x6 6= x7.

Given an instance P and an instantiation, we can define the notion of CSP induced by an instantiation:

Definition 1 (induced CSP)
Let P = (X, D, C, R) be a CSP and Ai be an instantiation (Ai = {x1 ← v1, x2 ← v2, . . . , xi ← vi}).
P(Ai) = (X, D(Ai), C, R(Ai)) is the CSP induced by Ai from P with a Forward Checking filter such
that:

- ∀j, 1 ≤ j ≤ i, dxj (Ai) = {vj}

- ∀j, i < j ≤ n, dxj
(Ai) = {vj ∈ dxj

|∀ckj ∈ C, 1 ≤ k ≤ i, (vk, vj) ∈ rckj
}

- ∀j, j′, rcjj′ (Ai) = rcjj′ ∩ (dxj
(Ai)× dxj′ (Ai)).

Ai is said FC-consistent if ∀j, dxj
(Ai) 6= ∅.

According to this definition, dxj
(Ai) represents the current domain of xj (i.e. the domain whose some

values have been deleted by the filterings inherent in the construction of A) whereas dxj is the initial
domain of xj . Likewise, rcjj′ (Ai) corresponds to the initial relation rcjj′ restricted to the current domains
of xj and xj′ .

2.2. Nogoods: definitions and properties
In this part, we give the main definitions and properties about nogoods. A nogood corresponds to an
assignment which can’t be extended to a solution. More formally:

Definition 2 (nogood [19])
Let A be an instantiation and J a subset of constraints (J ⊆ C). (A, J) is a nogood if the CSP (X, D, J, R)
doesn’t have a solution which contains A. J is called the nogood’s justification (we note XJ the variables
subject to constraints from J). The arity of the nogood (A, J) is the number of assigned variables in A.

For instance, every inconsistent assignment corresponds to a nogood. The converse doesn’t hold.

Example 2 ({x1 ← a, x3 ← c}, {c15, c35}) is a nogood although the affectation {x1 ← a, x3 ← c} is
consistent. ({x1 ← b}, {c12, c13, c15, c23, c24, c35}) is a nogood too.

In order to make the approach efficient in practice, we use the algorithm Nogood Recording based on
Forward-Checking. So, the reasons of a failure may be many. Hence, we need the notion of ”value-killer”
(introduced in [19]) to compute justifications. A value-killer corresponds to a constraint which allows the
deletion of a value by filtering. This constraint may be an initial constraint (condition (ii)) or a constraint
which is added thanks to a nogood (condition (iii)). Note that we add the condition (iii) to the initial
definition of Schiex and Verfaillie in order to exploit this notion in the cooperative concurrent search.

Definition 3 (value-killer)
Given a CSP P, an assignment Ai, and the set N of produced nogoods, a constraint ckj (j > i ≥ k) is a
value-killer of value vj from dxj

for Ai if one of the following conditions holds:

(i) ckj is a value-killer of vj for Ai−1

(ii) k = i and (vk, vj) 6∈ rckj
(Ai) and vj ∈ dxj

(Ai−1)

(iii) {xk ← vk, xj ← vj} ∈ N

The set of value-killers of a domain dxj
is defined as the set of constraints which are a value-killer for at

least one value vj of dxj
.

4

LSIS Research Report (UMR CNRS 6168) Marseille France

For a given value v, a value-killer of v is a constraint allowing to delete v by filtering, and so to explain
the deletion of v. If a failure occurs because a domain dxi is wiped-out, the set of value-killers of dxi

provides the reasons of the inconsistency (i.e. the justifications). The following theorem formalizes the
creation of nogoods from dead-ends.

Theorem 1 Let A be an assignment and x be an unassigned variable. Let K be the set of value-killers
of dx. If it doesn’t remain any value in dx(A), then (A[XK],K) is a nogood.

The two next theorems make it possible to create new nogoods from existing nogoods. The first theorem
builds a new nogood from a single existing nogood.

Theorem 2 If (A, J) is a nogood, then (A[XJ], J) is a nogood.

In other words, we only keep from the instantiation the variables which are involved in the failure. Thus,
we produce a new nogood whose arity is limited to its strict minimum. Theorem 3 builds a new nogood
from a set of nogoods:

Theorem 3 Let A be an instantiation, x be an unassigned variable. Let K be the set of value-killers of
dx. Let Aj be the extension of A by assigning the value vj to x (Aj = A ∪ {x ← vj}). If (A1, J1), . . . ,

(A|dx|, J|dx|) are nogoods, then (A,K ∪
|dx|⋃
j=1

Jj) is a nogood.

Thanks to this theorem, when every extension of a node leads to a failure, we can build a new nogood.

A nogood can be used either to backjump or to add a new constraint or to tighten an existing constraint.
If we produce the nogood (A, J), a constraint between the variables of XA is added (or tightened if it
already exists). This constraint forbids the tuple A. Then, it can be exploited like any constraint of
the initial problem, for instance for deleting values by filtering. The backjump provoked by a nogood is
similar to one of the algorithm Conflict-directed BackJumping [16]. The next lemma characterizes this
backjump phase:

Lemma 1 If (A[XJ], J) is a nogood, it is correct to backjump to the deepest variable belonging to XJ .

Of course, if there are many nogoods (A[XJ], J) involving the current instantiation, the solver must
backjump to the deepest variable among all sets XJ . In both cases, it follows from the use of nogoods a
pruning of the search tree. In particular, their use allows to avoid some redundancies in the search tree.

2.3. The Forward-Checking with Nogood Recording algorithm
We describe the algorithm FC-NR in figure 1. FC-NR visits the nodes of the search tree like Forward
Checking. It tries to extend a FC-consistent instantiation A. With this aim in view, FC-NR chooses
the next variable xi in V and tries to assign it a value in order to build an extension A′ of A. Enforce
a Forward-Checking filter on the neighbouring unassigned variables of xi determines whetherA′ is FC-
consistent. The function Forward − check realizes this work. It returns ∅ if the instantiation is FC-
consistent, the set of constraints which are involved in the failure otherwise. Regarding the function
Unforward, it cancels the last filtering. During the search, FC-NR takes advantage of inconsistencies
and failures, which it finds, to create and record nogoods. These nogoods are then used as described
above to prune the search tree. To do this work, sets of constraints J and J ′ are introduced. They
represent the reasons of failures which are found when FC-NR tries to extend respectively A and A′.
The main drawback of FC-NR is that the number of nogoods is potentially exponential (because it
corresponds to the number of inconsistent assignments). So, we limit the number of nogoods, following
the proposition of Schiex and Verfaillie [19], which consists in recording only nogoods whose arity is at
most i. We fix i to 2.

3. A new cooperative concurrent search

3.1. Presentation
From the idea of Martinez and Verfaillie, we propose a new cooperative concurrent search where the
cooperation is based on exchanging nogoods. Like Martinez and Verfaillie, we run independently p

5

LSIS Research Report (UMR CNRS 6168) Marseille France

FC-NR(A, V)
In : a FC-consistent instantiation A and V the set of unassigned variables.

At beginning, A = ∅ and V = X.
Out: ∅ if the problem is consistent (A is a solution),

the set of justifications of the failure otherwise.
1. If V = ∅ Then A is a solution, Stop
2. Else
3. Let xi ∈ V , di ← Di(A), J ← ∅, BackJump← false
4. While di 6= ∅ and BackJump = false
5. Choose v ∈ di

6. di ← di − {v}
7. A′ ← A∪ {xi ← v}
8. K ← Forward-check(A′, xi)
9. If K= ∅
9. Then
10. Jsons ← FC-NR(A′, V − {xi})
11. Unforward(xi)
12. If xi ∈ XJsons

/* If xi is involved in the failure of A′ */
12. Then J ← J ∪ Jsons

13. Else
14. J ← Jsons

15. BackJump← true
16. EndIf
17. Else
18. Unforward(xi)
19. J ← J ∪K
20. Record (A′[XK],K) /* theorem 1 */
21. EndIf
22. EndWhile
23. If BackJump = false
23. Then
24. J ← J ∪ value-killer(xi)
25. Record (A[XJ], J) /* theorems 2 and 3 */
26. EndIf
27. Return J
28. EndIf

Figure 1: The Forward Checking with Nogood Recording algorithm (FC-NR).

solvers. All solvers exploit the same algorithm, namely FC-NR, but they use different heuristics for
ordering values and/or variables, what ensures that each solver visits a different search tree. The search
is finished as soon as a solver finds a solution or proves there is none. Unlike Martinez and Verfaillie,
we associate a process to each solver, and so our approach is turned to multiprocessor systems. The
cooperation is based on exchanging nogoods. A solver can then prune a part of its search tree thanks to
nogoods produced by other solvers. In our approach, we consider two cooperation forms for the exchange
of nogoods. These two forms require the following assumptions:

- each process can access a shared memory which is big enough in order to contain the instance we
want to solve, the set of recorded nogoods and the current instantiation of each solver,

- each process can communicate, by exchanging messages, with any other process.

