
Adaptive and Opportunistic Exploitation of
Tree-decompositions for Weighted CSPs

Philippe Jégou Hélène Kanso Cyril Terrioux
Aix-Marseille Univ, Université de Toulon, CNRS, ENSAM, LSIS, Marseille, France

{philippe.jegou, hanan.kanso, cyril.terrioux}@lsis.org

Abstract—When solving weighted constraint satisfaction prob-
lems, methods based on tree-decompositions constitute an in-
teresting approach depending on the nature of the considered
instances. The exploited decompositions often aim to reduce the
maximal size of the clusters, which is known as the width of the
decomposition. Indeed, the interest of this parameter is related
to its importance with respect to the theoretical complexity of
these methods. However, its practical interest for the solving of
instances remains limited if we consider its multiple drawbacks,
notably due to the restrictions imposed on the freedom of the
variable ordering heuristic.

So, we first propose to exploit new decompositions for solving
the constraint optimization problem. These decompositions aim
to take into account criteria allowing to increase the solving
efficiency. Secondly, we propose to use these decompositions in a
more dynamic manner in the sense that the solving of a subprob-
lem would be based on the decomposition, totally or locally, only
when it seems to be useful. The performed experiments show the
practical interest of these new decompositions and the benefit of
their dynamic exploitation.

Index Terms—Weighted CSP; solving; decomposition

I. PRELIMINARIES

The Weighted Constraint Satisfaction Problem (WCSP)
offers a general framework that permits to model and solve
efficiently many real problems like, for example, the frequency
allocation problem [1] or some problems related to bioinfor-
matics [2]. In this paper, our main goal is to improve the
efficiency of the structural solving methods, namely those
based on tree-decompositions. First, we recall the definition
of a WCSP instance:

Definition 1: A WCSP instance is defined as a triplet
(X,D,W) with:
• X = {x1, . . . , xn} is a set of n variables,
• D = {Dx1 , . . . , Dxn} is a set of finite domains of values

where each domain Dxi
is related to the variable xi,

• W is a set of e cost functions. A cost function that
involves the set {xi1 , xi2 , . . . , xik} of variables is a
function that associates to each tuple of Dxi1

×Dxi2
×

. . . × Dxik
a given integer between 0 and k with k the

maximal cost corresponding to a completely forbidden
tuple (expressing hard constraints).

For the sake of simplicity, our presentation is restricted to
binary instances, that is the instances for which each cost func-
tion involves at most two variables. However, our work can be
easily extended to non-binary instances. In particular, we use
both binary and non-binary instances in the experimentations.
In the following, wij denotes the cost function involving

the variables xi and xj , wi denotes the unary cost function
corresponding to xi and w∅ denotes the zero arity constraint
which represents a constant cost paid by any assignment. The
cost of a complete assignment (v1, . . . , vn) ∈ Dx1

×. . .×Dxn

is defined by w∅ +
∑

xi∈X wi(vi) +
∑

wij∈W wij(vi, vj).
Given an instance, the weighted constraint satisfaction problem
is to find a complete assignment with minimum cost. This
problem is well-known to be NP-hard. Its solving is usually
performed thanks to branch and bound algorithms. These
algorithms traditionally exploit two bounds, denoted by clb
and cub, which represent respectively a lower bound and an
upper bound of the optimum. While the lower bound clb is
less than the upper bound cub, they extend progressively the
current assignment. When the assignment is fully extended,
they update the current upper bound cub with the cost of the
current complete assignment. This upper bound cub can be
initialized by the value k or using an incomplete method. The
efficiency of such approaches depends on the quality of the
lower bound which is used at each node of the search tree.
At this level, many efforts have been made recently like in
particular the definition of various local consistency properties
[3]–[6]. Most of the accomplished works around the WCSP
problem rely on branch and bound algorithms based on a
depth-first search. Recently, a hybrid approach, called HBFS,
that combines a best-first search (BFS) and a depth-first search
(DFS) was proposed [7]. HBFS is able to provide an anytime
global lower bound on the optimum like BFS and an anytime
upper bound like DFS. In practice, it seems that HBFS usually
outperforms other existing methods.

Another alternative for solving WCSPs is to exploit the
structure of the instances via the notion of tree-decompositions
[8]. This point is discussed in Section II. Then, Section III
deals with the computation of relevant tree-decompositions,
while Section IV explains how to exploit dynamically a tree-
decomposition for solving WCSP instances. Finally, in Section
V, we assess the practical interest of our propositions before
concluding in Section VI.

II. SOLVING WCSPS USING TREE-DECOMPOSITIONS

The structure of a WCSP instance can be represented
by a graph, called the constraint graph, where each vertex
corresponds to a variable of the instance and an edge links
two vertices if the two corresponding variables are involved
in a binary cost function of W . To exploit this structure, some

x1

x2 x3 x4

x5 x6

x7 x8

x9

x10

x11

x1 x3 x4E0

x3 x4 x5 x6

E2

x5 x6 x7

E3

x5 x6 x8

E4

x2 x3

E1

x4 x9 x10

E5

x10 x11

E6

(a) (b)
Fig. 1. A graph (a) and one possible optimal tree-decomposition (b).

methods [7], [9]–[11] use the notion of tree-decomposition [8]
in order to identify independent subproblems.

