Improving Exact Solution Counting for Decomposition Methods

Philippe Jégou Hanan Kanso Cyril Terrioux
Aix-Marseille Univ, Université de Toulon, CNRS, ENSAM, LSIS, Marseille, France
\{philippe.jegou, hanan.kanso, cyril.terrioux\}@lsis.org

Abstract

The problem of counting solutions in CSP, called \#CSP, is an extremely difficult problem that has many applications in Artificial Intelligence. This problem can be addressed by exact methods, but more classically it is solved by approximate methods. Here, we focus primarily on the exact counting. We show how it is possible to improve the methods based on structural decomposition by offering to enhance the search for a new solution which is a critical step for counting, particularly for such methods. Moreover, if the resources in time or in space are insufficient, we show that our approach is still able to provide a lower bound of the result. Experiments on CSP benchmarks show the practical advantage of our approach w.r.t. the best methods of the literature.

Index Terms-\#CSP; constraint networks; decomposition

I. Introduction

Counting models in propositional logic (called \#SAT) and counting solutions for constraint satisfaction problems (called \#CSP) are challenging problems. They have numerous applications in AI, e.g. in approximate reasoning [1], in diagnosis [2], in belief revision [3], in probabilistic inference [4]-[7], in planning [8], [9], for guiding search in CSPs [10], and in other domains outside computer science as in statistical physics [11] or in chemistry for protein structure prediction [12].

However, these problems are extremely difficult from a theoretical point of view in terms of complexity because they are known as \#P-complete [13]. Moreover we can claim that they are really hard considering Toda's theorem which shows that $P H \subseteq P^{\# P}$ [14]. On a practical level, their resolution is also very difficult. So, these problems have been studied for a long time and are the subject of numerous studies over last years. On the one hand, theoretical studies have been realized, trying to analyze these problems from the viewpoint of theoretical complexity by exhibiting tractable classes [15] or by analyzing their theoretical hardness by the means of dichotomy theorems [16]. On the other hand, from a practical perspective, solving methods have been proposed. Nevertheless, given the theoretical (and practical) hardness of these problems, most works try to solve the problem by approximating the solution, that is to say, by offering bounds of the number of solutions (or models). Indeed, it is often difficult or impossible to solve these problems accurately i.e. to obtain the exact number of solutions. So, most works have been achieved by sampling the search space [17]-[21]. All these methods except that in [17] provide a lower bound of the number of solutions with a high-confidence interval obtained by randomly assigning variables until solutions are found.

A possible drawback of these approaches is that they might find no solution within a given time limit due to inconsistent partial assignments. For large and complex problems, this results in zero lower bounds or it requires time-consuming parameter (e.g. sample size) tuning in order to avoid this problem. Another approach involves reducing the search space by adding streamlining XOR constraints [22], [23]. However, the resulting problem is not necessarily easier to solve.

In contrast, by exploiting certain properties of instances, it is possible to provide exact methods that can be efficient w.r.t. theory and practice. We think especially about methods that exploit some features of the instances for which polynomial time algorithms may exist. This is the case for example when the constraint network representing the problem has tree-width bounded by a constant. Notably, in this paper, we are interested in search methods that exploit the problem structure, providing time and space complexity bounds like the d-DNNF compiler [24] and AND/OR graph search [21], [25]. In the same spirit, Favier et al. [26] have proposed to adapt Backtracking with Tree-Decomposition (BTD) [27] to \#CSP. This method which is one of the most efficient structural decomposition methods for solving CSPs was initially proposed for solving structured instances. Their modifications to BTD, called \#BTD, are similar to what has been done in the AND/OR context [21], [25], except that BTD relies on a tree-decomposition instead of a pseudo-tree. This naturally enables BTD to exploit dynamic variable orderings inside clusters whereas AND/OR search uses a static ordering. Even by exploiting such methods, it often remains difficult or impossible to solve these problems accurately. Nevertheless, it seems that the performances of such approaches can significantly be improved.

So, in this paper, we propose to improve the performances of the approach introduced in [26] and which is based on BTD [27], Here, the main objective is to offer better performance for the exact resolution. However, improving exact methods can also be useful to design better approximate methods.

Since the algorithm \#BTD is based on tree-decomposition of constraints networks, it proceeds by solving independent parts of the network. More precisely, it explores systematically these independent parts of the search space to enumerate all their local solutions. This approach allows to define an algorithm whose implementation is relatively simple, and which ensures complexity bounds that are induced by the considered tree-decomposition. So, for constraint networks of bounded tree-width, it ensures to get a polynomial time
algorithm. Unfortunately, from a practical viewpoint, such an approach can be really costly. Indeed, there is no guarantee that every local solution participates to at least a global solution (i.e. to a consistent assignment on all the variables of X). Thus, when a local solution cannot be consistently extended to the whole problem, the exhaustive search achieved by \#BTD can cause a significant loss of time.

So, in this paper, we propose to improve the approach introduced in [26] offering a new version of \#BTD called \#EBTD, which is better suited to counting. When a new local solution is found, rather than looking for all its local extensions, \#EBTD will look if in the whole problem, there is at least one global solution which is compatible with it. The idea may seem quite simple, but it requires significant changes in the algorithm \#BTD. We describe this new algorithm and provide an analysis of its time and space complexities which demonstrates that the complexity bounds are preserved w.r.t. \#BTD. To assess the practical advantages of \#EBTD, we perform experiments on a large set of benchmarks. Compared to \#BTD, this algorithm turns to be more efficient. But what is most interesting are the performances obtained when compared with methods of the state of the art. Indeed, our improvement induced a significant gain, both in terms of solved instances, but also in terms of computation time. Moreover, in the case of instances that cannot be completely solved by lack of time or memory, we show that \#EBTD can often provide non-zero lower bounds of the number of solutions while, in such cases, \#BTD and the other solvers we consider produce none.

This paper is organized as follows. In Section II, we introduce notations and recall tree-decomposition and the principles of \#BTD. Section III describes \#EBTD. Experimental results are given in Section IV. Then we conclude in Section V.

II. Preliminaries

A. Constraint Networks and \#CSP

An instance of a finite Constraint Satisfaction Problem (CSP) is given by a triple (X, D, C), with $X=\left\{x_{1}, \ldots, x_{n}\right\}$ a set of n variables, $D=\left(d_{x_{1}}, \ldots, d_{x_{n}}\right)$ a set of finite domains, and $C=\left\{c_{1}, \ldots, c_{e}\right\}$ a set of e constraints. Each constraint c_{i} is a pair $\left(S\left(c_{i}\right), R\left(c_{i}\right)\right)$, where $S\left(c_{i}\right)=\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\} \subseteq X$ defines the scope of c_{i}, and $R\left(c_{i}\right) \subseteq d_{x_{i_{1}}} \times \cdots \times d_{x_{i_{k}}}$ is its compatibility relation. The arity of c_{i} is $\left|S\left(c_{i}\right)\right|$. If the arity of each constraint is two, the instance is a binary CSP. The structure of a constraint network (other name of a CSP) is given by a hypergraph (a graph for a binary CSP), called the constraint (hyper)graph, whose vertices correspond to variables while edges correspond to the scopes of the constraints. To simplify notations, we denote the hypergraph $\left(X,\left\{S\left(c_{1}\right), \ldots S\left(c_{e}\right)\right\}\right)$ by (X, C). Without loss of generality, we assume that considered networks are connected. An assignment on a subset of X is called consistent if all the constraints are satisfied. Checking whether a CSP has a solution (a consistent assignment of X) is well known to be NP-complete. So, many works have been done to improve the solving in practice, even if the complexity of these approaches remains exponential, at least in $O\left(n \cdot d^{n}\right)$ where d is the maximum size

Fig. 1. A constraint graph (a) and one of its optimal tree-decompositions (b).
of domains. The problem of counting solutions for constraint satisfaction problem is called \#CSP. This problem which is a generalization of \#SAT is known to be \#P-complete [13]. A simple way to solve it, consists in running algorithms as MAC [28] or RFL [29], but using an adaptation to enumerate all solutions. So, such algorithms run in $O\left(n . d^{n}\right)$.

