
Hidden Tractable Classes: from Theory to Practice

Achref El Mouelhi Philippe Jégou Cyril Terrioux
Aix-Marseille Université, LSIS UMR 7296

13397 Marseille Cedex 20 (France)
{achref.elmouelhi, philippe.jegou, cyril.terrioux}@lsis.org

Abstract—Tractable classes constitute an important issue in
CP, at least from a theoretical viewpoint. But they are not
actually used in practice. Either their treatment is too costly
for time complexity or, even if there exist efficient algorithms
to manage them, they do not appear in the real problems.
We propose here to address this issue thanks to the notion of
hidden tractable classes. Such classes are based on a known
tractable class C, and a transformation t, and are defined by
sets of instances P such that their transformation using t is
in C, that is t(P) ∈ C. We propose a general framework to
study such notions. After, we focus our study on the tractable
class BTP , and several transformations which are the filterings
classically used in CP. We show then that the use of filterings
allows sometimes to highlight the occurrence of BTP in the
benchmarks generally considered for solver comparisons, i.e.
that BTP is sometimes “hidden” in the benchmarks. Thus, this
approach allows to extend the set of known tractable classes.

I. INTRODUCTION

Constraint Satisfaction Problems (CSPs [1]) constitute
an important formalism of Artificial Intelligence (AI) for
expressing and efficiently solving a wide range of practical
problems. A constraint network (or CSP, abusing words)
consists of a set X of variables, each of which must
be assigned a value in its associated (finite) domain, so
that these assignments together satisfy a finite set C of
constraints.

Deciding whether a given CSP has a solution is an
NP-complete problem. Hence classical approaches to this
problem are based on backtracking algorithms, whose worst-
case time complexity is generally in O(e.dn) with n the
number of variables, e the number of constraints and d the
size of the largest domain. To increase their efficiency, such
algorithms also rely on filtering techniques during search
(among other techniques, such as variable ordering heuristics
or constraint learning). With the help of such techniques,
despite their theoretical time complexity, algorithms such as
Forward Checking [2], RFL (for Real Full Look-ahead [3])
or MAC (for Maintaining Arc Consistency [4]) turn out to
be very efficient in practice on a wide range of practical
problems. Although these methods are effective in prac-
tice, their time complexity is exponential. To ensure better
computation times, many studies have been developed to
highlight tractable classes, that is to say sets of instances
that can be solved in polynomial time. Unfortunately, these
works have often been a theoretical interest only, without

allowing to improve solving capabilities in practice. So,
these classes are not in fact exploited in practice. This is
mainly due to the fact that these classes are often artificial
in the sense that they define instances that do not appear
in practice. In addition, it is quite difficult to integrate the
management of these classes in the solvers of the state of
the art. Indeed, tractable classes are generally handled by ad
hoc algorithms. A first algorithm must decide if an instance
belongs to a given tractable class and then, if so, a second
algorithm solves the instance. The implementation of these
algorithms in solvers thus leads to considerable extra cost,
even if both algorithms are very efficient (e.g. in linear time).
Hence, in our opinion, in order to be exploited during the
solving, the tractable classes must be implicitly handled by
classical solvers (i.e. that these solvers are able to solve the
instances of these classes in polynomial time without any
additional or particular processing). For example, this is the
case of the BTP class [5] whose instances can be solved in
polynomial time by MAC without any additional processing.
Such tractable classes can then be useful to explain the good
efficiency of solvers on some benchmarks.

Here, we choose to study the presence of tractable classes
in benchmarks. The difficulty is to highlight them. A way
which, to our knowledge, has not been studied yet is to
highlight the presence of these classes using the same
filtering techniques as ones exploited in the solvers at each
step or as pre-processing. In addition, we believe that this
allows, after filtering, to highlight the belonging to tractable
classes of the simplified instances. Such classes will be
called hidden tractable classes. To study them, we introduce
a formal framework based on the notion of transformation of
instances. Given a class C and a transformation t, we define
the notion of hidden class C discoverable by a transformation
t. The instances of such classes are instances P such that
t(P) ∈ C. So, if the cost of computing t is polynomial,
t allows to extend the class C. The formal framework we
define allows us to analyse the space of such classes w.r.t.
different classes and different transformations.

To show the interest of such an approach, we will focus
our study on the analysis of the class BTP . This class pos-
sesses several interesting properties in this context. Firstly,
it includes several tractable classes previously defined in the
literature. So, it is a class that can occur more easily in
the benchmarks than some other classes more restrictive. In

addition, it has algorithmic properties that should facilitate
its implicit handling by solvers. On the one hand, a standard
CSP solver based on algorithms such as MAC or RFL can
solve any instance of BTP directly and efficiently without
using specific algorithms. On the other hand, it is well
suited to filtering techniques as the ones achieving reductions
of domains since it is conservative, which means that an
instance belonging to BTP which is filtered turns into a
new simplified instance that still belongs to BTP . From a
practical viewpoint, we show that some benchmarks usually
exploited for solver comparisons belong to BTP or to one
of its hidden class.

The paper is organized as follows. Section II intro-
duces notations and recalls some notions about filtering and
tractable classes. Section III presents our formal framework.
Then we illustrate it by considering the BTP class in section
IV before concluding.