We discuss in section 5 about a possible relaxation of the first hypothesis. The first form consists in
adding each produced nogood to the initial problem by creating a new constraint or by tightening an

6

LSIS Research Report (UMR CNRS 6168) Marseille France

existing constraint. Then, as the problem (the recorded nogoods included) is stored in shared memory,
any solver can classically use any nogood in order to backjump or to enforce an additional filtering.
However, this first cooperation form (which is the only one used in [15]) is turned out to be insufficient
for fully exploiting the produced nogoods. In fact, a solver may start exploring a subtree before receiving
a nogood which allows it to prune this subtree. In such a case, by only exploiting the first cooperation
form, the solver can’t prune the subtree (because it doesn’t check backward the constraints). Hence,
depending on the number and the size of such subtrees, the loss of efficiency may become significantly
important. So, in order to avoid such a problem, we propose an additional cooperation form. This second
form is based on the explicit exchange of messages between the solvers. When a solver finds a nogood, it
first adds it to the initial problem according to the first cooperation form. Then, it informs some other
solvers of its discovery by sending a message which contains the instantiation of the nogood. Note that
the communication of the justification isn’t necessary because the nogood has just been added to the
problem as a constraint. Finally, we add to FC-NR an interpretation phase which aims to limit the size
of the search tree by pruning some inconsistent branches thanks to the received nogoods.
We can implement the second cooperation form in several ways. We propose three schemes. In the first
scheme (noted S0 and presented in figure 2), each solver communicates the nogoods it produces to all
the other solvers. In this basic scheme, every time a nogood is found, the solver sends p − 1 messages
to its partners. Although the number of nogoods is bounded by O(n2d2) (since their arity is limited to
two), the global cost of communications may become very important, prohibitive even. Moreover, a given
nogood isn’t necessarily useful for all solvers. So we define a second scheme (noted Slight and depicted
in figure 3) in which we restrict the exchanges of nogoods. In fact, a nogood is only conveyed to solvers
which are liable to use it as soon as it is received. This notion of usefulness is described in the next
subsection. A potential drawback of this scheme is the time spent for determining which solvers are the
recipients of a given nogood and for sending the messages since, during this time, the solver don’t look
for a solution. Hence, in a third scheme (noted Sgest and shown in figure 4), we add to the p solvers
a process called the ”nogood manager”, whose role is to relieve the solvers from the communication of
nogoods and from their addition to the constraint set. So, when a solver produces a nogood, it informs
the manager which adds it to the constraint set and then communicates at once this new information to
a restricted part of the solvers according the notion of usefulness. By so doing, the solver only sends one
message per nogood and then gets back more quickly to the resolution of the problem.

First, we describe how we restrict the exchanges and we present the nogood manager. Then we assess the
number of exchanged messages in each scheme. Afterwards, we present the interpretation phase. Finally,
we explain why a trade-off is required between the concurrency and the cooperation and we propose such
a trade-off.

3.2. Restriction of exchanges and nogood manager
The manager’s task is to update the nogood set and to communicate new nogoods to solvers. Update the
nogood set consists in adding constraints to initial problem or in tightening the existing constraints. To a
unary (respectively binary) nogood corresponds a unary (resp. binary) constraint. The manager adds to
the constraint set all the nogoods it receives. In schemes S0 and Slight, this work is directly achieved by
the solver which produces the nogood. With regard to the communications, we restrict the exchange of
nogoods according the same way in Slight and in Sgest. The main difference between these two schemes
consists in the nature of the process which applies these restrictions. In Slight, it’s the solver which finds
the nogood whereas in Sgest, this task is done by the manager.
By restricting the exchanges of nogoods in schemes Slight and Sgest, we aim not only to limit the number
of communications, but also not to interrupt needlessly the solvers in their search for a solution. So, we
must only inform the solvers for which the produced nogood may be useful.

Definition 4 (usefulness of a nogood) A nogood is said useful for a solver if it allows this solver to
reduce the size of its search tree.

Among the useful nogoods for a solver, we can distinguish two kinds of nogoods:

- the nogoods which are useful on their receipt: they are nogoods whose receipt allows a solver to
reduce the size of its search tree (and even to put immediately an end to the search),

7

LSIS Research Report (UMR CNRS 6168) Marseille France

S

CSP

Nogoods

S S

Nogood communication

Constraint check

Constraint addition

1 2 3

Shared memory

Figure 2: The cooperative scheme S0 for three solvers. Solid arrows represent accesses to the shared
memory, dashed ones communications between processes.

S

CSP

Nogoods

S S

Contraint addition

Constraint check

Instantiation update

Nogood communication

1

1A 2A A3

2 3

Shared memory

Figure 3: The cooperative scheme Slight for three solvers. Solid arrows represent accesses to the shared
memory, dashed ones communications between processes.

S S

CSP

Nogoods

S

Nogood manager

Constraint addition

Constraint addition

Instantiation update

Nogood communication

1 3

1A 2A A3

2

Shared memory

Figure 4: The cooperative scheme Sgest for three solvers. Solid arrows represent accesses to the shared
memory, dashed ones communications between processes.

8

LSIS Research Report (UMR CNRS 6168) Marseille France

- the nogoods which are useful later thanks to the filtering.

For the last ones, note that they are exploited via the constraints added or tightened (i.e. thanks to
the shared memory). So we only need to communicate the nogoods which are useful as soon as they are
received. Hence, in Slight, the solver which finds a nogood (respectively the manager in Sgest) has to
establish whether a nogood may be useful for a solver on its receipt. With this aim in view, the only
knowledge it has about the possible recipients is their current instantiation (since this information is
stored in the shared memory). Note that these accesses don’t appear in figures 3 and 4 in order to keep
them readable. The following lemma characterizes the usefulness of these nogoods depending on their
arity and the current instantiation of the considered solver.

Lemma 2 Let S be a solver and AS be its current instantiation.

(a) a unary nogood is always useful for S on its receipt,

(b) a binary nogood ({xi ← a, xj ← b}, J) is useful for S on its receipt if AS [xi] = a and AS [xj] = b,

(c) a binary nogood ({xi ← a, xj ← b}, J) is useful for S on its receipt if AS [xi] = a and b ∈ Dj(AS) or
if AS [xj] = b and a ∈ Di(AS).

Proof:

(a) A unary nogood corresponds to a unary constraint. So it allows the solver to remove permanently a
value from the corresponding domain. Consequently, such nogoods are always useful.

(b) Let ({xi ← a, xj ← b}, J) be a binary nogood. Thanks to this nogood, we can ensure that any
branch which contains xi ← a and xj ← b can’t lead to a solution. So, we don’t need to explore such
branches. In particular, it’s the case if the current instantiation of S contains both xi assigned with
a and xj assigned with b. In such a situation, the nogood is useful for S.

(c) Let ({xi ← a, xj ← b}, J) be a binary nogood. Like in the previous case, any branch which contains
xi ← a and xj ← b can’t lead to a solution. Assume that xi is assigned with a and xj i not assigned
yet. Then, in order to avoid an inconsistent branch, the solver can delete by filtering the value b from
the domain dxj

. And so, the nogood is the useful for S. �

Thanks to this lemma, we now provide the following policy according to which a solver (or the manager)
sends a given nogood to a part of the other solvers:

(a) every unary nogood is sent to all solvers (except the solver which finds it),

(b) every binary nogood ({xi ← a, xj ← b}, J) is sent to each solver (except the solver which finds it)
whose instantiation contains xi ← a or xj ← b.

In other words, the nogoods which are communicated to a solver are ones which may be useful as soon
as they are received. However, we can’t guarantee that all the received nogoods will be used in practice.
For instance, in case (b), the solver may have backtracked between the sending of the nogood by the
manager and its receipt by the solver.

Example 3 Let us consider the instance presented in example 1. We run the cooperative concurrent
search with three solvers S1, S2 and S3 according to the scheme Slight. S1 exploits (x1, x2, x3, x4, x5, x6, x7)
as an ordering over the variables, S2 (x2, x1, x3, x4, x5, x6, x7) and S3 (x4, x1, x3, x5, x2, x6, x7). For
values, solvers use the alphabetical order. Furthermore, we assume that the current instantiation of S2

(respectively S3) is {x2 ← a, x1 ← b} (resp. {x4 ← a, x1 ← a}). If S1 produces the nogood ({x1 ←
a, x3 ← c}, {c15, c35}), it only sends it to S3 since only S3 is liable to exploit it on its receipt (by removing
c from x3’s domain). When S2 will study the affectation {x2 ← b, x1 ← a}, S2 will need this nogood.
It will then exploit it via the shared memory. Indeed, when S1 produced the nogood, it has added it to
the constraint set by deleting (a, c) from the relation rc13 . On the other hand, if S1 finds the nogood
({x1 ← b}, {c12, c13, c15, c23, c24, c35}), it will communicates it to S2 and S3. By so doing, as soon as
this information is received, S2 and S3 are able to delete b from x1’s domain. In both cases, only the
instantiation is conveyed, namely {x1 ← a, x3 ← c} or {x1 ← b}.

9

LSIS Research Report (UMR CNRS 6168) Marseille France

3.3. Assessment of the number of messages
In this part, we assess, for each scheme, the number of explicit messages exchanged between the solvers.
Let N be the total number of nogoods which are exchanged by all solvers during the whole search. We
count U unary nogoods and B binary ones. Note that, among these N nogoods, doubles may exist as
two solvers can find independently a same nogood.
In scheme Sgest, the produced nogoods are first sent to the manager by the solvers. During the whole
search, solvers convey to the manager U messages for unary nogoods and B for binary ones. Then, the
manager sends only u unary nogoods to p− 1 solvers. These u nogoods correspond to U nogoods minus
the doubles. Likewise, for binary nogoods, doubles aren’t communicated. Furthermore, for the remaining
binary nogoods, the manager restricts the number of recipients. Let b be the number of messages sent
by manager for binary nogoods. In this scheme, we exchange U + u(p − 1) messages for unary nogoods
and B + b messages for binary ones.
In scheme Slight, the solver which produces a nogood establishes its usefulness for a solver before sending
it. Moreover doubles aren’t communicated again. Therefore, only u(p − 1) messages are sent for unary
nogoods and b for binary ones. On the other hand, in scheme S0, each solver communicates directly the
nogoods it finds to p − 1 other solvers. So, U(p − 1) messages are sent for unary nogoods and B(p − 1)
for binary ones.
In the worst case, scheme Sgest produces up to N additional messages in comparison with schemes S0

and Slight. But, in general, we have observed that u and b are little enough so that Sgest produces fewer
messages than S0. In particular, the number of messages for binary nogoods is significantly restricted.
Finally, note that this comparison assumes a ideal framework where the solvers visit the same search tree
and produce the same nogoods independently of the used scheme. However, in practice, the search tree
and so the produced nogoods may differ according to the used scheme.