Definition 2: A tree-decomposition of a graph G = (X,C)
is a pair (E, T) with T = (I, F) a tree (I is the set of nodes
and F the set of edges of T) and E = {Ei : i ∈ I} a family
of subsets of X , such that each subset (called cluster) Ei is
a node of T and satisfies: (i) ∪i∈IEi = X , (ii) for each edge
{x, y} ∈ C, there exists i ∈ I with {x, y} ⊆ Ei, and (iii)
for all i, j, ` ∈ I , if ` is on a path from i to j in T , then
Ei ∩ Ej ⊆ E`. The width of a tree-decomposition (E, T) is
equal to maxi∈I |Ei|−1. The tree-width w of G is the minimal
width over all the tree-decompositions of G.

Figure 1 represents a graph and a possible tree-
decomposition of width 3 (since the largest cluster has 4
vertices).

BTD-like algorithms [7], [10], [11] exploit a tree-
decomposition rooted in a given cluster (we denote Er the root
cluster of the decomposition) which permits to decompose the
original problem into many subproblems (one subproblem per
cluster). Given a WCSP instance (X,D,W), the subproblem
related to the cluster Ei corresponds to the descent of Ei in
the considered tree-decomposition (E, T). More precisely, its
variable set Desc(Ei) is the union of the clusters Ej belonging
to the subtree of T rooted in Ei (Ei included) while its cost
functions are ones whose scope is included in Desc(Ei) but
not in the separator of Ei with its parent cluster Ep(i) (i.e. the
intersection Ei ∩Ep(i), under the assumption that Ep(r) = ∅).
As these subproblems rooted in Ei are also related to the
current assignment Ai on the separator Ei ∩Ep(i), we denote
them Pi|Ai. For the root cluster, the subproblem Pr|∅ rooted
in Er corresponds to the initial problem.

These algorithms solve the initial problem by assigning the
variables in such a way that the variables of a cluster Ei

are always assigned before ones of its child clusters. By so
doing, they can benefit from the independence between the
subproblems induced by the used tree-decomposition. Notably,
they exploit a lower bound and an upper bound per subproblem
Pi|Ai whose recording often leads to a more powerful pruning
and many redundancy saving. These algorithms may rely on
DFS (BTD-DFS [7], [11]) or HBFS (BTD-HBFS [7]). To this
end, from a theoretical viewpoint, the advantage of using such
methods can be justified by the time complexity which is gen-
erally in O(n.e.dw

++1) (with w+ the width of the exploited

tree-decomposition and d the size of the largest domain)
whereas classical methods have a complexity in O(n.e.dn).
These methods have a space complexity in O(n.s.ds) where
s is the size of the largest intersection between two clusters
in the considered tree-decomposition. In the same time, from
a practical viewpoint, BTD-like algorithms maintaining local
consistencies make it possible to obtain very efficient methods
outperforming classical methods, notably when the instances
have nice structural properties [7], [11]. Of course, this effi-
ciency depends on the used decompositions. Minimizing w+

can be interesting from a theoretical viewpoint. However, in
practice, two elements are often considered as crucial:
• controlling the value of s since this value is directly

related to the amount of memory used during the solving.
Using a tree-decomposition with a large value of s may
lead the method to run out of memory.

• exploiting a relevant variable ordering. It is well known
that the best variable ordering heuristics (e.g. [12], [13])
require a certain freedom in the choice of the next vari-
able, what may be in contradiction with the restrictions
imposed on the variable ordering by the use of a tree-
decomposition.

We address these two points in Sections III and IV.

III. COMPUTING TREE-DECOMPOSITIONS

Computing an optimal tree-decomposition (i.e. a tree-
decomposition having a minimum width) is well known to be a
NP-hard problem [14]. Hence, computing tree-decompositions
is usually achieved by heuristic methods. In this context, the
heuristic Min-Fill [15] is considered as the reference method
by the CP community. Thanks to its use, tree-decompositions
have been already exploited successfully for solving WCSP
instances [7]. Nevertheless, they have not shown their full
potential because of the quality of the computed decompo-
sitions. In fact, Min-Fill aims to minimize the width of the
computed tree-decompositions. However, nothing guarantees
that the obtained tree-decomposition is suitable for an efficient
solving of WCSP instances. Notably, Min-Fill tends to produce
decompositions whose clusters have few proper variables (i.e.
variables belonging to a cluster but not to its parent) and
whose largest separators have frequently a size close to w+.
As evoked above, such a large value of s may be problematic
due to the amount of memory required for storing the local
bounds for each subproblem Pi|Ai. Hence, in [7], Allouche et
al. address this problem by considering a variant of Min-Fill
denoted Min-Fillr4 . Min-Fillr4 computes a tree-decomposition
as Min-Fill does and then each cluster sharing more than 4
variables with its parent is merged with it. By so doing, BTD-
like algorithm may exploit larger clusters (which may increase
the freedom of the variable heuristic) while consuming a
reasonable amount of memory.

Here, we address this question in a different way. More
precisely, we consider a general framework, called H-TD-
WT (for Heuristic Tree-Decomposition Without Triangulation),
which has been recently introduced in [16]. Unlike Min-
Fill, this framework aims to produce decompositions without

computing a triangulation of the constraint graph. However,
it exploits some topological features (via the connected com-
ponents) and the construction of each cluster is guided by
a heuristic depending on the criteria we want to fulfill. Its
time complexity is reasonable, generally in O(n(n + e))
whereas, in practice, it is often faster than Min-Fill (or Min-
Fillr4). Different parameterizations are conceivable in order to
produce tree-decompositions suitable for an efficient solving.
For example, these last years, three possible parameterizations
of H-TD-WT have been proposed in the frame of the decision
problem CSP:
• H2 [17] which guarantees that the clusters of the decom-

position are connected,
• H3 [16] which identifies independent parts of the graph

and separates them as soon as possible by doing a
breadth-first search.

