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Abstract

We have presented, in a previous work ([15]), a cooperative parallel search for solving the constraint satisfaction
problem. We run independently p solvers based on Forward-Checking with Nogood Recording. The solvers
exchange nogoods via a process ("the manager of nogoods”) which regulates the exchanges. Solvers exploit the
nogoods they receive to limit the size of their search tree. Experimentally, we have shown the interest of our
approach from a parallel viewpoint, namely we have obtained linear or superlinear speed-up. However, we haven’t
studied its behavior with respect to classical algorithms.

In this paper, we first improve the exploitation of received nogoods. Then, we provide experimental comparisons
between the cooperative method and some state-of-the-art algorithms. In particular, we observe that the cooperative
search with at least four solvers (even in some cases from two solvers) is faster than classical algorithms like FC
or MAC.

Key words : Constraint satisfaction problem, cooperative search.

1 Introduction

In the framework of the constraint satisfaction problem (CSP), one of main tasks consists in determining whether
there exists a solution, i.e. an instantiation of all variables which satisfies all constraints. This task is a NP-complete
problem. The basic enumerative algorithm for solving constraint satisfaction problem is Chronological Backtrack-
ing (noted BT). BT is well known for its practical inefficiency. So, several techniques have been proposed to
improve BT by reducing the size of the search tree. The first ones are look-ahead techniques which simplify
the problem by filtering before or during the resolution. Forward-Checking (noted FC [7]) and Maintaining Arc-
Consistency (noted MAC [13]) are examples of such algorithms. Then, look-back techniques have been developed.
They consist in analyzing the failure and then coming back as higher as possible in the search tree, like Backjump-
ing [6], Graph-based Backjumping [5] or Conflict-Directed Backjumping [12]. Finally, learning techniques which
prevent some redundancies in the search tree by recording some informations have been proposed, for instance
Constraint Learning [5] or Nogood Recording [14]. From these three kinds of improvements, hybrid methods have
been produced like Forward-Checking with Nogood Recording (noted FC-NR [14]) or Forward-Checking with
Conflict-directed Backjumping (noted FC-CBJ [12]). Jointly, many heuristics have been defined for the purpose of
guiding the algorithms for the choice of variables and values to assign first. All these improvements aim to reduce
the computation time.

In the last years, in order to speed up the resolution of problems, more and more parallel searches are used. A
basic one is independent parallel search which consists in running several solvers on the same problem instead of
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a single solver. Each solver differs from other ones by using different algorithms or heuristics. The aim is that at
least one of the solvers is suitable for the problem which we solve. Tested on the graph coloring problem ([10]),
this approach has better results than a classical resolution with a single solver, but the gains seem limited. Hogg
and Williams recommend then the use of a cooperative parallel search. A cooperative parallel search is based on
the same ideas as the independent search with in addition an exchange of informations between solvers, in order to
guide solvers to a solution, and then, to speed up the resolution. Experimental results on cryptarithmetic problems
([4, 8]) and on graph coloring problems ([8, 9]) show a significant gain in time with respect to an independent
search. In both cases, the exchanged informations correspond to partial consistent instantiations.

In [11], a cooperation based on exchanging nogoods (i.e. instantiations which can’t be extended to a solution)
is proposed. Each solver runs the FC-NR algorithm and exchange nogoods it produces with the other solvers.
Exchanged nogoods permit solvers to prune their own search tree, and so one can expect to find more quickly a
solution. However, the experimental results they provide don’t show the interest of such an approach. In [15],
we define a new scheme of cooperation with exchange of nogoods. Like previously, each solver is based on FC-
NR, but, in addition to sending and receipt of messages, we add a phase of interpretation to FC-NR, in order to
limit the size of the search tree according to received nogoods. Furthermore, in a view to reducing the cost of
communications, we introduce a manager of nogoods whose role is to regulate the exchange of nogoods.

In this paper, we first improve the phase of interpretation. In [15], this phase doesn’t exploit all the received
nogoods, in order to prevent the algorithm from loosing a fundamental property, namely that every instantiation
built by FC-NR is FC-consistent. The improved phase we present corrects this drawback.