B. Counting with Tree-Decomposition

To circumvent the theoretical intractabilities of CSP and \#CSP, other approaches than the basic enumeration algorithms (with exponential time) have been proposed. Some of them rely on a structural tractable class based on the notion of treedecomposition of graphs [30] (a tree of clusters of vertices):

Definition 1: A tree-decomposition of a graph $G=(X, C)$ is a pair (E, T) with $T=(I, F)$ a tree (I the set of nodes and F the set of edges of T) and $E=\left\{E_{i}: i \in I\right\}$ a family of subsets of X, such that each subset (called cluster) E_{i} is a node of T and satisfies: (i) $\cup_{i \in I} E_{i}=X$, (ii) for each edge $\{x, y\} \in C$, there exists $i \in I$ with $\{x, y\} \subseteq E_{i}$, and (iii) for all $i, j, k \in I$, if k is in a path from i to j in T, then $E_{i} \cap E_{j} \subseteq E_{k}$. The width of a tree-decomposition (E, T) is equal to $\max _{i \in I}\left|E_{i}\right|-1$. The tree-width w of G is the minimal width over all the tree-decompositions of G.

Note that this notion can also be considered when the network is a hypergraph using its 2 -section ${ }^{1}$.

For example, Figure 1(b) presents a tree-decomposition of the graph in Figure 1(a). We get the clusters $E_{0}=$ $\left\{x_{1}, x_{3}, x_{4}\right\}, E_{1}=\left\{x_{2}, x_{3}\right\}, E_{2}=\left\{x_{3}, x_{4}, x_{5}, x_{6}\right\}, E_{3}=$ $\left\{x_{5}, x_{6}, x_{7}\right\}, E_{4}=\left\{x_{5}, x_{6}, x_{8}\right\}, E_{5}=\left\{x_{4}, x_{9}, x_{10}\right\}$ and $E_{6}=\left\{x_{10}, x_{11}\right\}$. The cluster E_{2} has the maximum size of 4. So the width of this decomposition is 3 . Moreover, it is an optimal decomposition. So the tree-width w of this graph is 3. Given a root cluster E_{r}, we denote $\operatorname{Desc}\left(E_{j}\right)$ the set of vertices (variables) belonging to the union of the descendants E_{k} of E_{j} in the tree rooted in E_{j}, E_{j} included. Let us consider that E_{0} is the root cluster E_{r}. We then have $\operatorname{Desc}\left(E_{0}\right)=X$ and $\operatorname{Desc}\left(E_{2}\right)=\left\{x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}\right\}$.

The primary advantage of solving methods exploiting treedecompositions is related to their theoretical complexity, d^{w+1} where w is the tree-width of the constraint network. Thus, these methods for solving CSP or \#CSP instances can be efficient on large instances of small tree-width as it is the

[^0]case for example for well known optimization problems of radio frequency allocations [32]. However, as computing the tree-width is an NP-hard task [33], the complexity of decomposition methods for solving CSPs is generally related to an approximation w^{+}of w rather than the tree-width w itself. More precisely, the time complexity of such methods is $O\left(n \cdot w^{+} \cdot \log (d) \cdot d^{w^{+}+1}\right)$ for a space complexity in $O\left(n . d^{w^{+}+1}\right)$, where $w^{+}+1$ is the size of the largest cluster $\left(w+1 \leq w^{+}+1 \leq n\right)$. This first approach called TreeClustering [34] has been improved to obtain a space complexity in $O\left(n . s . d^{s}\right)$ [27], [35] with s the size of the largest intersection (separator) between two clusters $\left(s \leq w^{+}\right)$.

Now, we explain how the algorithm \#BTD solves \#CSP instances from a tree-decomposition of their constraint hypergraph. Using a tree-decomposition allows to exploit the structural properties of the constraint hypergraph. To do so, the considered tree-decomposition induces an order on the exploitation of the clusters. The order is said to be compatible if it can be produced by a depth-first traversal of T from the root cluster E_{r}. Given such a cluster ordering $<$, \#BTD achieves a backtrack search by using a compatible variable ordering \preceq s.t $\forall x \in E_{i}, \forall y \in E_{j}$, with $E_{i}<E_{j}, x \preceq y$. In other words, the cluster ordering induces a partial ordering on the variables since the variables in E_{i} are assigned before those in E_{j} if $E_{i}<E_{j}$. For the example of Figure 1, the cluster ordering $E_{r}=E_{0}<E_{1}<E_{2}<E_{3}<E_{4}<E_{5}<E_{6}$ is compatible for E and $x_{1} \preceq x_{3} \preceq x_{4} \preceq x_{2} \preceq x_{5} \preceq$ $x_{6} \preceq x_{7} \preceq x_{8} \preceq x_{9} \preceq x_{10} \preceq x_{11}$ is compatible for X. The essential property of tree decomposition is that assigning $E_{i} \cap E_{j}\left(E_{j}\right.$ is a child cluster of $\left.E_{i}\right)$ separates the initial problem into two subproblems, which can then be solved independently. The first subproblem rooted in E_{j} is defined by the variables in $\operatorname{Desc}\left(E_{j}\right)$ and by all the constraints involving at least one variable in $\operatorname{Desc}\left(E_{j}\right) \backslash E_{i}$. In the following, the subproblem rooted on E_{j} and induced by a consistent assignment \mathcal{A} on $E_{i} \cap E_{j}$ and some variables of $\operatorname{Desc}\left(E_{j}\right)$ is denoted $P_{\mathcal{A}, E_{i} / E_{j}}$. In $P_{\mathcal{A}, E_{i} / E_{j}}$, all the variables assigned in \mathcal{A} have a domain reduced to their assigned value in \mathcal{A} while the other variables in $\operatorname{Desc}\left(E_{j}\right)$ have their initial domain as domain. The second subproblem is formed by the remaining variables, together with the constraints involving them. \#BTD can exploit this property by using any compatible variable ordering. So the variables of any cluster E_{i} will be assigned before the variables that remain in its children. In this case, for any cluster $E_{j} \in \operatorname{Children}\left(E_{i}\right)$ (where Children $\left(E_{i}\right)$ denotes the set of children of the cluster $\left.E_{i}\right)$, once $E_{i} \cap E_{j}$ is assigned, the subproblem $P_{\mathcal{A}, E_{i} / E_{j}}$ rooted in E_{j} and conditioned by the current assignment \mathcal{A} of $E_{i} \cap E_{j}$ can be solved independently of the rest of the problem. The exact number of solutions $\# \operatorname{sol}_{E_{j}}$ of this subproblem may then be recorded, as a structural $\#$ good $\left(\mathcal{A}, \#\right.$ sol $\left._{E_{j}}\right)$. By this way, it will never be computed again for the same assignment of $E_{i} \cap E_{j}$. This is why algorithms such as BTD or \#BTD (and also AND / OR graph search) are able to keep the complexity exponential in the size of the largest cluster only.

```
Algorithm 1: \#BTD \(\left(P,(E, T), \mathcal{A}, E_{i}, V_{E_{i}}, G\right)\)
    Input: A CSP \(P=(X, D, C)\), a tree-decomposition \((E, T)\), the current
        assignment \(\mathcal{A}\), the current cluster \(E_{i}\), the set \(V_{E_{i}}\) of unassigned variables
        in \(E_{i}\)
    Input/output: the set \(G\) of recorded \#goods
    Result: The number of solutions of \(P_{\mathcal{A}\left[E_{i} \backslash V_{E_{i}}\right], E_{p(i)} / E_{i}}\)
    if \(V_{E_{i}}=\emptyset\) then
        \({\stackrel{S}{S_{i}}}^{E_{i}} \leftarrow\) Children \(\left(E_{i}\right)\)
        \(\#\) sol \(\leftarrow 1\)
        while \(S_{E_{i}} \neq \emptyset\) and \(\#\) sol \(\neq 0\) do
            Choose a cluster \(E_{j} \in S_{E_{i}}\)
            \(S_{E_{i}} \leftarrow S_{E_{i}} \backslash\left\{E_{j}\right\}\)
                if \(\left(\mathcal{A}\left[E_{j} \cap E_{j}\right]\right.\), \#sol \(\left.E_{j}\right)\) is a \#good in \(G\) then
                        \(\#\) sol \(\leftarrow \#\) sol \(\times \#\) sol \(_{E_{j}}\)
                else
                    \(\# \operatorname{sol}_{E_{j}} \leftarrow \# \operatorname{BTD}\left(\mathcal{A}, E_{j}, V_{E_{i}} \backslash\left(E_{i} \cap E_{j}\right), G\right)\)
                    \(\operatorname{Record}\left(\mathcal{A}\left[E_{i} \cap E_{j}\right], \# \operatorname{sol}_{E_{j}}\right)\) as \(\#\) good of \(E_{i}\) w.r.t. \(E_{j}\) in \(G\)
                    \(\#\) sol \(\leftarrow \#\) sol \(\times \#\) sol \(_{E_{j}}\)
        return \#sol
    else
        Choose \(x \in V_{E_{i}}\)
        \(d \leftarrow d_{x}\)
        \(\#\) sol \(_{x} \leftarrow 0\)
        while \(d \neq \emptyset\) do
            Choose \(v \in d\)
            \(d \leftarrow d-\{v\}\)
            if \(\mathcal{A} \cup\{x \leftarrow v\}\) satisfies all constraints of \(C\) then
                \(\# \operatorname{sol}_{x} \leftarrow \# \operatorname{sol}_{x}+\# \operatorname{BTD}\left(\mathcal{A} \cup\{x \leftarrow v\}, E_{i}, V_{E_{i}} \backslash\{x\}, G\right)\)
        return \#sol \({ }_{x}\)
```