3.4. Phase of interpretation
Before describing the interpretation phase we introduce the following notation: given an instantiation A,
we note Axk

the restriction of A to variables assigned before xk, including xk.
Each solver exploits an interpretation phase independently of the used scheme. This phase is applied
whenever a nogood is received. For information, solvers check whether a message is received after de-
veloping a node and before filtering. In the phase of interpretation, solvers analyze received nogoods
in order to limit the size of their search tree by stopping branches which can’t lead to solution or by
enforcing additional filtering.
For the unary nogoods, this phase leads to the permanent deletion of a value and to an eventual backjump.
Method 1 describes this phase for such nogoods:

Method 1 (phase of interpretation for unary nogoods)
Let A be the current instantiation. Let ({xi ← a}, J) be the received nogood. We denote K the set of
value-killers of dxi .
We first delete the value a from dxi

. Furthermore:

(a) If xi isn’t assigned and dxi(A) is empty:

(i) we record the nogood (A[XK],K).

(ii) If recording this nogood wipes out a domain, then we backjump to the highest variable between
the deepest variable in XK and the deepest one in XK′ (with K ′ the set of value-killers of the
wiped-out domain).
Otherwise, we backjump to the deepest variable in XK .

(b) If xi is assigned with the value a:
we backjump to xi. Let A′ ∪ {xi ← a} be the obtained instantiation.
If dxi

(A′) is empty:

(i) we record the nogood (A′[XK],K).

(ii) If recording this nogood wipes out a domain, then we backjump to the highest variable between
the deepest variable in XK and the deepest one in XK′ (with K ′ the set of value-killers of the

10

LSIS Research Report (UMR CNRS 6168) Marseille France

wiped-out domain).
Otherwise, we backjump to the deepest variable in XK .

Note that we remove permanently a from the domain dxi
, which implies that, for any instantiation A,

the value a doesn’t belong to dxi
(A). The backjump phases in the cases (a)(ii) et (b)(ii) allow to keep on

exploring the search tree with a FC-consistent instantiation (unlike the phase of interpretation in [20]). In
other words, these backjump phases guarantee that there is no empty current domain, before extending
the current instantiation. Finally, if xi is assigned with a value which differs from a, there is nothing else
to do after having deleted the value a from the domain dxi

. In fact, on the one hand, the domain dxi
(A)

can’t be wiped out (because xi is assigned with a value different from a). On the other hand, receiving
the nogood ({xi ← a}, J) doesn’t give to the solver any additional information about the success or the
failure of the extensions of the instantiation A.

Theorem 4 The interpretation phase for the unary nogoods is correct.

Proof:
As ({xi ← a}, J) is a nogood, the instantiation {xi ← a} can’t be extended to a solution. Therefore,
we can remove a from the domain Di without modifying the problem’s consistency. Now, we study the
correctness of the two cases:

(a) If xi isn’t assigned:
The deletion of a may wipe out the domain dxi

(A). If dxi
(A) is empty, then the instantiation A is

FC-inconsistent. According to theorems 1 and 2, (A[XK],K) is a nogood. Furthermore, thanks to
lemma 1, it is correct to backjump to the deepest variable in XK . If recording the nogood (A[XK],K)
wipes out the domain of a variable xl, thanks to lemma 1, backjumping to deepest variable in X ′

K is
correct too. So, in such a case, we can backjump to the highest one.

(b) If xi is assigned with the value a:
As ({xi ← a}, J) is a nogood, every instantiation which contains xi assigned with a can’t lead to a
solution. Therefore, it’s useless to develop such instantiations and so backjumping to xi is correct.
Let A′ ∪ {xi ← a} be the obtained instantiation. After removing a from dxi

, dxi
(A′) may be empty.

In such a case, according to theorems 1 and 2, we can record the nogood (A′[XK],K). Finally, the
correctness of the backjump phase (b)(ii) can be established like in the first case. �

Example 4
We go on with the example 3. When S3 receives the nogood ({x1 ← b}, {c12, c13, c15, c23, c24, c35}), it
permanently removes b from dx1 . For S2, receiving this nogood leads to the permanent deletion of b
from dx1 and to the end of the current search. S2 then keeps on its exploration with the instantiation
{x2 ← a, x1 ← c}.

For binary nogoods, the phase corresponds to enforce an additional filtering and to a possible backjump
as described in method 2:

Method 2 (phase of interpretation for binary nogoods)
Let A be the current instantiation and ({xi ← a, xj ← b}, J) be the received nogood.

(a) If {xi ← a} ⊆ A (resp. {xj ← b} ⊆ A) and xj 6∈ XA (resp. xi 6∈ XA):
we delete by filtering b (resp. a) from dxj

(Axi
) (resp. dxi

(Axj
)).

If dxj
(A) (resp. dxi

(A)) is empty:

(i) we record the nogood (A[XK],K) with K the set of value-killers of dxj (resp. dxi).

(ii) If recording this nogood wipes out a domain, then we backjump to the highest variable between
the deepest variable in XK and the deepest one in XK′ (with K ′ the set of value-killers of the
wiped-out domain).
Otherwise, we backjump to the deepest variable in XK .

11

LSIS Research Report (UMR CNRS 6168) Marseille France

(b) If {xi ← a, xj ← b} ⊆ A:
we backjump to the deepest variable among xi and xj.
If xj (resp. xi) is this variable, we note A′∪{xj ← b} (resp. A′∪{xi ← a}) the obtained instantiation.
We delete by filtering b (resp. a) from dxj

(Axi
) (resp. dxi

(Axj
)).

If dxj
(A′) (resp. dxi

(A′)) is empty:

(i) we record the nogood (A′[XK],K) with K the set of value-killers of dxj (resp. dxi).
(ii) If recording this nogood wipes out a domain, then we backjump to the highest variable between

the deepest variable in XK and the deepest one in XK′ (with K ′ the set of value-killers of the
wiped-out domain).
Otherwise, we backjump to the deepest variable in XK .

Like previously, the backjump phases allow to keep on exploring the search tree with a FC-consistent
instantiation and, by so doing, to avoid the drawback of the phase presented in [20]. Remark that, here,
the deletions aren’t permanent unlike the phase of interpretation for unary nogoods. Indeed, they are
similar to ones obtained by filtering.

Theorem 5 The interpretation phase for the binary nogoods is correct.

Proof:

(a) Assume that xj is the deepest variable among xi and xj (the proof is similar if xi is the deepest one).
The nogood ({xi ← a, xj ← b}, J) prevents xj from taking the value b as long as xi is assigned with
the value a. Therefore, we can remove b from dxj

(Axi
) by filtering.

If dxj
(A) is wiped out, we reason like in the proof of theorem 4 in order to establish the correction

of recording the nogood and of the backjumping phase.

(b) As ({xi ← a, xj ← b}, J) is a nogood, every instantiation which contains {xi ← a, xj ← b} can’t lead
to a solution. So, backjump to the deepest variable among xi and xj is correct.
Assume that xj is the deepest variable among xi and xj (the proof is similar if xi is the deepest one).
A′ ∪{xj ← b} is the instantiation obtained after the backjump. We demonstrate like for the case (a)
that the filtering, the recording and the backjumping phase are correct. �

Example 5 We go on with the example 3. If S3 receives the nogood ({x1 ← a, x3 ← c}, {c15, c35}), it
removes by filtering c from x3’s domain. This deletion is cancelled as soon as S3 develops the instantiation
{x4 ← a, x1 ← b}.

3.5. Trade-off between concurrency and cooperation
On the one hand, the concurrency concept is based on running different solvers on the same problem
with the aim that one of them is well-adapted to the instance we want to solve. So if we want to improve
the efficiency of the concurrency, we have to increase the diversity of the solvers. In our approach, the
solvers exploit the same algorithm, but they differ in using different heuristics for ordering values and/or
variables. Then, in order to improve the efficiency of our approach, we need to exploit heuristics as
different as possible.
On the other hand, making the cooperation efficient requires that exchanged informations can be exploited
by a major part of the solvers. In our approach, the cooperation is based on exchanging nogoods, that
is to say informations which depend directly on the explored search tree. So if we want a nogood to be
useful for some other solvers, we must impose that the different search trees explored by the solvers are
close to each other. In other words, as the solvers only differ in using different heuristics for ordering
values and/or variables, these heuristics must be relatively close in terms of developed search tree.
To sum up, the cooperation requires some proximity of heuristics while the concurrency needs some
diversity. As these requirements are opposed, a trade-off is needed in order to make our approach
efficient in practice. The trade-off we propose consists in running solvers by pair. In a same pair, the
solvers exploit two similar heuristics for ordering variables. These two heuristics are close enough for
starting with the same variable. With regards to value orderings, the two solvers use different heuristics.
Of course, solvers from different pairs exploit different heuristics for ordering variables (i.e. they start
with a different variable). By so doing, as the two solvers of a same pair start their exploration with the
same variable, we ensure a cooperation at less between these two solvers.

