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Abstract

For solving constraints networks (CSPs), (tree-)decomposi-
tion methods have shown their practical interest. But for
the problem of computing tree-decompositions, the literature
(coming from AI or from Mathematics) has concentrated the
work on a single parameter, the tree-width. Nevertheless, ex-
perimental studies have shown that when a decomposition is
used to solve a CSP, other parameters must also be consid-
ered. For example, it has been observed that in some cases,
bad decompositions w.r.t. their width can be more efficient
for the resolution of the underlying CSP.
One of the explanations of this phenomenon is related to the
structure of the clusters (or bags) appearing in decomposi-
tions. For example, in this paper, we show experimentally
that some clusters can have several connected components
when we try to minimize the width to achieve “good” decom-
positions. Unfortunately, this lack of connectedness may lead
the solving method to spend much effort to solve the subprob-
lems related to these non-connected clusters, by passing many
times from a connected component to another. Clearly, this
can be a real drawback for globally solving a CSP in terms of
time efficiency and memory space. To avoid this kind of prob-
lem, we introduce here a new graph parameter called Bag-
Connected Tree-Width which considers tree decompositions
for which each cluster is connected. We show that computing
such optimal decompositions is an NP-hard problem. So, we
propose a polynomial time algorithm to find such decompo-
sitions, but obviously, without guaranteeing optimality.

Introduction
Constraint Satisfaction Problems (CSPs, see (Rossi, van
Beek, and Walsh 2006) for a state of the art) provide an ef-
ficient way of formulating problems in computer science,
especially in Artificial Intelligence.

Formally, a constraint satisfaction problem is a triple
(X,D,C), where X = {x1, . . . , xn} is a set of n variables,
D = (Dx1 , . . . , Dxn) is a list of finite domains of values,
one per variable, and C = {C1, . . . , Ce} is a finite set of
e constraints. Each constraint Ci is a pair (S(Ci), R(Ci)),
where S(Ci) = {xi1 , . . . , xik} ⊆ X is the scope of Ci,
and R(Ci) ⊆ Dxi1

× · · · × Dxik
is its compatibility rela-

tion. The arity of Ci is |S(Ci)|. A CSP is called binary
if all constraints are of arity 2. The structure of a con-
straint network is represented by a hypergraph (which is a
graph in the binary case), called the constraint (hyper)graph,

whose vertices correspond to variables and edges to the con-
straint scopes. In this paper, for sake of simplicity, we only
deal with the case of binary CSPs but this work can easily
be extended to non-binary CSP by exploiting the 2-section
(Berge 1973) of the constraint hypergraph (also known as
the primal graph in the CSP community). Moreover, with-
out loss of generality, we assume that the network is con-
nected. To simplify the notations, in the sequel, we denote
the graph (X, {S(C1), . . . S(Ce)}) by (X,C). An assign-
ment on a subset of X is said to be consistent if it does
not violate any constraint. Testing whether a CSP has a so-
lution (i.e. a consistent assignment on all the variables) is
known to be NP-complete. So, many works have been real-
ized to make the solving of instances more efficient in prac-
tice, by using optimized backtracking algorithms, heuristics,
constraint learning, non-chronological backtracking, filter-
ing techniques based on constraint propagation, etc. The
time complexity for these approaches is naturally exponen-
tial, at least in O(n.dn) where n is the number of variables
and d the maximum size of domains.

Another way is related to the study of tractable classes de-
fined by properties of constraint networks. E.g., it has been
shown that if the structure of this network is acyclic, it can
be solved in linear time (Freuder 1982). Using these theoret-
ical results, some methods to solve CSPs have been defined,
such as Tree-Clustering (Dechter and Pearl 1989). This kind
of methods is based on the notion of tree-decomposition of
graphs (Robertson and Seymour 1986). Their advantage is
related to their theoretical complexity, that is dw+1 where
w is the tree-width of the constraint graph. When this graph
has nice topological properties and thus that w is small, these
methods allow to solve large instances, e.g. radio link fre-
quency assignment problems (Cabon et al. 1999). Note that
in practice, the time complexity is more related to dw

++1

where w+ is actually an approximation of the tree-width be-
cause computing an optimal tree-decomposition (of width
w) is an NP-hard problem.