II. BACKGROUND

A. Notations

Formally, a constraint satisfaction problem is a triple
(X,D,C), where X = {x1, . . . , xn} is a set of n variables,
D = (D(x1), . . . , D(xn)) is a list of finite domains of
values, one per variable, and C = {c1, . . . , ce} is a finite set
of e constraints. Each constraint ci is a pair (S(ci), R(ci)),
where S(ci) = {xi1 , . . . , xik} ⊆ X is the scope of ci,
and R(ci) ⊆ D(xi1) × · · · × D(xik) is its compatibility
relation. The arity of ci is |S(ci)|. A CSP is called binary
if all constraints are of arity 2. In this paper, for sake of
simplicity, we only deal with the case of binary CSPs but
the framework we propose can be easily generalized to
constraints of any arity in order to handle tractable classes
involving non-binary CSPs. Hence, we will denote by cij the
constraint involving xi and xj . The structure of a constraint
network is represented by a graph, called the constraint
graph, whose vertices correspond to variables and edges to
the constraint scopes. An assignment on a subset of X is said
to be consistent if it does not violate any constraint. Testing
whether a CSP has a solution (i.e. a consistent assignment
on all the variables) is known to be NP-complete. So, many
works have been realized to make the solving of instances
more efficient in practice, by using optimized backtracking
algorithms jointly with heuristics, constraint learning, non-
chronological backtracking, filtering techniques based on
constraint propagation, etc. The worst time complexity for
these algorithms is naturally exponential, at least in O(e.dn)
where n is the number of variables and d the maximum size
of domains. Despite this exponential complexity, the solvers
have shown in many cases their practical efficiency. This re-
quires in any case the implementation of filtering techniques
which are based on the concept of local consistency.

B. Local Consistencies and Filtering

The most popular and oldest local consistency is called
arc-consistency (AC). Given a binary CSP P = (X,D,C),
a value vi ∈ D(xi) is arc-consistent w.r.t. cij ∈ C iff there
exists a value vj ∈ D(xj) s.t. (vi, vj) ∈ R(cij). Then,
vj ∈ D(xj) is a support of vi for the constraint cij . A
domain D(xi) is arc-consistent w.r.t. cij iff ∀vi ∈ D(xi),
the value vi is arc-consistent w.r.t. cij , and the CSP P is
arc-consistent iff ∀D(xi) ∈ D, the domain D(xi) is arc-
consistent w.r.t. all cij ∈ C. A filtering of domains based
on AC consists in removing the values which do not satisfy
the arc-consistency. AC-2001 [6] is one of the most efficient
algorithm for enforcing arc-consistency. Its time complexity
is O(e.d2). It is really efficient in practice and then it can
also be used during search. Nevertheless, the filtering power
of AC can be really limited because of the local definition of
the consistency. So, more powerful consistencies performing
more powerful filterings have been defined. For example,
Montanari has first defined a generalization which is called
path-consistency (denoted PC [7]). Given two variables xi
and xj , a pair of values (vi, vj) ∈ D(xi) ×D(xj) is path-
consistent iff for any third variable xk ∈ X with cik ∈ C
and cjk ∈ C, there exists a value vk ∈ D(xk) such that
(vi, vk) ∈ R(cik) and (vj , vk) ∈ R(cjk). The value vk is
then called a support of the tuple (vi, vj). Finally, the CSP
is path consistent if any pair of variables (xi, xj) with i 6= j
is path consistent. Note that the filtering associated to PC
deletes tuples in relations (but no value in domains) and
thus, can add new binary constraints in the CSP since if
a binary constraint cij does not appear in an instance, we
consider that the associated relation is the universal relation.
PC can be efficiently achieved using, for example, the
algorithm PC-2001 [6], its time complexity being O(n3.d3).
Since, this filtering does not reduce domains, we can enforce
first path-consistency, and after arc-consistency, using the
local consistency called strong-path-consistency (SPC) in
O(n3.d3). Nevertheless, the practical cost of the associated
filtering is sometimes unrealistic. So, other local consisten-
cies has been defined, as for example, the max-restricted
path-consistency (denoted maxRPC [8]). A value vi ∈ D(xi)
is maxRPC iff for every constraint cij ∈ C there exists a
tuple (vi, vj) ∈ R(cij) such that for every additional variable
xk, there exists a value vk ∈ D(xk) such that if cik ∈ C,
(vi, vk) ∈ R(cik) and if cjk ∈ C, (vj , vk) ∈ R(cjk). The
cost of achieving maxRPC is O(e.n.d2) [8]. Another way
to define local consistencies is based on the subproblem
induced by an assignment xi = vi. For example, a CSP is
singleton arc-consistent (denoted SAC [9]) if for all domains
and then all their values vi ∈ D(xi), the subproblem
induced by the assignment xi = vi has (non-empty) arc-
consistent sub-domains. The time complexity is O(e.n.d3)
[10]. To limit the cost of filtering, the notion of inverse
consistency has been proposed in [11]. For example, for

AC PIC maxRPC SAC SPC

NIC

Figure 1. Relationship between consistencies.

the neighborhood-inverse consistency (denoted NIC [11]),
the filtering of a domain is induced by the compatibility
of values of the associated variable w.r.t. the subproblem
defined by its neighborhood in the network. So, the time
complexity is related to the maximum degree ∆ of a variable
in the constraint network, namely O(∆2.(n + e.d).d∆+1).
Unfortunately, if ∆ is large, the time cost can be prohibitive.
So, a limited version of NIC as been proposed with path-
inverse consistency (denoted PIC [11]). A value vi ∈ D(xi)
is PIC iff for every pair of additional variables xj and xk,
there exist values vj ∈ D(xj) and vk ∈ D(xk) such that
(vi, vj , vk) is a consistent partial assignment. The cost of
achieving PIC is O(en + ed2 + cd3) with c the number of
3-cliques in the constraint graph using the algorithm PIC2
[12]. Note that AC, SAC, NIC, PIC and maxRPC
realize domain filterings while SPC filters both domains
and constraints since it can delete tuples from relations, as
PC does.

