
A generalized Cyclic-Clustering Approach for Solving Structured CSPs

Cédric Pinto
LSIS - UMR CNRS 6168

Université Paul Cézanne (Aix-Marseille 3)
Avenue Escadrille Normandie-Niemen

13397 Marseille Cedex 20 (France)
cedric.pinto@lsis.org

Cyril Terrioux
LSIS - UMR CNRS 6168

Université Paul Cézanne (Aix-Marseille 3)
Avenue Escadrille Normandie-Niemen

13397 Marseille Cedex 20 (France)
cyril.terrioux@univ-cezanne.fr

Abstract

We propose a new method for solving structured CSPs
which generalizes and improves the Cyclic-Clustering ap-
proach [4]. First, the cutset and the tree-decomposition
of the constraint network, which are used for taking ad-
vantage of the CSP structure, are computed independently
of the notion of triangulated induced subgraph. Then, un-
like Cyclic-Clustering, our method can try to solve the tree-
decomposition part of the problem without having assigned
all the variables of the cutset. Regarding the solving of the
tree-decomposition part, we use the BTD method [6] like
in [7]. As BTD records and exploits structural (no)goods,
we provide some conditions which make possible the use of
structural (no)goods recorded during previous calls of BTD
and we implement them in a dedicated version of BTD. By
so doing, from a theoretical viewpoint, we can provide a
theoretical time complexity bound related to parameters of
the cutset and the tree-decomposition and, from a practical
viewpoint we expect to detect failures earlier and to avoid
more redundancies in the search.

1 Preliminaries

The CSP formalism (Constraint Satisfaction Problem)
offers a powerful framework for representing and solving
efficiently many problems, in particular, many academic or
real problems (e.g. graph coloring, planning, frequency
assignment problems, . . .). A finite constraint satisfac-
tion problem (X, D, C, R) is defined as a set of variables
X = {x1, . . . xn}, a set of domains D = {d1, . . . dn} (the
domain di contains all the possible values for the variable
xi), and a set C of constraints. A constraint ci ∈ C on an
ordered subset of variables, ci = (xi1 , . . . xiai

) is defined
by an associated relation rci ∈ R of allowed combinations
of values for the variables in ci (rci

⊆ di1×. . .×diai
). Note

that we take the same notation for the constraint ci and its

scope. Let Y = {x1, . . . xk} be a subset of X . An assign-
ment A on Y is a tuple (v1, . . . , vk) of d1 × . . . × di. We
also write A in the form {x1 ← v1, ..., xi ← vi}. Then
we denote A1 ⊆ A2 if the assignment A2 is an exten-
sion of A1 (i.e. we have A1 = {x1 ← v1, ..., xi ← vi}
and A2 = {x1 ← v1, ..., xi ← vi, ..., xi+j ← vi+j} with
j ≥ 0). An assignment A on Y satisfies a constraint c ∈ C
s.t. c ⊆ Y if A[c] ∈ rc with A[c] the restriction of A to
the variables involved in c. A is said consistent if it satisfies
each constraint c ⊆ Y . A solution is an assignment of each
variable which satisfies all the constraints. Determining if
a solution exists is an NP-complete problem. We denote
Sol(P) the set of solutions of the CSP P . In the follow-
ing, for sake of simplicity, we only consider binary CSPs
(i.e. CSPs whose each constraint involves exactly two vari-
ables). Of course, this work can be extended to non-binary
CSPs.

The usual methods for solving CSPs (e.g. Forward-
Checking [3]) are based on backtracking search. This ap-
proach, often efficient in practice, has an exponential the-
oretical time complexity in O(m.dn) (denoted O(exp(n)))
for an instance having n variables and m constraints and
whose largest domain has d values. Several works have
been developed to improve this theoretical complexity
bound thanks to particular features of the instance. Gener-
ally, they exploit some structural properties of the CSP. The
structure of a CSP (X,D, C, R) can be represented by the
graph (X, C), called the constraint graph. In this context,
the tree-decomposition notion [9] plays a central role. A
tree-decomposition of a graph G = (X, C) is a pair (E, T)
where T = (I, F) is a tree with nodes I and edges F and
E = {Ei : i ∈ I} a family of subsets of X , s.t. each
subset (called cluster) Ei is a node of T and verifies: (i)
∪i∈IEi = X , (ii) for each edge {x, y} ∈ C, there exists
i ∈ I with {x, y} ⊆ Ei, and (iii) for all i, j, k ∈ I , if k
is in a path from i to j in T , then Ei ∩ Ej ⊆ Ek. We
will denote Sj the separator Ei ∩ Ej between the clusters
Ei and Ej such that Ej is a son of Ei, and Desc(Ej) the