From a practical point of view, we can consider two assessments of the performance of a parallel algorithm.
The first one is based on the notions of speed-up and efficiency, which measure the quality of the algorithm
from a parallel viewpoint. The second one consists in comparing the parallel search and the main state-of-the-art
algorithms (sequential ones included). Thanks to such comparisons, we can assess the benefit of the parallel search
with respect to well-know existing methods and so we can choose more easily a method or an other one for solving
a given problem. In [15], we show experimentally the interest of our cooperative scheme. In particular, we obtain
linear or superlinear speed-up for consistent problems, like for inconsistent ones, up to about ten solvers and we
observe that our method is faster than concurrent one. Nevertheless, we don’t compare this approach with classical
sequential algorithms like FC or MAC.

In this contribution, our second main aim is to assess the behaviour of this cooperative method with respect to
some state-of-the-art sequential algorithms, namely FC, FC-CBJ, FC-NR and MAC.

The plan is as follows. In section 2, we give basic notions about CSPs, nogoods and FC-NR. Then, in section 3, we
remind the cooperative scheme and we then present the improved phase of interpretation. Finally, after providing
experimental comparisons between this cooperative method and state-of-the-art enumerative algorithms in section
4, we conclude in section 5.

2 Definitions

2.1 Definitions about CSPs

A constraint satisfaction problem (CSP) is defined by a quadruplet (X, D,C, R). X is a set {z1,...,z,} of n
variables. Each variable x; takes its values in the finite domain D; from D. Variables are subject to constraints
from C'. Each constraint ¢ involves a set X. = {z.,,...,z., } of variables. A relation R.. (from R) is associated
with each constraint ¢ such that R, represents the set of allowed k-uplets over D., x --- x D,,.

A CSP is called binary if each constraint involves two variables. Let z; and x; be two variables, we note ¢;; the
corresponding constraint. Afterwards, we consider only binary CSPs. However, our ideas can be extended to n-ary
CSPs.

GivenY C X suchthatY = {z,..., 2.}, an instantiation of variables from Y is a k-uplet (vy, ..., vx) from
Dy x --- x Dy. Itis called consistent if Ve € C, X, C Y, (v1,...,v)[X.] € R, inconsistent otherwise. We
use indifferently the term assignment instead of instantiation. We note the instantiation (v1, ..., v,) in the more
meaningful form {z; < v1,...,2x < vi}. A solution is a consistent instantiation of all variables. Given an
instance P = (X, D, C, R), determine whether P has a solution is a NP-complete problem.

Given a CSP P = (X, D,C,R) and an instantiation A; = {z1 + vi,z2  va,...,2; + v;}, P(A4A;) =
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(X,D(A;), C, R(A;)) is the CSP induced by A; from P with a Forward Checking filter such that:
() V5,1 <j <i,Dj(A;) = {v;}

(ii) Vj,i <j<n,Dj(A;) ={v; € D;j|Ver; € C,1 < k <14, (vg,v;) € Rckj}

(iii) Vj, ', Re,, (Ai) = Re,, N (D;(A;) x Dy (Ay)).

A; is said FC-consistent if Vj, D;(A;) # 0. According to the definition of an induced CSP, D;(A;) represents
the current domain of z; (i.e. the domain whose some values have been deleted by the filterings inherent in the
construction of 4) whereas D; is the initial domain of ;. Likewise, R., ., (A;) corresponds to the initial relation
R;; projected on the current domains of z; and z;.

2.2 Nogoods: definitions and properties

In this part, we give the main definitions and properties about nogoods and the algorithm Forward-Checking with
Nogood Recording (noted FC-NR [14]).

A nogood corresponds to an assignment which can’t be extended to a solution. More formally ([14]), given an
instantiation .4 and a subset J of constraints (J C C), (A, J) is a nogood if the CSP (X, D, J, R) doesn’t have a
solution which contains A. J is called the nogood’s justification (we note X ; the variables subject to constraints
from J). The arity of the nogood (A, J) is the number of assigned variables in .4. We note A[Y] the restriction
of A to variables which are both in X 4 and in Y. For instance, every inconsistent assignment corresponds to a
nogood. The converse doesn’t hold.