\#BTD is described in Algorithm 1. Given an assignment \mathcal{A} and a cluster E_{i}, \#BTD looks for the number of extensions \mathcal{B} of \mathcal{A} on $\operatorname{Desc}\left(E_{i}\right)$ such that $\mathcal{A}\left[E_{i} \backslash V_{E_{i}}\right]=\mathcal{B}\left[E_{i} \backslash V_{E_{i}}\right]$. $V_{E_{i}}$ denotes the set of unassigned variables of E_{i} while $A[Y]$ represents the restriction of the assignment \mathcal{A} to the variables of Y. The first call is to $\# \operatorname{BTD}\left(\emptyset, E_{r}, E_{r}\right)$ and it returns the number of solutions of the whole problem. Inside a cluster E_{i}, \#BTD proceeds classically by assigning a value to a variable and by backtracking if any constraint is violated (lines $15-22$). When every variable in E_{i} is consistently assigned (line 1), \#BTD computes the number of solutions of the subproblem induced by the first child of E_{i}, if there is one (lines 2-12). More generally, let us consider E_{j}, a child of E_{i}. Given a current assignment \mathcal{A} on E_{i}, \#BTD checks whether the assignment $\mathcal{A}\left[E_{i} \cap E_{j}\right]$ corresponds to a \#good. If so, \#BTD multiplies the recorded number of solutions with the number of solutions of E_{i} with \mathcal{A} as its assignment. Otherwise, it extends \mathcal{A} on $\operatorname{Desc}\left(E_{j}\right)$ in order to compute its number of consistent extensions \#sol ${ }_{E_{j}}$. Then, it records the $\# \operatorname{good}\left(\mathcal{A}\left[E_{i} \cap E_{j}\right]\right.$, \#sol $\left.E_{E_{j}}\right)$. \#BTD computes after the number of solutions of the subproblem induced by the next child of E_{i}. Finally, when each child of E_{i} has been examined, \#BTD tries to modify the current assignment of E_{i}. The number of solutions of E_{i} is the sum of solution counts for every consistent assignment of E_{i}. The time (resp. space) complexity of \#BTD for \#CSP is the same as for CSP: $O\left(n . w^{+} . \log (d) . d^{w^{+}+1}\right)\left(\right.$ resp. $\left.O\left(n . s . d^{s}\right)\right)$ [26].

In [26], the experiments have shown that in practice, and particularly for problems with large tree-width, \#BTD runs frequently out of time and memory. Contrary to [26] which mainly used \#BTD as a subroutine for an approximate method,
we propose to improve directly this approach for exact counting. Indeed, we can see that given a partial assignment \mathcal{A}, a call to \#BTD, such as in $\# \operatorname{sol}_{E_{j}} \leftarrow \# \operatorname{BTD}\left(\mathcal{A}, E_{j}, V_{E_{j}} \backslash\left(E_{i} \cap\right.\right.$ $\left.E_{j}\right)$) (line 10), solves entirely the current subproblem, even if the partial assignment \mathcal{A} cannot be extended to a solution on the whole problem. So, a first possible way to improve \#BTD consists in avoiding such useless searches. In the next section, we exploit this idea in order to define a more sophisticated algorithm called \#EBTD.

III. Improving Exact Counting with Tree-Decomposition

As \#BTD, \#EBTD (for Enhanced Backtracking with TreeDecomposition) is based on the notion of tree-decomposition of graphs. \#EBTD also achieves a backtrack search by using a compatible variable ordering. The first difference with \#BTD is related to the concept of goods which is expanded:

Definition 2 (Exact and partial structural goods): Let (E, T) be a tree-decomposition, E_{i} and E_{j} two clusters from E where E_{j} is a child of E_{i} and \mathcal{A} a consistent assignment on $E_{i} \cap E_{j}$. An exact structural good is a triplet $\left(\mathcal{A},=, \# \operatorname{sol}_{E_{j}}\right)$ where $\# \operatorname{sol}_{E_{j}}$ is the number of solutions of $P_{\mathcal{A}, E_{i} / E_{j}}$. A partial structural good is a triplet $\left(\mathcal{A}, \geq, \# \operatorname{sol}_{E_{j}}\right)$ where $\# \operatorname{sol}_{E_{j}}$ is a lower bound on the number of solutions of $P_{\mathcal{A}, E_{i} / E_{j}}$.
Note that the exact structural goods $\left(\mathcal{A},=, \# \operatorname{sol}_{E_{j}}\right)$ are identical to the structural $\# \operatorname{good}\left(\mathcal{A}, \# \operatorname{sol}_{E_{j}}\right)$ defined for $\#$ BTD [26]. Moreover, we also exploit the notion of structural nogood:

Definition 3 (structural nogood [27]): Let (E, T) be a treedecomposition and E_{i} and E_{j} be two clusters from E where E_{j} is a child of E_{i}. A structural nogood of E_{i} w.r.t. E_{j} is a consistent assignment \mathcal{A} on the variables of $E_{i} \cap E_{j}$ such that $P_{\mathcal{A}, E_{i} / E_{j}}$ has no solution.
\#EBTD is described in Algorithm 2. Given a CSP $P=$ (X, D, C) and a tree-decomposition of (X, C), the call \#EBTD $\left(P,(E, T), \mathcal{A}, E_{i}, V_{E_{i}}, S, G, N\right)$ aims to compute the number of solutions of the subproblem $P_{\mathcal{A}\left[E_{i} \backslash V_{E_{i}}\right], E_{p(i)} / E_{i}}$ where \mathcal{A} is the current assignment, E_{i} is the current cluster, $E_{p(i)}$ its parent cluster and $V_{E_{i}}$ the set of unassigned variables of $E_{i} . G$ and N represent respectively the set of structural goods and nogoods which have been recorded during the search. The algorithm exploits also a stack S which contains the next clusters to be explored. \#EBTD returns a pair (\#sol, $E_{b t}$). $E_{b t}$ represents the cluster to which \#EBTD has to backtrack and allows to backjump to the relevant cluster when a nogood is found. Concerning the number of solutions $\#$ sol, there are three possible cases:

- If $\#$ sol >0 and $E_{b t}=E_{i}$, then $\#$ sol is the exact number of solutions of the subproblem $P_{\mathcal{A}\left[E_{i} \backslash V_{E_{i}}\right], E_{p(i)} / E_{i}}$.
- If $\# s o l>0$ and $E_{b t} \neq E_{i}$, then $\# s o l$ is a lower bound of the number of solutions of $P_{\mathcal{A}\left[E_{i} \backslash V_{E_{i}}\right], E_{p(i)} / E_{i}}$.
- If $\# s o l=0$ then $P_{\mathcal{A}\left[E_{i} \backslash V_{E_{i}}\right], E_{p(i)} / E_{i}}$ has no solution.