• H5 [18] which aims to compute tree-decompositions
having separators of bounded size, with S as an upper
bound on the size of the separators.

These heuristics have shown their practical interest for
solving CSP instances [16], [18], [19], but have never been
considered for the treatment of WCSP instances. Beyond, once
the decomposition computed, it can be exploited statically
like in [7], [10], [11] or dynamically as described in the next
section.

IV. DYNAMIC EXPLOITATION OF THE DECOMPOSITION

BTD-like methods have shown their practical interest when
solving WCSP instances having nice topological features [7],
[11]. Nonetheless, they may turn to be inefficient if the
instance has no particular topological feature. One possible
reason is related to the variable orderings they consider. These
orderings have a freedom restricted by the use of the tree-
decomposition since all the variables of a given cluster must
be assigned before ones of their child clusters. In particu-
lar, these restrictions may prevent from taking benefits from
adaptive techniques [12], [13] which, nowadays, contribute
significantly to the practical efficiency of classical Branch and
Bound methods. In this section, our goal is to exploit cleverly
the tree-decomposition by avoiding using it systematically.
More precisely, in the same spirit as adaptive techniques,
whose choices rely both on the current state of the search
and its previous ones, we add to BTD-like algorithms the
ability to choose to exploit globally, partially or not the tree-
decomposition depending on whether its exploitation seems to
be beneficial or not. By so doing, we increase the freedom of
the variable ordering while adapting the solving depending on
the context and the nature of the instance.

In practice, the decomposition initially computed will never
be exploited for a subproblem unless the solving without
a decomposition seems to be inefficient. We consider, for
example, the decomposition shown in Figure 2(a) represented
by the set of clusters E = {Ei, Ej , Ek, El, Em, En}. Let Ei

be the current cluster and A the current assignment on Ej∩Ei.
We are interested by the subproblem Pj |A rooted in Ej and
induced by the assignment A of the separator Ej ∩ Ei with

Ei

Ej

En

Ek

El Em

Ei

E ′
j

Ei

Ej

En

E ′
k

(a) (b) (c)

Fig. 2. The set of the clusters of the decomposition: initial (a) when Ej is
merged with its descent (cluster E′j) (b) when Ej is exploited (c).

Ei the parent cluster of Ej . The solving of the subproblem
Pj |A does not necessarily use the decomposition, that is to
say the set of the clusters {Ej , Ek, El, Em, En}. In fact, in the
beginning, the solving is based on the cluster E′j resulting from
the merging of the cluster Ej with its descendants Ek, El,
Em and En. Merging a cluster with its descendants consists
in putting together all the variables of the descent of Ej

(see Figure 2(b)). Hence, E′j contains all the variables of the
descent of Ej . Concerning the variable ordering heuristic, it
benefits from a total freedom with respect to the choice of the
next variable among the variables of the descent of Ej . At this
level, there are two possible cases:
• The subproblem Pj |A can be easily solved when using
E′j . In this case, the exploitation of the decomposition
does not seem useful.

• The solving of Pj |A is on the contrary inefficient. In this
case, the exploitation of the decomposition seems wise.
The cluster Ej is then re-used and the same reasoning is
repeated for the cluster Ek which will be first considered
as merged with its descent resulting in the cluster E′k as
shown in Figure 2(c).

Note that the reasoning is repeated for every new assignment
of Ei ∩ Ej . This choice is motivated by the fact that the
assignment A of the separator Ei ∩ Ej induces a different
subproblem from the one induced by an assignment A′. Note
also that, at the level of the root cluster Er, the algorithm
behaves like a classical Branch and Bound algorithm having
total freedom with regard to the choice of the next variable
among all the variables of the problem. Finally, the initial
decomposition is fully exploited (all its clusters are exploited)
when at all the levels, our algorithm decides to exploit the
cluster itself rather than its descent.

For sake of simplicity, we describe now the new algorithm
by exploiting DFS for solving clusters, resulting in the al-
gorithm BTD-DFS+DYN (see Algorithm 1). Of course, we
can also derive BTD-HBFS+DYN (which will be used for the
experiments) in the same manner as Allouche et al. produce
BTD-HBFS from BTD-DFS [7].

Like BTD-DFS, BTD-DFS+DYN is based on a tree-
decomposition (E, T) which is computed before the solving
and rooted in a cluster Er. It takes as parameters the current
assignment A, the current cluster Ei, the set V of unassigned

Algorithm 1: BTD-DFS+DYN (A, Ei, V, Vdesc, clb, cub)

Input: The current assignment A, the current cluster Ei, the lower
bound clb

Input/output: The set V of unassigned variables of Ei, the set Vdesc

of unassigned variables of Desc(Ei), the current upper
bound cub

1 if Merge(Ei) then V ′ ← Vdesc

2 else V ′ ← V
3 if V’ 6= ∅ then
4 x← pop(V ′) /* Choose a variable of V ′ */
5 Update V and Vdesc

6 a← pop(Dx) /* Choose a value */
7 Maintain local consistency on subproblem Pi|A ∪ {(x = a)}
8 clb′ ← max(clb, lb(Pi|A ∪ {(x = a)}))
9 if clb′ < cub then cub← BTD-DFS+DYN(A ∪ {(x = a)}, Ei,