set of variables belonging to the descent of the cluster Ei

rooted in Ej . The width w of a tree-decomposition (E, T)
is equal to maxi∈I |Ei| − 1. The tree-width w∗ of G is the
minimal width over all the tree-decompositions of G. On
the one hand, it leads to one of the best known theoretical
time complexity bounds, namely O(exp(w∗ + 1)) with w∗

the tree-width. Different methods (e.g. [2, 6]) have been
proposed to reach this bound. They aim to cluster variables
s.t. the cluster arrangement is a tree.

From a theoretical viewpoint, reach the best theoreti-
cal complexity bound requires to compute an optimal tree-
decomposition (i.e. a tree-decomposition with a minimum
width), which is an NP-hard problem [1]. In practice, it
is clear that solving an NP-hard problem as a preliminary
step of the solving of an NP-complete problem is not rea-
sonable. So heuristic methods are generally used. They
often provide a relevant approximation of an optimal tree-
decomposition when the constraint graph has a small tree-
width. Methods like BTD [6] are then well-suited for
solving such problems. In contrast, when the constraint
graph does not have a small tree-width, heuristic meth-
ods may often produce a poor approximation of an opti-
mal tree-decomposition. In such a case, instead of running
a structural method on a tree-decomposition with an ex-
cessive width, exploiting a method like Cyclic-Clustering
[4] may be more interesting and more adapted. Cyclic-
Clustering relies on a subset V of vertices, called a cutset
of the graph (X, C), such that the graph (X − V, {{x, y} ∈
C s.t. x, y ∈ X − V }) induced by X − V is triangu-
lated (i.e. it has no cycle of length greater than 3 without
an edge joining two non consecutive vertices in the cycle).
The triangulated part of the constraint graph corresponds
to a tree-decomposition. For instance, Figure 1(a) presents
a graph having 19 vertices. The set {y1, y2} forms a cut-
set of this graph s.t. the induced graph involving the ver-
tices x1, . . . , x17 is triangulated, which corresponds to a
tree-decomposition with 7 clusters E1, . . . , E7. We have
S2 = E1 ∩ E2 = {x3}, Desc(E1) = {x1, x2, x3, x4, x5}
and Desc(E2) = {x3, x5}. In [7], two implementations
of Cyclic-Clustering, called CC-BTD1 and CC-BTD2 are
proposed. They solve the cutset part of the problem with
a classical enumerative algorithm and the triangulated part
with BTD. CC-BTD2 differs from CC-BTD1 in calling
BTD before solving the cutset part. By so doing, the no-
goods recorded during this preliminary call can be exploited
in the following calls of BTD. Unfortunately, the Cyclic-
Clustering approach has some limits. For instance, infor-
mations recorded during the search are not fully exploited
to avoid redundant parts of the search space. Moreover, the
triangulated part must be computed thanks to the notion of
Triangulated Induced Subgraph (TIS).

In this paper, we propose a generalization of CC-BTD,
called CC-BTD-gen. Like the Cyclic-Clustering approach,

CC-BTD-gen relies on a cutset and a tree-decomposition.
Yet, it uses a tree-decomposition computed thanks to any
method and so not necessarily related to the TIS notion, un-
like Cyclic-Clustering. Regarding the solving, CC-BTD-
gen exploits a specialized version of BTD which allows it
to exploit some part of (no)goods recorded in previous calls
to BTD, what leads to avoid more redundancies in prac-
tice. Finally, we have noted that CC-BTD assigns consis-
tently all the variables of the cutset before solving the tri-
angulated part even if after having assigned some of them,
the triangulated part has no solution. So, in order to avoid
this drawback, CC-BTD-gen can call BTD after having as-
signed consistently some variables of the cutset. If the sub-
problem associated to the tree-decomposition has a solu-
tion, the search keeps on the remaining variables of the cut-
set. Otherwise a backtrack occurs. In both cases, some
(no)goods are recorded and may be exploited later.