The resulting S can be defined as the set of clusters E_{j} such that $E_{p(j)}$ is assigned and $\mathcal{A}\left[E_{p(j)} \cap E_{j}\right]$ does not correspond to a partial or exact good of $E_{p(j)}$ w.r.t. E_{j}. We can note, that, it is necessarily empty in the first case.

The initial call is \#EBTD $\left(P,(E, T), \mathcal{A}, E_{r}, E_{r}, S, G, N\right)$ where S, G and N are empty. Like \#BTD, \#EBTD, starts its backtrack search by assigning consistently the variables of the root cluster E_{r} before exploring a child cluster. When exploring a new cluster E_{i}, since the variables in the parent cluster $E_{p(i)}$ (and so in the separator $E_{i} \cap E_{p(i)}{ }^{2}$) are already assigned, it only has to assign the variables which appear in $E_{i} \backslash\left(E_{i} \cap E_{p(i)}\right)$. In order to solve each cluster (lines 4657), \#EBTD (and \#BTD) can exploit any solving algorithm which does not alter the structure. For sake of simplicity, the version presented in Algorithm 2 relies on Chronological Backtracking (BT). However, for the experiments provided in the next section, we will consider a more powerful algorithm, namely RFL (for Real Full Look-ahead [29]). Thus, \#EBTD first chooses the next variable x to assign among the variables in $V_{E_{i}}$ (line 46). Then, it selects a value v from d_{x} according to the value heuristic (lines 51-52) and assigns it to the variable x. If the new assignment is consistent w.r.t. the initial constraints of C and the structural nogoods of N (line 53), the search goes on by choosing a new variable and making a new assignment. Otherwise, \#EBTD tries to assign a new possible value to the variable x. When all the possible values have been tried, \#EBTD backtracks.

When \#EBTD (like \#BTD) has consistently assigned all the variables of the current cluster E_{i}, it then aims to count the number of solutions of each subproblem rooted in each child cluster E_{j}. More precisely, for a child E_{j}, it aims to count the number of solutions of $P_{\mathcal{A}\left[E_{i} \cap E_{j}\right], E_{i} / E_{j}}$. When this number $\#$ sol $_{E_{j}}$ is computed, \#EBTD records the exact good $\left(\mathcal{A}\left[E_{i} \cap E_{j}\right],=, \#\right.$ sol $_{E_{j}}$) (line 23). Similarly, \#BTD records the corresponding $\# \operatorname{good}\left(\mathcal{A}\left[E_{i} \cap E_{j}\right], \# \operatorname{sol}_{E_{j}}\right)$ (line 11). The main difference between \#EBTD and \#BTD resides in the exploration of the children. \#BTD computes the exact number of solutions of each subproblem $P_{\mathcal{A}\left[E_{i} \cap E_{j}\right], E_{i} / E_{j}}$ related to each child cluster E_{j} by considering successively the children. Thus, for the tree-decomposition of Figure 1(b), after assigning consistently the cluster E_{0}, \#BTD computes the number of solutions of $P_{\mathcal{A}\left[E_{0} \cap E_{1}\right], E_{0} / E_{1}}$, then one of $P_{\mathcal{A}\left[E_{0} \cap E_{2}\right], E_{0} / E_{2}}$ and finally one of $P_{\mathcal{A}\left[E_{0} \cap E_{5}\right], E_{0} / E_{5}}$. The disadvantage of such an approach is that all the solutions of $P_{\mathcal{A}\left[E_{0} \cap E_{1}\right], E_{0} / E_{1}}$ are computed before even knowing if there is at least one solution for $P_{\mathcal{A}\left[E_{0} \cap E_{2}\right], E_{0} / E_{2}}$ and more generally a global solution. In fact, in the worst case, \#BTD may compute the number of solutions of $P_{\mathcal{A}\left[E_{0} \cap E_{1}\right], E_{0} / E_{1}}$ and $P_{\mathcal{A}\left[E_{0} \cap E_{2}\right], E_{0} / E_{2}}$ before establishing that $P_{\mathcal{A}\left[E_{0} \cap E_{5}\right], E_{0} / E_{5}}$ has no solution. In this case, counting the number of solutions for the subproblem $P_{\mathcal{A}\left[E_{i} \cap E_{j}\right], E_{i} / E_{j}}$ related to a previous child cluster E_{j} is useless unless the recorded $\# \operatorname{good}\left(\mathcal{A}\left[E_{i} \cap E_{j}\right], \# \operatorname{sol}_{E_{j}}\right)$ is used later. In order to solve this issue, \#EBTD proposes to explore the children in a different way. More precisely, it aims to guarantee that it counts exactly the number of solutions of the subproblem rooted on a child cluster E_{j} only if there is a global solution for the problem so that the recorded good $\left(\mathcal{A}\left[E_{i} \cap E_{j}\right],=, \# \operatorname{sol}_{E_{j}}\right)$ is necessarily used at least once. For

[^1]instance, if we consider again the tree-decomposition of Figure 1(b), after assigning consistently the cluster E_{0}, \#EBTD tries to assign, by order, the clusters $E_{1}, E_{2}, E_{3}, E_{4}, E_{5}$ and E_{6}. Once the global solution is found, it computes then $\# \operatorname{sol}_{E_{5}}$, $\# s o l_{E_{2}}$ and finally $\# s o l_{E_{1}}$. In contrast, if after assigning consistently $\operatorname{Desc}\left(E_{1}\right)$ and $\operatorname{Desc}\left(E_{2}\right), \operatorname{Desc}\left(E_{5}\right)$ cannot be consistently assigned, $\mathcal{A}\left[E_{0} \cap E_{5}\right]$ is recorded as a nogood of E_{0} w.r.t. E_{5} while $\mathcal{A}\left[E_{0} \cap E_{2}\right]$ and $\mathcal{A}\left[E_{0} \cap E_{1}\right]$ are recorded as partial goods (resp. $\left(\mathcal{A}\left[E_{0} \cap E_{1}\right], \geq, 1\right)$ of E_{0} w.r.t. E_{1} and $\left(\mathcal{A}\left[E_{0} \cap E_{2}\right], \geq, 1\right)$ of E_{0} w.r.t. $\left.E_{2}\right)$. These structural (no)goods can be used later to avoid exploring a redundant part of the search tree. The principle is applied recursively. Indeed, when counting $\#$ sol $_{E_{2}}$, once the assignment on E_{2} is changed \#EBTD tries again to assign E_{3} then E_{4} (if needed since recorded goods may be used). Hence, the presence of a global solution is guaranteed before computing $\# \operatorname{sol}_{E_{4}}$ and $\# \operatorname{sol}_{E_{3}}$.