However, the practical implementation of such methods,
even though it often shows its interest, has proved that the
minimization of the parameter w+ is not necessarily the
most appropriate. Besides the difficulty of computation of
the optimal value of w+, that is w, it sometimes leads to
handle optimal decompositions, but whose properties are not
always adapted to a resolution that would be the most effi-



cient. This has led to propose graph decomposition methods
that make the solving of CSPs more efficient (from a prac-
tical viewpoint), but for which the value of w+ can even be
really greater than w (Jégou, Ndiaye, and Terrioux 2005).

In this paper, we show that a reason to this lack of effi-
ciency for solving CSPs using decomposition can be found
in the nature of the decompositions for which w+ is close to
w. Indeed, minimizing w+ can lead to decompositions such
that some clusters have several connected components. Un-
fortunately, this lack of connectedness may lead the solving
method to spend many efforts to solve the subproblems re-
lated to these non-connected clusters, by passing many times
from a connected component to another.

To avoid this problem, we introduce here a new graph in-
variant, a parameter called Bag-Connected Tree-Width. This
parameter is equal to the minimal width over all the tree-
decompositions for which each cluster has a single con-
nected component. So, the Bag-Connected Tree-Width
will be the minimum width for all Bag-Connected Tree-
Decompositions. Here we prove that its computation is NP-
hard. So, we propose a first polynomial time algorithm in
order to approximate this parameter, and the associated de-
compositions. Its time complexity is O(n(n+ e)).

The next section introduces notations and the principles
of tree-decomposition methods for solving CSPs. The third
section points to some problems due to the computing of
“good” tree-decompositions while the fourth section in-
troduces the notion to Bag-Connected tree-decomposition,
proposing a first algorithm to achieve one. The last section
presents a conclusion.

Solving CSPs using Graph Decomposition
Tree-Decomposition Methods
Tree-Clustering (denoted TC (Dechter and Pearl 1989)) is
the reference method for solving binary CSPs by exploiting
the structure of its constraint graph. It is based on the notion
of tree-decomposition of graphs (Robertson and Seymour
1986).

Definition 1 Given a graph G = (X,C), a tree-decompo-
sition of G is a pair (E, T ) with T = (I, F ) a tree and
E = {Ei : i ∈ I} a family of subsets of X , such that each
subset (called cluster) Ei is a node of T and satisfies:

(i) ∪i∈IEi = X ,
(ii) for each edge {x, y} ∈ C, there exists i ∈ I with

{x, y} ⊆ Ei, and
(iii) for all i, j, k ∈ I , if k is in a path from i to j in T , then

Ei ∩ Ej ⊆ Ek.
Note that the third condition (iii) can be replaced by: if

a vertex x satisfies x ∈ Ei ∩ Ej , then, all the nodes Ek

in T appearing on the unique path from Ei to Ej contain
x. The width of a tree-decomposition (E, T ) is equal to
maxi∈I |Ei|−1. The tree-width w of G is the minimal width
over all the tree-decompositions of G.

Figure 1(b) presents a tree whose nodes correspond to the
maximal cliques of the graph depicted in Figure 1(a). It is a
possible tree-decomposition for this graph. So, we get E1 =

{x1, x2, x3}, E2 = {x2, x3, x4, x5}, E3 = {x4, x5, x6},
and E4 = {x3, x7, x8}. The maximum size of clusters is 4
and thus, the tree-width of this graph is 3.

The first version of TC (Dechter and Pearl 1989), be-
gins by computing a tree-decomposition (using the algo-
rithm MCS (Tarjan and Yannakakis 1984)). In the sec-
ond step, the clusters are solved independently, consider-
ing each cluster as a subproblem, and then, enumerating
all its solutions. After this, a global solution of the CSP,
if one exists, can be found efficiently exploiting the tree
structure of the decomposition. Time and space complex-
ities of this first version is O(n.dw