The paper is organized as follows. Section 2 presents
the theoretical framework of CC-BTD-gen while section 3
describes the CC-BTD-gen algorithm. Finally, we conclude
and discuss about future works in section 4.

2 Theoretical framework

In this section, we describe the theoretical framework
required to present formally CC-BTD-gen. This frame-
work is presented in a general way before focusing in the
next section on a special case where Y will be the cutset
and X − Y the variables belonging to the associated tree-
decomposition used by CC-BTD-gen. In the following, we
consider a CSP P = (X, D, C, R). First, we define the
notion of subproblem induced by a subset Y of variables.

Definition 1 Let Y ⊆ X be a subset of variables. The CSP
induced by Y is the CSP (Y,DY , CY , RY) where DY =
{di ∈ D|xi ∈ Y }, CY = {cij = {xi, xj} ∈ C|xi, xj ∈
Y } and RY = {rcij ∈ R|cij ∈ CY }.

In the next definitions and properties, we consider the
following notations. Y1, Y2, Y and Z will be subsets of X
such that Y1 ⊆ Y , Y2 ⊆ Y , Y ⊆ X and Z ⊆ X − Y . A1,
A2 andAwill be assignments respectively on Y1, Y2 and Y .
TD will be the considered tree-decomposition of the CSP
P(X − Y). By lack of place, we do not provide the proofs
of the following properties, theorems and corollaries (these
proofs are available in [8]).

Now, we propose a limited (but sufficient) definition of
the deletion of some values by Forward-Checking (FC [3]).

Definition 2 The resulting filtering of an assignmentA per-
formed by FC is the operation which consists in deleting the
values from the domain di of each unassigned variable xi,
which become incompatible with respect to at least a con-
straint {xi, y} where y is an assigned variable in A. More

x11

y1

x1 x2

x3

x4x5

x16

x14

x15

x6

x7

x17

y2

x10 x9

x8

x13

x12

(a)
E

E

E
EE

E

7

6

5

4

3

2

1E
x1 x2 x3

x3 x5
x3 x4

x6

x7
x17 x14

x15
x16

x12
x13

x11

x8
x9
x10

y2

y1

(b)

Figure 1. (a) A constraint graph (b) An ex-
ample of tree-decomposition with clusters
E1, . . . , E7 and cutset {y1, y2} for this graph.

formally, dAi = {v ∈ di|∀c = {xi, y} ∈ C, (v, w) ∈
rc with w the value assigned to y in A}.

In other words, dAi is the current domain of the unas-
signed variable xi obtained thanks to the filtering achieved
after each assignment of a variable in the assignmentA. We
then define the set of deleted values by the filtering.

Definition 3 Let Y ⊆ X be such that |Y | = k and A =
{x1 ← v1, ..., xk ← vk} an assignment on Y . The set of
deleted values of P(X − Y) by the filtering related to A is
FA(X − Y) = {(xi, v) ∈ (X − Y)× (di − dAi)}.

Next, we refine the definition 1 by introducing the notion
of filtered subproblem.

Definition 4 The filtered subproblem PA(X − Y) refers
to the induced CSP (X − Y, DAX−Y , CX−Y , RAX−Y) with
DAX−Y = {dAi |xi ∈ X − Y } and RAX−Y = {rAc =
rc ∩ (dAj × dAk)|c = {xj , xk} ∈ CX−Y and rc ∈ R}.

We can note that the filtering of FC does not change the
structure defined by the constraint graph of a problem.

Property 1 A tree-decomposition of P(X − Y) is a tree-
decomposition of PA1(X − Y) and conversely.

Henceforth, thanks to the following property, we aim to
measure the effect of a filtering on the domains and relations
of a given problem.

Property 2 If FA1(Z) ⊆ FA2(Z), then ∀zi ∈ Z, dA2
i ⊆

dA1
i and ∀cjk ∈ CZ , rA2

cjk
⊆ rA1

cjk
.

We compare now the set of solutions of two subproblems
induced by the same set of variables but with any different
filtering.

Property 3 If FA1(Z) ⊆ FA2(Z), then we have
Sol(PA2(Z)) ⊆ Sol(PA1(Z)) and |Sol(PA2(Z))| ≤
|Sol(PA1(Z))|.

In the next corollary, we present the specific case where
A2 is an extension of A1.