Lines 46-57 of Algorithm 2 explore the cluster E_{i} as $\# B T$ does. The condition $x \notin E_{b t}$ (line 58) suspends the enumeration of the solutions of E_{i} when a nogood of $E_{p(\ell)}$ w.r.t. E_{ℓ} is recorded where E_{ℓ} is a cluster explored after E_{i}. In this case, $E_{b t}=E_{p(\ell)}$ and the search backtracks to the cluster $E_{p(\ell)}$. When all the variables of E_{i} have been consistently assigned (line 1), \#EBTD considers each child of E_{i} (lines 216). If $\mathcal{A}\left[E_{i} \cap E_{j}\right]$ corresponds to an exact good (line 10), the good is exploited and the search jumps to the next child cluster. \#EBTD uses two locals stacks $S_{\text {unknown }}$ and $S_{\text {good }}$. It adds to S and $S_{\text {unknown }}$ each child E_{j} of E_{i} for which $\mathcal{A}\left[E_{i} \cap E_{j}\right]$ does not correspond to a good of E_{i} w.r.t. E_{j}. In the contrary, when $\mathcal{A}\left[E_{i} \cap E_{j}\right]$ corresponds to a partial good of E_{i} w.r.t. E_{j}, E_{j} is added to the $S_{\text {good }}^{>}$. $S_{\text {good }>}$ is the set of children E_{j} of E_{i} for which $\mathcal{A}\left[E_{i} \cap E_{j}\right]$ corresponds to a partial good of E_{i} w.r.t. E_{j} with a lower bound of the number of solutions of the subproblem $P_{\mathcal{A}\left[E_{i} \cap E_{j}\right], E_{i} / E_{j}}$. For each cluster of $S_{\text {good }}$, the exact number of solutions of $P_{\mathcal{A}, E_{i} / E_{j}}$ is computed later (lines 38-43) if the current assignment \mathcal{A} can be extended to a global solution. Also for each cluster of $S_{\text {unknown }}$, at line 36, the exact number of solutions of $P_{\mathcal{A}\left[E_{i} \cap E_{j}\right], E_{i} / E_{j}}$ is guaranteed to be computed (lines 17-37) and thus can be exploited. If the stack S is not empty (line 17), we keep on the search on the cluster E_{j} at the top of S (line 20). If \#EBTD succeeds in extending \mathcal{A} on the subproblem rooted in E_{j}, it records $\mathcal{A}\left[E_{p(j)} \cap E_{j}\right]$ as a good. If \mathcal{A} can be extended to a global solution ($E_{b t}=E_{j}$), the number associated to this good is the number of solutions of $P_{\mathcal{A}\left[E_{i} \cap E_{j}\right], E_{p(j)} / E_{j}}$ and we have an exact good. Otherwise, it corresponds to a lower bound and we have a partial good. On the contrary, if \mathcal{A} cannot be extended on the subproblem rooted in $E_{j}, \mathcal{A}\left[E_{p(j)} \cap E_{j}\right]$ is recorded as a nogood. Note that lines 27 and 33 allow to remove from the stack S the children of the cluster $E_{b t}$ (if any) provided that a nogood of $E_{b t}$ w.r.t. one of its children has been recorded.

Theorem 1: \#EBTD is sound, complete and terminates.
Proof: Let $G_{=}\left(E_{i}\right)$ be the set of assignments corresponding to exact goods of $E_{p}(i)$ w.r.t. E_{i} in $\quad G$. Let us consider $\operatorname{VAR}\left(V_{E_{i}}, S, \mathcal{A}, G\right)=$

```
Algorithm 2: \#EBTD \(\left(P,(E, T), \mathcal{A}, E_{i}, V_{E_{i}}, S, G, N\right)\)
    Input: A CSP \(P=(X, D, C)\), a tree-decomposition \((E, T)\), the current
            assignment \(\mathcal{A}\), the current cluster \(E_{i}\), the set \(V_{E_{i}}\) of unassigned variables
            in \(E_{i}\)
    Input/output: \(S\) a stack of clusters, the set \(G\) of recorded goods, the set \(N\) of
                        recorded nogoods
    Result: (The number of solutions found for \(P_{\mathcal{A}\left[E_{i} \backslash V_{E_{i}}\right], E_{p(i)} / E_{i}}\), the cluster
                in which we have to backtrack)
    if \(V_{E_{i}}=\emptyset\) then
        \(\#\) sol \(\leftarrow 1\)
        \(S_{E_{i}} \leftarrow\) Children \(\left(E_{i}\right)\)
        \(S_{\text {good }} \geq \leftarrow \emptyset\)
        \(S_{\text {unknown }} \leftarrow \emptyset\)
        while \(S_{E_{i}} \neq \emptyset\) do
                Choose a cluster \(E_{j} \in S_{E_{i}}\)
                \(S_{E_{i}} \leftarrow S_{E_{i}} \backslash\left\{E_{j}\right\}\)
                switch \(\mathcal{A}\left[E_{i} \cap E_{j}\right]\) do
                    case \(\operatorname{good}\left(\mathcal{A}\left[E_{i} \cap E_{j}\right],=, \# \operatorname{sol}_{E_{j}}\right)\) of \(E_{i}\) w.r.t. \(E_{j}\) in \(G\)
                        \(\#\) sol \(\leftarrow \#\) sol \(* \# \operatorname{sol}_{E_{j}}\)
                    case \(\operatorname{good}\left(\mathcal{A}\left[E_{i} \cap E_{j}\right], \geq, \# \operatorname{sol}_{E_{j}}\right)\) of \(E_{i}\) w.r.t. \(E_{j}\) in \(G\)
                        \(S_{\text {good }}>S_{\text {good }} \cup \cup\left\{E_{j}\right\}\)
                    otherwise
                        \(S_{\text {unknown }} \leftarrow S_{\text {unknown }} \cup\left\{E_{j}\right\}\)
                \(S \leftarrow S \cup\left\{E_{j}\right\}\)
        if \(S \neq \emptyset\) then
            \(E_{j} \leftarrow \operatorname{Top}(S)\)
            \(S \leftarrow S \backslash\left\{E_{j}\right\}\)
                \(\left(\# \operatorname{sol}_{E_{j}}, E_{b t}\right) \leftarrow \# \operatorname{EBTD}\left(P,(E, T), \mathcal{A}, E_{j}, E_{j} \backslash\left(E_{p(j)} \cap E_{j}\right)\right.\),
            \(S, G, N)\)
            if \(\# \operatorname{sol}_{E_{j}}>0\) then
                    if \(E_{b t}=E_{j}\) then
                                    \(\operatorname{Record}\left(\mathcal{A}\left[E_{p(j)} \cap E_{j}\right],=, \# \operatorname{sol}_{E_{j}}\right)\) as \(\operatorname{good}\) of \(E_{p(j)}\)
                                    w.r.t. \(E_{j}\) in \(G\)
                    else
                        \(\operatorname{Record}\left(\mathcal{A}\left[E_{p(j)} \cap E_{j}\right], \geq, \# \operatorname{sol}_{E_{j}}\right)\) as good of \(E_{p(j)}\)
                        w.r.t. \(E_{j}\) in \(G\)
                                    if \(E_{i}=E_{b t}\) then
                                    \(S \leftarrow S \backslash\) Children \(\left(E_{i}\right)\)
                                    return \(\left(0, E_{i}\right)\)
                                    else return \(\left(\#\right.\) sol,\(\left.E_{b t}\right)\)
                else
                    Record \(\mathcal{A}\left[E_{p(j)} \cap E_{j}\right]\) as nogood of \(E_{p(j)}\) w.r.t. \(E_{j}\) in \(N\)
                    if \(E_{i}=E_{p(j)}\) then
                        \(S \leftarrow S \backslash\) Children \(\left(E_{i}\right)\)
                        return \(\left(0, E_{i}\right)\)
                    else return \(\left(\#\right.\) sol,\(\left.E_{p(j)}\right)\)
        foreach \(E_{j} \in S_{\text {unknown }}\) do
            \(\#\) sol \(\leftarrow \#\) sol \(* \#\) sol \(_{E_{j}}\)
        while \(S_{\text {good }_{>}} \neq \emptyset\) do
            Choose a cluster \(E_{j} \in S_{\text {good }} \geq\)
            \(S_{\text {good }_{>}} \leftarrow S_{\text {good }_{>}} \backslash\left\{E_{j}\right\}\)
                \(\left(\#\right.\) sol \(\left._{E_{j}}, E_{\text {Fail }}\right) \leftarrow \# \operatorname{EBTD}\left(P,(E, T), \mathcal{A}, E_{j}, E_{j} \backslash\left(E_{i} \cap E_{j}\right)\right.\),
                \(S, G, N)\)
                \(\operatorname{Record}\left(\mathcal{A}\left[E_{i} \cap E_{j}\right],=, \# \operatorname{sol}_{E_{j}}\right)\) as good of \(E_{i}\) w.r.t. \(E_{j}\) in \(G\)
                \(\#\) sol \(\leftarrow \#\) sol \(* \#\) sol \(_{E_{j}}\)
            return \(\left(\#\right.\) sol,\(\left.E_{i}\right)\)
    else
        Choose \(x \in V_{E_{i}}\)
        \(d \leftarrow d_{x}\)
        \(\# \operatorname{sol}_{x} \leftarrow 0\)
        \(E_{b t} \leftarrow E_{i}\)
        repeat
            Choose \(v \in d\)
            \(d \leftarrow d-\{v\}\)
            if \(\mathcal{A} \cup\{x \leftarrow v\}\) satisfies all constraints of \(C \cup N\) then
                \(\left(\# \operatorname{sol}_{x v}, E_{b t}\right) \leftarrow\) \#EBTD \(\left(P,(E, T), \mathcal{A} \cup\{x \leftarrow v\}, E_{i}\right.\),
                    \(\left.V_{E_{i}} \backslash\{x\}, S, G, N\right)\)
                    \(\# \operatorname{sol}_{x} \leftarrow \# \operatorname{sol}_{x}+\# \operatorname{sol}_{x v}\)
        until \(d=\emptyset\) or \(x \notin E_{b t}\)
        return ( \(\#\) sol \(_{x}, E_{b t}\) )
```