V, Vdesc, clb
′, cub)

10 if max(clb, lb(Pi|A)) < cub then
11 Maintain local consistency on subproblem Pi|A ∪ {(x 6= a)}
12 clb′ ← max(clb, lb(Pi|A ∪ {(x 6= a)}))
13 if clb′ < cub then cub← BTD-DFS+DYN

(A ∪ {(x 6= a)}, Ei, V, Vdesc, clb
′, cub)

14 else if ¬Merge(Ei) then
15 /* Solve all child clusters with unknown optimum */
16 S ← Children(Ei)
17 while S 6= ∅ and lb(Pi|A) < cub do
18 Ej ← pop(S) /* Choose a child cluster */
19 if LBPj |A < UBPj |A then
20 cub′ ← min (UBPj |A, cub− [lb(Pi|A) −lb(Pj |A)])
21 cub′′ ← BTD-DFS+DYN (A, Ej , Ej\(Ei ∩ Ej),

Desc(Ej)\(Ei ∩ Ej), lb(Pj |A), cub′)
22 Update LBPf |A and UBPf |A using cub′′

23 cub← min(cub, wi
∅ +

∑
Ej∈Children(Ei)

UBPj |A)

24 else cub← min(cub,
∑

Ej⊆Desc(Ei)

wj
∅)

25 return cub

variables of Ei, the set Vdesc of unassigned variables of the
descent Desc(Ei) of Ei, the current lower bound clb and the
current upper bound cub. It aims to compute the optimum of
the problem rooted in Ei and induced by the assignment A.
There are two possible cases:

• If the returned value of cub is strictly less than the input
value of cub, then cub is the optimum of the subproblem.

• Otherwise, cub defines a lower bound on the optimum.

The initial call is BTD-DFS+DYN(∅, Er, Vr, Vrdesc , lb(Pr|∅),
k) with Vrdesc the set of variables of the descent of Er,
lb(Pr|∅) the initial lower bound obtained by exploiting a
local consistency on the initial problem and k the maximal
cost. Note that throughout the algorithm, wi

∅ denotes the
cluster-localized lower bound for the cluster Ei. Like BTD-
DFS, BTD-DFS+DYN assumes that the input problem is
consistent according to the exploited local consistency and
returns its optimum. Lines 3-13 of BTD-DFS+DYN aim to
assign the variables of V ′ as BTD-DFS does for the variables
of V . A pair (variable, value), (x, a), is selected according
to the variable and value ordering heuristics. Given that
binary branching is exploited, this choice results in either
assigning the variable x to a (left branch, positive decision,
line 7), or removing the value a from the domain of x (right

branch, negative decision, line 11). For each branch, local
consistency is maintained on the subproblem rooted in Ei

and induced by the current assignment so that a lower bound
lb is computed. If the maximum clb′ of the lower bound lb,
deduced via the application of the local consistency, and the
current lower bound clb, is strictly less than cub, the search
continues; otherwise, the corresponding subtree is pruned.
Lines 15-23 of BTD-DFS+DYN solve the subproblems rooted
in each child cluster Ej of Ei, similarly to BTD-DFS. The
subproblem Pj |A is explored unless its optimum is already
known. Anyway, BTD-DFS and BTD-DFS+DYN record, for
each subproblem Pj |A, two values denoted by LBPj |A and
UBPj |A. They represent respectively the best known lower and
upper bounds for Pj |A. If LBPj |A = UBPj |A, the optimum
of Pj is already computed. The recursive call corresponding
to the child cluster Ej (line 21) exploits an initial non-trivial
upper bound computed at line 20, as explained in [11]. It
is followed by an update of both LBPj |A and UBPj |A with
the value of cub′′ (line 22). The exploitation of all the child
clusters ends finally by updating cub.

Now that the similarities between BTD-DFS and BTD-
DFS+DYN are recalled, we describe the modifications made
to BTD-DFS. The function Merge represents the heuristic
responsible for choosing whether the cluster Ei is exploited
or its descent E′i. The call to Merge with the cluster Ei as an
input returns true if and only if E′i is exploited. Otherwise,
the cluster Ei is exploited and the freedom of the next
variable choice is limited to the variables of V . One of the
two parameters V or Vdesc is effectively used depending on
whether Ei or E′i is exploited. The choice between V and
Vdesc is done on lines 1-2 and is memorized in V ′. Both are
suitably updated on line 5. If V ′ = ∅ and Ei is not merged with
its descent, BTD-DFS+DYN behaves like BTD-DFS (lines
3-13). If V ′ = ∅ and Ei is merged with its descent, BTD-
DFS+DYN has no more variables to be assigned given that all
the variables of the descent of Ei have been already assigned.
In this case, BTD-DFS+DYN updates cub (line 24) at the basis
of the local lower bound wj

∅ of each cluster Ej belonging to
Desc(Ei). If V ′ 6= ∅ (lines 3-13), BTD-DFS+DYN behaves
the same way whether Ei or its descent E′i is exploited, by
trying to assign the variables of V ′.

The algorithm BTD-DFS+DYN can be parameterized by
the heuristic Merge which decides when to stop exploiting
the cluster E′i and to exploit instead the current cluster Ei (we
propose one heuristic in the next section). Certainly, the choice
of a relevant heuristic is essential to improve the solving.

The dynamic exploitation of the decomposition changes
both the time and the space complexity. In fact, the behavior of
BTD-DFS+DYN can constantly evolve. It first acts like almost
a classical DFS and then, if it decides at each level to exploit
the original cluster instead of its descent, it finally acts like a
standard BTD-DFS.