An analysis given in [9] presents the comparison between
numerous local consistencies. The comparison is based on
formal relations between consistencies; we recall them. We
say that a consistency CO1 is stronger than a consistency
CO2 (denoted CO2 ≤ CO1) if in any CSP instance P
in which CO1 holds, CO2 holds too. So, any algorithm
achieving CO1 deletes at least the values removed by CO2.
We say that a consistency CO1 is strictly stronger than a
consistency CO2 (denoted CO2 < CO1) if CO2 ≤ CO1

and there is at least one CSP instance P in which CO2 holds
and CO1 does not. Note that these relations are transitive.
Finally, we say that CO1 and CO2 are incomparable if
neither relation between them hold. Figure 1 summarizes
some relations between consistencies: an arc from CO2 to
CO1 (resp. a dashed line between CO1 and CO2) means
that CO1 < CO2 (resp. CO1 and CO2 are incomparable).

C. Tractable Classes

Although the problem CSP is NP-complete, there exist
classes of instances that can be solved in polynomial time.
These classes are called “tractable classes” and rely on some
properties that can be verified by the instances.

Definition 1 (Tractable class): A tractable class for CSP
is a set (possibly infinite) C of instances of CSP such that
there exists two polynomial time algorithms AR and AS

such that for any instance P , AR can decide if P ∈ C and,
if P ∈ C, AS solves P .

Here, we consider the definition proposed in [13] but in
the literature, some authors consider only the fact that a
solving algorithm AS exists.

x1 x3

v3

x2

v1

v2

v'3

x1 x3

v3

x2

v1

v2

v'3

(a) (b)

Figure 2. A non-BTP pattern (a) and a BTP one (b) w.r.t. the order
x1 < x2 < x3.

For CSPs, there are two main kinds of properties to
define tractable classes. The first one concerns the structural
properties of the constraint network. For example, tree-
structured binary CSPs can be solved in linear time [14].
Another kind of properties is related to restrictions on the
language defining the constraints. These restrictions concern
the domains and/or the compatibility relations associated
with the constraints. For example, it is the case for the class
of “0-1-all constraints” [15]. More recently, new tractable
classes have been defined which are related to these two
kinds of properties, such as the BTP class [5]. Their interest
is that they are able to take into account both language
and structure restrictions. They are thus sometimes called
“hybrid classes”. We recall the BTP property:

Definition 2 (Broken Triangle Property [5]): A CSP in-
stance (X,D,C) satisfies the Broken Triangle Property
(BTP) w.r.t. the variable ordering < if, for all triples of
variables (xi, xj , xk) s.t. xi < xj < xk, s.t. (vi, vj) ∈
R(cij), (vi, vk) ∈ R(cik) and (vj , v

′
k) ∈ R(cjk), then either

(vi, v
′
k) ∈ R(cik) or (vj , vk) ∈ R(cjk). If neither of these

two tuples exist, (vi, vj), (vi, vk) and (vj , v
′
k) is called a

Broken Triangle on xk. Let BTP be the set of the instances
for which BTP holds w.r.t. some variable ordering.

The BTP property can be graphically visualized on the
microstructure graph1. E.g. in Figure 2 (a), there is a broken
triangle on x3 with respect to variables x1 and x2 since
we have (v1, v

′
3) /∈ R(c13) and (v2, v3) /∈ R(c23) while in

Figure 2 (b), if one of the two dashed edges (that is binary
tuples) appears in the microstructure, the BTP property holds
independently from the ordering.

III. HIDDEN TRACTABLE CLASSES

The study of tractable classes is an important issue in CP,
at least from a theoretical point of view. But the tractable
classes are not actually explicitly used in practice, or rarely.
Sometimes, their treatment is too costly for time. Or, even if
they can be easily exploited (e.g. in linear time), they seem
to not really appear in real problems, and thus, it is not easily
possible to exploit them with solvers. We propose here to
address this issue thanks to the use of the filterings generally

1The micro-structure [16] of a binary CSP P = (X,D,C) is the graph
µ(P) = (V,E) where V = {(xi, vi) : xi ∈ X, vi ∈ D(xi)} and
E = { {(xi, vi), (xj , vj)} : i 6= j, cij /∈ C or (vi, vj) ∈ R(cij)}.

used in CP solvers as AC or more powerful filterings.
Indeed, some tractable classes can be sometimes ”hidden”
in the instances while they could be ”discovered” by the
means of filterings. To this end, we propose in this section,
a general framework which can be used for any tractable
class and any kind of transformation of instances, as the
filterings for example.

Definition 3: Given an instance P = (X,D,C),
t is called a transformation of P if t(P) =
(tvar(X), tdom(D), tcons(C)) verifies:
• tvar(X) ⊆ X
• tdom(D) = (tdom(D(x)) : x ∈ tvar(X) and
tdom(D(x)) ⊆ D(x))

• ∀ci ∈ C, tcons(ci) verifies:
– tcons(S(ci)) = S(ci)\{x ∈ X : x /∈ tvar(X)} and
– tcons(R(ci)) ⊆ R(ci)[tcons(S(ci))] with R(c)[Y]

the projection of R(c) to the variables of Y .
• ∀c′ ∈ tcons(C) such that c′ /∈ C, tcons(R(c′)) ⊆∏

x′∈S(c′) tdom(D(x′)).
Note that if a constraint c′ of tcons(C) is not in C, its

relation is a subrelation of the universal relation associated
to the scope S(c′) which is implicitly defined in P .