$V_{E_{i}} \cup\left(\cup \operatorname{Desc}\left(E_{j}\right) \backslash\left(E_{j} \cap\right.\right.$ $E_{j} \in \operatorname{Children}\left(E_{i}\right) \mid \mathcal{A}\left[E_{j} \cap E_{i}\right] \notin G_{=}\left(E_{j}\right)$ $\left.\left.E_{i}\right)\right) \cup\left(\bigcup_{E_{k} \in S} \operatorname{Desc}\left(E_{k}\right) \backslash\left(E_{k} \cap E_{p(k)}\right)\right) . \operatorname{VAR}\left(V_{E_{i}}, S, \mathcal{A}, G\right)$ corresponds to the set of variables which must be explored by \#EBTD to determine if a global solution containing \mathcal{A} exists and to count the exact number of solution of $P_{A\left[E_{i} \backslash V_{E_{i}}\right], E_{p(i)} / E_{i}}$.

In order to prove the theorem, we prove by induction on $\operatorname{VAR}\left(V_{E_{i}}, S, \mathcal{A}, G\right)$ the property $\mathcal{P}\left(V A R\left(V_{E_{i}}, S, \mathcal{A}, G\right)\right)$ defined as: "\#EBTD $\left(\mathcal{A}, E_{i}, V_{E_{i}}, S, G, N\right)$ returns a pair ($\#$ sol,$E_{b t}$) where $\#$ sol is the exact number of solutions of $P_{\mathcal{A}\left[E_{i} \backslash V_{E_{i}}\right], E_{p(i)} / E_{i}}$ if $E_{i}=E_{b t}$, a lower bound otherwise".

For lack of space, we will simply highlight the main ideas of the proof. When there is no ambiguity, $\operatorname{VAR}\left(V_{E_{i}}, S, \mathcal{A}, G\right)$ is denoted $V A R$.

- Basis: Consider $\mathcal{P}(\emptyset)$. If $V A R=\emptyset$ then $V_{E_{i}}=\emptyset$ and $S=\emptyset$. Also, for each child E_{j} of $E_{i}, \mathcal{A}\left[E_{j} \cap E_{i}\right] \in$ $G_{=}\left(E_{j}\right)$. Thus, by considering each child E_{j} of E_{i} (lines 10-11), \#EBTD updates successively the number of solutions \#sol. Since for each child E_{j} of $E_{i} \mathcal{A}\left[E_{j} \cap E_{i}\right]$ is an exact good, $S_{\text {good }_{\geq}}, S_{\text {unknown }}$ and S remain empty. Hence, \#EBTD returns (\#sol, E_{i}) where \#sol is the exact number of solutions of $P_{\mathcal{A}\left[E_{i}\right], E_{p(i)} / E_{i}}$. If E_{i} is a leaf cluster, \#EBTD returns $\left(1, E_{i}\right)$ since the only possible extension of \mathcal{A} is \mathcal{A}. So the property holds.
- Inductive step: Consider now $\mathcal{P}(V A R)$ with $V A R \neq \emptyset$. Assume that $\forall V A R^{\prime} \subset V A R, \mathcal{P}\left(V A R^{\prime}\right)$ holds.
If $V_{E_{i}} \neq \emptyset$: the loop (lines 50-56) explores the cluster E_{i} as \#BT does. The only difference is that the loop is suspended when $E_{b t} \neq E_{i}$ which is helpful when a nogood is found later during the search. If $E_{b t}=E_{i}$, the loop is equivalent to the loop of $\# \mathrm{BT}$ and $\# s o l_{x}$ is the number of solutions of $P_{\mathcal{A}\left[E_{i} \backslash V_{E_{i}}\right], E_{p(i)} / E_{i}}$ for the values v already assigned to x. When \#EBTD attempts to assign v to x, if $\mathcal{A} \cup\{x \leftarrow v\}$ is inconsistent, there is no possible extension and $\# s o l_{x}$ and $E_{b t}$ are unchanged. In contrast, if $\mathcal{A} \cup\{x \leftarrow v\}$ is consistent, we call \#EBTD (line 54) on $V_{E_{i}} \backslash\{x\}$. So, from the hypothesis of induction, we know that $\mathcal{P}(V A R \backslash\{x\})$ holds. If $E_{b t}=E_{i}$ then $\#$ sol $_{x v}$ is the exact number of solutions and $\#$ sol $_{x}$ is updated. So, the statement is valid. When $E_{b t} \neq E_{i}, \# \operatorname{sol}_{x v}$ is a lower bound on the number of solutions and $\# \operatorname{sol}_{x}$ is updated. Since x is assigned for the first time in E_{i} then $x \notin E_{b t}$ and the loop is suspended returning a lower bound on $P_{\mathcal{A}\left[E_{i} \backslash V_{E_{i}}\right], E_{p(i)} / E_{i}}$. Thus, the property holds.
If $V_{E_{i}}=\emptyset$: Since $V A R \neq \emptyset$, for each child E_{j} of E_{i}, $\mathcal{A}\left[E_{j} \cap E_{i}\right]$ may be a good or an unknown assignment. Also, S can be empty or not. Lines 6-16 consider each child E_{j} and update, if needed, $\#$ sol, $S_{\text {good }}, S_{\text {unknown }}$ and S. Lines 17-35 permit to launch the exploration of the clusters of S in order to determine if a global solution containing \mathcal{A} exists. At line 36 , a global solution is already found and for each child $E_{j} \in S_{\text {unknown }}, \#$ sol $_{E_{j}}$ has been computed and $\#$ sol is updated (line 37). If $S_{\text {good }} \neq \emptyset$, each cluster $E_{j} \in S_{\text {good }}$ is explored (line 41). If $V A R\left(V_{E_{j}}, S, \mathcal{A}, G\right) \subset V A R\left(V_{E_{i}}, S, \mathcal{A}, G\right)$, by
the induction hypothesis, $\mathcal{P}\left(V A R\left(V_{E_{j}}, S, \mathcal{A}, G\right)\right)$ holds. Otherwise, $\operatorname{VAR}\left(V_{E_{j}}, S, \mathcal{A}, G\right)=\operatorname{VAR}\left(V_{E_{i}}, S, \mathcal{A}, G\right)$. But we know that for the next call, $V_{E_{j}} \neq \emptyset$. As shown above (case $V_{E_{i}} \neq \emptyset$), the property $\mathcal{P}\left(V A R\left(V_{E_{j}}, S, \mathcal{A}, G\right)\right)$ holds. By definition of a partial good, $P_{\mathcal{A}\left[E_{i} \backslash V_{E_{j}}\right], E_{i} / E_{j}}$ has at least one solution. Since S is empty (a global solution is found), the recursive call of \#EBTD returns necessarily the exact number of solutions of $P_{\mathcal{A}\left[E_{j} \backslash V_{E_{j}}\right], E_{i} / E_{j}}=P_{\mathcal{A}\left[E_{i} \backslash\left(E_{i} \cap E_{j}\right)\right], E_{i} / E_{j}}$. After all the children E_{j} are considered, $\#$ sol is updated and \#EBTD returns ($\#$ sol, E_{i}). Hence, the property holds. If at line $17, S \neq \emptyset$, a global solution containing \mathcal{A} is not found yet. For the call of \#EBTD at line 20, we can show, like previously for the call of line 41, that $\mathcal{P}\left(V A R\left(V_{E_{j}}, S, \mathcal{A}, G\right)\right)$ holds. So $\mathcal{P}\left(V A R\left(V_{E_{i}}, S, \mathcal{A}, G\right)\right)$ holds.
Finally, we give its time and space complexities which are comparable to ones of \#BTD.