++1) where w+ + 1 is
the size of the largest cluster (w + 1 ≤ w+ + 1 ≤ n).
Note that it has been later shown (Dechter and Fattah 2001;
Dechter 2003) that this first approach can be improved for
space complexity in O(n.s.ds) where s is the size of the
largest minimal separator, i.e. the size of the largest inter-
section between two clusters (s ≤ w+). Unfortunately, this
kind of approach which solves completely each cluster is
not efficient in practice. So, later, the Backtracking on Tree-
Decomposition method (denoted BTD) has been proposed
and shown to be really more efficient from a practical view-
point (Jégou and Terrioux 2003; Jégou, Ndiaye, and Ter-
rioux 2005; 2007) and appears in the state of the art as a ref-
erence method for this type of approach (Karakashian 2013).
In contrast to TC, BTD does not need to solve completely
each cluster to find a solution. A backtrack search is real-
ized, exploiting a variable ordering induced by a depth first
traversal of the tree-decomposition. While this approach has
shown its practical interest, from a theoretical viewpoint, in
the worst case, its complexities are the same as ones of the
improved version of TC , that is O(n.dw

++1) for time com-
plexity, and O(n.s.ds) for space complexity.

So, to make structural methods efficient, we must a priori
minimize the values of w+ and s when computing the tree-
decomposition.

Computing Tree-Decomposition
Computing an optimal tree-decomposition (i.e. a tree-
decomposition of width w) is NP-hard (Arnborg, Corneil,
and Proskuroswki 1987). So, many works deal with this
problem. They often exploit an algorithmic approach re-
lated to triangulated graphs (see (Golumbic 1980) for an
introduction to triangulated graphs). A graph is said tri-
angulated if it has a perfect elimination order (p.e.o.), i.e.
a vertex order σ = (x1, . . . , xn) such that, for any ver-
tex xi, the vertices in the neighborhood of xi which fol-
low xi in σ form a clique. The link between triangu-
lated graphs and tree-decompositions is obvious. Indeed,
given a triangulated graph, the set of maximal cliques E =
{E1, E2, . . . , Ek} of (X,C) corresponds to the family of
clusters associated with a tree-decomposition. The graph in
Figure 1(a) is already triangulated, a possible p.e.o. being
(x1, x2, x8, x7, x3, x4, x5, x6). As any graph G is not nec-
essarily triangulated, we can obtain a tree-decomposition by
triangulating G. We call triangulation the addition to G of a
set C ′ of edges such that G′ = (X,C ∪ C ′) is triangulated.
The width of G′ is equal to the maximal size of cliques mi-
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Figure 1: A constraint graph for 8 variables (a) and an optimal tree-decomposition (b).

nus one in graph G′. The tree-width of G is then equal to
the minimal width over all triangulations.

Several approaches and algorithms have been proposed
for triangulations. We can distinguish four classes of ap-
proaches. First, computing an optimal triangulation is NP-
hard. So no polynomial algorithm is known yet and the pro-
posed algorithms have an exponential time complexity. Sec-
ondly, we can exploit approximation algorithms which ap-
proximate the optimum by a constant factor and whose com-
plexity is often polynomial in the tree-width (Amir 2001).
Unfortunately, implementing these two first approaches do
not have much interest from a practical viewpoint (e.g. the
latter is time expensive while obtaining results of poor qual-
ity). On the other hand, we can exploit minimal triangu-
lations. A minimal triangulation computes a set C ′ s.t.
(X,C ∪ C ′) is triangulated and, for every subset C ′′ ! C ′,
(X,C ∪ C ′′) is not triangulated. Note that a minimal tri-
angulation is not necessarily optimal. The main interest of
this approach is related to the existence of polynomial algo-
rithms (e.g. LEX-M (Rose, Tarjan, and Lueker 1976) and
LB (Berry 1999) whose time complexity is O(ne′) with e′

the number of edges in the triangulated graph). Finally, the
fourth approach, namely heuristic triangulations, generally
add some edges to the initial graph until the graph is triangu-
lated. They often achieve this work in polynomial time (be-
tween O(n+ e′) and O(n(n+ e′))) but they do not provide
any minimality warranty. Nonetheless, in practice, they can
be easily implemented and their interest seems justified. In-
deed, these heuristics appear to obtain triangulations reason-
ably close to the optimum (Kjaerulff 1990). The most pop-
ular heuristics are MCS and Min-Fill. MCS (as for TC) re-
lies on the algorithm of (Tarjan and Yannakakis 1984) which
recognizes the triangulated graphs. Min-Fill (Rose 1973) or-
ders the vertices from 1 to n by choosing as next vertex one
which leads to add a minimum of edges when completing
the subgraph induced by its unnumbered neighbors.