In order to make the approach efficient in practice, we use the algorithm Nogood Recording based on Forward-
Checking. So, the reasons of a failure may be many. Hence, we need the notion of "value-killer” (introduced in
[14]) to compute justifications. Given a CSP P, an assignment A;, and the set IV of produced nogoods, a constraint
crj (j >4 > k) is avalue-killer of value v; from D; for A; if one of the following conditions holds:

1. ¢; is avalue-killer of v; for A;_;
2. k=1and (vk,vj) g RCkJ' (A;) and (S Dj(.Ai_1)
3 {xp < v,z < v} EN

The set of value-Killers of a domain D is defined as the set of constraints which are a value-killer for at least one
value v; of D;. For a given value v, a value-killer of v is a constraint allowing to delete v by filtering, and so
to explain the deletion of ». If a failure occurs because a domain D; is wiped-out, the set of value-killers of D;
provides the reasons of the inconsistency (i.e. the justifications). The following theorem formalizes the creation of
nogoods from dead-ends.

Theorem 1 Let A be an assignment and x; be an unassigned variable. Let K be the set of value-killers of D;. If
it doesn’t remain any value in D;(A), then (A[X k], K) is a nogood.

The two next theorems make it possible to create new nogoods from existing nogoods. The first theorem builds a
new nogood from a single existing nogood.

Theorem 2 ([14]) If (A, J) is a nogood, then (A[X ;], J) is a nogood.

In other words, we only keep from the instantiation the variables which are involved in the failure. Thus, we
produce a new nogood whose arity is limited to its strict minimum. Theorem 3 builds a new nogood from a set of
nogoods:

Theorem 3 Let A be an instantiation, z; be an unassigned variable. Let K be the set of value-killers of D;. Let
Aj; be the extension of A by assigning the value v; to z; (4; = AU {z; < v;}). If (41, 01), ..., (Aqg, Ja) are

d
nogoods, then (A, K U |J J;) is a nogood.
j=1



LSIS(UMR CNRS 6168) Research Report number L S| S/2002/006, M ar seille France

A nogood can be used either to backjump or to add a new constraint or to tighten an existing constraint. 1f we
produce the nogood (A, J), a constraint between the variables of X 4 is added (or tightened if it already exists)
which forbids the tuple A. This constraint can be exploited like any constraint of the initial problem, for instance
for deleting values by filtering. The backjump provoked by a nogood is similar to one of the algorithm Conflict-
directed BackJumping ([12]). The next lemma characterizes this backjump phase:

Lemmal If (A[X ], J) is anogood, it is correct to backjump to the deepest variable belonging to X ;.

In both cases, it follows from the use of nogoods a pruning of the search tree. In particular, their use allows to
avoid some redundancies in the search tree.

FC-NR explores the search tree like Forward Checking. During the search, it takes advantage of dead-ends to
create and record nogoods. These nogoods are then used as described above to prune the search tree. The main
drawback of FC-NR is that the number of nogoods is potentially exponential. So, we limit the number of nogoods
by recording nogoods whose arity is at most 2 (i.e. unary or binary nogoods), according to the proposition of
Schiex and Verfaillie ([14]). Nevertheless, the ideas we present can be easily extended to n-ary nogoods.

3 The cooperative scheme

3.1 Description

The approach we are going to describe assumes that:

o the shared memory is big enough to contain the CSP instance, the set of recorded nogoods and the current
instantiation of each solver,

e each process can communicate, by exchanging messages, with any other process.

The cooperative scheme (illustrated in figure 1) consists of p sequential solvers which run independently FC-NR
on the same CSP. Each solver differs from another one in ordering variables and/or values with different heuristics.
Thus, each one has a different search tree. The cooperation consists in exchanging nogoods. A solver can use
nogoods produced by other solvers in order to prune a part of its search tree, which speeds up the resolution.
During the search, when a solver finds a nogood, it informs the manager, which communicates at once this new
information to a part of other solvers. In this way, a solver sends only one message (instead of p — 1 in a scheme
without manager) and gets back quickly to the resolution of the problem. The paragraph 3.2 describes more
precisely the manager of nogoods.

Finally, the produced nogoods are added to the initial problem by creating new constraints (or by tightening existing
ones). Each solver, thanks to the FC-NR algorithm, can use these nogoods for backjumping or for filtering. By
so doing, we don’t fully exploit the recorded nogoods. Indeed, assume that a solver may have started visiting an
area of the search tree before receiving a nogood which forbids the exploration of this area. Then, in such a case,
the solver finishes its exploration as though it has never received the nogood. So, we add to FC-NR a phase of
interpretation, which, thanks to received nogoods, limits the size of the search tree by stopping developing some
branches which lead to failure. In the paragraph 3.3, we present an improved version of our phase of interpretation.