Corollary 1 If A2[Y1] = A1, then Sol(PA2(Z)) ⊆
Sol(PA1(Z)) and |Sol(PA2(Z))| ≤ |Sol(PA1(Z))|.

We will then exploit these properties and corollary in or-
der to decide whether structural (no)goods can be reused
validly. But, first, we remind the notion of structural
(no)good which is used in the BTD algorithm [6].

Definition 5 Given a cluster Ei and Ej one of its sons, a
good (resp. nogood) of Ei with respect to Ej is a con-
sistent assignment A on Sj = Ei ∩ Ej such that A can
(resp. cannot) be extended to a consistent extension ofA on
Desc(Ej).

We see now the cases where the (no)goods for the subprob-
lem P(X − Y) can stay valid if we change the assignment
on Y .

Theorem 1 If FA1(X − Y) ⊆ FA2(X − Y) and ng(Sj)
is a nogood for the problem PA1(X − Y) then ng(Sj) is a
nogood for PA2(X − Y) too.

The previous theorem lays a condition (inclusion) on the
set of values which are filtered to deduce the validity of a
nogood already recorded. However, from an algorithmic
and practical viewpoint, exploiting this theorem may leads
to an expensive check (with respect to time). Hence, in the
next corollary, we propose a restriction on the resulting fil-
tering of the two assignments.

Corollary 2 If A2[Y1] = A1 and ng(Sj) is a nogood for
the problem PA1(X − Y) then ng(Sj) is a nogood for
PA2(X − Y) too.

Then, we are interested in preserving the validity of
goods.

Theorem 2 If FA2(Desc(Ej)) ⊆ FA1(Desc(Ej)) and
g(Sj) is a good for the problem PA1(X − Y) then g(Sj) is
a good for PA2(X − Y) too.

All these properties can be applied by the CC-BTD-gen
algorithm to deduce the informations remaining true be-
tween different calls to BTD. For that, Y will be the cut-
set and so X − Y the variables belonging to the associ-
ated tree-decomposition. The theorem 1 allows to conclude

Algorithm 1: CC-BTD-gen(in : A, V, NGp, in/out : Gp)

Cons← true1
if ChoiceBTD(V) or V = ∅ then2

G← ∅ ; NG← ∅3
Cons← BTD-gen(∅, E1, VE1 , NGp, Gp, NG, G)4
Gp ← Gp ∪G ; NGp ← NGp ∪NG5

if Cons and V 6= ∅ then6
Choose xi ∈ V ; di ← Di ; Cons← false7
while di 6= ∅ and ¬Cons do8

Choose v ∈ di ; di ← di − {v}9
if Filtering(A ∪ {xi ← v}, xi) then10

Cons←11
CC-BTD-gen(A ∪ {xi ← v}, V − {xi}, NGp, Gp)

Unfiltering(A, xi)12

return Cons13

that considering two partials assignmentsA1 andA2 on the
cutset such that A2 filters at least the same values as A1,
then the nogoods recorded by BTD on PA1 stay valid on
PA2 . However, due to the limited memory space, we can-
not record the effects of resulting filtering generated by each
consistent partial assignment on the cutset. Therefore, we
exploit the corollary 2 which allows to record and reuse the
nogoods in the case where we extend a consistent partial
assignment of cutset. Likewise, for the reuse of goods, we
keep all recorded goods and check their validity when we
use them. In the next section, we describe and study the
CC-BTD-gen algorithm.

3 A generalization of Cyclic-Clustering

The CC-BTD-gen algorithm (algorithm 1) relies on a
cutset and a tree-decomposition of the constraint graph. The
tree-decomposition and the cutset can be computed thanks
to any method, and so are not necessarily related to the TIS
notion, unlike in Cyclic-Clustering. The CC-BTD-gen al-
gorithm consists in assigning consistently the variables of
the cutset while checking, thanks to a dedicated version
of BTD, whether the current partial assignment can be ex-
tended consistently on the tree-decomposition part. As this
check can be expensive, after having assigned a value to a
variable of the cutset, CC-BTD-gen decides thanks to the
heuristic function ChoiceBTD if it must be performed or
not. If BTD returns true, CC-BTD-gen keeps on the search
on the cutset. Otherwise, it tries a new value for the current
variable (if any) or a backtrack occurs. We iterate this pro-
cess until a solution is found (i.e. a consistent assignment
of the cutset which can be consistently extended to the tree-
decomposition part) or the whole search space is explored.