The two first approaches do not appear very interesting
as a first step of a CSP solving method due to a too ex-
pensive runtime w.r.t. the weak improvement of the value
w+. So, in practice, the most used methods to find tree-
decomposition are based on MCS and Min-Fill which run
faster than LEX-M or LB with similar approximations of

w+. Moreover, in (Jégou, Ndiaye, and Terrioux 2005), ex-
periments have shown that the efficiency for solving CSPs
is not only related to the value of w+, but also, to the value
of s. It has also been experimentally shown that growing
the value of w+ while minimizing the value of s, seems to
offer a good approach to improve the search for solving the
underlying CSP. To solve CSPs more efficiently, it was pro-
posed in this study, given a tree-decomposition, to merge
some clusters sharing numerous variables, to obtain a new
tree-decomposition with a larger size of clusters, but with
separators of smaller size. This kind of approach was also
justified by the use of heuristics in the search of local solu-
tions, which seems to be more efficient with larger clusters.
A theoretical study analyzing bounds for time complexity of
such an approach is given in (Jégou, Ndiaye, and Terrioux
2007). Nevertheless, these studies were only focused on the
values of the parameters w+ and s, not on the structure of
clusters which seems to be a more relevant parameter. This
question is studied in the next section, showing that topolog-
ical properties of clusters seems to be a crucial parameter for
solving CSPs.

Impact of Non-Connected Clusters on the
Efficiency of BTD-like methods

In this section, we first observe that, from a CSP instance
with a connected constraint (hyper)graph G = (X,C), clas-
sical tree-decomposition methods like MCS or Min-Fill may
produce tree-decompositions for which some clusters have
several connected components. In the following, such clus-
ters are called non-connected. Then we study the conse-
quences which may happen when a method like BTD solves
an instance with such a tree-decomposition.

Up to now, the tree-decompositions exploited by BTD-
like methods are generally computed by using MCS or Min-
Fill. Unfortunately, MCS and Min-Fill may produce tree-
decompositions with non-connected clusters. For instance,
it turns out that about 32 % of the 7272 instances of the CSP
2008 Competition1 have a tree-decomposition with at least
one non-connected cluster when MCS or Min-Fill are used

1See http://www.cril.univ-artois.fr/CPAI08 for more details.



to compute tree-decompositions. Among the instances for
which MCS or Min-Fill produce tree-decompositions with
non-connected clusters, we can notably find most of the RL-
FAP or FAPP instances which are often exploited as bench-
marks for BTD-like methods for both decision and optimiza-
tion problems. A priori, this observation will be even more
striking for algorithms that find decompositions with smaller
widths.

Regarding the solving with BTD, the presence of non-
connected clusters in the considered tree-decomposition
does not necessarily entail a negative impact on the practical
efficiency of the method. However, if BTD is penalized by
the presence of such clusters, it may require a large amount
of time or memory to solve the instance. To well under-
stand this phenomenon, we must remind that BTD solves an
instance by solving successively the subproblems rooted in
every cluster of the tree-decomposition. Roughly speaking,
the subproblem rooted in a cluster Ei corresponds to the sub-
problem involving all the variables of the descendants of Ei

in the tree-decomposition (see (Jégou and Terrioux 2003) for
more details). In practice, BTD starts its backtrack search by
assigning consistently the variables of the root cluster be-
fore exploring a child cluster. When exploring a new clus-
ter Ei, it only assigns the variables which appears in the
cluster Ei but not in its parent cluster Ep(i), that is all the
variables of the cluster Ei except the variables of the sepa-
rator Ei∩Ep(i)

2. For instance, let us consider the constraint
graph of Figure 1 and its associated tree-decomposition. If
we assume that E1 is the root cluster, BTD first tries to as-
sign consistently the variables of E1. If so, it keeps on the
search with one of its child clusters (i.e. E2 or E4). If BTD
chooses to explore first E2, it will have to assign consistently
the variables of E2\(E1 ∩ E2) (i.e x4 and x5).
Now, let us consider a non-connected cluster Ei. We have
several cases:
• if G[Ei\(Ei ∩ Ep(i))]

