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Abstract—Find new islands of tractability, that is classes of
CSPs for which polytime algorithms exist, is a fundamental task
in the study of constraint satisfaction problems. The concept of
hybrid tractable class, which allows to deal simultaneously with
the restrictions of languages and, for example, the satisfaction
of structural properties, is an approach which has already
shown its interest in this domain. Here we study a hybrid class
for non-binary CSPs. With this aim in view, we consider the
tractable class BTP introduced in [1]. While this class has been
defined for binary CSPs, the authors have suggested to extend
it to CSPs with constraints of arbitrary arities, using the dual
representation of such CSPs. We develop this idea by proposing
a new definition without exploiting the dual representation,
but using a semantic property associated to the compatibility
relations of the constraints. This class, called DBTP for Dual
BTP, is firstly shown to be tractable. Then it is compared
to some known classes. In particular, we prove that DBTP is
incomparable with BTP and that it includes some well known
classes of CSPs such as β-acyclic CSPs.

I. INTRODUCTION

A CSP instance P = (X,D,C) is defined by a set
X of n variables (denoted x1, ..., xn), a set of domains
D = {d1, ..., dn} (di is the set of the possible values for the
variable xi) and a set C of e constraints (denoted c1, ..., ce).
Each constraint ci involves a set of variables called the
scope of ci and denoted S(ci). A constraint ci allows a set
of tuples over

∏
xj∈S(ci)

dj defined by the relation R(ci).
ri = |S(ci)| is the arity of the constraint ci while r denotes
the largest arity and ρ = max{|R(ci)|} the size of the
largest relation. Usually, we distinguish binary constraints
whose arity is equal to 2 from non-binary ones (also called n-
ary). Likewise, binary CSPs (CSPs where the constraints are
binary) are considered separately from CSPs with constraints
of arbitrary arities. For binary CSPs, we will denote by cij
the constraints involving xi and xj . For both binary CSPs
and CSPs of arbitrary arity, the problem of finding a solution
(i.e. an assignment of a value to each variable which satisfies
all the constraints) is NP-Complete.

Although the problem CSP is NP-complete, there exist
classes of instances that can be solved (and often recognized)
in polynomial time. These classes are called “tractable
classes” and rely on some properties that can be verified
by the instances. There are two main kinds of such prop-

erties. The first one concerns the structural properties of
the constraint network. For example, we know that tree-
structured binary CSPs can be solved in linear time [2].
Another kind of properties is related to restrictions on the
language defining the constraints. These restrictions concern
the domains and/or the compatibility relations associated
with the constraints. For example, it is the case for the class
of “0-1-all constraints” [3]. More recently, some tractable
classes have been proposed which are related to these two
kinds of properties, such as the BTP class [1]. Their interest
is that they are able to take into account both language
and structure restrictions. They are thus sometimes called
“hybrid classes”.

In this paper, we study a hybrid tractable class called
DBTP for Dual Broken Triangle Property. So, this class
is based on the concept of “Broken Triangle” which is
the basis of BTP. While BTP is only defined for binary
constraints, DBTP is defined for CSPs whose constraints
have arbitrary arities. Using the dual representation of CSPs,
we can consider that this class has been firstly (and briefly)
proposed in [1], as a non-binary version of BTP. However,
we can also define DBTP by a semantic property related to
the compatibility of tuples appearing in triples of relations
associated to constraints, without an explicit link to the
dual representation. But we show that these two definitions
are equivalent (see Theorem 3). Nevertheless, DBTP is
a tractable class quite different from BTP. For example,
we prove that DBTP is not a generalization of BTP to
constraints of arbitrary arity since in the case of binary
CSPs, BTP and DBTP are formally different (see Theorem
11). Another example of these differences is related to the
fact that DBTP is a conservative property for the filtering
of domains and for the filtering of relations while BTP is
conservative only for the filtering of domains. Moreover,
we show that this tractable class includes simultaneously,
structural classes such as β-acyclic CSPs but also classes
defined by language restrictions. We also establish that
DBTP is incomparable with many well known tractable
classes (e.g. ZOA [3], row-convex [4] or max-closed [5]).

As mentioned above, we prove that DBTP is a con-
servative property for many classical filterings like arc-
consistency or pairwise consistency. It ensues that DBTP



seems to have a real practical interest since any instance
satisfying DBTP can be solved in polytime using algorithms
similar to MAC [6].

This paper is organized as follows. In section II, we
introduce the class DBTP and provide its main features.
Then in section III, we study the relationship between BTP
and DBTP and show that DBTP includes β-acyclic CSPs.
Section IV examines the relationship between DBTP and
other well known tractable classes. Finally, we conclude and
give some perspectives in section V.

II. DBTP: DEFINITION AND PROPERTIES

First, we recall the BTP property on which the DBTP
property relies:

Definition 1 (Broken Triangle Property [1]): A CSP in-
stance (X,D,C) satisfies the Broken Triangle Property
(BTP) w.r.t. the variable ordering < if, for all triples of
variables (xi, xj , xk) s.t. xi < xj < xk, s.t. (vi, vj) ∈
R(cij), (vi, vk) ∈ R(cik) and (vj , v

′
k) ∈ R(cjk), then either

(vi, v
′
k) ∈ R(cik) or (vj , vk) ∈ R(cjk). If neither of these

two tuples exist, (vi, vj), (vi, vk) and (vj , v
′
k) is called a

Broken Triangle on xk. Let BTP be the set of the instances
for which BTP holds w.r.t. some variable ordering.