3.2 The manager of nogoods

The manager’s task is to update the set of nogoods and to communicate new nogoods to solvers. Update the
set of nogoods consists in adding constraints to initial problem or in tightening the existing constraints. To a
unary (respectively binary) nogood corresponds a unary (resp. binary) constraint. Each nogood communicated to
manager is added to this set.

In order to limit the cost of communications, the manager must inform only solvers for which nogoods may be
useful. A nogood is said useful for a solver if it allows this solver to limit the size of its search tree. Among the
useful nogoods for a solver, we can distinguish ones which are useful as soon as they are received and ones which
are useful later via the filtering. For the last ones, note that they are exploited via the constraints added or tightened
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Shared memory

CcspP ———+ Constraint check
‘******””77“‘ . .
| Nogoods : — Instantiation update
Lol ___. ! ———= Constraint addition

- - -> Communication of nogoods

\\\ \\\ ﬁ//’/
Manager of nogoods ’
Figure 1: The cooperative scheme based on exchanging nogoods for three solvers. Solid arrows represent accesses
to the shared memory, dashed ones communications between processes.

(i.e. thanks to the shared memory). So we only need to communicate the nogoods which are useful as soon as
they are received. The next theorem characterizes the usefulness of these nogoods according to their arity and the
current instantiation of the considered solver.

Theorem 4 Let .S be a solver and Ag be its current instantiation.
(a) aunary nogood is always useful for S,

(b) abinary nogood ({z; < a,x; < b}, J) is useful for S if z; and z; are assigned respectively with @ and b in
As,

(c) abinary nogood ({z; < a,z; < b}, J) is useful for S if, in Ag z; (resp. ;) is assigned with a (resp. b) and
b€ D;j(As) (resp. a € Di(As)).

From this theorem, when the manager of nogoods receives a nogood, it conveys it to some solvers (according to
its usefulness for these solvers):

(a) every unary nogood is sent to all solvers (except the solver which finds it),

(b) the binary nogoods ({z; < a,z; < b}, J) is sent to each solver (except the solver which finds it) whose
instantiation contains z; < a or x; < b.

In other words, the manager sends to a solver the nogoods which may be useful as soon as they are received.
However, we can’t guarantee that all the received nogoods will be used in practice. For instance, in case (b), the
solver may have backtracked between the sending of the nogood by the manager and its receipt by the solver.
Finally, with a view to limit the cost of communications, only the instantiation .4 of nogood (A4, .J) is conveyed.
Communicate the justification isn’t necessary because this nogood is added to the problem in the form of a con-
straint ¢. Thanks to received information, solvers can forbid A with justification c.

In [15], we show the contribution of the manager of nogoods to our scheme with respect to a version without
manager. Theoretically, in the overall search, our scheme may exchange NN additional messages (where N is the
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number of produced nogoods). Nevertheless, in practice, we observe that our scheme exchanges significantly fewer
nogoods than a scheme without manager because the manager doesn’t send each nogood to every solver.

3.3 Phase of interpretation

Before describing the phase of interpretation, we introduce the following notation: if .4 is an instantiation, we note
A, the restriction of A to variables assigned before z, ;. included.

The phase of interpretation is applied whenever a nogood is received. Solvers check whether a message is received
after developing a node and before filtering. In the phase of interpretation, solvers analyze received nogoods
in order to limit the size of their search tree by stopping branches which can’t lead to solution or by enforcing
additional filtering.

In [15], we present a first version of such a phase, but its integration to the FC-NR algorithm entails the loss of a
fundamental property of FC-NR, namely that every instantiation built by FC-NR is FC-consistent. This problem
happens when a solver forbids some values thanks to some nogoods while these values have been already removed
thanks to the filtering. In such a case, if a domain is wiped out due to a nogood, the next instantiation built by the
solver could be FC-inconsistent. Indeed, the solver may not restore some values deleted by the filtering because
now they are forbidden by some nogoods and then the wiped-out domain remains empty even if the solver has just
backtracked. In order to avoid the problem occurring, in our previous work, we add a backjump phase and we don’t
take into account all the nogoods which can be produced. Thus, the solvers don’t fully exploit the nogoods they
produce or receive. So, in order to correct this drawback, we now describe an improved phase of interpretation.
For unary nogoods, the phase of interpretation corresponds to a permanent deletion of a value and to a possible
backjump. Method 1 details the phase for such nogoods.