3 is disconnected: BTD has to con-
sistently assign variables which are distributed in several
connected components. If the subproblem rooted in Ei is
trivially consistent (for instance it admits a large number
of solutions), BTD will find a solution by doing at most
a few backtracks and keep on the search on the next clus-
ter. So, in such a case, the non-connectivity of Ei does
not entail any problem. In contrast, if this subproblem
has few solutions or none, we have a significant probabil-
ity that BTD passes many times from a connected com-
ponent of G[Ei\(Ei ∩ Ep(i))] to another when it solves
this cluster. Roughly speaking, BTD may have to explore
all the consistent assignments of each connected compo-
nent by interleaving eventually the variables of the dif-
ferent connected components. Indeed, if BTD exploits
filtering techniques, the assignment of a value to a vari-
able x of Ei\(Ei ∩ Ep(i)) has mainly impact on the vari-
ables of the connected component of G[Ei\(Ei ∩ Ep(i))]
which contains x. In contrast, the filtering does not mod-
ify or slightly the domain of any variable in another con-

2We assume that Ei ∩ Ep(i) = ∅ if Ei is the root cluster.
3For any Y ⊆ X , the subgraph G[Y ] of G = (X,C) induced

by Y is the graph (Y,CY ) where CY = {{x, y} ∈ C|x, y ∈ Y }.

nected component. This entails that inconsistencies are
often detected later and not necessarily in Ei but in one
of its descendant cluster. If so, BTD may require a large
amount of time or memory (due to (no)good recording) to
solve the subproblem rooted in Ei, especially if the vari-
ables have large domains. For instance, this negative phe-
nomenon has been empirically observed on some FAPP
instances (e.g the normalized-fapp05-0350-10 instance)
with a BTD version based on MAC (Sabin and Freuder
1994).

• if G[Ei\(Ei ∩Ep(i))] is connected: it follows that Ei is a
non-connected cluster because its separator with its parent
cluster is disconnected. As the variables of this separator
are already assigned, the non-connectivity of Ei does not
entail any problem.

Note that, even if by construction and assuming that the
constraint network is connected, there is always a connected
cluster in the computed tree-decomposition, the root cluster,
which is chosen heuristically at the start of BTD, may be
a non-connected cluster. Moreover, we clearly see that the
order according to which the clusters are explored by BTD
plays a significant role in the occurrence of the negative phe-
nomenon and so in the practical efficiency of BTD. Unfor-
tunately, we have observed at many times that, for some in-
stances, whatever the order we consider, we have at least
one cluster Ei such that G[Ei\(Ei∩Ep(i))] is disconnected.
Sometimes, the percentage of non-connected clusters may
be very important up to 99 % and about 35 % in average.
For instance, for the FAPP instances, the average is about
48 % for tree-decompositions produced by Min-Fill. That
is why it seems necessary to consider tree-decompositions
which take into account the connectivity inside the clusters.

Moreover, we could be attempted to exploit non-
chronological backtracking like backjumping (Rossi, van
Beek, and Walsh 2006) instead of the basic chronological
backtracking. However, such a technique is generally use-
less here. Indeed, generally, the connected components of a
non-connected cluster Ei have connections between them in
the clusters of the descent of Ei in the tree-decomposition.
So, as most of solvers exploit a filtering algorithm at least as
powerful as Arc-Consistency (Rossi, van Beek, and Walsh
2006), the exploitation of non-chronological backtracking
will be too expensive w.r.t. the benefits it can bring.

Finally, these observations are compatible with our pre-
vious empirical results (Jégou, Ndiaye, and Terrioux 2005;
2007). In particular, they provide a new viewpoint to ex-
plain the results obtained about the impact of the choice of
a triangulation method or of the cluster order (heuristics for
choosing the root cluster or the next child cluster) on the
practical efficiency of BTD. For instance, we have observed
that sometimes, the percentage of non-connected clusters for
Min-Fill differs significantly from one for MCS, which may
explain some differences of efficiency observed in previous
works. Regarding the improvement of the efficiency of BTD
when merging some clusters (Jégou, Ndiaye, and Terrioux
2005), we can note that this merging reduces significantly
the number of non-connected clusters. For instance, if, from
the tree-decompositions produced by MCS or Min-Fill, we



merge the clusters which have a separator with their parent
cluster greater than 5, only 12 % of the instances of the CSP
2008 Competition still have a tree-decomposition with non-
connected clusters.