As classical transformations of instances, we find gen-
erally the deletion of variables, the deletion of values, the
addition of constraints, and the deletion of tuples in compat-
ibility relations of constraints. Filterings correspond to the
deletion of values but also to the addition of constraints with
deletion of tuples. Moreover, the assignments of variables
can be considered as particular cases of filterings since
an assignment xi = vi can be considered as the filtering
achieving tdom(D(xi)) = {vi}. Here, we have considered
transformations defined by simplifications of instances. But
we could define transformations more generally, e.g. based
on the addition of new variables and new values in the
domains, as well as the addition of tuples in existing
relations or the removal of constraints. Finally, note that
some classical properties of the transformations of instances,
as the preservation of the satisfiability or the preservation of
the set of solutions are not required here.

Definition 4: Given a transformation t and a set (also
called a class) of instances P we have t(P) = {t(P) :
P ∈ P}.

So, given a transformation t and a class of instances C,
it is possible that an instance P which does not belong to
C appears in C after a transformation obtained by t. The
belonging of a such instance will be then brought to light
by t:

Definition 5: Given a transformation t and a class of
instances C, the class of instances brought to light by t for
C is Ct = {P : t(P) ∈ C}.

So, we can introduce the notion of hidden (tractable)
class:

Definition 6: Given a set P of instances of CSP, a trans-

formation t and a class C, P is called hidden class of C
for t, if t(P) ⊆ C, that is if P ⊆ Ct. P is called hidden
tractable class of C for t if t preserves the consistency and
can be achieved in polynomial time and C is tractable.

In case an instance P ∈ P such that P is a hidden class
of C for a filtering t, and if C is a tractable class, it is
then sufficient to apply the filtering t to achieve a simplified
version of P which then belongs to a tractable class.
Assuming that the cost of the filtering t is polynomial, P is
thus a tractable class. This kind of approach is particularly
adapted to the solvers of the state of the art because they
generally use filterings during search.

Like for local consistencies and associated filterings, we
can define comparisons between classes modified by the
mean of transformations.

Definition 7: Given two transformations t1 and t2, and
two classes C1 and C2, we say that Ct22 is larger than Ct11

(denoted Ct11 ≤ C
t2
2) if Ct11 ⊆ C

t2
2 . Moreover, we say that

Ct22 is strictly larger than Ct11 (denoted Ct11 < Ct22) if Ct11 (
Ct22 , and we say that Ct11 and Ct22 are incomparable (denoted
Ct11 ⊥ C

t2
2) if neither relation between them holds. Finally,

we say that Ct11 and Ct22 are equal (denoted Ct11 = Ct22) if
Ct11 ≤ C

t2
2 and Ct22 ≤ C

t1
1 .

Property 1: For any classes C1 and C2 such that C1 ⊆ C2,
and for any transformation t, we have Ct1 ≤ Ct2.
Proof: Let P ∈ Ct1. By definition, t(P) ∈ C1. Since C1 ⊆ C2,
we have t(P) ∈ C2, and then P ∈ Ct2. Thus Ct1 ⊆ Ct2, and
we have Ct1 ≤ Ct2. 2

Note that if C1 (C2, we have not necessarily Ct1 < Ct2.
For example, if t is the transformation of binary CSPs that
computes the minimal CSP [7] of any binary instance, and if
C1 is the class of minimal binary CSPs while C2 is the class
of arc-consistent binary CSPs (including CSPs with empty
domains), we have C1 (C2 because any minimal CSP is
arc-consistent, while Ct1 = Ct2.

The aim of the study of transformations is to highlight
classes of instances that become tractable once transformed.
To be suitable for implementation in solvers that perform
a sequence of transformations (e.g. AC filtering in MAC
or RFL), it would be desirable to use transformations that
do not endanger the properties of the considered tractable
class. In other words, we want to exclude the transformations
t such that given a tractable class C and an instance P ∈ C,
we have t(P) /∈ C. This question has been addressed in
[5] using the definition of classes which are conservative
with respect to the restriction of domains (precisely closed
under domain restriction). We generalize this notion to any
transformation.

Definition 8: A class C of instances of CSP is called
conservative w.r.t. a transformation t if it is closed for t,
i.e. ∀P ∈ C, t(P) ∈ C (or t(C) ⊆ C).

Some properties can be directly inferred from this notion:
Property 2: Any class of instances C is conservative w.r.t.

the identity mapping (denoted Id), that is Id(C) ⊆ C.

In [5], this concept has been used in the case of domain
filtering:

Property 3 ([5]): The tractable class BTP is conserva-
tive w.r.t. the filtering of domains.

Beyond the filterings, this concept can also be exploited
by considering the deletions of variables related to structural
properties of constraint networks:

Property 4: The class TREE (defined as the set of
acyclic binary CSPs) is conservative w.r.t. any transforma-
tion of instances which deletes some variables (vertices in
the constraint graph).

Other properties can be inferred using the comparison
between classes modified by the mean of transformations.