Method 1 (phase of interpretation for unary nogoods)

Let A be the current instantiation. Let ({z; < a}, J) be the received nogood. We denote K the set of value-killers
of D;.

We delete a from D;. Furthermore:

(@) If z; isn’t assigned and D;(.A) is empty:

(i) we record the nogood (A[X k], K).

(ii) If recording this nogood wipes out a domain, then we backjump to the highest variable between the
deepest variable in X and the deepest one in X g (with K the set of value-killers of the wiped-out
domain).

Otherwise, we backjump to the deepest variable in X .

(b) If z; is assigned with the value a:
we backjump to ;. Let A" be the obtained instantiation.
If D;(A") is empty:

(i) we record the nogood (A'[ X k], K).

(ii) If recording this nogood wipes out a domain, then we backjump to the highest variable between the
deepest variable in X and the deepest one in X g (with K the set of value-killers of the wiped-out
domain).

Otherwise, we backjump to the deepest variable in X .

Note that we remove permanently a from the domain D;, which implies that, for any instantiation .4, the value
a doesn’t belong to D;(.A). The backjump phases in the cases (a)(ii) et (b)(ii) allow to pursue the exploration of
the search tree with a FC-consistent instantiation (unlike the phase of interpretation in [15]). In other words, these
backjump phases guarantee that there is no empty current domain, before extending the current instantiation.

Theorem 5 The method 1 is correct.

Proof: As ({z; < a}, J) is a nogood, the instantiation {z; < a} can’t be extended to a solution. Therefore, we
can remove a from the domain D; without modifying the problem’s consistency.
Now, we study the correctness of the two cases:
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(@)

(b)

If z; isn’t assigned:

The deletion of @ may wipe out the domain D;(A). If D;(A) is empty, then the instantiation A is FC-
inconsistent. According to theorems 1 and 2, (A[X k], K) is a nogood. Furthermore, thanks to lemma 1, it is
correct to backjump to the deepest variable in X . If recording the nogood (A[X k], K') wipes out the domain
of 2, thanks to lemma 1, backjumping to deepest variable in X is correct too. So, in such a case, we can
backjump to the highest one.

If z; is assigned with the value a:

As ({z; < a}, J) is a nogood, every instantiation which contains z; assigned with a can’t lead to a solution.
Therefore, it’s useless to develop such instantiations and so backjumping to z; is correct.

Let A" U {z; + a} be the obtained instantiation. After removing a from D;, D;(.A') may be empty. In such
a case, according to theorems 1 and 2, we can record the nogood (A'[X k], K'). Finally, the correctness of the
backjump phase (b)(ii) can be established like in the first case.[]

For binary nogoods, the phase corresponds to enforce an additional filtering and to a possible backjump as de-
scribed in method 2.

Method 2 (phase of interpretation for binary nogoods)
Let A be the current instantiation and ({z; < a,z; < b}, J) be the received nogood.

(@)

(b)

If{z; < a} C A(resp. {z; < b} C A)andz; & X 4 (resp. z; ¢ X 4):
we delete by filtering b (resp. a) from D;(A,,) (resp. D;(Ag;)).
If D;(A) (resp. D;(A)) is empty:

(i) we record the nogood (A[X k], K') with K the set of value-killers of D; (resp. D).

(ii) If recording this nogood wipes out a domain, then we backjump to the highest variable between the
deepest variable in X and the deepest one in X g (with K the set of value-killers of the wiped-out
domain).

Otherwise, we backjump to the deepest variable in X .

If {z; « a,z; < b} C A:

we backjump to the deepest variable among z; and z;.

If z; (resp. z;) is this variable, we note A’ U {x; < b} (resp. A’ U {z; < a}) the obtained instantiation.
We delete by filtering b (resp. a) from D;(A,,) (resp. D;(A.,)).

If D;(A") (resp. D;(A")) is empty:

(i) we record the nogood (A'[X k], K') with K the set of value-killers of D; (resp. D;).

(ii) If recording this nogood wipes out a domain, then we backjump to the highest variable between the
deepest variable in X and the deepest one in X g (with K the set of value-killers of the wiped-out
domain).

Otherwise, we backjump to the deepest variable in X .