Theorem 1: The time complexity of BTD-DFS+DYN ranges
from O(exp(w++1)) to O(exp(n)) with w+ the width of
the tree-decomposition computed before the solving. Its space
complexity is in O(n.s′.ds

′
) where s′ is the size of the largest

exploited separator of the decomposition (s′ ≤ s).

V. EXPERIMENTS

In this section, we assess the practical interest of the
framework H-TD-WT for solving WCSP instances and we
evaluate the relevancy of exploiting dynamic decompositions.
But first, we describe the used experimental protocol.

A. Experimental protocol

We consider the solving algorithms HBFS and BTD-
HBFS(+DYN) with tree-decompositions produced by Min-Fill
and Min-Fillr4 . Note that, until now, HBFS and BTD-HBFS
with Min-Fillr4 are considered as the reference algorithms for
solving WCSP instances respectively without and with the
exploitation of the structure [7], while Min-Fill is often used
as the reference method for computing tree-decompositions
by the CP community. Concerning H-TD-WT, we exploit
the heuristic H2, which guarantees the connectivity of the
clusters, H3, which computes decompositions having many
child clusters and H5 which controls the size of the separators.
The heuristic H5 is available in two variants, denoted by H25

5

and H5%
5 . For H25

5 , the size of the separators is bounded
by 25. Regarding H5%

5 , the limit of the maximum size of
separators depends on the instance and is fixed to 5% of the
number of variables of the instance, normalized to a minimum
upper bound of 4 (S = 4) and a maximal upper bound of 50
(S = 50).

Like [7], we exploit the implementations of HBFS, BTD-
HBFS, Min-Fill and Min-Fillr4 provided in the open-source
WCSP solver Toulbar21. In order to guarantee a fair compar-
ison, we have also implemented BTD-HBFS+DYN in Toul-
bar2. The Hi decompositions are computed by our own library
and transmitted to Toulbar2 by means of a file.

The dynamic exploitation of the decomposition is based on
a heuristic (F) that is responsible for deciding to exploit the
cluster Ei or its descent E′i. The heuristic F uses the feedback
given by BTD-HBFS. In fact, each call to BTD-HBFS on a
subproblem Pi|A takes as input both the known lower and
upper bounds, clb and cub. If within the allowed number of
backtracks, BTD-HBFS does not succeed in improving any
bounds, F considers that the solving of Pi|A is not progressing
and increments a counter related to it. We start henceforth
exploiting Ei instead of E′i, when the counter corresponding
to Pi|A attains a given limit. In the reported results, we have
exploited the value 5 for this limit. This value seems to lead
to the best trade-off between BTD-HBFS and HBFS among
the extensive experiments we performed.

Regarding the configuration of Toulbar2, a preprocess-
ing step is performed by enforcing VAC (for Virtual Arc-
Consistency [20]) and applying the MSD (for Min Sum
Diffusion) algorithm with 1,000 iterations. Then, EDAC (for
Existential Directional Arc-Consistency [21] is enforced, at
each node, during the solving. The variable ordering includes
both weighted-degree [12] and last conflict [22]. Regarding

1Available at https://mulcyber.toulouse.inra.fr/projects/toulbar2/

the algorithms based on BTD, the chosen root cluster is the
largest cluster (for Min-Fill) or the cluster which maximizes
the ratio of the number of constraints of the cluster to its
size (for the other decompositions). For the solving algorithms
based on HBFS, the other parameters (e.g. α, β or N) are
set with the same values as in [7]. The experiments were
performed on blade servers running Linux Ubuntu 14.04 each
with two Intel Xeon processors E5-2609 v2 2.4 GHz and 32
GB of memory. We use the benchmark instances available
at http://genoweb.toulouse.inra.fr/∼degivry/evalgm. It includes
more than 3,000 instances containing stochastic graphical
models from the UAI evaluation 2008 and 2010, instances
from the MiniZinc Challenge 2012 and 2013 and instances
from the Probabilistic Inference Challenge 2011. Compared
to [7], we have discarded instances solved during the pre-
processing, resulting in a benchmark of 2,444 instances. For
each instance, the solving is performed with a timeout of 20
minutes (including when applicable, the computation of the
decomposition) and 16 GB of memory.

Before giving in details the experimental results, it seems
necessary to give additional comments on the comparisons
between the respective runtimes of the different approaches.
Indeed, one method could be considered as more efficient if its
runtime is better. However, we must also take into account the
number of solved instances. For example, when we report in
Figures 3 (a) and (b) that BTD-HBFS using Min-Fill solves
1,712 instances in 26,291 s, while BTD-HBFS+DYN using
H25

5 solves 2,039 instances in 52,304 s, we can be interested
by the bench solved by at least one of both methods which
involves 2,049 instances. We can see that BTD-HBFS using
Min-Fill have solved only 1,712 instances among the 2,049
instances while consuming 430,691 seconds. Here, we add
the cost of the 337 unsolved instances in 20 minutes, that is
404,400 seconds which must be added to the 26,291 s used
to solve the 1,712 instances. Concerning BTD-HBFS+DYN
using H25

5 , after adding the cost of the 10 instances unsolved
among the 2,049 instances, we obtain a total of 64,304 s. By
this way, we see that finally, BTD-HBFS+DYN (using H25

5)
runs 6 times faster than BTD-HBFS (using Min-Fill) while it
solves 327 additional instances.