Property 5: If C is conservative w.r.t. a transformation t,
then C ⊆ Ct.
Proof: Let P ∈ C. Since C is conservative for t, t(P) ∈ C,
and thus P ∈ Ct. 2

Corollary 1: If C is conservative w.r.t. a transformation t,
then CId ≤ Ct.
Proof: Since C ⊆ Ct and CId = C, we have CId ⊆ Ct. 2

If we consider some kinds of transformations, one can
deduce more specific properties, as is the case for filtering:

Property 6: Let t1 and t2 be two transformations which
are filterings such that t1 ≤ t2. For any class C which is
conservative w.r.t. t1 and t2, we have Ct1 ≤ Ct2 .
Proof: Let P ∈ Ct1 , we show that P ∈ Ct2 .
Since P ∈ Ct1 , we have t1(P) ∈ C. Moreover, since
t1 ≤ t2, t2(t1(P)) = t2(P). So, since t1(P) ∈ C, and
since C is conservative w.r.t. t2, t2(t1(P)) ∈ C, and thus
t2(P) = t2(t1(P)) ∈ C. Thus P ∈ Ct2 . 2

One can note that this property is not verified for strict
relations. Indeed, we can define classes of instances C which
are conservative w.r.t. t1 and t2 such that t1 < t2, while
Ct1 < Ct2 is false. E.g. if C is the class of all CSPs, and if
t1 = AC and t2 = SAC, by property 5, we have Ct1 = C
and Ct2 = C.

Although some general properties cannot hold, we can
give some examples of such relations with different trans-
formations and different classes:

Example 1 (Ct1 < Ct2): Consider C = BTP which is
conservative w.r.t. t1 = Id and t2 = AC. We know that
t1 < t2, but we have Ct1 < Ct2 , that is BTP Id < BTPAC .

Note that Id is not a local consistency, but we can define
for the associated transformation the empty property which
is universally satisfied.

Example 2 (Ct1 < Ct2): Consider C1 = TREE and C2 =
BTP . From [5], we know that the class TREE (BTP .
Moreover, TREE and BTP are conservative w.r.t. t = AC.
We have Ct1 < Ct2, that is TREEAC < BTPAC .

Example 3 (Ct11 = Ct22): Here t1 = DCC is any transfor-
mation of instances which deletes the vertices of a cycle-
cutset of binary CSPs and t2 = Id, and C1 = TREE while
C2 = CSP , the set of all possible instances of binary CSPs.

We have Ct11 ≤ C
t2
2 , that is TREEDCC ≤ CSP Id. But

we have also Ct22 ≤ Ct11 that is CSP Id ≤ TREEDCC .
Of course, if CSP Id is a hidden class, it is not a hidden
tractable class. Likewise, TREEDCC is a hidden class but
not a hidden tractable class since DCC does not preserve
the consistency.

The use of transformations such as DCC is close to the
notion of backdoor [17]. A backdoor is a set of variables
defined w.r.t. a particular algorithm such that once the
backdoor variables are assigned, the problem becomes easy
under that algorithm. For example, once that the variables
of a cycle-cutset are assigned, using a MAC-(or RFL-)like
algorithm, the induced subproblem can be solved in linear
time [18]. This approach is a first way to exploit tractable
classes which are hidden or not. In this paper, we will
consider another way to exploit hidden classes which is
related to transformations based on filterings. While it could
be possible to consider different classes, our study is based
here on the class BTP because it is well known to be an
important tractable class for the CSP problem.

IV. THE CASE OF BTP

A. Theoretical results

We first remind known results about the relationship of
the classes RRM 2, TREE and DUALTREE3 introduced
in [5] and the class BTP .

Theorem 1 ([5]): (i) RRM Id < BTP Id.
(ii) TREEId < BTP Id.

(iii) DUALTREEId < BTP Id.
Then, we are interested to the relationship between BTP

and some of its hidden classes. Here, we focus our study on
transformations based on filtering.

Theorem 2: (i) BTP Id < BTPAC < BTPPIC <
BTPmaxRPC < BTPSAC .

(ii) BTPmaxRPC < BTPNIC .
(iii) BTPSAC ⊥ BTPNIC .
Proof: Property 3 holds notably for AC. So we have
BTP Id ≤ BTPAC according to Corollary 1. If we consider
the instance L2,2 of Langford’s number problem4, we can
note that it is not BTP but is arc-inconsistent and so trivially
belongs to BTPAC . So BTP Id < BTPAC .

According to Properties 3 and 6 and the relation-
ship between consistencies depicted in Figure 1, we have
BTPAC ≤ BTPPIC ≤ BTPmaxRPC ≤ BTPSAC and

2A binary CSP P = (X,D,C) belongs to the renamable right monotone
class (denoted RRM) w.r.t. a variable ordering < if, for 2 ≤ j ≤ n, each
domain D(xj) can be ordered by lj s.t. for each constraint cij of C
with xi < xj , ∀vi ∈ D(xi), vj , v

′
j ∈ D(xj), if (vi, vj) ∈ R(cij) and

vj lj v
′
j then (vi, v

′
j) ∈ R(cij).

3A binary CSP belongs to the DUALTREE class if it is the dual of
a tree-structured instance.

4The instance Lk,m of the Langford’s number problem (for more details,
see problem 024 at CSPLib [19]) consists in arranging k sets of numbers
{1, . . . ,m} such that each appearance of the number i is i numbers after
the previous one.

BTPmaxRPC ≤ BTPNIC . If we consider the queens
problem for 4 queens, it belongs to BTPPIC but not
to BTPAC . So BTPAC < BTPPIC . Likewise we can
consider the instance L3,4 (respectively L3,5 and L2,14) to
show BTPPIC < BTPmaxRPC (resp. BTPmaxRPC <
BTPSAC and BTPmaxRPC < BTPNIC).
L2,5 is in BTPNIC but not in BTPSAC . Conversely,

Figure 3(e) of [9] depicts an instance belonging to BTPSAC

but not to BTPNIC . So BTPSAC ⊥ BTPNIC . 2

We can note, as mentioned in the previous proof, that
the relationship between BTP and its hidden classes are
closely related to one between the consistencies depicted
in Figure 1. As recalled in this figure, we also know that
SAC < SPC. Unfortunately, this result cannot be exploited
because, to do so, we need the class BTP to be conservative
w.r.t. SPC, what is not the case. Indeed, achieving PC
can delete tuples in relations, namely the pairs of values
(vi, vj) ∈ R(cij) which have no support w.r.t. a variable xk.
So, this filtering can invalidate the BTP property. The next
theorem formalizes this assertion.