A New Parameter for Graph Decomposition
Bag-Connected Tree-Decomposition
We define now the notion of Bag-Connected Tree-
Decomposition, which corresponds to tree-decomposition
for which each cluster Ei is connected (i.e. G[Ei] is a con-
nected graph).

Definition 2 Given a graph G = (X,C), a tree-
decomposition (E, T ) of G is connected if for all Ei ∈
E, the subgraph G[Ei] of G induced by Ei is a con-
nected graph. The width of a tree-decomposition (E, T ) is
equal to maxi∈I |Ei| − 1. The bag-connected tree-width
wc is the minimal width over all the bag-connected tree-
decompositions of G.

Given a graph G = (X,C) of tree-width w, necessarily
w ≤ wc. Nevertheless, if G is a chordal graph, w = wc. If
not, for example for cycles of length k without chords, the
bag-connected tree-width of such graphs is (k

2 ).
The natural question now is related to the computation of

optimal Bag-Connected Tree-Decompositions, that is Bag-
Connected Tree-Decompositions of width wc. We show that
this problem, as for Tree-Decompositions, is NP-hard.

Theorem 1 Computing an optimal bag-connected tree-
decomposition is NP-hard.

Proof: We propose a polynomial reduction from the prob-
lem of computing an optimal tree-decomposition to this one.
Consider a graph G = (X,C) of tree-width w, the associ-
ated tree-decomposition of G being (E, T ). Now, consider
the graph G′ obtained by adding to G an universal vertex x,
that is a vertex which is connected to all the vertices in G.
Note that from (E, T ), we can obtain a tree-decomposition
for G′ by adding in each cluster Ei ∈ E the vertex x. It
is a bag-connected tree-decomposition since each cluster is
necessarily connected (by paths containing x) and its width
is w + 1. To show that this addition defines a reduction,
it is sufficient to show that w is the tree-width of G iff the
bag-connected tree-width wc of G′ is w + 1.

1. (⇒) We know that at most, the width of the consid-
ered tree-decomposition of G′ is w + 1 since this tree-
decomposition is connected and its width is w + 1. Thus,
wc ≤ w + 1. Assume that wc ≤ w. So, there is a
bag-connected tree-decomposition of G′ of width at most
w. Using this tree-decomposition of G′, we can define
the same tree, but deleting the vertex x, to obtain a tree-
decomposition of G of width w−1, which contradicts the
hypothesis.

2. (⇐) With the same kind of argument as before, we know
that the tree-width w of G is at most wc − 1. And by
construction, it cannot be strictly less than wc − 1. So, it
is exactly wc − 1.

Moreover, achieving G′ is possible in linear time. !

We have seen that for solving CSPs, it is not necessary
to find an optimal tree-decomposition, and this is even of-
ten desirable. Also, we now propose an algorithm running
in polynomial time that makes it possible to find a bag-
connected tree-decomposition, of course without any guar-
antee about the optimality of the result.

Computing a Bag-Connected Tree-Decomposition
The algorithm Connected-TD described below finds a bag-
connected tree-decomposition of a given graph G = (X,C).

The first step of the algorithm finds a first cluster, denoted
E0, which is a subset of vertices which are connected. X ′ is
initialized to E0. X ′ will be the set of already treated ver-
tices. This first step can be done easily, using an heuristic.
Then, let X1, X2, . . . Xk be the connected components of
the subgraph G[X\E0] induced by the deletion of the ver-
tices of E0 in G. Each one of these sets is inserted in a
queue F . For each element Xi removed from the queue F ,
let Vi ⊆ X be the set of vertices in X ′ which are adja-
cent to at least one vertex in Xi. Note that Vi (which can
be connected or not) is a separator of the graph G since the
deletion of Vi in G makes that G is not connected, Xi being
disconnected from the rest of G. A new cluster Ei is then
initialized by this set Vi. So, we consider the subgraph of G
induced by Vi and Xi, that is G[Vi ∪Xi]. We choose a first
vertex x ∈ Xi which is connected to at least one vertex of
Ei (so one vertex of Vi). This vertex is added to Ei. If G[Ei]
is connected, we stop the process because we are sure that
Ei will be a new connected cluster. Otherwise, we continue,
taking another vertex of Xi satisfying the same condition,
that is connected to at least one vertex of Ei. This step can
be done by a breadth first search starting from the vertices
of Vi.
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Figure 2: First pass in the loop for Connected-TD