The BTP property is relative to the compatibility between
the values of domains which can be graphically visualized on
the micro-structure graph1. As each of these compatibilities
involves as many values as the arity of the considered
constraint, such a property cannot be easily generalized
to non-binary CSPs. So a natural alternative2 consists in
considering the compatibilities between the relations through
the notion of dual of a CSP instance. The dual of the CSP
P = (X,D,C) is the binary CSP P d = (Xd, Dd, Cd)
where each constraint ci of C is associated to the variable
xdi of Xd whose domain ddi is defined by the tuples ti of
R(ci) s.t. ∀xj ∈ S(ci), ti[{xj}] ∈ dj (where t[Y ] denotes
the restriction of the tuple t to the variables of the subset
Y ⊆ X), and a constraint cdij of Cd links two variables xdi
and xdj of Xd if the corresponding constraints ci and cj of
C share at least a variable (i.e. S(ci) ∩ S(cj) 6= ∅). The
relation R(cd) is defined by the tuples (ti, tj) ∈ ddi × ddj s.t.
ti[S(ci)∩ S(cj)] = tj [S(ci)∩ S(cj)]. It is well known that,
for any CSP P , P has a solution iff P d has a solution.

We now define the DBTP property:
Definition 2 (Dual Broken-Triangle Property): A CSP

P = (X,D,C) satisfies the Dual Broken Triangle
Property (DBTP) w.r.t. the constraint ordering ≺ iff the
dual of P satisfies BTP w.r.t. ≺. Let DBTP be the set of
the instances for which the DBTP property holds for some
constraint ordering.

1The micro-structure [7] of a binary CSP P = (X,D,C) is the undi-
rected graph µ(P ) = (V,E) where V = {(xi, vi) : xi ∈ X, vi ∈ di}
and E = { {(xi, vi), (xj , vj)} : i 6= j, cij /∈ C or (vi, vj) ∈ R(cij)}

2Such an idea has already been introduced in [1] but it was just mentioned
briefly and thus, it was not studied in depth.
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Figure 1. Illustration of DBTP on the constraints c1, c2 and c3.
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Figure 2. An instance which satisfies DBTP (a) but not BTP (b).

We can observe graphically the DBTP property on the
micro-structure of the dual of the original instance. For
instance, Figure 1(a) represents the micro-structure of the
dual instance of a CSP P with three constraints c1, c2 and
c3. In this example, we consider four tuples, t1 ∈ R(c1),
t2 ∈ R(c2) and t3, t

′
3 ∈ R(c3) s.t. t1[S(c1) ∩ S(c2)] =

t2[S(c1) ∩ S(c2)], t1[S(c1) ∩ S(c3)] = t3[S(c1) ∩ S(c3)],
t2[S(c2) ∩ S(c3)] = t′3[S(c2) ∩ S(c3)], t1[S(c1) ∩ S(c3)] 6=
t′3[S(c1)∩S(c3)] and t2[S(c2)∩S(c3)] 6= t3[S(c2)∩S(c3)].
If we consider the ordering c1 ≺ c2 ≺ c3, P does not satisfy
DBTP w.r.t. ≺. Now, if we have P ′ (see Figure 1(b)) s.t.
either t1 and t′3 (dotted edge) or t2 and t3 (dashed edge) are
compatible, then P ′ satisfies DBTP according to ≺.

The class DBTP differs necessarily from the class BTP
since DBTP may contain non-binary instances while BTP
is restricted to binary instances. It follows a natural question
about the comparison of these two classes in the particular
case of binary CSPs. In particular, a binary instance may
satisfy DBTP while not satisfying BTP. For instance, Figure
2(b) depicts the micro-structure of a binary instance which
is DBTP w.r.t. the ordering cij ≺ cjk ≺ cik but not
BTP. Figure 2(a) represents the micro-structure of its dual.
Conversely, a binary instance can satisfy BTP but not DBTP.
This case is illustrated in Figure 3 (where the broken
triangles in broken lines prove that DBTP does not hold).
Theorem 1 is deduced from these examples.

Theorem 1: Let P = (X,D,C) be a binary CSP.
• P satisfies DBTP 6⇒ P satisfies BTP,
• P satisfies BTP 6⇒ P satisfies DBTP.
This first theorem shows that DBTP is then not a gener-

alization of BTP to non-binary CSPs.
We now prove that the class of CSPs which satisfy DBTP

is tractable, thanks to the two next lemmas, whose proofs
exploit the approach proposed in [1].

Lemma 1: Any CSP P = (X,D,C) which satisfies
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Figure 3. An instance satisfying BTP (a) but not DBTP (b).

DBTP w.r.t. the constraint ordering ≺ can be solved in
O(e2.r.ρ2).
Proof: The first step consists in building the dual of P ,
what can be achieved in O(e2.r.ρ2). Then, as the dual of
P is BTP, we know that it can be solved in O(e2.ρ2) [1].
Hence, the overall complexity is O(e2.r.ρ2). 2

Lemma 2 expresses that the constraint ordering ≺ related
to DBTP may be computed (if any) in polynomial time.