Theorem 6 The method 2 is correct.

Proof:

(@)

(b)

Assume that «; is the deepest variable among z; and z; (the proof is similar if z; is the deepest one). The
nogood ({z; < a,z; < b}, J) prevents z; from taking the value b as long as z; is assigned with the value a.
Therefore, we can remove b from D;(A;,) by filtering.

If D;(A) is wiped out, we reason like in the proof of theorem 5 in order to establish the correction of recording
the nogood and of the backjumping phase.

As ({z; < a,z; < b}, J) is anogood, every instantiation which contains {z; < a,z; < b} can’tlead to a
solution. So, backjump to the deepest variable among z; and z; is correct.

Assume that z; is the deepest variable among z; and z; (the proof is similar if z; is the deepest one). A’ U
{z; « b} is the instantiation obtained after the backjump. We demonstrate like for the case (a) that the
filtering, the recording and the backjumping phase are correct.C]



LSIS(UMR CNRS 6168) Research Report number L S| S/2002/006, M ar seille France

Like previously, the backjump phases allow to keep on exploring the search tree with a FC-consistent instantiation
and, by so doing, to avoid the drawback of the phase presented in [15]. Remark that, here, the deletions aren’t
permanent unlike the phase of interpretation for unary nogoods.

4 Experimental results

In this section, we provide experimental comparisons between our cooperative scheme and some state-of-the-art
sequential algorithms, namely Forward-Checking (noted FC [7]), Forward-Checking with Conflict-directed Back-
jumping (noted FC-CBJ [12]), Forward-Checking with Nogood Recording (noted FC-NR [14]), and Maintaining
Arc-Consistency (noted MAC [13]). About MAC, we achieve arc-consistency thanks to the AC-2001 algorithm
([2])- We experiment two kinds of benchmarks:

e random instances,

o real-world instances.

4.1 Heuristics

For each classical algorithm, we use the dom /deg heuristic ([1]), for which the next variable to assign is one which

minimizes the ratio ‘I?j\l (where D; is the current domain of x; and T'; is the set of variables which are connected
to x; by a binary constraint). This heuristic is considered better, in general, than other classical heuristics. That’s
why we choose it.

In our implementation, only the size of domains varies for each instantiation. The degree |T';| is updated when a
new constraint is added thanks to a nogood. Likewise, the tightness of a constraint is modified when the constraint
is tightened.

For the cooperative method, in order to guarantee distinct search trees, each solver orders variables and/or values
with different heuristics. As there exist few efficient heuristics for choosing variables, from the dom /deg heuristic,

we produce several different orders:

o by defining the heuristic dom /st for which the next variable to assign is one which minimizes the ratio ”S)—|
(with S; the sum of tightness of constraints involving x;),

e by choosing differently the first variable and then applying either dom /deg or dom/st.

As regards the choice of next value to assign, we consider values in appearance order for classical algorithms,
and in appearance order or in reverse order for the cooperative search. In following results, half solvers of the
cooperative method use the appearance order to order domains, other half reverse order.

4.2 Results for random instances

In this paragraph, we compare our cooperative scheme with some classical algorithms for random CSPs. These
instances are produced by random generator written by D. Frost, C. Bessiére, R. Dechter and J.-C. Régin. This
generator * takes 4 parameters N, D, C and T'. It builds a CSP of class (N, D, C, T') with N variables which have
domains of size D and C binary constraints (0 < C' < W) in which T tuples are forbidden (0 < 7' < D?).
Experimental results we give afterwards concern classes which are near to the satisfiability’s threshold. Every
problem we consider has a connected graph of constraints.

Given results are the averages of results obtained on 100 problems per class. For the cooperative method, each
problem is solved 15 times in order to reduce the impact of non-determinism of solvers on results. Results of a
problem are then the averages of results of 15 resolutions. For a given resolution, the results we consider are ones
of the solver which solves the problem first. By so doing, we assume that we have one processor per solver, even

L downloadable at http://www.lirmm.fr/~bessiere/generator.ntml
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if, in practice, these experimentations are realized on a Linux-based PC with a single AMD Athlon XP 1800+
processor.

Tables 1 and 2 respectively provide the number of constraint checks (in thousands) and the run-time for our coop-
erative scheme with respectively one, two or four solvers and for FC, FC-CBJ, FC-NR and MAC.