Figure 2 shows the computation of E1, the second cluster
(after E0), at the first pass in the loop. After the addition
of vertices a, b and c, the subgraph G[V1 ∪ {a, b, c}] is not
connected. If the next reached vertex is d, it is added to E1,
and thus, E1 = V1 ∪ {a, b, c, d} is a new connected cluster,



breaking the search in G[V1 ∪X1].
When this process is finished, we add the vertices of Ei

to X ′ and we compute Xi1 , . . . Xiki
the connected compo-

nents of the subgraph G[Xi\Ei]. Each one is then inserted
in the queue F . In the example of Figure 2, two connected
components will be computed, {e} and {f, g, h}. This pro-
cess continues while the queue is not empty. In the example,
in the right part of the graph, the algorithm will compute 3
connected clusters: {d, e}, {b, c, d, f} and {f, g, h}. The al-
gorithm is summarized below.

Algorithm Bag-Connected-TD
Input: A graph G = (X,C)
Output: A set of clusters E0, E1, . . . Em of a Bag-
Connected Tree-Decomposition of G

1. Choose a first connected cluster E0 in G.
2. X ′ ← E0

3. Let X1, . . . Xk be the connected components of G[X\E0]

4. F ← {X1, . . . Xk}
5. while F -= ∅ do /* find a new cluster Ei */

(a) Remove Xi from F
(b) Let Vi ⊆ X ′ be the neighborhood of Xi in G
(c) Ei ← Vi

(d) Search in G[Vi∪Xi] starting from Vi plus x ∈ Xi. Each
time a new vertex x is found, it is added to Ei. The
process stops once the subgraph G[Ei] is connected.

(e) if Vi belongs to the set of clusters already found
then the cluster Vi is deleted (because Vi ! Ei)

(f) X ′ ← X ′ ∪ Ei

(g) Let Xi1 , Xi2 , . . . Xiki
be the connected components of

G[Xi\Ei]
(h) F ← F ∪ {Xi1 , Xi2 , . . . Xiki

}
Note that the step 5(e) is only useful when the algorithm

builds a cluster Ei containing all the vertices of a previously
built cluster Ej (i.e. Ej ! Ei). In such a case, the cluster Ej

can be removed since it is useless in the tree-decomposition.
We have now to prove the validity of this algorithm.

Theorem 2 The algorithm Bag-Connected-TD computes
the clusters of a bag-connected tree-decomposition of a
graph G.

Proof: We need only to prove the step 5 of the algorithm.
We first prove the termination of the algorithm. At each pass
through the loop, at least one vertex will be added to the set
X ′ and this vertex will not appear later in a new element of
the queue because they are defined by the connected compo-
nents of G[Xi\Ei], a subgraph that contains strictly fewer
vertices than was contained in Xi. So, after a finite number
of steps, the set Xi\Ei will be an empty set, and therefore
no new addition in F will be possible.

We now show that the set of clusters E0, E1, . . . Em in-
duces a bag-connected tree-decomposition. By construc-
tion each new cluster is connected. So, we have only to
prove that they induce a tree-decomposition. We prove this
by induction on the added clusters, showing that all these

added clusters will induce a tree-decomposition of the graph
G(X ′).

Initially, the first cluster E0 induces a tree-decomposition
of the graph G[E0] = G[X ′].

For the induction, our hypothesis is that the set of
already added clusters E0, E1, . . . Ei−1 induces a tree-
decomposition of the graph G[E0 ∪E1 ∪ · · · ∪Ei−1]. Con-
sider now the addition of Ei. We show that by construction,
E0, E1, . . . Ei−1 and Ei induces a tree-decomposition of the
graph G[X ′] by showing that the three conditions (i), (ii) and
(iii) of the definition of tree-decompositions are satisfied.

(i) Each new vertex added in X ′ belongs to Ei

(ii) Each new edge in G[X ′] is inside the cluster Ei.
(iii) We can consider two different cases for a vertex x ∈

Ei, knowing that for other vertices, the property is al-
ready satisfied by the induction hypothesis:
(a) x ∈ Ei\Vi: in this case, x does not appear in an-

other cluster than Ei and then, the property holds.
(b) x ∈ Vi: in this case, by the induction hypothesis,

the property was already verified.
Finally, it is easy to see that if the step (5e) is applied, we

obtain a tree-decomposition of the graph G[X ′]. !
We now show that the complexity of this algorithm is

polynomial.
Theorem 3 The time complexity of the algorithm Bag-
Connected-TD is O(n(n+ e)).