Lemma 2: Given any CSP P = (X,D,C), determining
if a constraint ordering ≺ s.t. P is DBTP w.r.t. ≺ exists (and
finding it if any) can be achieved in polynomial time.
Proof: A possible algorithm consists in computing first
the dual of P and then determining if an ordering ≺ s.t.
the dual of P is BTP exists like in [1]. Both steps are
polynomial (see the previous proof and [1]). Hence, the
overall complexity is polynomial. 2

The two previous lemmas allow to establish the tractabil-
ity of DBTP.

Theorem 2: DBTP is a tractable class.
We now present an alternative and equivalent characteri-

zation of DBTP:
Theorem 3: A CSP P = (X,D,C) satisfies the DBTP

property w.r.t. the constraint ordering ≺ iff for all triples of
constraints (ci, cj , ck) s.t. ci ≺ cj ≺ ck, for all ti ∈ R(ci),
tj ∈ R(cj) and tk, t′k ∈ R(ck) s.t.
• ti[S(ci) ∩ S(cj)] = tj [S(ci) ∩ S(cj)]
• ti[S(ci) ∩ S(ck)] = tk[S(ci) ∩ S(ck)]
• t′k[S(cj) ∩ S(ck)] = tj [S(cj) ∩ S(ck)]

then
• either t′k[S(ci) ∩ S(ck)] = ti[S(ci) ∩ S(ck)]
• or tj [S(cj) ∩ S(ck)] = tk[S(cj) ∩ S(ck)].

Proof: P satisfies DBTP w.r.t. ≺
⇔ P d satisfies BTP w.r.t. ≺
⇔ for all triples of variables (xdi , x

d
j , x

d
k) s.t. xdi ≺ xdj ≺

xdk, for all ti ∈ ddi , tj ∈ ddj and tk, t
′
k ∈ ddk s.t. (ti, tj) ∈

R(cdij), (ti, tk) ∈ R(cdik) and (tj , t
′
k) ∈ R(cdjk) then either

(ti, t
′
k) ∈ R(cdik) or (tj , tk) ∈ R(cdjk)
⇔ for all triples of constraints (ci, cj , ck) s.t.

ci ≺ cj ≺ ck, for all ti ∈ R(ci), tj ∈ R(cj) and
tk, t

′
k ∈ R(ck) s.t. ti[S(ci) ∩ S(cj)] = tj [S(ci) ∩ S(cj)],

ti[S(ci) ∩ S(ck)] = tk[S(ci) ∩ S(ck)] and

t′k[S(cj) ∩ S(ck)] = tj [S(cj) ∩ S(ck)] then
either t′k[S(ci) ∩ S(ck)] = ti[S(ci) ∩ S(ck)] or
tj [S(cj) ∩ S(ck)] = tk[S(cj) ∩ S(ck)]. 2

We can note that this characterization makes possible the
recognition of DBTP instances directly by exploiting the
tuples of relations without building the dual instance.

At present, we wonder what the DBTP property becomes
when applying a filtering algorithm. A class of CSP C
instances is said conservative w.r.t. a filtering consistency φ
if it is closed under φ, that is, if the problem obtained after
the application of φ belongs to the class C. A property is said
conservative if it defines a conservative class of instances.

Property 1: DBTP is conservative for any filtering con-
sistency which only removes values from domains or tuples
from relations.
Proof: Let us consider a CSP P satisfying DBTP w.r.t.
a given constraint ordering. The removal of a value from
the domain of a variable x of P induces the deletion of
some tuples for the constraints whose scope contains x. In
other words, it implies the deletion of some values for the
variables of the dual of P . On the other part, the deletion
of some tuples is equivalent to remove some values from
domains of some dual variables. Therefore, in both cases, the
deletions of values or tuples in the original instance lead to
remove values of the dual variables. As BTP is conservative
w.r.t. domain filtering consistencies, the dual of P after
these removals still satisfies BTP. Hence, P is still DBTP. 2

For instance, this property holds for any domain fil-
tering consistency (e.g (Generalized) Arc-Consistency or
Path Inverse Consistency [8]) applied on the original in-
stances or their dual. In particular, it is the case for the
pairwise-consistency [9] (introduced in the field of Rela-
tional Databases Theory [10]) which is equivalent to apply-
ing arc-consistency on the dual instance [9].

Definition 3 (Pairwise-Consistency [9]): A CSP P =
(X,D,C) is pairwise-consistent iff ∀ 1 ≤ i ≤ e, R(ci) 6= ∅
and ∀ 1 ≤ i < j ≤ e, R(ci)[S(ci)∩S(cj)] = R(cj)[S(ci)∩
S(cj)].

As MAC [6] maintains arc-consistency (denoted AC) at
each step of the search, we define MPWC as the algorithm
corresponding to maintain the pairwise-consistency.

Theorem 4: If P = (X,D,C) satisfies DBTP, then
MPWC solves P in polynomial time w.r.t. any ordering.
Proof: As the pairwise-consistency on P is equivalent to
the arc-consistency on the dual of P [9], the application
of MPWC on P is equivalent to MAC on the dual of P .
Moreover, as P is DBTP, P d is BTP and so, according to
theorem 7.6 of [1], MPWC solves P in polynomial time. 2

Finally, we derive a similar result for MAC in the partic-
ular case where any pair of constraints share at most one
variable. Before, we need to recall two results about arc-
consistency and pairwise consistency.