B. H-TD-WT vs. Min-Fill / Min-Fillr4

In this part, we compare the behavior of BTD-HBFS de-
pending on the different exploited decompositions. Regarding
the computation of decompositions, we notice that the compu-
tation of Hi decompositions (with i ∈ {2, 3, 5}) is much faster
than Min-Fill. More precisely, any Hi is able to decompose
2,431 instances in less than 1,200 s whereas Min-Fill requires
19,044 s to decompose 2,415 instances.

Figure 3(a) shows the cumulative number of solved in-
stances w.r.t. the runtime for HBFS and BTD-HBFS with
Min-Fill and the decompositions computed thanks to H-TD-
WT. First, we note that Min-Fill solves the weakest number of
instances within 20 minutes (only 1,712 instances). It shows
that, despite the difficulty of the WCSP problem, the heuristics
that aim only to minimize the size of clusters are not the

 0

 200

 400

 600

 800

 1000

 1200

 1000 1200 1400 1600 1800 2000

ti
m

e
 (

s)

solved instances

BTD-HBFS(Min-Fill)
BTD-HBFS(Min-Fillr4)

BTD-HBFS(H2)
BTD-HBFS(H3)

BTD-HBFS(H5
25)

BTD-HBFS(H5
5%)

HBFS

 0

 200

 400

 600

 800

 1000

 1200

 1000 1200 1400 1600 1800 2000

ti
m

e
 (

s)

solved instances

BTD-HBFS+DYN(Min-Fill)
BTD-HBFS+DYN(Min-Fillr4)

BTD-HBFS+DYN(H2)
BTD-HBFS+DYN(H3)

BTD-HBFS+DYN(H5
25)

BTD-HBFS+DYN(H5
5%)

HBFS

(a) (b)
Fig. 3. Cumulative number of solved instances w.r.t. the runtime in seconds for HBFS and BTD-HBFS (a) or BTD-HBFS+DYN (b) depending on the
decompositions.

more efficient. In fact, in order to minimize the width of
the produced tree-decomposition, Min-Fill tends to produce
clusters which have few proper variables. So the variable
ordering heuristic is almost useless and the exploited variable
ordering is nearly static. The results also show that the others
parameters have more impact on the solving than the width of
the decomposition, like the connectivity of the clusters (H2),
the number of child clusters (H3) or the size of the separators
(Min-Fillr4 and H5). Limiting the size of the separators seems
to increase significantly the efficiency of the solving. In fact,
if BTD-HBFS with H2 and H3 solves respectively 1,945 and
1,989 instances, the decompositions having bounded separa-
tors size lead to solve more than 2,000 instances. However,
comparing Min-Fillr4 to H5 shows that BTD-HBFS associated
to H5 permits to solve more instances especially with H5%

5 ,
which allows to solve 2,029 instances against 2,000 instances
solved by BTD-HBFS with Min-Fillr4 . Furthermore, BTD-
HBFS exploiting Min-Fillr4 requires 98,861 s to solve these
instances whereas BTD-HBFS exploiting H5%

5 requires only
58,792 s. Finally, note that these results are consistent with
those obtained for the decision problem CSP in [16].

C. Dynamic decomposition assessment

We evaluate now BTD-HBFS+DYN. Both Figures 3 (a)
and (b) show that, regardless of the exploited decomposi-
tion, BTD-HBFS+DYN solves more instances than BTD-
HBFS. The increase of the number of solved instances can
be remarkable like in the case of Min-Fill that permits to
solve now 1,905 instances instead of 1,712 instances. The
exploitation of H2 and H3 with BTD-HBFS+DYN allows to
solve 2,023 instances against respectively 1,945 and 1 989
solved by BTD-HBFS. The exploitation of Min-Fillr4 and
H5 with BTD-HBFS+DYN is also improved with regard to
their utilization with BTD-HBFS. In particular, H25

5 allows
to solve 2,039 instances, which constitutes the largest number
of solved instances among all the possible combinations of a
solving algorithm and a decomposition we consider. Beyond

 1

 10

 100

 1000

 1 10 100 1000

B
T

D
-H

B
F

S
+

D
Y

N
 (

 H
52
5
)

BTD-HBFS+DYN (Min-Fillr4)

Fig. 4. Runtime comparison of BTD-HBFS+DYN with H25
5 and Min-Fillr4 .

the increase in the number of solved instances, the cumulative
runtime decreases. For instance, BTD-HBFS+DYN requires
74,159 s for solving 2,019 instances with Min-Fillr4 (resp.
52,304 s for 2,039 instances with H25

5), while BTD-HBFS
solves 2,000 instances in 98,861 s (resp. 2,006 instances in
56,553 s).

We now focus on comparing H25
5 and Min-Fillr4 with BTD-

HBFS+DYN. Figures 3(b) and 4 show clearly that BTD-
HBFS+DYN is globally more efficient with H25

5 than with
Min-Fillr4 . This trend still holds when we consider the bench-
mark of instances solved by both BTD-HBFS+DYN with Min-
Fillr4 and BTD-HBFS+DYN with H25

5 , in order to fairly com-
pare their respective runtime. Indeed, this benchmark includes
2,013 instances solved by BTD-HBFS+DYN with Min-Fillr4

in 71,249 s against only 41,372 s by BTD-HBFS+DYN with
H25

5 .