Class cooperative solver FC FC-CBJ | FC-NR | MAC
p=1| p=2] p=4
(50,15,184,112) | 11,246 | 4,885 | 2,566 | 7,347 7,089 | 9,984 | 4,750
(50,15,245,93) | 85,394 | 41,487 | 19,506 | 64,695 | 63,629 | 81,947 | 53,354
(50,25,123,439) | 5,122 | 2,877 | 1,273 | 5,969 5,208 5,479 | 2,601
(50,25,150,397) | 54,249 | 18,163 | 9,888 | 34,743 | 32,648 | 52,620 | 21,813

Table 1: Number of constraint checks (in thousands) for random CSPs.

For one solver, we observe that, in some cases, our cooperative method performs more constraint checks than
FC, FC-CBJ or MAC. These additional constraint checks are explained by the FC-NR algorithm itself. Indeed,
in FC-NR (and so in the cooperative method), checking constraints means checking initial and added constraints.
With respect to FC-NR, the cooperative method checks slightly more constraints. Such a result may be due at least
in part to exchanges of nogoods with the manager. In effect, unlike the classical FC-NR algorithm, in our scheme,
nogoods aren’t added as new constraints as soon as they are produced. They are first sent to the manager. So, in
the meantime, the cooperative solver doesn’t exploit the corresponding new constraints because they don’t exist
yet, what permits the cooperative method either to save some constraint checks with respect to FC-NR, or, in the
contrary, to visit some nodes which aren’t developed by FC-NR.

About the run-time, the cooperative solver is less fast than the classical algorithms. This result is due to the number
of additional constraint checks and to the cost of communications. About the cost of communications, note that,
even if there is a single solver, the solver sends the produced nogoods to the manager and checks whether it receives
a message.

Class cooperative solver FC FC-CBJ | FC-NR | MAC
p=1| p=2| p=4
(50,15,184,112) | 3,386 | 1,456 795 | 1,311 1,569 1,845 | 1,612
(50,15,245,93) | 25,908 | 12,599 | 6,259 | 10,770 | 13,088 | 16,054 | 19,863
(50,25,123,439) | 1,678 896 412 | 1,177 1,250 978 677
(50,25,150,397) | 16,014 | 5,285 | 3,049 | 6,614 7,576 | 8,823 | 6,487

Table 2: Run-time in milliseconds for random CSPs.

For two solvers, the cooperative search checks significantly fewer constraints than FC, FC-CBJ and FC-NR, and
either slightly more or significantly fewer than MAC depending on the class we consider. With regard to the run-
time, the cooperative search solves each class faster than FC-CBJ and FC-NR. However, it is either better or worse
than FC or MAC. Nevertheless, when it is better, the saved time is significant.

For at least four solvers, we note that our cooperative scheme performs fewer constraint checks than the four
classical algorithms we use. In each case, the observed gains are significant. Then, we notice that the cooperative
search is faster than the classical algorithms. For information, if we run our cooperative search with more than
four solvers, the obtained run-time and number of constraint checks are less important than ones for four solvers.
If we only consider consistent (respectively inconsistent) instances, we observe similar results as shown in table 3
(resp. 4).
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Class cooperative solver FC | FC-CBJ | FC-NR | MAC
p=1l| p=2| p=4
(50,15,184,112) | 2,666 | 1,122 610 | 1,009 1,210 | 1,413 | 1,176
(50,15,245,93) | 16,384 | 8,397 | 3,150 | 7,229 8,797 | 10,427 | 12,971
(50,25,123,439) | 2,009 | 1,110 448 | 1,348 1,430 | 1,115 616
(50,25,150,397) | 16,014 | 4,293 | 2,656 | 5,913 6,782 | 7,958 | 5,204

Table 3: Run-time in milliseconds for consistent random CSPs.

Class cooperative solver FC FC-CBJ | FC-NR | MAC
p=1| p=2| p=4
(50,15,184,112) | 4,562 | 2,002 | 1,097 | 1,803 2,155 | 2550 | 2,324
(50,15,245,93) | 31,264 | 14,962 | 8,008 | 12,762 | 15,502 | 19,220 | 23,740
(50,25,123,439) | 1,466 759 390 | 1,067 1,135 891 715
(50,25,150,397) | 16,014 | 6,547 | 3,551 | 7,505 8,587 | 9,924 | 8,121

Table 4: Run-time in milliseconds for inconsistent random CSPs.