12

LSIS Research Report (UMR CNRS 6168) Marseille France

4. Experimental results

In this section, we experiment our concurrent cooperative approach in order to determine whether it
corresponds to an efficient cooperation form and if it can be an interesting alternative to classical enu-
merative algorithms. We first study the behaviour of our concurrent cooperative method on classical
random instances from a parallel point of view. Then we provide experimental comparisons between
our cooperative scheme and some state-of-the-art sequential algorithms on random instance. Finally, we
experiment our approach on some real-world instances.

4.1. Implementation
4.1.1. Algorithms
We have implemented many methods:

- our concurrent cooperative method for the schemes S0, Slight and Sgest,

- a concurrent version without cooperation,

- the classical algorithms FC [9], FC-CBJ [16], MAC [17], and FC-NR [19].

The implementation of the cooperative concurrent search is based on pthreads. Pthreads (and most
generally threads) have the advantage of using shared memory. A pthread is associated with each solver.
Likewise, a pthread is associated to the nogood manager in Sgest. These pthreads are run in parallel by
the operating system until the problem is solved (by finding a solution or by proving there is none). As
soon as a solver solves the problem, all pthreads are stopped. As, in practice, our experimentations are
done on a monoprocessor computer, we consider in fact pseudo-parallelism. The execution of pthreads by
the operating system then exploits the notion of process scheduling in multitasking operating systems.
The used scheduling policy corresponds to a variant of the round-robin policy. Communications between
solvers are realized thanks to messages which are sent from a pthread to another one.
The concurrent method without cooperation consists in running the solvers with exactly the same heuris-
tics as the cooperative method. In other words, compared with the cooperative search, it doesn’t exploit
a shared memory and it doesn’t exchange any message between the solvers. So, each solver has its own
copy of the problem and it only adds the nogoods it finds to its local copy. The search is finished as soon
as a solver solves the problem. Like previously, the implementation is also based on pthread. It is similar
to one of the cooperative method, except that each pthread uses its own copy of the problem we want to
solve.
With regards to the classical algorithms, we use the AC-2001 algorithm [2] to enforce and maintain the
arc-consistency in MAC. For the FC-NR algorithm, we limit the arity of recorded nogoods to 2.

4.1.2. Heuristics
About the heuristics for ordering variables, FC, FC-CBJ and MAC use the dom/deg heuristic [1], for
which the next variable to assign is one which minimizes the ratio |dxi

|
|Γxi

| (where dxi
is the current domain

of xi and Γxi is the set of variables which are connected to xi by a binary constraint). This heuristic is
generally considered as better than other classical heuristics. That’s why we choose it. However for FC-
NR, we prefer exploit the dom/st heuristic for which the next variable to assign is one which minimizes
the ratio |dxi

|
Sxi

(with Sxi
the sum of tightness of constraints involving xi). Thanks this heuristic, FC-NR

obtains better results with respect to dom/deg.
For the cooperative method, in order to guarantee distinct search trees, each solver orders variables
and/or values with different heuristics. If these heuristics must be different, they must also be close
to each other in order to improve the cooperation. Furthermore, it appears important that they have
a similar efficiency in order to avoid the problem being always solved by the same solver without any
benefit from cooperation. As there exist few efficient heuristics for choosing variables, we produce several
different orders from the heuristics dom/deg and dom/st by choosing differently the first variable and
then applying either dom/deg or dom/st.

13

LSIS Research Report (UMR CNRS 6168) Marseille France

Finally, note that, in our implementation, only the size of domains varies for each instantiation. The
degree |Γxi | is only updated when a new constraint is added thanks to a nogood. Likewise, the tightness
of a constraint is modified when the constraint is tightened.
As regards the choice of next value to assign, we consider values in a static order for the classical
algorithms. In practice, we use an arbitrary order σ, which the same for each algorithm. For the
concurrent method with/without cooperation, according to the trade-off we propose, we run solvers by
pair. In a same pair, the solvers start with the same variable and then one uses dom/deg while the other
one exploits dom/st. For value ordering, one solver uses the order σ while the other one exploits the
reverse order.

4.2. Experimental protocol
We experiment our method on two kinds of benchmarks: random instances and real-world instances. In
this subsection, we describe, for each kind of problems, the experimental protocol we use. Note that, in
both cases, the constraint checks take into account:

- the initial constraints and the added constraints for the cooperative method, for the concurrent one
and for FC-NR,

- the initial constraints for other algorithms.

4.2.1. Experimental protocol for random instances
Experimentations on random instances are realized on a linux-based PC with an AMD Athlon XP 1800+
processor and 512 Mb memory. These instances are produced by random generator written by D. Frost,
C. Bessière, R. Dechter and J.-C. Régin. This generator 1 takes 4 parameters n, d, m and t. It builds
a CSP of class (n, d, m, t) with N variables which have domains of size d and m binary constraints
(0 ≤ m ≤ n(n−1)

2) in which t tuples are forbidden (0 ≤ t ≤ d2). Experimental results we give afterwards
concern classes which are near to the satisfiability threshold. Every problem we consider has a connected
constraint graph.
The concurrent method and the cooperative method aren’t deterministic because of the concurrency and
the exchange of information. Hence, we solve each instance fifteen times in order to reduce the impact
of non-determinism on results. Therefore, the results for a given instance corresponds to the average
of results of fifteen resolutions. For a given resolution, the results we consider are ones of the solver
which solves the problem first. By so doing, we assume that we have one processor per solver, even
if, in practice, these experimentations are realized on a computer with a single processor. Of course,
for classical algorithm, each instance is solved once. The results we provide are the average of results
obtained by solving 100 instances per class.

4.2.2. Experimental protocol for real-world instances
Experimentations on real-world instances are realized on a linux-based PC with an Intel Pentium III 550
MHz and 256 Mb memory. The instances we consider are some real-world instances of the CELAR from
the FullRLFAP archive2. These problems correspond to radio link frequency assignment problems. For
our experimentation, we only look for a solution (i.e. we do not search an optimal solution). From this
archive, we only keep the instances which FC-NR solves in at least 100 milliseconds. These instances
have between 400 and 916 variables with different sizes of domains (see [3] for more details).
The results we give are the results of a unique run. For the cooperative method, like previously, we
assume that we have one processor per solver, even if these experimentations are realized on a computer
with a single processor. In other words, the presented results are ones of the solver which solves the
problem first. We set a time limit for determining whether a problem is consistent or not. Beyond 15
minutes, the search is stopped.

4.3. Efficiency of the cooperative concurrent method
4.3.1. Speed-up and efficiency
In this part, we compute and present the speed-up and the efficiency obtained by our cooperative con-
current method, what allows us to assess the interest of our approach from a parallel viewpoint. We first
1downloadable at http://www.lirmm.fr/∼bessiere/generator.html
2we thank the Centre d’Electronique de l’Armement (France).

14

LSIS Research Report (UMR CNRS 6168) Marseille France

recall these basic notions.

Definition 5 (speed-up) Let T1 (respectively Tp) be the run-time required by a method with a single
solver (resp. p solvers) for solving a set of problems. The speed-up is defined by the ratio T1

Tp
. A speed-up

is called linear with report to the number p of solvers if it equals to p, superlinear if it is greater than
p, sublinear otherwise.

A speed-up corresponds normally to a value between 1 and p. This result assumes that T1 is the run-time
of the best sequential version of the considered algorithm. For solving NP-complete problems like CSP,
it’s really difficult to determine the best version of an algorithm because this notion of ”best version”
generally depends on the instance we want to solve. So, in practice, we can often obtain superlinear
speed-up.

Definition 6 (efficiency) Let T1 (respectively Tp) be the run-time required by a method with a single
solver (resp. p solvers) for solving a set of problems. The efficiency is defined by the ratio T1

p.Tp
.

A way of assessing the interest of a method from a parallel viewpoint consists in studying its efficiency.
The greater the efficiency is, the more efficient the method is. Note that, due to superlinear speed-up,
the efficiency can also become greater than 1. In practice, we consider that an efficiency greater or equal
to 0.95 characterizes an efficient method. Finally, remark that the efficiency depends on the number of
used solvers and that it generally decreases when the number of solvers increases.
When we define the notions of speed-up and efficiency, we assume that we use a processor per solver, even
if the experimentations are done on a monoprocessor computer. More classically, the efficiency can be
defined as the ratio T1

q.T ′
q

where T1 (respectively T ′
q) is the run-time required by a method which exploits

a single processor (resp. q processors) for solving a set of problems. In our case (i.e. q = 1), the run-time
T ′

q corresponds to the sum of the run-time of each solver we run in concurrency. As all solvers finish as
soon as a solver solves the problem, T ′

q is almost equal to p.Tp (with Tp the run-time of the solver which
solves the problem first). So exploiting the definition 6 or the classical one doesn’t change anything to
obtained results. In practice, according to the definition we use, the obtained difference is generally about
a few thousandths and at most two hundredths. Likewise, in scheme Sgest, we don’t take into account
the manager’s run-time because it appears to be insignificant with respect to the solvers’ one.