Lemma 3 (Prop. 8.1, p. 146 in [11]): Let P = (X,D,
C) be a CSP s.t. ∀ci, cj ∈ C, |S(ci) ∩ S(cj)| ≤ 1. If the
problem P is arc-consistent, then it is pairwise-consistent.

Lemma 4: Let P = (X,D,C) be an arc-consistent CSP
s.t. ∀ci, cj ∈ C, |S(ci) ∩ S(cj)| ≤ 1. If the problem P ′

obtained from P by deleting some values and enforcing AC
has no empty domain, then its dual is arc-consistent.
Proof: Consider P , and P ′ obtained from P by deleting
some values and enforcing AC such that it has no empty
domain. Since P ′ is arc-consistent, by lemma 3, it is also
pairwise-consistent. Thus, as the pairwise-consistency on P
is equivalent to the arc-consistency on the dual of P [9],
the dual of P ′ is arc-consistent. 2

Theorem 5: If P = (X,D,C) s.t. ∀ci, cj ∈ C, |S(ci) ∩
S(cj)| ≤ 1 is arc-consistent and satisfies DBTP, then MAC
can solve P in polynomial time.
Proof: If, after having enforced arc-consistency, no domain,
neither relation is empty, then P is pairwise-consistent and
has a solution. According to lemma 4, the problem obtained
after deleting some values and enforcing arc-consistency
still remains pairwise-consistent. Therefore, when applying
MAC on the original problem, we also maintain the
pairwise-consistency. Moreover, as pairwise-consistency
is equivalent to arc-consistency on the dual problem [9],
theorem 7.6 of [1] implies that MAC can solve P in
polytime since the dual is BTP. 2

Of course, this theorem holds for binary CSPs.

III. DBTP VS BTP

We saw with Theorem 1, that even in the case of binary
CSPs, BTP and DBTP classes are different. Such results
were foreseeable since, even if the original instance and its
dual represent the same problem, their structure and micro-
structure are quite different. This result relies on the presence
of broken triangles in the micro-structure of the instance or
of its dual instance. In both cases, these broken triangles of-
ten involve values which would be deleted by some filtering
consistency like arc-consistency. So, as DBTP and BTP are
conservative w.r.t. domain filtering consistencies, we focus
our study on binary instances which satisfy arc-consistency
and thus pairwise-consistency (by lemma 4). Under these
assumptions, we can prove the following lemma:

Lemma 5: Given an arc-consistent binary CSP P =
(X,D,C), if for a triple (xi, xj , xk) of variables, we have
a broken triangle on xk, then we have a broken triangle on
cik and one on cjk for the triple (cij , cik, cjk) in the dual.
Proof: Let xi, xj , xk ∈ X s.t. (vi, vj) ∈ R(cij),
(vi, vk) ∈ R(cik), (vj , v

′
k) ∈ R(cjk), (vi, v

′
k) 6∈ R(cik)

and (vj , vk) 6∈ R(cjk). As P is pairwise-consistent, there
are some values v′i ∈ di and v′j ∈ dj s.t. vi 6= v′i,
vj 6= v′j , (v′i, v

′
k) ∈ R(cik) and (v′j , vk) ∈ R(cjk). So,

((vi, vj), (vi, vk)), ((vi, vj), (vj , v
′
k)) and ((vi, vk), (v′j , vk))

forms a broken triangle on cjk for the triple (cij , cik, cjk).

Likewise for ((vi, vj), (vj , v
′
k)), ((vi, vj), (vi, vk)) and

((vj , v
′
k), (v′i, v

′
k)) on cik. 2

The presence of a broken triangle on xk for a triple
(xi, xj , xk) imposes the condition xk < max(xi, xj) on
the variable ordering < (see the proof of theorem 3.2 of
[1]). Consequently, according to lemma 5, it corresponds
to impose the two conditions cjk ≺ max(cij , cik) and
cik ≺ max(cij , cjk) for the triple (cij , cik, cjk) on the
constraint ordering ≺. It ensues that any arc-consistent and
pairwise-consistent binary instance which satisfies BTP and
has two broken triangles for two different variables of a same
triple of variables cannot satisfy DBTP since we will obtain
all the possible broken triangles for the corresponding triple
of constraints.

Conversely, we show now that a binary instance can
be arc-consistent and DBTP but not BTP. For this pur-
pose, let us consider a binary instance with 9 variables
{xa, xb, . . . , xi}. We define this instance by reproducing
several times a same pattern s.t. each value appearing in an
instance of the pattern does not appear in any other instance.
This pattern consists in a broken triangle on a variable
z for a triple (x, y, z) (i.e. which imposes the condition
z < max(x, y) on <) and each value of the variables x, y
and z is linked to a given value of any variable which is not
involved in this triple. We reproduce this pattern 9 times s.t.
the following conditions are imposed: xa < max(xb, xc),
xb < max(xe, xh), xc < max(xe, xg), xd < max(xa, xg),
xe < max(xa, xi), xf < max(xd, xe), xg < max(xh, xi),
xh < max(xb, xd) and xi < max(xc, xf ). Figure 4(b) de-
picts this pattern for the triple (xa, xb, xc), a broken triangle
on xa (corresponding to the condition xa < max(xb, xc))
and an independent variable xe while Figure 4 (a) describes
the corresponding part of the dual instance. By doing this,
the micro-structure of our binary CSP or one of its dual
instance have 9 connected components. We can note that
this instance is not BTP because the 9 conditions make
impossible the construction of a suitable variable ordering.
In contrast, it is DBTP (w.r.t the ordering cab ≺ cac ≺ cad ≺
cbf ≺ cbh ≺ cci ≺ cdf ≺ cdh ≺ cef ≺ cei ≺ cgh ≺ cgi ≺
caf ≺ cbc ≺ cbd ≺ cce ≺ ccg ≺ cde ≺ cdg ≺ cfi ≺ chi ≺
cae ≺ cag ≺ cbe ≺ cbg ≺ ccd ≺ ccf ≺ cdi ≺ cfh ≺ cai ≺
cbi ≺ ceg ≺ ceh ≺ cfg ≺ cah ≺ cch), arc-consistent and
pairwise-consistent.