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

B
T

D
-H

B
F

S
+

D
Y

N
 (

 H
525

)

BTD-HBFS (Min-Fillr4)

 1

 10

 100

 1000

 1 10 100 1000

B
T

D
-H

B
FS

+D
Y

N
 (

 H
525

)

HBFS

(a) (b)

Fig. 5. (a) Runtime comparison between BTD-HBFS+DYN with H25
5 and BTD-HBFS with Min-Fillr4 (a) and HBFS (b).

D. BTD-HBFS(+DYN) vs. the best known methods
At now, BTD-HBFS with Min-Fillr4 and HBFS are con-

sidered as the best known methods for solving WCSPs re-
spectively with and without exploiting the structure. So, it is
quite natural to compare them to BTD-HBFS(+DYN) with H5.
Figures 3(a), 3(b) and 5(a) clearly show that BTD-HBFS and
BTD-HBFS+DYN with H5%

5 or H25
5 outperform significantly

BTD-HBFS with Min-Fillr4 , w.r.t. both the number of solved
instances and the cumulative runtime. For instance, BTD-
HBFS+DYN with H25

5 solves 2,039 instances in 52,304 s
while BTD-HBFS with Min-Fillr4 requires 98,861 s to solve
2,000 instances.

We now compare BTD-HBFS(+DYN) with H5 to HBFS.
First we can note that BTD-HBFS with H5%

5 is more efficient
than HBFS. Notably, it solves more instances than HBFS,
namely 2,029 instances against 2,017 instances by HBFS
and, in addition, it has a better cumulative runtime with
58,792 s against 84,555 s for HBFS. This can be essentially
explained by the recordings achieved by BTD-HBFS via the
separators, that is to say a lower bound and an upper bound on
the optimum of the corresponding subproblem. Furthermore,
BTD-HBFS distinguishes independent subproblems, which is
not the case of HBFS.

Then a similar trend can be observed if we compare BTD-
HBFS+DYN associated to H25

5 to HBFS (see Figure 5(b)).
Indeed, BTD-HBFS+DYN with H25

5 turns to solve more
instances and faster than HBFS. Moreover, if we consider the
2,008 instances solved by both algorithms, HBFS solves them
in 79,020 s against only 43,914 s for BTD-HBFS+DYN with
H25

5 .
We now focus our comparison to the hardest instances.

More precisely, we discard easy instances, which are even
trivial sometimes (that is to say instances being solved in
less than 10 s by HBFS). Note that these instances are also
easily solved by BTD-HBFS+DYN provided that at the level
of the root cluster BTD-HBFS+DYN behaves as HBFS (when
the descent of the root cluster is exploited). Among the 794

remaining instances, at least one leaf cluster of the decom-
position is exploited for 279 instances. In other words, there
exists at least one branch of the decomposition that is entirely
exploited (in the sense of the set of the clusters of the original
decomposition). For 423 instances, the decomposition is never
exploited which means that BTD-HBFS+DYN behaves as
HBFS. Regarding the remaining instances, the decomposi-
tion is exploited till a particular depth without reaching a
leaf cluster of the decomposition. Hence, in practice, BTD-
HBFS+DYN can simply behave like HBFS or progressively
decide to exploit the original clusters of the decomposition
(instead of their descent) until reaching the behavior of BTD-
HBFS.

Finally, we compare the lower and the upper bounds
reported by HBFS and BTD-HBFS+DYN when a timeout
occurs. Among the 375 instances not solved neither by HBFS
nor by BTD-HBFS+DYN, for 252 instances, the upper bound
computed by BTD-HBFS+DYN is strictly less than the one
computed by HBFS against only 52 instances for HBFS.
Also, for 229 instances, BTD-HBFS+DYN reports a higher
lower bound than HBFS against 146 instances for HBFS.
Figure 6 compares the gap between the lower and the upper
bounds for both algorithms. Clearly, BTD-HBFS+DYN offers
a reduced gap compared to HBFS. This shows that even when
the instance is not solved, BTD-HBFS+DYN is able to give
approximations of better quality than HBFS.

E. Summary

All of these results show that exploiting a decomposition
dynamically seems to enhance the efficiency of the solving by
enabling BTD-HBFS+DYN to adapt the solving to the nature
of the instance and by avoiding using a decomposition when
solving a problem (or a subproblem) without a decomposition
is more efficient. It results than BTD-HBFS+DYN with H25

5 is
able to outperform the best known methods for solving WCSPs
like BTD-HBFS with Min-Fillr4 or HBFS w.r.t. the number
of solved instances and the cumulative runtime.

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1 100 10000 1e+06 1e+08 1e+10 1e+12

B
T

D
-H

B
F

S
+

D
Y

N
 (

 H
525

)

HBFS

Fig. 6. Gap between the lower and the upper bounds for both BTD-
HBFS+DYN with H25

5 and HBFS.