Class Scheme p
(n, d, m, t) 2 4 6 8 10

S0 1.207 1.130 1.150 1.105 1.048
(50,15,184,112) Slight 1.213 1.131 1.146 1.090 1.053

Sgest 1.235 1.159 1.167 1.104 1.064
S0 1.101 1.082 1.004 0.931 0.846

(50,15,245,93) Slight 1.099 1.085 1.008 0.934 0.851
Sgest 1.133 1.094 1.018 0.942 0.849
S0 1.112 1.073 0.939 1.010 0.932

(50,25,123,439) Slight 1.121 1.093 0.966 1.041 0.973
Sgest 1.219 1.160 1.015 1.046 1.022
S0 1.085 1.404 1.373 1.330 1.233

(50,25,150,397) Slight 1.101 1.408 1.354 1.324 1.240
Sgest 1.030 1.381 1.353 1.321 1.227
S0 1.339 1.319 1.285 1.218 1.183

(75,10,277,43) Slight 1.334 1.325 1.324 1.192 1.174
Sgest 1.325 1.318 1.298 1.186 1.161

Table 1: Efficiency obtained by the cooperative concurrent method with the schemes S0, Slight and Sgest

for consistent and inconsistent problems.

15

LSIS Research Report (UMR CNRS 6168) Marseille France

Table 1 provides the efficiency obtained by the cooperative concurrent method for each proposed scheme
on five classes of random CSPs (for consistent and inconsistent problems). Table 2 (respectively table
3) shows such results for consistent problems (resp. inconsistent problems). First, we note that the
three schemes present similar results. Then, from table 1, we observe that the cooperative method
obtains linear or superlinear speed-up for three classes out of five up to ten solvers. On the two other
classes (namely classes (50,15,245,93) and (50,25,123,439)), the speed-up is either linear or superlinear,
or sublinear depending on the number of used solvers. If we distinguish the problems according to their
consistency, we observe that our method is generally more efficient on consistent problems. Indeed, on
the one hand, the efficiency on such problems turns to be greater than one on inconsistent problems
(except for class (50,25,150,397) with two solvers in Sgest). On the other hand, on consistent problems,
the speed-up is linear or superlinear in most cases while on inconsistent problems, the results are mixed.
For classes (50,15,245,93) and (50,25,123,439), the speed-up becomes sublinear above four or six solvers.
For the other classes, it remains linear or superlinear up to ten solvers. Finally, we remark a decrease
of efficiency when the number of solvers increases for both consistent and inconsistent problems. Such a
decrease is a classical phenomenon for parallel searches.

4.3.2. Explanations of obtained results
First, we take an interest in explaining the quality of obtained results. The observed gains may come
from the concurrency (i.e. the use of multiple orders of variables) or from the cooperation (i.e. the
exchange of nogoods). In order to determine the origins of gains, we compare the cooperative concurrent
method with concurrent method without cooperation. Table 4 shows the efficiency obtained by this
concurrent method without cooperation for the five considered classes of random CSPs (for consistent
and inconsistent problems). Table 5 (respectively table 6) provides these results for consistent problems
(resp. inconsistent ones).
We first note that, in most cases, the cooperative method obtains better results than the concurrent
method. Some exceptions appear for consistent problems. For such problems, the efficiency of the
cooperative method is generally close to one of the concurrent method. That means that the good quality
of the obtained results mainly comes from the concurrency. However, in many cases, the cooperative
method obtains a significant better efficiency, what implies that the cooperation is involved too. On the
other hand, for inconsistent problems, we observe that the concurrent method never obtains linear or
superlinear speed-up. In other words, the linear or superlinear speed-up (and more generally the good
results) presented by our cooperative method are mostly due to the cooperation. For consistent problems,
the contribution of the cooperation is less important because solvers don’t explore their whole search tree
since the search is finished as soon as a solution is found.
For inconsistent problems, we must underline the predominant role of values heuristics. For each solver s
(except one if the number of solvers is odd), there exists a solver which assigns first the same variable as
s, which uses a similar variables heuristic and whose values heuristic is the reverse of s’s one. Without
exchanging nogoods, these two solvers visit similar search trees. With exchanging nogoods, each one
explores only a part of its search tree thanks to received nogoods.
We focus then on possible reasons of efficiency decrease. With a method like ours, an usual reason of
efficiency lack is the cost of communications. Our method doesn’t make exception. But, in our case,
there is another reason which explains the decrease of performances. Indeed, the efficiency of the con-
current method decreases too when p increases. As the concurrent method doesn’t use any cooperation
form, the cost of communications can’t be involved in this efficiency decrease. In our concurrent methods
with/without cooperation, solvers differ from each other in the heuristics they use for ordering values
and variables. The diversity of these heuristics is the main feature of our approach from the concurrency
viewpoint. Unfortunately, it seems that this diversity is not sufficient. In particular, we observe this
phenomenon for classes (50,15,245,93) and (50,25,123,439). For these two classes, the concurrent method
appears to be less efficient than for other classes. When we exploit the cooperative method, the coopera-
tion permits to limit the decrease of performance due to the lack of diversity and we then observe a better
speed-up. Nevertheless, the contribution of the cooperation is not important enough to obtain linear or
superlinear speed-up. Remark that the lack of diversity is directly explained by the way we build the
different heuristics. In other words, by improving the way we choose our heuristics (i.e. by improving
the diversity), we may expect a better efficiency for our cooperative concurrent method.

16

LSIS Research Report (UMR CNRS 6168) Marseille France

Class Scheme p
(n, d, m, t) 2 4 6 8 10

S0 1.304 1.174 1.228 1.132 1.084
(50,15,184,112) Slight 1.313 1.167 1.220 1.108 1.087

Sgest 1.356 1.219 1.267 1.162 1.135
S0 1.485 1.401 1.053 0.984 0.842

(50,15,245,93) Slight 1.488 1.398 1.057 0.977 0.843
Sgest 1.537 1.425 1.080 1.012 0.853
S0 1.236 1.189 0.941 1.093 1.001

(50,25,,23,439) Slight 1.240 1.211 0.969 1.124 1.044
Sgest 1.403 1.314 1.076 1.230 1.175
S0 1.115 1.647 1.553 1.571 1.388

(50,25,150,397) Slight 1.132 1.657 1.523 1.570 1.395
Sgest 0.980 1.517 1.441 1.473 1.309
S0 1.368 1.444 1.368 1.298 1.258

(75,10,277,43) Slight 1.363 1.450 1.433 1.267 1.249
Sgest 1.350 1.463 1.392 1.267 1.244

Table 2: Efficiency obtained by the cooperative concurrent method with the schemes S0, Slight and Sgest

for consistent problems.

Class Scheme p
(n, d, m, t) 2 4 6 8 10

S0 1.128 1.091 1.085 1.079 1.017
(50,15,184,112) Slight 1.132 1.099 1.084 1.073 1.022

Sgest 1.134 1.106 1.083 1.053 1.003
S0 1.024 1.014 0.991 0.917 0.847

(50,15,245,93) Slight 1.021 1.018 0.995 0.923 0.853
Sgest 1.050 1.023 1.001 0.923 0.848
S0 1.016 0.982 0.936 0.943 0.875

(50,25,123,439) Slight 1.028 1.000 0.963 0.974 0.915
Sgest 1.082 1.041 0.962 0.913 0.906
S0 1.048 1.174 1.190 1.104 1.075

(50,25,150,397) Slight 1.062 1.174 1.180 1.096 1.081
Sgest 1.094 1.250 1.263 1.179 1.143
S0 1.277 1.101 1.130 1.066 1.042

(75,10,277,43) Slight 1.271 1.107 1.128 1.051 1.031
Sgest 1.270 1.075 1.124 1.034 1.006

Table 3: Efficiency obtained by the cooperative concurrent method with the schemes S0, Slight and Sgest

for inconsistent problems.

Class p
(n, d, m, t) 2 4 6 8 10

(50,15,184,112) 0.851 0.538 0.424 0.349 0.292
(50,15,245,93) 0.663 0.408 0.289 0.223 0.182
(50,25,123,439) 0.764 0.495 0.385 0.331 0.271
(50,25,150,397) 0.786 0.753 0.584 0.475 0.423
(75,10,277,43) 1.116 0.779 0.627 0.522 0.441

Table 4: Efficiency obtained by the concurrent method for consistent and inconsistent problems.

17

LSIS Research Report (UMR CNRS 6168) Marseille France

4.3.3. Number of exchanged messages
In this part, we compare, for the three schemes, the number of messages exchanged by the cooperative
concurrent method. Table 7 (respectively table 8) shows the number of exchanged messages for unary
nogoods (resp. binary nogoods) for consistent and inconsistent problems. For information, we observe a
similar trend if we only focus on consistent problems or inconsistent ones.
First, we note that in scheme Sgest, when we only exploit a single solver, some messages are sent. This
is due to the communications with the nogood manager.
Then, for unary nogoods, we observe that the cooperative method exchanges as many messages in S0

as in Slight. Generally, it is the same for scheme Sgest. However, in some cases, fewer messages are
sent because the number of produced unary nogoods turns out to be less important than in the two
other schemes. The similarity of results for the three schemes is mostly explained by the weak restriction
achieved in schemes Slight and Sgest. In effect, in these two schemes, the communications are limited
since, for unary nogoods, doubles are only conveyed once. However, as there are few doubles, schemes
Slight and Sgest allow our cooperative method to save only few messages and so we obtain similar results
for the three scheme.
For binary nogoods, the number of exchanged messages is significantly more important than one for
unary nogoods because solvers produces more binary nogoods than unary ones. Scheme Slight then
appears to be better than both Sgest and S0 while in Sgest solvers exchange fewer messages than in S0.
Scheme Slight only differs from S0 in limiting the exchange of nogoods. Indeed, in Slight, we restrict the
communication to its strict minimum by sending only binary nogoods to a part of solvers. It is the same
for scheme Sgest. So, the gap between S0 and Slight (or between S0 and Sgest) shows the contribution
of our communication restriction. Thanks to this limitation, the number of messages is significantly less
important in Slight or in Sgest than in S0. Thus we can expect that the number of solvers above of which
the cost of communications penalizes the efficiency is greater in Slight or Sgest than in S0. Regarding
the difference between Slight and Sgest, it results from the systematic communication of every nogood to
the manager. In particular, among all these communications, many of them correspond to doubles. For
binary nogoods, the number of doubles is clearly more important (with a multiplicative factor between
10 and 100) in Sgest than one in Slight. Such a number is due to the period of time elapsed between the
production of a nogood and its addition to the constraint set in shared memory. In Sgest, this period is
greater than in Slight because nogoods are added to the constraint set by the manager, and not directly
by the solver as in Slight.
Finally, if we focus on the results obtained by Slight, we note that the number of messages exchanged for
binary nogoods is significantly less important than the number of binary nogoods. It ensues that a binary
nogood is only useful for a few solvers (and even for none in some cases). Of course, it is the same in
Sgest. So restricting the exchanges allows solvers to reduce the time spent for managing communications.
In particular, it prevents solvers from receiving and managing useless informations. By so doing, solvers
are fully devoted to solving the problem.