Now, we focus our study on acyclic CSPs. [1] has already
proved that such binary CSPs satisfy BTP. We are going to
show that this is also true for DBTP. Let TREE be the set
of binary CSPs whose constraint graph is acyclic.

Theorem 6: TREE ( DBTP .
Proof: Let DUAL-TREE be the set of binary CSPs which
are the dual of instances from TREE. As shown in [1],
DUAL-TREE ( BTP . Hence TREE ( DBTP . 2

This result can be extended to CSPs of arbitrary arity.
For this, we must consider the notion of cyclicity in hy-
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Figure 4. Part of an instance satisfying DBTP, arc-consistency and
pairwise-consistency but not BTP.

pergraphs, for which different degrees of cyclicity has been
defined [10]. Here, we are interested by α-acyclicity and β-
acyclicity. We will first show that β-acyclic CSPs satisfy
DBTP and later, we will show it is not the case for α-
acyclic CSPs. We first recall the definition of β-acyclicity
of (constraint) hypergraph.

Definition 4 ([12]): H = (X,C) is a β-acyclic hy-
pergraph iff it has no Graham cycle. A sequence
(c1, ..., cm, cm+1) with m ≥ 3 s.t. (c1, ..., cm) are distinct
and c1 = cm+1 is a Graham cycle if each ∆i = S(ci) ∩
S(ci+1) (1 ≤ i ≤ m) is nonempty, and whenever i 6= j, ∆i

and ∆j are incomparable (i.e. ∆i 6⊆ ∆j and ∆j 6⊆ ∆i).
It has been recently shown in [13] that β-acyclic hyper-

graphs can be defined by applying the two following rules
that yield the empty hypergraph:
(1) If a hyperedge is empty, we remove it from C.
(2) If a vertex is a nest point (i.e. the set of hyperedges

containing it is a chain for the inclusion relation), then
we remove it from H (i.e. from X and from the
hyperedges that contain it).

Theorem 7 ([13]): A hypergraph H is β-acyclic if and
only if, after applying the two rules successively until none
can be applied, we obtain the empty hypergraph.

Using these definitions, we can now establish the next
theorem:

Theorem 8: Given a CSP (X,D,C), there exists a con-
straint ordering ≺, s.t. ∀ci, cj , ck ∈ C s.t. ci ≺ cj ≺ ck, we
have S(ci) ∩ S(ck) ⊆ S(cj) ∩ S(ck) or S(cj) ∩ S(ck) ⊆
S(ci) ∩ S(ck) if and only if (X,D,C) has a β-acyclic
constraint hypergraph.
Proof: (⇒) By contraposition. So we show that if the
constraint hypergraph (X,C) is β-cyclic, then, there is no
constraint ordering.

Consider a constraint hypergraph (X,C) which is β-
cyclic. So, it has a Graham cycle, denoted by the sequence
of hyperedges (c1, ..., cm, cm+1). Consider an arbitrary con-
straint ordering ≺. Necessarily, among the constraints of this
cycle, there is a maximum constraint ck w.r.t. the ordering
≺. Consider its two neighbors in the cycle, denoted ci and
cj (with ci, cj ≺ ck). By definition of Graham cycles, we
know that S(ci)∩S(ck) and S(cj)∩S(ck) are incomparable.

So, we have neither S(ci) ∩ S(ck) ⊆ S(cj) ∩ S(ck) nor
S(cj) ∩ S(ck) ⊆ S(ci) ∩ S(ck), and then no suitable
constraint ordering ≺ exists.

(⇐) Here, we use the Theorem 7. So, given a β-acyclic
CSP (X,D,C) of hypergraph H which admits a constraint
ordering ≺, we will show that :

(1) A hyperedge S(ci) is empty iff H without S(ci) admits
an ordering and is β-acyclic.

(2) A vertex x of H is a nest point such H admits an
ordering iff H without x admits an ordering and is β-
acyclic.

It is immediate to see that the property holds by applying
the rule (1). So, consider the rule (2). Assume that for a
hypergraph H we have an ordering ≺. So, ∀ci, cj , ck ∈ C
s.t. ci ≺ cj ≺ ck, we have S(ci) ∩ S(ck) ⊆ S(cj) ∩ S(ck)
or S(cj) ∩ S(ck) ⊆ S(ci) ∩ S(ck). We have five cases to
consider:

1) x 6∈ S(ci)∪S(cj)∪S(ck): thus after the deletion of x,
neither S(ci)∩S(ck) nor S(cj)∩S(ck) have changed.
So, the property holds.

2) x ∈ S(ci)∩S(cj)∩S(ck): thus after the deletion of x,
it disappears from each intersection S(ci) ∩ S(ck) and
S(cj) ∩ S(ck), and thus, the property holds.