VI. CONCLUSION

The tree-decompositions have been already exploited with
success to solve WCSP instances. At the same time, their
potential was not fully revealed especially due to the quality of
the used decompositions. In fact, like Min-Fill, the computed
decompositions usually aim to minimize the size of the clusters
(in order to minimize the theoretical time complexity bound)
to the detriment of the practical efficiency of the solving. So, in
order to take into account other relevant parameters (i.e. having
additional impact on the solving efficiency w.r.t. the width), we
have first exploited the framework H-TD-WT, which has been
previously proposed to solve CSP instances. This framework
aims to compute decompositions much faster than by classical
heuristics. It also permits to take into consideration relevant
properties with respect to the solving efficiency such as the
maximal size of separators with the H5 heuristic. Utilizing
H5 with BTD-HBFS has clearly proven the interest of H-
TD-WT. Indeed, H5 does not only improve the performance
of BTD-HBFS compared to BTD-HBFS exploiting Min-Fill,
but has permitted to outperform significantly HBFS. On the
other hand, we have proposed an extension of BTD-HBFS,
called BTD-HBFS+DYN, which exploits the decomposition
dynamically. The idea consists in using the decomposition
only for a subproblem whose solving without decomposition
seems to be inefficient. It notably avoids to restrict unnec-
essarily the freedom of the variable ordering heuristic for
“easy” subproblems. In practice, we have shown that BTD-
HBFS+DYN improves BTD-HBFS, regardless of the exploited
decomposition, with regard to both the number of solved
instances and the cumulative runtime. Consequently, thanks to
this extension, structural methods are henceforth highlighted
versus non-structural methods.

Several extensions of this work seem relevant. For example,
the computation of the decomposition made before the solving
can also be achieved dynamically. In fact, the decomposition
is often partially used, not to mention the case where the
decomposition is not exploited at all by BTD-HBFS+DYN.

Moreover, it would also make it possible to calculate better
and more adapted decompositions for the solving of WCSP
instances than those calculated solely on the basis of struc-
tural criteria. Beyond that, other heuristics for the dynamic
exploitation of decompositions may be assessed.

ACKNOWLEDGMENT

This work has been funded by the french Agence nationale
de la Recherche, reference ANR-16-C40-0028.

REFERENCES

[1] C. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J. P. Warners, “Radio
Link Frequency Assignment,” Constraints, vol. 4, pp. 79–89, 1999.

[2] M. Sanchez, S. de Givry, and T. Schiex., “Mendelian error detection in
complex pedigrees using weighted constraint satisfaction techniques,”
Constraints, vol. 13, no. 1-2, pp. 130–154, 2008.

[3] M. Cooper and T. Schiex, “Arc consistency for soft constraints,”
Artificial Intelligence, vol. 154(1-2), pp. 199–227, 2004.

[4] S. de Givry, F. Heras, J. Larrosa, and M. Zytnicki, “Existential arc
consistency: closer to full arc consistency in weighted CSPs,” in IJCAI,
2005.

[5] M. C. Cooper, S. de Givry, and T. Schiex, “Optimal Soft Arc Consis-
tency,” in IJCAI, 2007, pp. 68–73.

[6] M. Cooper, S. Givry, M. Sanchez, T. Schiex, M. Zytnicki, and T. Werner,
“Soft arc consistency revisited,” Artificial Intelligence, vol. 174, pp. 449–
478, 2010.

[7] D. Allouche, S. de Givry, G. Katsirelos, T. Schiex, and M. Zytnicki,
“Anytime hybrid best-first search with tree decomposition for weighted
CSP,” in CP, 2015, pp. 12–29.

[8] N. Robertson and P. Seymour, “Graph minors II: Algorithmic aspects
of treewidth,” Algorithms, vol. 7, pp. 309–322, 1986.

[9] A. Koster, “Frequency Assignment - Models and Algorithms,” Ph.D.
dissertation, University of Maastricht, Novembre 1999.

[10] C. Terrioux and P. Jégou, “Bounded backtracking for the valued con-
straint satisfaction problems,” in CP, 2003, pp. 709–723.

[11] S. de Givry, T. Schiex, and G. Verfaillie, “Exploiting Tree Decomposi-
tion and Soft Local Consistency in Weighted CSP,” in AAAI, 2006, pp.
22–27.

[12] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais, “Boosting system-
atic search by weighting constraints,” in ECAI, 2004, pp. 146–150.

[13] P. Refalo, “Impact-based search strategies for constraint programming,”
in CP, 2004, pp. 557–571.

[14] S. Arnborg, D. Corneil, and A. Proskuroswki, “Complexity of finding
embeddings in a k-tree,” SIAM Journal of Disc. Math., vol. 8, pp. 277–
284, 1987.

[15] D. J. Rose, “Triangulated Graphs and the Elimination Process,” Journal
of Mathematical Analysis and Application, vol. 32, pp. 597–609, 1970.

[16] P. Jégou, H. Kanso, and C. Terrioux, “An Algorithmic Framework for
Decomposing Constraint Networks,” in ICTAI, 2015, pp. 1–8.

[17] P. Jégou and C. Terrioux, “Combining Restarts, Nogoods and Decom-
positions for Solving CSPs,” in ECAI, 2014, pp. 465–470.

[18] P. Jégou, H. Kanso, and C. Terrioux, “Towards a Dynamic Decompo-
sition of CSPs with Separators of Bounded Size.” in CP, 2016, pp.
298–315.

[19] P. Jégou and C. Terrioux, “Tree-decompositions with connected clusters
for solving constraint networks,” in CP, 2014, pp. 407–423.

[20] M. C. Cooper, S. de Givry, M. Sánchez, T. Schiex, and M. Zytnicki,
“Virtual arc consistency for weighted csp,” in AAAI, 2008, pp. 253–258.

[21] S. de Givry, F. Heras, M. Zytnicki, and J. Larrosa, “Existential arc
consistency: Getting closer to full arc consistency in weighted csps,”
in IJCAI, 2005, pp. 84–89.

[22] C. Lecoutre, L. Saı̈s, S. Tabary, and V. Vidal, “Reasoning from last
conflict (s) in constraint programming,” Artificial Intelligence, vol. 173,
no. 18, pp. 1592–1614, 2009.