First, in order to be able to reuse (no)goods recorded by
different executions of BTD, we propose a variant of BTD,
called BTD-gen (algorithm 2), which implements the prop-
erties highlighted in the previous section. BTD-gen only
differs from BTD in its ability to exploit (no)goods recorded
during previous calls to BTD-gen. So, it has two additional

parameters, namely the set Gp of goods and the set NGp

of nogoods recorded by previous calls to BTD-gen while G
and NG denote respectively the set of goods and nogoods
recorded by the current execution to BTD-gen. As we keep
all the goods recorded previously, some of them cannot be
reuse validly into some calls to BTD-gen. Therefore, before
reusing such a good, BTD-gen must first check its validity
for the current problem in order to respect the theorem 2.
This test is performed by the function CheckGood (algo-
rithm 3). This function returns true whether each variable
of the descent of Ei can be assigned with the value it had
when the good g had been recorded. In order to check easily
this property, we need to record the extension of the good
on the remaining variables of the cluster. Like BTD, BTD-
gen returns the consistency of the subproblem associated to
the tree-decomposition TD and rooted in the cluster Ei.

This dedicated version of BTD is exploited in CC-BTD-
gen to check if the current partial assignment on the cutset
can be extended consistently on the tree-decomposition part
of the problem. If BTD-gen(∅, E1, VE1 , NGp, Gp, NG,G)
returns false, then CC-BTD-gen tries another value for the
last assigned variable in the cutset (if any) or a backtrack
occurs. Otherwise, it keeps on the search by assigning a
new variable of the cutset. In both cases, the set G of goods
recorded by BTD-gen is added into the set Gp. The process
is similar for the nogoods except that NGp cannot be modi-
fied out of the current call to CC-BTD-gen. In other words,
when we come back from a call to CC-BTD-gen, we forget
the nogoods recorded, during this call, by BTD-gen in order
to respect the corollary 2.

Finally, in algorithm 1, the Boolean heuristic function
ChoiceBTD defines, after each assignment of a variable
in the cutset, if BTD-gen must be called or not. If it re-
turns false and some cutset’s variables are not yet assigned,
CC-BTD-gen tries to assign one of them with Forward-
Checking algorithm (lines 7-12). If ChoiceBTD returns
true, we run BTD-gen and we keep the new goods and no-
goods recorded (lines 3-5). Note that this heuristic can be
entirely dynamic since it can decide to call BTD-gen any-
time during the assignment of the cutset.

Now, we illustrate the CC-BTD-gen algorithm with an
example. Let us consider the constraint graph of Figure
1(a) and a possible tree-decomposition with 5 connected
components and a cutset with 2 variables (y1 and y2) as
depicted in Figure 1(b). CC-BTD-gen assigns some vari-
ables of the cutset. For instance, if it only assigns y1, the
filtering of FC can reduce the domains of the unassigned
neighboring variables of y1, namely x1, x2, x4, x5, x7 and
x16. Next, the ChoiceBTD heuristic can decide to solve
the tree-decomposition part of the problem with BTD-gen.
If BTD-gen returns false then CC-BTD-gen will change
the assignment on y1. Otherwise CC-BTD-gen will assign
the variable y2 of the cutset. In this case, if it successes

Algorithm 2: BTD-gen(in : A, Ei, VEi
, NGp, Gp, in/out : NG, G)

if VEi
= ∅ then1

Cons← true ; F ← Sons(Ei)2
while F 6= ∅ and Cons do3

Choose Ej ∈ F ; F ← F − {Ej}4
Sj ←Ei ∩ Ej ;5
ifA[Sj] is a nogood into NG then Cons← false6
else7

ifA[Sj] is a nogood into NGp then Cons← false8
else9

ifA[Sj] is a good into G then Cons← true10
else11

ifA[Sj] is a good into Gp and12
CheckGood(Ej ,A[Sj]) then

Cons← true13

else14
Cons← BTD-gen(A, Ej , Ej\(Ej ∩15
Ei), NGp, Gp, NG, G)
if Cons then Save the goodA[Sj] into G16
else Save the nogoodA[Sj] into NG17

else18
Choose xk ∈ VEi

; dk ← Dk ; Cons← false19
while dk 6= ∅ and ¬Cons do20

Choose w ∈ dk ; dk ← dk − {w}21
ifA ∪ {xk ← w} satisfies each constraint then22

Cons←BTD-gen(A ∪ {xk ← w}, Ei, VEi
− {xk},23

NGp, Gp, NG, G)

return Cons24

Algorithm 3: CheckGood(Ei, g)