Proof: The steps (1), (2), (3) and (4) are feasible in linear
time, that is O(n + e), since the cost of computing the con-
nected components of G[X\E0] is bounded by O(n + e).
Nevertheless, we can note that the step (1) can be done by a
more expensive heuristic to get a more relevant first cluster,
but at most in O(n(n + e)) in order not to exceed the time
complexity of the most expensive step of the algorithm. We
analyze now the cost of the loop (5). Firstly, note that there is
less than n insertions in the queue F . Now, we analyze the
cost of each treatment associated to the addition of a new
cluster, and we give for each one, its global complexity.
(a) Obtaining the first element Xi of F is bounded by O(n),

thus globally O(n2).
(b) Obtaining the neighborhood Vi ⊆ X ′ of Xi in G is

bounded by O(n+ e), thus globally by O(n(n+ e)).
(c) This step is feasible in O(n), thus globally O(n2).
(d) The cost of the search in G[Vi∪Xi] starting with vertices

of Vi and x ∈ Xi is bounded by O(n + e). Since the
while loop runs at most n times, the global cost of the
search in these subgraphs is bounded by O(n(n + e)).
Moreover, for each new added vertex x, the connectivity
of G[Ei] is tested with an additional cost bounded by
O(n + e). Note since a such vertex is added at most
one time, globally, the cost of this test is bounded by
O(n(n + e)). So, the cost of the step (d) is globally
bounded by O(n(n+ e)).

(e) Using an efficient data structure, this step can be real-
ized in O(n), thus globally O(n2).



(f) This step is feasible in O(n), thus globally O(n2).

(g) The cost of finding the connected components of
G[Xi\Ei] is bounded by O(n + e). So, globally, the
cost of this step is O(n(n+ e)).

(h) The insertion of a set Xij in F is feasible in O(n), thus
globally O(n2) since there is less than n insertions in F .

Finally, the time complexity of the algorithm Connected-
TD is O(n(n+ e)), due to the step (5). !

From a practical point of view, it can be assumed that the
choice of the first cluster E0 can be crucial for the quality of
the decomposition which will be computed. This applies to
both the parameter wc but also to its location in the graph.
The more this cluster will be “central” in the graph, the more
it seems that the decomposition could be useful. To realize
a good choice for this first cluster, it would then be possible
to use a method as the one proposed recently in (Benlic and
Hao 2013) to realize this first step.

In any case, the practical interest of this type of decompo-
sition is based on both the efficiency of its computation, but
also on the significance which it may have for solving CSPs.
This experimental work must now be done.

Conclusion
In this paper, we have introduced the concept of Bag-
Connected Tree-Decomposition and a new graph invariant
associated to this kind of decomposition, the Connected-
Tree-Width. This notion has been proposed to make eas-
ier the solving of CSPs by decomposition methods. In-
deed, we have experimentally observed that the best tree-
decompositions used to solve CSPs, frequently admit collec-
tions of clusters which have several connected components,
a topological feature which can degrade the efficiency of
the solving. Since the problem of finding a Bag-Connected
Tree-Decomposition of minimum width is NP-hard, we have
proposed a first polynomial time algorithm which computes
Bag-Connected Tree-Decompositions (not necessarily opti-
mal). Its time complexity is O(n(n + e)) where n is the
number of vertices (variables of CSPs) and e is the number
of edges (binary constraints).

There are at least two natural ways to continue this work.
The first one is related to an experimental study of this
notion to evaluate the interest of this new class of tree-
decompositions for solving CSPs. Is this new family of tree-
decompositions more relevant than the existing ones? The
answer to this fundamental question requires us to realize
experiments with the decomposition methods of the state of
the art, using classical tree-decompositions and their new
implementation using bag-connected tree-decompositions.
The second extension of this work is related to a theoreti-
cal study of this new graph parameter from a mathematical
viewpoint. For example, what are the fundamental proper-
ties of this parameter? Or, are there problems which are hard
when the tree-width is bounded by a constant, and which
are easy when the bag-connected tree-width is bounded by a
constant?
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