4.3.4. Summary
For the three schemes, the cooperative concurrent method obtains linear or superlinear speed-up up to
ten solvers for three out of five classes of random instances we consider. For the two remaining classes,
the speed-up is either linear or superlinear, or sublinear depending on the number of used solvers. On
the overall, we have noted that the efficiency is better for consistent problems than for inconsistent ones.
Nevertheless we have observed linear or superlinear speed-up for inconsistent instances of some classes.
The good quality of these results is mainly due to the cooperation for inconsistent problems and to the
concurrency for consistent problems. For consistent problems, the cooperation is partly involved too. We
have remark a decrease of efficiency when the number of solvers increases. Such a decrease comes from
the lack of diversity of solvers. Regarding to the exchanges of nogoods, we have remarked that binary
nogoods are generally useful for a few solvers. This result explains that we exchange fewer messages in
Slight than in Sgest or in S0 and it shows the interest of the communication restriction. However, in
our experimentations, it seems that the exchanges of messages is cheap since we obtain similar results
independently of the used scheme. If these exchanges are more expensive, we would exploit the scheme
Slight. That is why, in the following results, we consider that the cooperative method uses this scheme.

18

LSIS Research Report (UMR CNRS 6168) Marseille France

Class p
(n, d, m, t) 2 4 6 8 10

(50,15,184,112) 1.395 1.140 1.113 1.043 1.080
(50,15,245,93) 1.574 1.316 0.969 0.854 0.721
(50,25,123,439) 1.262 1.105 0.797 0.931 0.802
(50,25,150,397) 1.052 1.654 1.456 1.526 1.428
(75,10,277,43) 1.362 1.248 1.238 1.181 1.107

Table 5: Efficiency obtained by the concurrent method for consistent problems.

Class p
(n, d, m, t) 2 4 6 8 10

(50,15,184,112) 0.621 0.358 0.267 0.214 0.173
(50,15,245,93) 0.566 0.339 0.239 0.183 0.149
(50,25,123,439) 0.556 0.325 0.259 0.206 0.167
(50,25,150,397) 0.589 0.438 0.326 0.249 0.219
(75,10,277,43) 0.789 0.419 0.295 0.229 0.186

Table 6: Efficiency obtained by the concurrent method for inconsistent problems.

Class Scheme p
(n, d, m, t) 1 2 4 6 8 10

S0 0 2.84 21.09 47.99 74.67 100.99
(50,15,184,112) Slight 0 2.82 20.88 47.42 74.54 99.84

Sgest 0.12 0.33 20.40 44.15 67.13 88.91
S0 0 4.61 30.35 80.77 142.57 211.41

(50,15,245,93) Slight 0 4.56 29.98 79.87 140.87 207.51
Sgest 0 0.05 28.22 80.12 138.84 203.52
S0 0 8.66 47.81 103.35 161.37 224.54

(50,25,123,439) Slight 0 8.67 47.90 103.91 156.87 227.27
Sgest 1.94 4.23 38.57 82.24 126.00 176.69
S0 0 5.53 43.32 95.10 155.14 221.99

(50,25,150,397) Slight 0 5.50 43.05 94.42 154.30 222.60
Sgest 0.30 0.67 43.37 89.96 146.34 208.76
S0 0 1.70 13.75 31.51 52.39 72.76

(75,10,277,43) Slight 0 1.69 13.70 30.99 51.14 70.83
Sgest 0.40 0.94 14.85 32.06 50.78 68.04

Table 7: Number of messages which are sent for exchanging unary nogoods by all solvers according the
used scheme for consistent and inconsistent problems.

19

LSIS Research Report (UMR CNRS 6168) Marseille France

4.4. Cooperative method vs classical algorithms
4.4.1. For a monoprocessor system
In a monoprocessor system, we must take into account the work of each solver. So the results we consider
for the cooperative method correspond to the sum of results obtained by each solver. Tables 9 and 10
present respectively the sum of the run-time and the sum of the number of constraint checks for the
cooperative method (with 1, 2 or 4 solvers) and the run-time and the number of constraint checks for
each classical algorithm, namely FC, FC-CBJ, FC-NR and MAC.
First, we observe that our cooperative method with a single solver does not obtain the same results as
the FC-NR algorithm. This is simply explained by the variable ordering used by the cooperative method.
This ordering consists in fixing the choice of the first variable and then using the heuristic dom/st. When
the first variable is the same as FC-NR’s one, FC-NR and the cooperative method with a single solver
obtain the same results. We note that these two methods generally perform more constraint checks than
FC, FC-CBJ and MAC. That is explained by the constraints which are added to the problem during the
search. Indeed, FC-NR checks the initial constraints and the added constraints while the other classical
algorithms only check the initial constraints. These additional constraint checks permit to enforce an
additional pruning of the tree-search. Unfortunately, it seems that it does not generally allow to save
enough run-time.
On the other hand, as soon as we use two or four solvers, the cooperative method obtains either equiv-
alent results to FC-NR’s ones, or better results (with a gain up to 21%). These results are due to the
concurrency and the cooperation which allow our approach to reduce the number of constraint checks.
For some classes, the obtained improvement makes the cooperative method faster than FC-CBJ or MAC
while FC-NR is slower than these two algorithms. However, in most cases, the cooperative method
appears slower than FC or FC-CBJ.
We observe a similar trend if we focus on consistent problems or on inconsistent ones. Nevertheless, for
the consistent problems, the cooperative method with two or four solvers performs, for many classes,
fewer constraint checks than FC (see table 12). However, these gains do not mean that our method is
faster than FC (see table 11). Note that obtaining a better trend for consistent instances is foreseeable
since the cooperative method is more efficient for such problems.

4.4.2. For a multiprocessor system
In a multiprocessor system (with a processor per solver), the results we consider for the cooperative
method are ones of the solver which solves the problem first. As we do not have a multiprocessor
computer, the results we provide are ones of a simulation on a monoprocessor computer. Tables 13 and
14 show respectively the run-time and the number of constraint checks for the cooperative method (with 1,
2 or 4 solvers) and for the four classical algorithms. As we observe a similar trend for consistent problems
and for inconsistent ones, we only present the results for both consistent and inconsistent instances.
If the cooperative method only exploits one solver, the results are the same as one obtained in a mono-
processor system. In contrast, when it runs two or four solvers, it performs significantly fewer constraint
checks than the classical algorithms we use. Then it is clearly faster than them. Note that we observe
similar results when we increase the number of solvers. The quality of these results is mostly due to the
great practical efficiency of the cooperative method.
The results we have provided are obtained by simulating parallelism. Of course, now, we must experiment
this approach on a real parallel system in order to confirm the trend we have observed . Furthermore, it
could be interesting to compare our approach with some parallel version of FC or MAC.

4.5. Behaviour for real-world instances
Now we study the behaviour of our cooperative concurrent method on some real-world instances from
the FullRLFAP archive. Tables 15 and 16 show respectively the run-time and the number of constraint
checks for the cooperative method (with 1, 2 or 4 solvers) and for the four classical algorithms.
For most of the exploited instances (SCEN-01, SCEN-11 and all the considered GRAPH instances), we
obtain similar results for one, two or four solvers. On the one hand, this result is explained by a very
limited cooperation due to a small number of nogoods. Note that these instances are consistent, what
explains that few nogoods are produced. On the other hand, for these instances, the cooperative search
does not take advantage of the concurrency. With respect to classical algorithm, the cooperative method

20

LSIS Research Report (UMR CNRS 6168) Marseille France

Class Scheme p
(n, d, m, t) 1 2 4 6 8 10

S0 0 357 1,322 2,437 3,655 4,944
(50,15,184,112) Slight 0 16 77 149 211 295

Sgest 462 487 652 807 955 1,060
S0 0 208 948 1,968 3,308 4,970

(50,15,245,93) Slight 0 11 85 183 310 463
Sgest 240 247 440 625 840 1,077
S0 0 1,375 4,573 8 561 12,100 16,017

(50,25,123,439) Slight 0 40 145 284 348 497
Sgest 1,708 1,806 2,140 2,671 3,013 3,153
S0 0 1,364 4,669 8,583 12,634 17,349

(50,25,150,397) Slight 0 37 174 326 464 653
Sgest 1,668 1,761 2,132 2,502 2,788 3,111
S0 0 434 1,474 2,564 3,885 5,237

(75,10,277,43) Slight 0 26 107 181 289 387
Sgest 612 665 831 982 1,143 1,374

Table 8: Number of messages which are sent for exchanging binary nogoods by all solvers according the
used scheme for consistent and inconsistent problems.