Theorem 2: \#EBTD has a time complexity in $O(n .(r e+$ $n s) \cdot d^{w^{+}+1}$) and a space complexity in $O\left(n . s . d^{s}\right)$ with $r=$ $\max _{c \in C}|S(c)|$.
Proof: The maximum number of constraints involved in each consistency check is e and the cost of a constraint check is $O(r)$. Likewise, if we assume that the nogoods of a cluster E_{i} w.r.t. to one of its children E_{j} are stored as a constraint whose scope is $E_{i} \cap E_{j}$, there are at most $n-1$ separators (since the number of clusters is bounded by n) and checking the existence of a nogood can be done in $O(s)$. Hence the consistency check of line 53 is achieved in $O(r e+n s)$.

In the worst case, \#EBTD explores all the clusters of the decomposition and tries all possible values of each variable of the cluster. Since w^{+}is the width of the tree-decomposition, the maximum size of a cluster is $w^{+}+1$. Hence, the number of assignments of a cluster is bounded by $d^{w^{+}+1}$. A recorded exact good ensures that the corresponding cluster is not explored more than once with the same assignment on the variables of its separator. If a partial good is recorded, the cluster is, at most, visited twice with the same assignment so that the second time the cluster is fully explored and the partial good is replaced by an exact good. Moreover, assuming that the goods are stored on each separator like nogoods, storing a good or checking its existence can be done in $O(s)$. Consequently, \#EBTD has a time complexity in $O\left(n \cdot(r e+n s) \cdot d^{w^{+}+1}\right)$.

Concerning the space complexity, \#EBTD records exact and partial goods and nogoods. These recordings are done w.r.t. a separator $E_{i} \cap E_{j}$ where E_{j} is a child of E_{i}. Provided that s is the maximum size of the separators, the size of a no(good) is bounded by s. For each separator, there are at most d^{s} possible assignments. So, as the number of separators is bounded by n, the space complexity is in $O\left(n . s . d^{s}\right)$.

Note that, when \#EBTD explores, for the second time, a given subproblem in order to compute an exact good, we can avoid restarting from scratch. Indeed, if we assume that we use a lexicographical value ordering, it suffices to record the partial solution related to the partial good conjointly with this
partial good. By so doing, if \#EBTD needs to explore again the corresponding subproblem, it can safely restart from the partial solution. Such an issue does not change the time complexity while the space complexity is now in $O\left(n . w^{+} . d^{s}\right)$. However, from a practical viewpoint, the gains may be significant.

IV. EXPERIMENTS

In this section, we assess the practical interest of our approach. We consider here a version of \#EBTD based on RFL [29] and we implement it in C++ in our own library. We exploit the Min-Fill heuristic [36] in order to compute treedecompositions. The arc-consistency is enforced by $A C 3^{r m}$ for the preprocessing and $A C 8^{r m}$ for the solving [37]. The next variable to assign is chosen thanks to the heuristic dom/wdeg [38] while the root cluster is a cluster maximizing the number of constraints whose scope intersects the cluster. The experiments are performed on blade servers running Linux Ubuntu 14.04 each with two Intel Xeon processors E5-2609 v2 2.5 GHz and 32 GB of memory. For each instance, the solving is performed within a timeout of 20 minutes and with at most 16 GB of memory.

Initially, we consider a first benchmark set B_{1} containing 2,298 consistent CSP instances from the CSP 2008 competition ${ }^{3}$. Regarding the instances selection, we have excluded the instances having a trivial tree-decomposition (e.g. instances having a complete constraint graph) and the instances having global constraints (because global constraints are not taken into account yet by our CSP library). Among these 2,298 instances, \#EBTD succeeds in counting exactly the number of solutions for 1,277 instances. For the other instances, it runs out of memory or reaches the timeout. However, it is still able to provide a non-zero lower bound of the number of solutions for 883 instances. At the end, for about 94% of the considered instances, \#EBTD computes either the number of solutions or a non-zero lower bound.

Now we compare our approach with solvers from the state of the art. For \#CSP solvers, we consider the implementation of \#BTD provided in Toulbar2 [26]. Regarding \#SAT solvers, we take into account Cachet [39], c2d [24], relsat [40] and sharpSAT [41]. In both cases, we have to encode the considered instances into a format supported by these solvers. For \#BTD, we encode the CSP instances into the WCSP format while for \#SAT solvers, we exploit the direct encoding from CSP to SAT [42]. These two encodings require that the constraints are flattened. Such an operation may need a large amount of time and memory for the instances having predicate constraints. So, in our comparisons, we exploit the benchmark set B_{2} built from B_{1} by considering only the 1,199 instances having no predicate constraint. For B_{2}, \#EBTD succeeds in counting exactly the number of solutions for 1,006 instances against 976 for \#BTD. Unfortunately, when comparing with \#SAT solvers, we have to consider a benchmark subset B_{3} from B_{2} containing 1,059 instances because for 140 instances, the direct encoding from CSP to SAT is too time and space

[^2]expensive. For B_{3}, \#EBTD solves the largest number of instances (namely 908 instances) and is followed by sharpSAT (899 instances) and \#BTD (877 instances). Cachet and relsat are less efficient (resp. with 608 and 618 instances) while c2d only solves 382 instances. Hence, in the following, we focus our comparison on \#EBTD, \#BTD and sharpSAT.
In Figure 2, we compare the runtime of \#EBTD with one of \#BTD (a) and sharpSAT (b) for the 840 instances of B_{3} solved by the three solvers. Note that for \#BTD and sharpSAT, the runtime does not include the encoding time. Clearly, \#EBTD performs faster than \#BTD for most of the instances. Moreover, the cumulative runtime of \#EBTD for all these instances is $54,590 \mathrm{~s}$ while \#BTD requires $98,373 \mathrm{~s}$. The comparison between \#EBTD and sharpSAT turns to be more balanced. Indeed, \#EBTD is more efficient than sharpSAT for 63% of the instances (against 82% w.r.t. \#BTD). However, globally, sharpSAT performs slower than \#EBTD with a cumulative runtime of $93,284 \mathrm{~s}$.
Finally, note that except \#EBTD, none of the considered solvers provides a lower bound when the solving runs out of time or memory.

V. Conclusion

In this paper, we have proposed a new algorithm, called \#EBTD, which is dedicated to solving the exact counting problem for CSPs, i.e. \#CSP. This algorithm is based on constraint network decompositions and improves the previous algorithm introduced in [26]. \#EBTD ensures non trivial complexity bounds for time and space which are related to structural properties of the considered constraint network. While it is based on a quite simple idea, its implementation requires a significant modification of the basic algorithm of [26]. For example, it requires the definition of the concept of partial structural goods whose use allows to avoid to explore large parts of the search space. Such an approach, of course, does not allow to improve the theoretical complexity, but it leads to a considerable improvement in computation time. Indeed, the experiments we conducted show that this new approach solves more instances on different classes of benchmarks. Above all, the solving is generally faster than the approaches of the state of the art, like for example sharpSAT.

Several extensions of this work are possible. Among them, in the spirit of [43], it would be useful to study decompositions more suited to the counting problem. Indeed, according to the nature of the problem addressed (decision, optimization or counting), it is possible that some classes of decompositions are better suited for solving \#CSP.