3) x belongs to only one set S(ci) or S(cj) or S(ck): so x
belongs to no intersection and thus, the property holds
after the deletion.

4) x ∈ S(ci)∩S(cj) and x 6∈ S(ck): so x belongs neither
to S(ci) ∩ S(ck), nor to S(ci) ∩ S(ck) and thus, the
property holds after the deletion.

5) x ∈ S(ci)∩S(ck) and x 6∈ S(cj) (or symmetrically x ∈
S(cj) ∩ S(ck) and x 6∈ S(ci)) : so before the deletion,
we have necessarily S(ci)∩S(ck) 6⊆ S(cj)∩S(ck) and
S(cj)∩S(ck) ( S(ci)∩S(ck). Thus, after the deletion
of x, we have at least S(cj) ∩ S(ck) ⊆ S(ci) ∩ S(ck)

So we have shown that if we can delete the whole
hypergraph, which does not contradict the property on the
ordering, necessarily, the first hypergraph is β-acyclic and
admits a suitable constraint ordering. 2

We can note that this theorem explains why the condition
enunciated in lemma 4.6 of [1] holds independently from
the scope of the constraints. This lemma and the previous
theorem allow us to obtain Theorem 9 where β-ACY CLIC
is the set of CSPs whose constraint (hyper)graph is β-
acyclic.

Theorem 9: TREE ( β-ACY CLIC ( DBTP .
Proof: According to Theorem 8, we know that for
any β-acyclic CSP (X,D,C), there exists a constraint
ordering ≺, s.t. ∀ci, cj , ck ∈ C s.t. ci ≺ cj ≺ ck,
we have S(ci) ∩ S(ck) ⊆ S(cj) ∩ S(ck) or
S(cj) ∩ S(ck) ⊆ S(ci) ∩ S(ck). Moreover, according
to lemma 4.6 of [1], any CSP satisfying the latter condition
has a BTP dual. Hence β-ACY CLIC ( DBTP . 2
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Figure 5. An α-acyclic CSP (a) but which does not satisfy DBTP (b).

However, the equivalence of lemma 4.6 of [1] only holds
for the reverse direction (what does not endanger the proof of
Theorem 9). Clearly, it suffices to consider a binary instance
with 3 monovalent variables (i.e. variables whose domain
contains a single value) pairwise connected (each constraint
allows the single tuple). Its dual satisfies BTP while the
constraint graph is not β-acyclic.

Now, we show that if α-ACY CLIC is the set of CSPs
whose constraint (hyper)graph is α-acyclic, then the sets α-
ACY CLIC and DBTP are incomparable. So, we recall
that α-acyclicity of (constraint) hypergraphs can be defined
using the “running intersection property” [10], namely:

Definition 5: (X,C) is an α-acyclic hypergraph iff there
exists an ordering (c1, ..., ce) s.t. ∀k, 1 < k ≤ e, ∃j <

k, (S(ck) ∩
k−1⋃
i=1

S(ci)) ⊆ S(cj).

Let us consider a CSP with six variables xa, . . . xf and
four constraints whose scope are respectively {xa, xb, xc},
{xa, xb, xd}, {xa, xc, xe} and {xb, xc, xf}. Figure 5 depicts
its constraint hypergraph (a) and the micro-structure of its
dual (b). We can note that this instance is α-acyclic but
does not satisfy DBTP since no suitable constraint ordering
exist. Moreover, it is well known that β-ACY CLIC ( α-
ACY CLIC [10]. Hence, if we denote A ⊥ B two tractable
classes which are incomparable (i.e. neither A ⊆ B, nor
B ⊆ A), we obtain the following theorem:

Theorem 10: α-ACY CLIC ∩ DBTP 6= ∅ and α-
ACY CLIC ⊥ DBTP .

Through this section, we have established:
Theorem 11: BTP ∩DBTP 6= ∅ and BTP ⊥ DBTP .

In the next section, we study the link between DBTP and
some other tractable classes.

IV. DBTP VS SOME TRACTABLE CLASSES

A. For binary CSPs

As DBTP and BTP are two different classes, we first focus
on some tractable classes included in BTP. These classes
whose definitions are recalled below rely on restricted con-
straint languages.

Definition 6 (Row-convex [4]): A binary CSP P =
(X,D,C) is said row-convex w.r.t. a variable ordering <
and a value ordering, if, for each constraint cij of C with
xi < xj , ∀vi ∈ di, {vj ∈ dj |(vi, vj) ∈ R(cij)} = [aj ..bj ]
for some aj , bj ∈ dj where [aj ..bj ] denotes the values
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Figure 6. A CSP which isRC, ZOA and RRM (a) but not DBTP (b).

belonging to dj between aj and bj w.r.t. the value ordering.
We denote RC the set of row-convex instances.

Definition 7 (0-1-all [3]): A binary CSP P = (X,D,C)
is said 0-1-all if for each constraint cij of C, for each value
vi ∈ di, cij satisfies one of the following conditions:
• (ZERO) for any value vj ∈ dj , (vi, vj) 6∈ R(cij),
• (ONE) there is a unique value vj ∈ dj such as

(vi, vj) ∈ R(cij),
• (ALL) for any value vj ∈ dj , (vi, vj) ∈ R(cij).