Class cooperative method FC FC-CBJ FC-NR MAC
(n, d,m, t) p = 1 p = 2 p = 4

(50, 15, 184, 112) 1,599 1,325 1,426 795 949 1,331 1,472
(50, 15, 245, 93) 12,711 11,567 11,724 7,,72 8,462 11,758 18,612
(50, 25, 123, 439) 662 595 613 576 632 635 599
(50, 25, 150, 397) 7,164 6,513 5,099 3,462 4,046 6,191 5,848
(75, 10, 277, 43) 2,772 2,084 2,114 1,591 1,846 1,912 1,211

Table 9: Run-time (in ms) of the cooperative method with scheme Slight (in a monoprocessor system)
and of the classical algorithms for consistent and inconsistent problems.

Class cooperative method FC FC-CBJ FC-NR MAC
(n, d, m, t) p = 1 p = 2 p = 4

(50, 15, 184, 112) 11,246 9,234 10,045 7,347 7,089 9,984 4,750
(50, 15, 245, 93) 85,394 76,259 77,654 64,695 63,629 81,947 53,354
(50, 25, 123, 439) 5,122 4,669 4,888 5,969 5,208 5,479 2,601
(50, 25, 150, 397) 54,249 49,680 39,436 34,743 32,648 52,620 21,813
(75, 10, 277, 43) 17,297 12,820 13,089 12,279 11,406 12,496 3,533

Table 10: Number of constraint checks (in thousands) of the cooperative method with scheme Slight (in
a monoprocessor system) and of the classical algorithms for consistent and inconsistent problems.

21

LSIS Research Report (UMR CNRS 6168) Marseille France

Class cooperative method FC FC-CBJ FC-NR MAC
(n, d, m, t) p = 1 p = 2 p = 4

(50, 15, 184, 112) 1,256 964 1,088 616 738 1,016 1,073
(50, 15, 245, 93) 8,023 5,398 5,746 4,767 5,708 7,622 12,147
(50, 25, 123, 439) 826 666 683 675 741 738 545
(50, 25, 150, 397) 7,293 6,448 4,410 3,130 3,663 5,619 4,693
(75, 10, 277, 43) 2,717 1,998 1,900 1,561 1,811 1,885 1,088

Table 11: Run-time (in ms) of the cooperative method with scheme Slight (in a monoprocessor system)
and of the classical algorithms for consistent problems.

Class cooperative method FC FC-CBJ FC-NR MAC
(n, d, m, t) p = 1 p = 2 p = 4

(50, 15, 184, 112) 8,585 6,511 7,478 5,601 5,397 7,342 3,420
(50, 15, 245, 93) 53,200 34,602 37,021 43,236 42,481 51,955 34,613
(50, 25, 123, 439) 6,060 5,036 5,188 6,708 5,781 6,051 2,240
(50, 25, 150, 397) 54,224 48,267 33,372 30,732 28,772 46,519 17,088
(75, 10, 277, 43) 16,757 12,166 11,672 11,919 11,049 12,215 3,139

Table 12: Number of constraint checks (in thousands) of the cooperative method with scheme Slight (in
a monoprocessor system) and of the classical algorithms for consistent and inconsistent problems.

Class cooperative method FC FC-CBJ FC-NR MAC
(n, d, m, t) p = 1 p = 2 p = 4

(50, 15, 184, 112) 1,599 659 353 795 949 1,331 1,472
(50, 15, 245, 93) 12,711 5,781 2,928 7,072 8,462 11,758 18,612
(50, 25, 123, 439) 662 295 151 576 632 635 599
(50, 25, 150, 397) 7,164 3,254 1,272 3,462 4,046 6,191 5,848
(75, 10, 277, 43) 2,772 1,039 523 1,591 1,846 1,912 1,211

Table 13: Run-time (in ms) of the cooperative method with scheme Slight (in a multiprocessor system)
and of the classical algorithms for consistent and inconsistent problems.

Class cooperative method FC FC-CBJ FC-NR MAC
(n, d, m, t) p = 1 p = 2 p = 4

(50, 15, 184, 112) 11,246 4,593 2,507 7,347 7,089 9,984 4,750
(50, 15, 245, 93) 85,394 38,125 19,390 64,695 63,629 81,947 53,354
(50, 25, 123, 439) 5,122 2,339 1,236 5,969 5,208 5,479 2,601
(50, 25, 150, 397) 54,249 24,800 9,853 34,743 32,648 52,620 21,813
(75, 10, 277, 43) 17,297 6,391 3,253 12,279 11,406 12,496 3,533

Table 14: Number of constraint checks (in thousands) of the cooperative method with scheme Slight (in
a multiprocessor system) and of the classical algorithms for consistent and inconsistent problems.

22

LSIS Research Report (UMR CNRS 6168) Marseille France

obtains similar results to FC-NR’s ones.
For instances SCEN-04 and SCEN-08, solvers produce more nogoods. The cooperation and the concur-
rency then allow our method to improve the run-time when the number of solvers increases. However, the
gains are too slight to obtain linear or superlinear speed-up. So running our method on a monoprocessor
system is not interesting because the sum of the run-time is too important. For the SCEN-11 instance,
the run-time is similar for one, two or four solvers. In contrast, for six solvers, the cooperative method
requires only 130 milliseconds for solving the problem (not shown in table 15), which permits to obtain
a superlinear speed-up. For information, this result is only obtained thanks to the concurrency, since
no nogood is exchanged. If we consider a monoprocessor system, the run-time (obtained by summing
the run-time of these six solvers) is 770 milliseconds. So our cooperative method is faster than the four
classical algorithms. Finally, for SCEN-05 instance, the cooperative method with two solvers presents
similar results with respect to ones obtained with a single solver. For four solvers, the concurrency and
the cooperation improve significantly the run-time. The run-time in a monoprocessor system is then
1210 milliseconds. The number of saved constraint checks is also important. So, for this instance, the
cooperative concurrent method turns out to be significantly better than the four classical algorithms in
a monoprocessor system as in a multiprocessor system.
To sum up, among the real-world instances we consider, some problems cannot be efficiently solved by
the cooperative method because when few nogoods are produced and the contribution of the concurrency
is too slight . Of course, for such instances, our approach doesn’t obtain interesting results. For some
other instances like SCEN-04 and SCEN-08, it takes advantage of the cooperation and of the concurrency.
However, the gain are too slight for running our approach on a monoprocessor system. For some instances
like SCEN-05 or SCEN-11, the run-time in a monoprocessor system (i.e. the sum of the run-time of
each solver) outperforms the run-time of the four classical algorithm. So, for such instances, running
our cooperative method on a monoprocessor system can be seen as an interesting alternative solution to
classical algorithms. For information, these results are then due to either concurrency, or both concurrency
and cooperation. Finally, note that by using some heuristics specific to these instances, we might perhaps
improve these results.

5. Discussion about some possible extensions

In this section, we discuss about some possible extensions of this work. First, we focus on a generalization
to any algorithm which maintains some level of consistency. Then we are interested in defining other
cooperative schemes by relaxing some assumptions.

5.1. Generalization to any filtering
The schemes and the notions we have described above for the FC-NR algorithm can be extended to any
algorithm which maintains some level of consistency and which uses nogood recording. First, the notion
of induced CSP can be generalized with any filter φ. Then, all definitions which use this notion can also
be extended. In particular, we can generalize FC-consistency to φ-consistency. Next, in the interpretation
phase, according to the chosen filter φ, it is necessary to propagate some removals, in order to maintain
the level of consistency. For instance, if we use the algorithm MAC with nogood recording, the receipt
of a unary nogood induces a propagation of the deletion of the corresponding value whereas FC-NR only
removes this value. Of course, the backjump phase we use must be adapted too.

5.2. Adaptations to some other schemes
This part is devoted to the relaxation of the assumption about the shared memory. We remind that in
our cooperative concurrent method, we assume that we have a shared memory which is big enough in
order to contain the instance we want to solve, the set of recorded nogoods and the current instantiation
of each solver. In contrast, we do not study the relaxation of the second assumption because such a
relaxation is opposite to the cooperation concept.
A first way consists in recording in shared memory only a part of the current instantiation of each solver.
Such a relaxation may be interesting when writing some information in shared memory is too expensive or
is significantly more expensive than recording this information in its own private memory. In such a case,
updating the current instantiation after each modification can penalize the efficiency of the cooperative
method. So, a solver only stores in shared memory the current instantiation of the shallow variables.

23

LSIS Research Report (UMR CNRS 6168) Marseille France

Instance méthode coopérative FC FC-CBJ FC-NR MAC
p = 1 p = 2 p = 4

SCEN-01 100 100 90 100 110 100 640
SCEN-04 170 110 50 120 50 170 90
SCEN-05 19,170 19,090 300 - 335,300 18,430 14,310
SCEN-08 120 80 20 20 20 120 270
SCEN-11 2,620 2,610 2,610 12,740 1,250 2,930 25,630

GRAPH-08 110 90 90 70 60 110 430
GRAPH-09 120 110 110 100 110 130 670
GRAPH-10 690 690 690 - - 680 930
GRAPH-14 110 100 100 100 110 120 530

Table 15: Run-time (in ms) of the cooperative method with scheme Slight (in a multiprocessor system)
and of the classical algorithms for some problems of the FullRLFAP archive.