Moreover, for instances of large tree-width, for which exact counting is too hard, we should study how the use of \#EBTD may provide better approximations. Finally, as many applications of the counting problem coming from AI are naturally expressed in propositional logic, it would be interesting to adapt \#EBTD to Boolean instance, in order to improve directly its practical efficiency rather than using translation of instances from logic to CSPs.

Fig. 2. Runtime comparisons for \#EBTD and \#BTD (a) or sharpSAT (b) on the 840 instances of B_{3} solved by the three solvers.

ACKNOWLEDGMENTS

We thank Christian Bessière who has recently informed us of the existence of a similar work in Karakashian's thesis [44].

REFERENCES

[1] D. Roth, "On the hardness of approximate reasonning," Artificial Intelligence, vol. 82, pp. 273-302, 1996.
[2] T. S. Kumar, "A model counting characterization of diagnoses," in International Workshop on Principles of Diagnosis, 2002.
[3] A. Darwiche, "On the tractable counting of theory models and its applications to truth maintenance and belief revision," Journal of Applied Non-classical Logic, vol. 11, pp. 11-34, 2001.
[4] T. Sang, P. Beame, and H. A. Kautz, "Performing Bayesian inference by weighted model counting," in AAAI, 2005, pp. 475-482.
[5] M. Chavira and A. Darwiche, "On probabilistic inference by weighted model counting," AIJ, vol. 172, pp. 772-799, 2008.
[6] U. Apsel and R. I. Brafman, "Lifted MEU by weighted model counting," in AAAI, 2005, pp. 1861-1867.
[7] A. Choi, D. Kisa, and A. Darwiche, "Compiling probabilistic graphical models using sentential decision diagrams," in ECSQARU, 2013, pp. 121-132.
[8] H. Palacios, B. Bonet, A. Darwiche, and H. Geffner, "Pruning conformant plans by counting models on compiled d-DNNF representations," in ICAPS, 2005, pp. 141-150.
[9] C. Domshlak and J. Hoffmann, "Fast probabilistic planning through weighted model counting," in ICAPS, 2006, pp. 243-252.
[10] K. Kask, R. Dechter, and V. Gogate, "Counting-Based Look-Ahead Schemes for Constraint Satisfaction," in CP, 2004, pp. 317-331.
[11] R. Burton and J. Steif, "Nonuniqueness of measures of maximal entropy for subshifts of finite type," Ergodic theory and dynamical system, vol. 14, pp. 213-235, 1994.
[12] M. Mann, G. Tack, and S. Will, "Decomposition During Search for Propagation-Based Constraint Solvers," CoRR abs/0712.2389, 2007.
[13] L. Valiant, "The Complexity of Computing the Permanent," Theoretical Computer Science, vol. 8, pp. 189-201, 1979.
[14] S. Toda, "PP is as hard as the polynomial-time hierarchy," SIAM Journal on Computing, vol. 20, pp. 865-877, 1991.
[15] F. Slivovsky and S. Szeider, "Counting Model for Formulas of Bounded Clique-Width," in ISAAC, 2013, pp. 677-687.
[16] A. Bulatov and V. Dalmau, "Towards a dichotomy theorem for the counting constraint satisfaction problem," Information and Computation, vol. 205, pp. 651-678, 2007.
[17] W. Wei and B. Selman, "A New Approach to Model Counting," in SAT, 2005, pp. 324-339.
[18] C. Gomes, J. Hoffmann, A. Sabharwal, and B. Selman, "From sampling to model counting," in IJCAI, 2007, pp. 2293-2299.
[19] V. Gogate and R. Dechter, "Approximate counting by sampling the backtrack-free search space," in AAAI, 2007, pp. 198-203.
[20] L. Kroc, A. Sabharwal, and B. Selman, "Leveraging belief propagation, backtrack search, and statistics for model counting," in CPAIOR, 2008, pp. 127-141.
[21] V. Gogate and R. Dechter, "Approximate Solution Sampling (and Counting) on AND/OR search spaces," in CP, 2008, pp. 534-538.
[22] C. Gomes, A. Sabharwal, and B. Selman, "Model counting: A new strategy for obtaining good bounds," in AAAI, 2006, pp. 54-61.
[23] C. Gomes, W.-J. van Hoeve, A. Sabharwal, and B. Selman, "Counting CSP solutions using generalized XOR constraints," in AAAI, 2007, pp. 204-209.
[24] A. Darwiche, "New Advances in Compiling CNF into Decomposable Negation Normal Form," in ECAI, 2004, pp. 328-332.
[25] R. Dechter and R. Mateescu, "The Impact of AND/OR Search Spaces on Constraint Satisfaction and Counting," in CP, 2004, pp. 731-736.
[26] A. Favier, S. de Givry, and P. Jégou, "Exploiting Problem Structure for Solution Counting," in CP, 2009, pp. 335-343.
[27] P. Jégou and C. Terrioux, "Hybrid backtracking bounded by treedecomposition of constraint networks," AIJ, vol. 146, pp. 43-75, 2003.
[28] D. Sabin and E. Freuder, "Contradicting Conventional Wisdom in Constraint Satisfaction," in ECAI, 1994, pp. 125-129.
[29] B. Nadel, Tree Search and Arc Consistency in Constraint-Satisfaction Algorithms, ser. Search in Artificial Intelligence. Springer-Verlag, 1988, pp. 287-342.
[30] N. Robertson and P. Seymour, "Graph minors II: Algorithmic aspects of treewidth," Algorithms, vol. 7, pp. 309-322, 1986.
[31] C. Berge, Graphs and Hypergraphs. Elsevier, 1973.
[32] C. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J. P. Warners, "Radio Link Frequency Assignment," Constraints, vol. 4, pp. 79-89, 1999.
[33] S. Arnborg, D. Corneil, and A. Proskuroswki, "Complexity of finding embeddings in a k-tree," SIAM Journal of Disc. Math., vol. 8, pp. 277284, 1987.
[34] R. Dechter and J. Pearl, "Tree-Clustering for Constraint Networks," Artificial Intelligence, vol. 38, pp. 353-366, 1989.
[35] R. Dechter and Y. E. Fattah, "Topological Parameters for Time-Space Tradeoff," Artificial Intelligence, vol. 125, pp. 93-118, 2001.
[36] D. J. Rose, "A graph theoretic study of the numerical solution of sparse positive definite systems of linear equations," in Graph Theory and Computing. Academic Press, 1972, pp. 183-217.
[37] C. Lecoutre, C. Likitvivatanavong, S. Shannon, R. Yap, and Y. Zhang., "Maintaining Arc Consistency with Multiple Residues," Constraint Programming Letters, vol. 2, pp. 3-19, 2008.
[38] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais, "Boosting systematic search by weighting constraints," in ECAI, 2004, pp. 146-150.
[39] T. Sang, F. Bacchus, P. Beame, H. Kautz, and T. Pitassi, "Combining Component Caching and Clause Learning for Effective Model Counting," in SAT, 2004.
[40] R. Bayardo and J. Pehoushek, "Counting Models Using Connected Components," in AAAI, 2000, pp. 157-162.
[41] M. Thurley, "sharpSAT - Counting Models with Advanced Component Caching and Implicit BCP," in SAT, 2006, pp. 424-429.
[42] T. Walsh, "SAT v CSP," in CP, 2000, pp. 441-456.
[43] P. Jégou, H. Kanso, and C. Terrioux, "An Algorithmic Framework for Decomposing Constraint Networks." in ICTAI, 2015, pp. 1-8.
[44] S. Karakashian, "Practical Tractability of CSPs by Higher Level Consistency and Tree Decomposition," Ph.D. dissertation, University of Nebraska-Lincoln, USA, 2013.

[^0]: ${ }^{1}$ The 2-section of a hypergraph (X, C) is the graph $\left(X, C^{\prime}\right)$ where $C^{\prime}=$ $\{\{x, y\} \mid \exists c \in C,\{x, y\} \subseteq c\}[31]$.

[^1]: ${ }^{2}$ We assume that $E_{i} \cap E_{p(i)}=\emptyset$ if E_{i} is the root cluster.

[^2]: ${ }^{3}$ See http://www.cril.univ-artois.fr/CPAI08.