4.3 Results for real-world instances

We now compare the considered algorithms on some real-world instances of the CELAR from the FullRLFAP
archive?. These problems correspond to radio link frequency assignment problems. From this archive, we only
keep the instances which MAC solves in at least 500 milliseconds. These instances have between 400 and 916 vari-
ables with different sizes of domains (see [3] for more details). The results we give are the results of a unique run.
For the cooperative method, like previously, we assume that we have one processor per solver, even if these exper-
imentations are realized on a Linux-based PC with a single Intel Pentium I11 550 MHz processor. In other words,
the presented results are ones of the solver which solves the problem first. We set a time limit for determining
whether a problem is consistent or not. Beyond 15 minutes, the search is stopped.

Tables 5 and 6 respectively provide the number of constraint checks (in thousands) and the run-time for our coop-
erative method with respectively one, two or four solvers and for FC, FC-CBJ, FC-NR and MAC. In these tables,
the symbol ”-” means that the search was stopped.

Problem cooperative method FC FC-CBJ | FC-NR | MAC
p=1| p=2]| p=4
SCEN-01 176 176 176 176 176 176 1,858

SCEN-05 | 31,352 | 31,148 581 - 39,022 | 31,251 | 9,221
SCEN-11 5,460 | 5,460 262 | 32,095 5,460 5,460 | 22,521

GRAPH-09 191 191 191 191 191 191 | 1,820
GRAPH-10 | 1,498 | 1,497 | 1,497 - 848 1,498 | 2,531
GRAPH-14 174 174 174 174 174 174 | 1,599

Table 5: Number of constraint checks (in thousands) for some real-world instances from the FUllRLFAP archive.

For SCEN-01, GRAPH-09 and GRAPH-11 instances, the cooperative method and the classical algorithms based
on Forward-Checking obtain comparable results, which are slightly better than MAC’s ones. For GRAPH-10 in-
stance, we note that FC is unable to solve the problem unlike the other methods (included the cooperative one).

2we thank the Centre d’ Electronique de I’ Armement (France).
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Problem cooperative method FC FC-CBJ | FC-NR | MAC
p=1| p=2| p=4
SCEN-01 110 110 110 100 120 110 610
SCEN-05 | 33,650 | 33,510 570 - 27,350 | 24,050 | 15,380
SCEN-11 3,450 | 3,450 160 | 23,930 3,910 | 3,290 | 25,520
GRAPH-09 150 140 140 120 90 130 640
GRAPH-10 | 1,320 | 1,320 | 1,320 - 520 900 890
GRAPH-14 130 120 110 100 100 120 510

Table 6: Run-time in milliseconds for some real-world instances from the FUllRLFAP archive.

The cooperative search performs as many constraint checks as FC-NR. However, in time, the classical algorithms
(except FC) are better. More generally, for these four instances, the cooperative search doesn’t seem taking advan-
tage of cooperation and multiple orders for variables and values.

In contrast, for SCEN-05 and SCEN-11 instances, the cooperative method with four solvers performs fewer con-
straint checks and so is significantly faster than the classical algorithms.

5 Conclusions and discussion

We have presented, in a previous work ([15]), a cooperative parallel search for solving the constraint satisfaction
problem. We run independently p solvers based on Forward-Checking with Nogood Recording. The solvers
exchange nogoods via a process (“the manager of nogoods™) which regulates the exchanges. Solvers exploit the
nogoods they receive to limit the size of their search tree thanks to the phase of interpretation. In order to prevent
FC-NR from loosing one of its fundamental properties, the phase described in [15] doesn’t take into account all
the nogoods. So, in this paper, we have first presented an improved version of the phase of interpretation in order
to exploit every nogood.

Experimentally, we have shown the interest of our approach from a parallel viewpoint, namely we have obtained
linear or superlinear speed-up [15]. However, we haven’t studied its behavior with respect to classical algorithms.
In this paper, we provide experimental comparisons between the cooperative method and some state-of-the-art
algorithms. In particular, we observe that the cooperative search with at least four solvers (even in some cases
from two solvers) is faster than classical algorithms like FC or MAC, if we use one processor per solver. If we only
have a processor, we can simulate the parallelism and obtain, in some cases, better results than classical algorithms,
like for the SCEN-05 or SCEN-11 instances.
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