We denote ZOA the set of instances which are 0-1-all.
Definition 8 (Renamable right monotone [1]): A binary

CSP P = (X,D,C) is said renamable right monotone
w.r.t. a variable ordering < if, for 2 ≤ j ≤ n, each domain
dj can be ordered by lj s.t. for each constraint cij of C
with xi < xj , ∀vi ∈ di, vj , v′j ∈ dj , if (vi, vj) ∈ R(cij) and
vj lj v

′
j then (vi, v

′
j) ∈ R(cij). We denote RRM the set of

these instances.
The next theorem shows that these tractable classes share

some instances with DBTP but are different.
Theorem 12: RC ∩ DBTP 6= ∅ and RC ⊥ DBTP .

ZOA ∩DBTP 6= ∅ and ZOA ⊥ DBTP .
RRM ∩DBTP 6= ∅ and RRM ⊥ DBTP .
Proof: If we consider the binary CSP of Figure 6(a), it is
0-1-all, row-convex, and renamable right monotone w.r.t.
the lexicographic value and variable orderings. However, as
shown in Figure 6(b), this instance is not DBTP. Conversely,
any non-binary DBTP instance cannot belong to RC, ZOA
or RRM .

In order to prove that DBTP intersects RC, ZOA
and RRM , it is sufficient to consider a monovalent and
consistent binary CSP with three variables and three
constraints since such an instance satisfies both DBTP ,
RC, ZOA and RRM . 2

The next class relies on the number of maximal cliques
of the micro-structure:

Definition 9 (Maximal clique bounded [14]): A CSP
P = (X,D,C) is said maximal clique bounded if
the number of maximal cliques in its micro-structure is
polynomial w.r.t the size of P . We denote CL the set of
these instances.

Theorem 13: CL ∩DBTP 6= ∅ and CL ⊥ DBTP .
Proof: Any monovalent and consistent binary CSP has a
single maximal clique and is DBTP. So the intersection is



not empty.
Consider any binary CSP s.t. its micro-structure has

a polynomial number of maximal cliques. We add to
such a CSP additional variables with additional values
and additional constraints corresponding to the instance
depicted in figure 1, s.t. these values are not compatible to
the one of the first part of this CSP. So, it has a polynomial
number of maximal cliques in its micro-structure but is not
DBTP. Conversely, any non-binary DBTP instance cannot
belong to CL. 2

Regarding classes based on restricted structures, we have
proved in theorem 9 that TREE ( DBTP .

B. For CSPs of arbitrary arity

We first consider some known tractable classes based on
restricted constraint languages like the max-closed class.

Definition 10 (Max-closed [5]): A CSP P = (X,D,C)
is said max-closed if for each constraint c of
arity rc, ∀(v1, v2, . . . , vrc), (v′1, v

′
2, . . . , v

′
rc) ∈ R(c),

(max(v1, v
′
1),max(v2, v

′
2), . . . ,max(vrc , v

′
rc)) ∈ R(c).

We denote MC the set of max-closed instances.
Theorem 14: MC ∩DBTP 6= ∅ and MC ⊥ DBTP .

Proof: The proof of MC∩DBTP 6= ∅ and MC 6⊆ DBTP
is similar to one of theorem 12. Regarding DBTP 6⊆MC,
any CSP having two variables and one binary constraint is
DBTP but not necessarily max-closed. 2

Definition 11 (incrementally functional [15]): A CSP
P = (X,D,C) is said incrementally functional if there
exists a variable ordering < s.t. for 1 ≤ i < n, each
solution of P [{x1, . . . , xi}] extends to at most one
solution of P [{x1, . . . , xi+1}] where, for X ′ ⊆ X,P [X ′]
denotes the CSP (X ′, D′, C ′) where D′ = {di|xi ∈ X ′}
and C ′ = {c′|c ∈ C s.t. S(c) ∩ X ′ 6= ∅, S(c′) =
S(c) ∩ X ′ and R(c′) = {t[S(c′)]|t ∈ R(c)}}. We denote
IFUN the set of these instances.

Theorem 15: IFUN ∩ DBTP 6= ∅ and IFUN ⊥
DBTP .
Proof: In order to prove that the intersection is not empty, we
consider a CSP with four monovalent variables x1, . . . , x4
and three ternary constraints c1, c2 and c3 s.t. S(c1) =
{x1, x2, x3}, R(c1) = {(v1, v2, v3)}, S(c2) = {x1, x2, x4},
R(c2) = {(v1, v2, v4)}, S(c3) = {x2, x3, x4} and R(c3) =
{(v2, v3, v4)}. This instance is incrementally functional (us-
ing the numeration of variables as ordering) and DBTP.

The instance of figure 7(a) is incrementally functional
but not DBTP (b). Conversely, any DBTP instance having
several solutions cannot be incrementally functional. 2

Definition 12 (Dual CB [14]): A CSP P = (X,D,C) is
said dual maximal clique bounded (DMCB) if the number
of maximal cliques in the micro-structure of its dual instance
is polynomial w.r.t. the size of P . We denote DCL the set
of these instances.

Theorem 16: DCL ∩DBTP 6= ∅ and DCL ⊥ DBTP .
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Figure 7. An incrementally functional instance (a) but which does not
satisfy DBTP (b). An instance which is DBTP but not triangular (c).