Instance cooperative method FC FC-CBJ FC-NR MAC
p = 1 p = 2 p = 4

SCEN-01 176.3 176.3 176.3 185.4 185.4 176.3 1,857.7
SCEN-04 208.0 140.7 61.9 255.3 51.1 203.1 246.0
SCEN-05 31,259.2 31,199.4 630.0 - 829,057.7 31,251.1 9,220.9
SCEN-08 356.3 256.4 85.7 52.7 46.8 356.3 2,346.4
SCEN-11 5,459.7 5,459.7 5,459.7 32,095.2 2,828.3 5,459.7 22,520.8

GRAPH-08 204.2 183.7 183.7 158.4 158.4 204.2 1,251.8
GRAPH-09 191.0 190.8 190.8 199.2 199.2 191.0 1,819.7
GRAPH-10 1,500.3 1,500.1 1,500.1 - - 1,498 2,531
GRAPH-14 174.0 173.9 173.0 183.4 183.4 174.0 1,599.2

Table 16: Number of constraint checks (in thousands) of the cooperative method with scheme Slight (in
a multiprocessor system) and of the classical algorithms for some problems of the FullRLFAP archive.

24

LSIS Research Report (UMR CNRS 6168) Marseille France

We can then fix the depth limit according to the algorithm we use and the instance we want to solve.
Intuitively, the nogoods which involve shallow variables are the most interesting because they permit a
more powerful pruning. Furthermore, we can expect that beyond a given depth, the solver quickly finds
a solution or encounters a failure. Then it is likely that receiving a nogood which prevents such a failure
from occurring saves few nodes. So such a limitation of the instantiation updates could be interesting.
Note that it may be use jointly with the limitation of exchanges of schemes Slight and Sgest in order to
reduce the communication cost.
If we do not have a shared memory, we consider a distributed scheme. In this scheme, each solver has
its own copy of the instance. In particular, it has its own constraint set (which includes the constraints
we add thanks to nogoods). By so doing, when a solver finds a nogood, it must send it to all the other
solvers in order that they add it to their own constraint set. Of course, doubles are communicated once
only. With such a scheme, the cooperative concurrent method will be efficient if the communications are
not too expensive. Finally, it is worth noting that this scheme may be useful, for instance, if we run our
cooperative method on computing clusters.

6. Conclusion and future works

In [15], a cooperative concurrent method is presented. In this method, the cooperation consists in
exchanging nogoods (i.e. instantiations which cannot lead to a solution). In this article, we have developed
and extended this work. We have proposed a cooperative concurrent search whose all solvers run the same
algorithm (namely FC-NR), use different heuristics for ordering variables and/or values and exchange
nogoods. We have associated a process to each solver (i.e. our approach is turned to multiprocessor
systems). For exchanging nogoods, we consider two cooperation forms which assume that each process
is able to communicate with each other and to access a shared memory which is big enough to contain
the instance we want to solve, the produced nogoods and the current instantiation of each solver. The
first form consists in adding the produced nogoods to the problem as new or tightened constraints. As
the problem is stored in shared memory, each solver can then use a nogoods produced by another solver
in order to prune its own search tree. In the second form, each solver communicates the nogoods it
finds to some other solvers by sending messages. We have then defined three cooperative schemes which
exploit these two cooperation form. Two of them restrict the exchange of messages since a nogood is
only conveyed to a solver if this solver is liable to use it immediately on its receipt. Furthermore, in order
to exploit the received nogoods, we have added an interpretation phase to the FC-NR algorithm. With
regard to the heuristics, we have explained why a trade-off is required between the concurrency and the
cooperation and we have proposed such a trade-off.
We have first experimented our method on random instances. We have then obtained interesting results
since we observed linear or superlinear speed-up for consistent problems as for inconsistent ones up to ten
solvers. So exchanging nogoods appears to be an efficient cooperation form. Nevertheless, we have noted
a decrease of efficiency as the number of solvers increases. In some cases, it ensues the appearance of
sublinear speed-up. This decrease is mainly due to a lack of diversity (i.e. the heuristics are not different
enough). Compared with some classical state-of-the-art algorithms, our cooperative concurrent method
is often more efficient than the FC-NR algorithm and is sometimes faster than FC-CBJ or MAC (mainly
for the consistent instances) if we use a monoprocessor system. In contrast, in a a multiprocessor system,
the cooperative method turns out to be better than classical algorithms in most cases.
For real-world instances, we observe various different trends. For some instances, the cooperative method
obtains poor results because it does not take advantage of the concurrency and few nogoods (or no
nogood) are produced and exchanged. For some other instances, there exists a contribution of the co-
operation and the concurrency. Unfortunately, their contribution is not sufficient to obtain linear or
superlinear speed-up. On the other hand, when this contribution is significant, our cooperative method
outperforms all the classical algorithms in a monoprocessor system as in a multiprocessor one.

A first extension of this work consists in experimenting our approach on a real multiprocessor computer
in order to confirm the trends we have observed. In the same time, it could be interesting to propose
several efficient and diverse heuristics in order to improve the efficiency as well as increase the number
of solvers. We can also define a new trade-off between the concurrency and the cooperation. Then, we

25

LSIS Research Report (UMR CNRS 6168) Marseille France

can extend our method by applying any algorithm which maintains some level of consistency or by using
different algorithms (which would permit to combine complete search methods and incomplete ones like
in [11] and so to improve the diversity of solvers). Another extension consists in exchanging an other
kind of informations. For instance, we can exchange structural nogoods and use the BTD algorithm [13]
as basic method for the solvers. Finally, it seems natural to extend this works to valued CSPs [18] (which
allows to express optimization problems). For this extension, a part of the framework is already defined
in [6] (namely the notion of valued nogood and the valued Nogood-Recording algorithm).

Bibliography

1. C. Bessière and J.-C. Régin. MAC and Combined Heuristics: Two Reasons to Forsake FC (and CBJ?)
on Hard Problems. In Proceedings of the 2nd International Conference on Principles and Practice of
Constraint Programming (CP’96), pages 61–75, 1996.

2. C. Bessière and J.-C. Régin. Refining the Basic Constraint Propagation Algorithm. In Proceedings of
the 17th International Joint Conference on Artificial Intelligence (IJCAI-01), pages 309–315, 2001.

3. C. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J. P. Warners. Radio Link Frequency Assignment.
Constraints, 4:79–89, 1999.

4. X. Chen and P. van Beek. Conflict-Directed Backjumping Revisited. Journal of Artificial Intelligence
Research, 14:53–81, 2001.

5. S. Clearwater, B. Huberman, and T. Hogg. Cooperative Solution of Constraint Satisfaction Problems.
Science, 254:1181–1183, Nov. 1991.

6. P. Dago and G. Verfaillie. Nogood Recording for Valued Constraint Satisfaction Problems. In Pro-
ceedings of the 8th International Conference on Tools with Artificial Intelligence (ICTAI’96), pages
132–139, 1996.

7. R. Dechter. Enhancement Schemes for Constraint Processing: Backjumping, Learning, and Cutset
Decomposition. Artificial Intelligence, 41:273–312, 1990.

8. J. Gaschnig. Performance Measurement and Analysis of Certain Search Algorithms. Technical Report
CMU-CS-79-124, Carnegie-Mellon University, 1979.

9. R. Haralick and G. Elliot. Increasing tree search efficiency for constraint satisfaction problems.
Artificial Intelligence, 14:263–313, 1980.

10. T. Hogg and B. Huberman. Better Than The Best: The Power of Cooperation, pages 164–184. SFI
1992 Lectures in Complex Systems. Addison-Wesley, 1993.

11. T. Hogg and C.P. Williams. Solving the Really Hard Problems with Cooperative Search. In Proceed-
ings of the 11th National Conference on Artificial Intelligence (AAAI-93), pages 231–236, 1993.

12. T. Hogg and C.P. Williams. Expected Gains from Parallelizing Constraint Solving for Hard Problems.
In Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-94), pages 331–336,
1994.

13. P. Jégou and C. Terrioux. Hybrid backtracking bounded by tree-decomposition of constraint net-
works. Artificial Intelligence, (?), 2003. To appear.

14. G. Kondrak and P. van Beek. A Theorical Evaluation of Selected Backtracking Algorithms. Artificial
Intelligence, 89:365–387, 1997.

15. D. Martinez and G. Verfaillie. Echange de Nogoods pour la résolution coopérative de problèmes
de satisfaction de contraintes. In 2ème Conférence Nationale sur la Résolution de Problèmes NP-
Complets (CNPC 96), pages 261–274, 1996. In french.

16. P. Prosser. Hybrid Algorithms for the constraint satisfaction problem. Computational Intelligence,
9:268–299, 1993.

17. D. Sabin and E. Freuder. Contradicting Conventional Wisdom in Constraint Satisfaction. In Pro-
ceedings of the 11th European Conference on Artificial Intelligence (ECAI-94), pages 125–129, 1994.

18. T. Schiex, H. Fargier, and G. Verfaillie. Valued Constraint Satisfaction Problems: hard and easy
problems. In Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI-
95), pages 631–637, 1995.

19. T. Schiex and G. Verfaillie. Nogood Recording for Static and Dynamic Constraint Satisfaction Prob-
lems. International Journal of Artificial Intelligence Tools, 3(2):187–207, 1994.

20. C. Terrioux. Cooperative Search and Nogood Recording. In Proceedings of the 17th International
Joint Conference on Artificial Intelligence (IJCAI-01), pages 260–265, 2001.

26