Theorem 3: BTP is not conservative w.r.t. PC, neither to
SPC.
Proof: This is proved using a counterexample with 4 vari-
ables, x1, x2, x3 and x4 s.t. the variable x3 must be in last
rank in the ordering to satisfy BTP (at least after x1 and x2).
Figure 3 shows independent parts of its microstructure. First,
in Figure 3 (a), we have two broken triangles on x1 and x2.
For this we need 8 values (8 vertices in the microstructure)
and 6 binary tuples (6 edges). Secondly, in Figure 3 (b), we
have 4 values, and 5 binary tuples (5 edges). The dashed
edges correspond to the edges which are necessary to satisfy
BTP. Considering the ordering x4 < x1 < x2 < x3, it is
easy to see that this (partial) instance satisfies BTP. However,
a PC filtering will remove all tuples since no tuple has a
support in the domain of x4, and therefore, BTP will be
satisfied after the filtering. So, we add values and tuples such
that all edges of the microstructure are not deleted after a
PC filtering, except the dashed edges. In this way, the two
broken triangles in Figure 3 (a) will not be deleted and a
new broken triangle on x3 will appear in Figure 3 (b). Thus,
there will be no ordering on x1, x2 and x3 allowing to satisfy
BTP. So, for each edge (except the dashed ones), we add two
values, one in each domain of the two other variables. E.g.
for an edge from x1 to x2, we add one value in the domain
of x3 and one value in the domain of x4. Finally, we add 5
edges to connect these 4 values, achieving a 4-clique (with
6 edges) since they mutually satisfy PC. By this way, after
a PC filtering, none of these 6 edges will be deleted. So,
for the 9 edges which are not dashed, we add 9× 2 vertices
and 9 × 5 edges. Globally, we have a microstructure with
12 + (9× 2) = 30 vertices and 11 + (9× 5) = 56 edges.

This instance satisfies BTP before filtering. Indeed, it is
sufficient to consider the ordering x4 < x1 < x2 < x3

x1 x3

x4

x2

x1 x3

x4

x2

(a) (b)

Figure 3. (a) Two broken triangles on x1 and x2, (b) a BTP pattern in
x3 thanks to the two dashed edges.

where no broken triangle appears. By cons, a PC filtering
will only remove the two dashed edges so that BTP is finally
not satisfied, since their deletion creates a broken triangle
on x3 with respect to the variables x1 and x2 while the two
broken triangles on x1 and x2 are kept. Hence BTP is not
conservative w.r.t. PC.

As the built instance is also arc-consistent, it is strong
path-consistent. So BTP is not conservative w.r.t. SPC. 2

So, as BTP is not conservative w.r.t. PC, neither SPC,
we obtain the following theorem:

Theorem 4: (i) BTP Id ⊥ BTP (S)PC .
(ii) For any filtering φ ∈ {AC,PIC,maxRPC, SAC,

NIC}, BTPΦ ⊥ BTP (S)PC .
(iii) BTPPC < BTPSPC .
Proof: The instance built in the previous proof allows to
establish that BTP Id 6⊆ BTP (S)PC . Likewise, for any
filtering φ ∈ {AC,PIC,maxRPC, SAC,NIC}, we have
BTPΦ 6⊆ BTP (S)PC .

Conversely, the instance L2,3 belongs to BTPPC and
BTPSPC thanks to some tuple deletions. So it can-
not belong to BTP Id or to BTPΦ for any filtering
φ ∈ {AC,PIC,maxRPC, SAC,NIC}. Hence we have
BTP Id ⊥ BTP (S)PC and BTPΦ ⊥ BTP (S)PC .

Now we prove that BTPPC < BTPSPC . Let us consider
an instance P of BTPPC . By definition, PC(P) ∈ BTP .
As it is well known that SPC(P) = AC(PC(P)) [20]
and as BTP is conservative w.r.t. AC, SPC(P) ∈ BTP .
Hence BTPPC < BTPSPC . 2

Now we establish the relationship between BTP and
DBTP 5 which has been proposed in [21] to extend the
BTP property to non-binary CSPs.

Theorem 5: (i) BTP Id ⊥ DBTP Id.
(ii) BTPAC ⊥ DBTPAC .

(iii) DBTP Id < DBTPAC .
Proof: Theorem 11 of [21] states precisely that BTP Id ⊥
DBTP Id.

A consequence of Lemma 5 of [21] is that any arc-
consistent binary instance which satisfies BTP and has two
broken triangles for two different variables of a same triple

5A CSP P satisfies the Dual Broken Triangle Property (DBTP) w.r.t. the
constraint ordering ≺ iff the dual of P satisfies BTP w.r.t. ≺.

of variables cannot satisfy DBTP [21]. Hence BTPAC 6⊆
DBTPAC . Conversely, any arc-consistent DBTP instance
with at least one non-binary constraint cannot belong to
BTPAC . So BTPAC ⊥ DBTPAC .

As DBTP is conservative w.r.t. AC (Property 1 of [21]),
we have DBTP Id ≤ DBTPAC according to Corollary 1.
As L4,3 belongs to DBTPAC , but not to DBTP Id, we
have DBTP Id < DBTPAC . 2

These results are summed up by Figure 4 where an arc
from Ct22 to Ct11 (resp. a dashed line between Ct11 and Ct22)
means that Ct11 < Ct22 (resp. Ct11 ⊥ C

t2
2).