Let S be the assignment g and its recorded extension on Ei1
forall y ∈ Ei do2

if S[y] 6∈ dy then return false3

V alidGood← true ; F ← Sons(Ei)4
while F 6= ∅ and V alidGood do5

Choose Ej ∈ F ; F ← F − {Ej}6
gF ← good on Ej such that gF [Ei ∩ Ej] = S[Ei ∩ Ej]7
V alidGood←CheckGood(Ej , gF)8

return V alidGood9

in assigning consistently y2, a new call to BTD-gen is per-
formed since the cutset is entirely assigned. If BTD-gen re-
turns true then the CSP is consistent. Otherwise CC-BTD-
gen looks for a new assignment for y2.

Theorem 3 BTD-gen and CC-BTD-gen are sound, com-
plete and finish.

In the following theorem, n denotes the number of vari-
ables of CSP, m the number of constraints, d the size of the
largest domain, k the size of the cutset, w the width of the
considered tree-decomposition, and s the size of the largest
intersection between two clusters.

Theorem 4 BTD-gen has a time complexity in O(n(n +
m)dw+1) and a space complexity in O(nwds). CC-BTD-
gen has a time complexity in O(n(n + m)dw+k+2) and a
space complexity in O(nwds).

4 Conclusions and future works

We have proposed a new method for solving structured
CSPs. This method generalizes and improves the Cyclic-
Clustering approach [4]. More precisely, it exploits a cutset
and a tree-decomposition whose computation is made in-
dependent of the notion of triangulated induced subgraph,
what brings more freedom in a crucial step of the method.
Then, CC-BTD-gen can check whether the current assign-
ment on the cutset can be consistently extended on the tree-
decomposition part, even if all the variables of the cutset are
not assigned yet. By so doing, it has a more global view of
the problem than CC-BTDi. Finally, it exploits a dedicated
version of BTD which implements some properties which
make it possible to exploit some (no)goods recorded during
previous calls to BTD and so to avoid more redundancies in
the search. Our preliminary experiments (see [8]) show the
practical interest of our approach. Namely, CC-BTD-gen
often outperforms CC-BTDi.

In the CSP framework, few works related to cutset have
been achieved. In our knowledge, the computation of both
relevant cutset and tree-decomposition with respect to CSP
solving has not been studied yet. Such a work, like [5] for
tree-decomposition, must be performed to improve the ef-
ficiency of such approaches. It could turn to be very use-
ful for solving efficiently structured real-world instances.
Finally, exploiting dynamic cutset and tree-decomposition
could be promising.

References

[1] S. Arnborg, D. Corneil, and A. Proskuroswki. Complexity
of finding embeddings in a k-tree. SIAM Journal of Discrete
Mathematics, 8:277–284, 1987.

[2] R. Dechter and J. Pearl. Tree-Clustering for Constraint Net-
works. Artificial Intelligence, 38:353–366, 1989.

[3] R. Haralick and G. Elliot. Increasing tree search efficiency
for constraint satisfaction problems. Artificial Intelligence,
14:263–313, 1980.

[4] P. Jégou. Cyclic-Clustering: a compromise between Tree-
Clustering and the Cycle-Cutset method for improving search
efficiency. In Proc. of ECAI, pages 369–371, 1990.

[5] P. Jégou, S. N. Ndiaye, and C. Terrioux. Computing and ex-
ploiting tree-decompositions for solving constraint networks.
In Proc. of CP, pages 777–781, 2005.

[6] P. Jégou and C. Terrioux. Hybrid backtracking bounded by
tree-decomposition of constraint networks. Artificial Intelli-
gence, 146:43–75, 2003.

[7] P. Jégou and C. Terrioux. A Time-space Trade-off for Con-
straint Networks Decomposition. In Proc. of ICTAI, pages
234–239, 2004.

[8] C. Pinto and C. Terrioux. A generalized Cyclic-Clustering
Approach for Solving Structured CSPs. Technical report,
LSIS, 2009.

[9] N. Robertson and P. Seymour. Graph minors II: Algorithmic
aspects of treewidth. Algorithms, 7:309–322, 1986.