Proof: Let us consider the first instance defined in the proof
of theorem 15. The micro-structure of its dual instance has
a single maximal clique and the instance is DBTP. So, the
intersection is not empty. Regarding the instance depicted in
figure 7(b), it has a polynomial number of maximal cliques
in the micro-structure of its dual instance but is not DBTP.
Conversely, a binary instance whose constraint graph is a
star and for which each domain has several values is DBTP
but has an unbounded number of maximal cliques in the
micro-structure of its dual. 2

Now we introduce a new tractable class based on a
constraint language restriction.

Definition 13 (Triangular): A CSP P = (X,D,C) is
said triangular w.r.t. a constraint ordering ≺ iff ∀ci, cj , ck,
ci ≺ cj ≺ ck, ∀ti ∈ R(ci), tj ∈ R(cj), tk ∈ R(ck), if
ti[S(ci)∩S(cj)] = tj [S(ci)∩S(cj)] and ti[S(ci)∩S(ck)] =
tk[S(ci)∩S(ck)] then, tj [S(cj)∩S(ck)] = tk[S(cj)∩S(ck)].
We denote TR the set of triangular instances.

Theorem 17: If a CSP is triangular w.r.t. ≺, then it
satisfies DBTP w.r.t. ≺.
Proof: Assume that P is triangular but not DBTP.
So, there exist three constraints ci, cj and ck,
ci ≺ cj ≺ ck, ti ∈ R(ci), tj ∈ R(cj) and
tk, t

′
k ∈ R(ck) s.t. ti[S(ci) ∩ S(cj)] = tj [S(ci) ∩ S(cj)],

ti[S(ci) ∩ S(ck)] = tk[S(ci) ∩ S(ck)], t′k[S(cj) ∩ S(ck)] =
tj [S(cj)∩S(ck)], t′k[S(ci)∩S(ck)] 6= ti[S(ci)∩S(ck)] and
tj [S(cj) ∩ S(ck)] 6= tk[S(cj) ∩ S(ck)]. As P is triangular
w.r.t. ≺, we must have t′k[S(ci)∩S(ck)] = ti[S(ci)∩S(ck)]
and tj [S(cj) ∩ S(ck)] = tk[S(cj) ∩ S(ck)], what is not
possible since P does not satisfy DBTP. 2

Theorem 18: TR ( DBTP .
Proof: Theorem 17 shows that TR ⊆ DBTP . The instance
depicted in figure 7(c) satisfies DBTP but is not triangular. 2

Regarding classes based on restricted structures, we have
proved in Theorems 9 and 10 that β-ACY CLIC (
DBTP , α-ACY CLIC ∩ DBTP 6= ∅ and α-
ACY CLIC ⊥ DBTP . Another important tractable class
based on restricted structure is related to the tree-width. We
first recall the notion of tree-decomposition of graphs [16].

Definition 14 (tree-decomposition): A tree-decomposi-
tion of a graph G = (X,E) is a pair (N,T ) where



T = (I, F ) is a tree with nodes I and edges F and
N = {Ni : i ∈ I} is a family of subsets of X , s.t. each
subset Ni is a node of T and verifies (i) ∪i∈INi = X , (ii) for
each edge {x, y} ∈ E, there exists i ∈ I with {x, y} ⊆ Ni,
and (iii) for all i, j, k ∈ I , if k is in a path from i to j in
T , then Ni ∩Nj ⊆ Nk.

The width w of a tree-decomposition (N,T ) is equal to
maxi∈I |Ni| − 1. The tree-width w∗ of G is the minimal
width over all the tree-decompositions of G.

Classically, this definition is extended to hypergraphs by
considering the notion of primal graphs. The primal graph
of a hypergraph (X,E) is the graph (X,E′) where E′ =
{{x, y}|∃e ∈ E s.t. x, y ∈ e}.

Definition 15 (bounded tree-width): Let k be a fixed pos-
itive integer. The class BTWk is the set of the instances
whose tree-width is bounded by k.

Theorem 19: BTW1 ( DBTP .
For k > 1, BTWk ∩DBTP 6= ∅ and BTWk ⊥ DBTP .
Proof: It is well known that BTW1 is the set of tree-
structured binary CSPs. So according to theorem 9, we
have BTW1 ( DBTP . For k > 1, as BTW1 ( BTWk,
the intersection BTWk ∩ DBTP is not empty. Now, let
us consider an instance having n variables with n ≥ 3,
whose tree-width is bounded by a constant k ≥ 2 and
which contains the subproblem depicted in figure 7(a).
This instance has a bounded tree-width but does not satisfy
DBTP. Conversely, any instance having n variables and
one constraint of arity n is DBTP but has an unbounded
tree-width. Hence BTWk ⊥ DBTP . 2

V. CONCLUSION AND FUTURE WORKS

In this paper, we have studied a hybrid tractable class
whose instances can be solved in polynomial time by MAC-
like algorithms. We have then proved that it is incomparable
with several known tractable classes (notably BTP) and that
it captures both structural and relational tractable classes
(namely β-acyclic CSPs and Triangular CSPs).

A first extension consists in studying the link between
DBTP and other tractable classes we have not mentioned
in this paper. Another one consists in considering other
properties and then in extending other tractable classes to
non-binary CSPs using a similar approach, using the dual
representation. One interesting candidate could be the min-
of-max extendable property also introduced in [1].

Then, in the same spirit, we can also explore the pos-
sibility of defining new tractable classes, taking properties
like BTP (or some others) and exploiting other encodings of
non-binary CSPs.
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