Finally, we consider the solving of instances from BTP
by classical algorithms like MAC or RFL. Theorem 7.6
of [5] states that MAC solves any instance of BTP in
polynomial time. This result also holds for RFL since it
only needs AC to be enforced at each step of the search. It
can be also extended to the BTPAC hidden class.

Theorem 6: MAC (resp. RFL) solves any instance from
BTPAC in polynomial time without having to enforce AC
as pre-processing.
Proof: Let us consider an instance P from BTPAC . We can
remark that assigning a value v to a variable x can be seen
as removing all the values except v from the domain of x
and that, after removing any values from P and enforcing
AC, the resulting instance is necessarily BTP.

When solving P , MAC chooses a first variable x, assigns
a value v to it and enforces AC. At this step, if no domain
is empty, we know that a solution exists with the current
assignment and MAC will find it in polynomial time like
described in the proof of Theorem 7.6 of [5]. If a domain
becomes empty, MAC considers the negative decision x 6= v
and again enforces AC. If there is no empty domain, MAC
will find a solution in polynomial time like previously.
Otherwise, no solution exists and the search stops. So, MAC
solves P in polynomial time.

We reason in similar way for RFL, except that we have
to consider, in the worst case, all the values of the first
chosen variable. 2

B. BTP in the benchmarks

Now, we wonder whether some instances usually ex-
ploited as benchmarks for solver comparisons belong to
the BTP class or to one of its hidden classes. With this
aim in view, we consider 2,681 binary benchmarks of the
CSP 2008 Competition6 and some of the most classical
filterings, namely AC, PIC, maxRPC, SAC, NIC and
SPC. For each instance, we check if the original instance
and the instances obtained by applying one of the considered
filtering belong to BTP . Checking whether an instance
belongs to BTP has been performed as described in the
proof of Theorem 3.2 of [5].

6See http://www.cril.univ-artois.fr/CPAI08 for more details.

Table I provides the number of instances which belong
to BTP or to one of its considered hidden classes and the
number of these instances which are consistent w.r.t. the
corresponding filtering. We can note that without any trans-
formation, only 12 instances are BTP . In contrast, thanks
to the exploitation of hidden classes, we can establish that
more instances belong to a tractable class. For instance, 550
benchmarks (among which 47 are SAC-consistent) belong to
the BTPSAC class. Of course, we can observe that the more
powerful the filtering is, the larger the corresponding hidden
class is. Hence, naturally, the largest numbers of benchmarks
belonging to a hidden class are reached by NIC and SPC.

Table II gives the names of some instances which belong
to BTP or to one of its hidden classes. First, we can note
the diversity of these instances (academic, random or real-
world instances). Then, the presented results also highlight
the fact that BTP is a hybrid tractable class. Indeed, some
instances belong to BTP thanks to their particular structure
(i.e. their constraint graph is acyclic) like hanoi-3 ext or
graph12-w0 while others like pigeons-20-ord are BTP due
to their particular relations.

Finally, from the viewpoint of the solving, the belonging
to the BTP class or to one of its hidden classes may explain
the efficiency of most solvers on these benchmarks. Indeed,
in [5] (Theorem 7.6), it has been shown that MAC can solve
any BTP instance in polynomial time without any additional
processing. This result can be easily extended to RFL and
more generally to any algorithm which maintains at each
node a level of consistency (based only on value deletion)
at least as powerful as arc-consistency. As most solvers
of the state of the art exploit such a level of consistency,
they are able to solve BTP instances in polynomial time.
It is the same for instances belonging to a hidden class of
BTP as soon as the solver enforces the suitable consistency
as pre-processing, except for the class BTPAC for which
no pre-processing is required as stated in Theorem 6. For
example, MAC and RFL solve the large-80-sat ext instance
in a backtrack-free manner independently from the chosen
variable heuristic.

V. CONCLUSION

In this paper, we have studied the notion of hidden
tractable class in relation to the methods used in CSP solvers
of the state of the art. If the concept of Hidden Structure
has already been discussed in [17] with the notions of
backbones and backdoors, we treat it differently here while
introducing a framework that seems more general. To this
aim, we have introduced a formal framework for defining
the notion of hidden class discoverable by transformations
of instances. This framework allows to cover the concept
of Hidden Structure proposed in [17] but also helps to
develop other approaches. In particular, we have studied
the notion of discoverable tractable classes with filterings,
filterings being special cases of transformations. Specifically,

BTP Id

DBTP Id DBTPAC

TREEId

RRM Id

DUALTREEId

BTPAC BTP PIC BTPmaxRPC BTP SAC

BTP SPCBTP PC

BTPNIC

Figure 4. Relationship between classes around BTP.

Table I
NUMBER OF INSTANCES WHICH BELONG TO BTP OR TO ONE OF ITS HIDDEN CLASSES AND NUMBER OF THESE INSTANCES WHICH ARE CONSISTENT

W.R.T. THE CORRESPONDING FILTERING.

BTP BTPAC BTPPIC BTPmaxRPC BTPSAC BTPNIC BTPSPC

inst. 12 191 400 493 550 900 594
cons. - 46 47 47 47 83 71

Table II
SOME INSTANCES WHICH BELONG TO BTP OR TO ONE OF ITS HIDDEN CLASSES.

Instances BTP BTPAC BTPPIC BTPmaxRPC BTPSAC BTPNIC BTPSPC

bqwh-15-106-43 ext no no no no no no yes
domino-100-100 no yes yes yes yes yes yes

ehi-90-315-96 ext no no yes yes yes yes yes
ehi-90-315-97 ext no no no yes yes yes yes
fapp17-0300-10 no yes yes yes yes yes yes

graph12-w0 yes yes yes yes yes yes yes
hanoi-3 ext yes yes yes yes yes yes yes
langford-4-8 no no no no no yes yes

large-80-sat ext no yes yes yes yes yes yes
os-taillard-4-95-0 no no no no yes yes yes
pigeons-20-ord yes yes yes yes yes yes yes

queens-4 no no yes yes yes yes yes
rand-23-23-253-131-48021 ext no no no no no yes no
rand-2-40-180-84-900-93 ext no no no no yes no yes

will199GPIA-6 no no no no no yes no

we have illustrated our approach on the class BTP [5]. From
a practical viewpoint, we have shown that some instances
among the benchmarks classically used by the community,
belong to BTP after applying standard filterings (like AC,
SAC, PIC, etc.).

However, our work is limited to the tractable class BTP
and to some filterings. A natural way to extend this work
would be to analyze other tractable classes, including classes
defined for CSPs with constraints of arbitrary arity and their
associated filterings. Another promising approach would
be to proceed to a further analysis of the solving steps
during search. Algorithms such as MAC or RFL operate
by performing sequences of transformations of instances
(variable assignments). So, it is possible that their efficiency
is due to the fact that for some nodes of the search trees, once
processed, the resulting instances belong to hidden tractable
classes discoverable by these processing steps. Thanks to this
analysis, it would be also possible to highlight new tractable
classes based on the analysis of instances easily solved by
standard algorithms, considering instances that seem to not

belong explicitly to known tractable classes. Also, a formal
study between backdoors and hidden tractable classes need
also to be developed. Finally, the concept of transformation
of instances was introduced here restrictively since it is
essentially defined by simplifications of instances. It would
be interesting to extend it, for example by considering
transformations adding variables or values, and also using
constraint relaxation. Such an analysis could perhaps allow
to define new tractable classes which could be discoverable
using these new transformations.

ACKNOWLEDGMENTS

This work was supported by the French National Research
Agency under grant TUPLES (ANR-2010-BLAN-0210).

REFERENCES

[1] F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint
Programming. Elsevier, 2006.

[2] R. Haralick and G. Elliot. Increasing tree search efficiency
for constraint satisfaction problems. Artificial Intelligence,
14:263–313, 1980.

[3] B. Nadel. Tree Search and Arc Consistency in Constraint-
Satisfaction Algorithms, pages 287–342. In Search in Artifi-
cial Intelligence. Springer-Verlag, 1988.

[4] D. Sabin and E. Freuder. Contradicting Conventional Wisdom
in Constraint Satisfaction. In Proceedings of ECAI, pages
125–129, 1994.

[5] M. Cooper, P. Jeavons, and A. Salamon. Generalizing
constraint satisfaction on trees: hybrid tractability and variable
elimination. Artificial Intelligence, 174:570–584, 2010.

[6] C. Bessière, J.-C. Régin, R.H.C. Yap, and Y. Zhang. An
optimal coarse-grained arc consistency algorithm. Artificial
Intelligence, 165(2):165–185, 2005.

[7] U. Montanari. Networks of Constraints: Fundamental Prop-
erties and Applications to Picture Processing. Artificial
Intelligence, 7:95–132, 1974.

[8] R. Debruyne and C. Bessière. From restricted path consis-
tency to max-restricted path consistency. In Proceedings of
CP, pages 312–326, 1997.

[9] R. Debruyne and C. Bessière. Domain Filtering Consisten-
cies. JAIR, 14:205–230, 2001.

[10] C. Bessière and R. Debruyne. Optimal and suboptimal
singleton arc consistency algorithms. In Proceedings of
IJCAI, pages 54–59, 2005.

[11] E. Freuder and C.D. Elfe. Neighborhood inverse consistency
preprocessing. In Proceedings of AAAI, pages 202–208, 1996.

[12] R. Debruyne. A property of path inverse consistency for
constraint satisfaction. In Proceedings of ECAI, pages 88–
92, 2000.

[13] G. Gottlob, N. Leone, and F. Scarcello. A Comparison of
Structural CSP Decomposition Methods. Artificial Intelli-
gence, 124:343–282, 2000.

[14] E. Freuder. A Sufficient Condition for Backtrack-Free Search.
JACM, 29 (1):24–32, 1982.

[15] M. Cooper, D. Cohen, and P. Jeavons. Characterising
Tractable Constraints. Artificial Intelligence, 65(2):347–361,
1994.

[16] P. Jégou. Decomposition of Domains Based on the Micro-
Structure of Finite Constraint Satisfaction Problems. In
Proceedings of AAAI, pages 731–736, 1993.

[17] R. Williams, C. P. Gomes, and B. Selman. Backdoors to
typical case complexity. In Proceedings of IJCAI, pages
1173–1178, 2003.

[18] R. Dechter and J. Pearl. The Cycle-cutset method for Improv-
ing Search Performance in AI Applications. In Proceedings
of IEEE Conference on Artificial Intelligence Applications,
pages 224–230, 1987.

[19] CSPLib: A problem library for constraints. http://www.csplib.
org.

[20] C. Lecoutre. Constraint Networks - Techniques and Algo-
rithms. ISTE/Wiley, 2009.

[21] A. El Mouelhi, P. Jégou, and C. Terrioux. A Hybrid Tractable
Class for Non-Binary CSPs. In Proceedings of ICTAI, pages
947–954, 2013.

