
Combined Strategies for Decomposition-based Methods for solving CSPs

Philippe Jégou1, Samba Ndojh Ndiaye2, Cyril Terrioux1

1 LSIS - UMR CNRS 6168
Université Paul Cézanne (Aix-Marseille 3)

Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
{philippe.jegou, cyril.terrioux}@univ-cezanne.fr

2 LIRIS - UMR CNRS 5205
Université Claude Bernard (Lyon 1)

43 boulevard du 11 novembre 1918 (Nautibus), 69622 Villeurbanne Cedex, France
samba-ndojh.ndiaye@liris.cnrs.fr

Abstract

In this paper, we consider theoretical and practical meth-
ods based on decompositions of constraint networks. We
exploit the fact that decomposition-based methods can be
used considering two steps. The first step is related to the
(hyper)graphical decomposition (e.g. Tree-Decomposition
[16] or Hypertree-Decomposition [7]) while the second
step exploits the decomposition to solve the CSPs. Thanks
to this approach, we define then hybrid methods which can
be optimal from a theoretical viewpoint while being effi-
cient in practice. The complexity analysis of these combined
methods allows us to give a more detailed presentation of
the Constraint Tractability Hierarchy introduced in [7]. Fi-
nally, we justify our approach with experimental results.

1 Introduction

Here, we are interested in the practical and the theoret-
ical efficiency of methods exploiting structural features of
CSPs. A CSP can be considered as the problem of checking
if a finite set X of variables can be assigned in their finite
domains of values given by D, while satisfying simultane-
ously a set C of constraints. Such an assignment is a so-
lution of the CSP. Then the problem is more generally to
find one solution, or to enumerate the set of solutions. Un-
fortunately, checking the existence of a solution of a CSP
is NP-complete. So, for solving CSPs, different classes
of algorithms have been proposed, which combine back-
tracking and filtering as FC (Forward Checking) or MAC.
While these algorithms can be really efficient from a prac-
tical viewpoint, their complexity is classically evaluated by
O(S.mn) where S is the size of the considered CSP, n the
number of variables and m the maximum size of domains
of variables.

Different approaches have been proposed to improve
these bounds, for example by exploiting structural proper-
ties that exist frequently in real problems. Generally, they
rely on the properties of a tree-decomposition (TD) [16] or
a hypertree-decomposition (HD) [7] of the constraint net-
work which formalizes the structure and consequently al-
lows to express topological properties. If we consider a TD
of width w, the time complexity of the best structural ap-
proaches is O(S.mw+1), with the guarantee to have w < n,
and in many practical cases, w ! n. If we consider a HD
of width h, the time complexity is then O(S.rh), with r
the maximum size of relations (tables) associated to con-
straints. [7] has shown that hypertree-decomposition is bet-
ter than tree-decomposition, since h∗ ≤ w∗ (h∗ and w∗are
optimal values for h and w). Moreover, the authors have
introduced a formal tool called ”Constraint Tractability Hi-
erarchy” for comparing several decomposition-based meth-
ods. This theoretical tool considers classes of instances
which can be solved in polynomial time. It appears, for ex-
ample, that hypertree-decomposition method (MHD) [7] is
more powerful than Tree-Clustering (TC) [5] since the class
of tractable instances for MHD includes strictly the one of
TC. This hierarchy offers an important theoretical tool for
comparing decomposition-based methods. However, it is
well known that it can exist a gap between theoretical and
practical performances of a same method. Thus, in this pa-
per, we will integrate to our study some aspects related to
the practical behavior and use of these methods. Gener-
ally, decomposition-based methods are not used as assumed
in the hierarchy which only considers optimal decomposi-
tions. Yet, computing optimal decompositions can be really
expensive : it can require more time than the solving of the
problem without decomposition. So, in practice, we prefer
to use heuristic algorithms (approximating optimal values
w∗ or h∗) to compute a decomposition. Then the next step
consists in solving the decomposed CSP. In the hierarchy,

there is rigid relation between the solving method and the
decomposition used. Here, we decide to break this rela-
tion in order to create a separation between decompositions
approaches and the solving methods based on them. We in-
troduce and study new combined approaches, assuming that
a particular graphical decomposition (e.g. HD) can be ex-
ploited by a solving method which was initially defined to
use another decomposition (e.g. TC). Then, we show that
this kind of hybrid methods has a real interest from a theo-
retical viewpoint. Indeed, we obtain original complexity re-
sults allowing to present the hierarchy of [7] more precisely.
For example, we exploit a recent result on the time complex-
ity of FC [12] which allows us to express the time complex-
ity of TC w.r.t. the induced hypertree-width h while gen-
erally, the evaluation was limited to induced tree-width w.
Moreover, this approach allows us to propose operational
methods based on the hypertree-decomposition, which can
be now efficiently implemented. Finally, we show empir-
ically that our approach seems well adapted to compare
decomposition-based methods with respect to their ability
to solve CSPs. So, our contribution can be summarized
as following. (1) We propose a framework to define and
to analyze hybrid methods for solving CSPs using decom-
positions. (2) We present more precisely the hierarchy of
[7]. (3) We define a solving method based on hypertree-
decomposition which can be efficient from a practical view-
point. (4) We propose criteria to optimize in order to get
more efficient decompositions. (5) We define extensions of
TC and BTD with the same time complexity bounds than
MHD ones.

Section 2 recalls notations, results on complexity of
enumerative algorithms and decomposition methods. Sec-
tion 3 introduces new methods based on combined ver-
sions of decompositions and studies them from a theoret-
ical viewpoint, proposing new complexity bounds. Section
4 presents experiments while section 5 concludes.

2 Preliminaries

2.1 Notations

A finite constraint satisfaction problem or finite con-
straint network (X, D, C, R) is defined as a set of variables
X = {x1, . . . xn}, a set of domains D = {d1, . . . dn}
(the domain di contains all the possible values for the
variable xi), and a set C of constraints among variables.
A constraint ci ∈ C on an ordered subset of variables,
ci = (xi1 , . . . xiai

) (ai is called the arity of the constraint
ci), is defined by an associated relation ri ∈ R of allowed
combinations of values for the variables in ci. Note that
we take the same notation for the constraint ci and its
scope. We denote a the maximal arity of the constraints
in C. Without loss of generality, we assume that each
variable is involved in at least one constraint. A solution
of (X, D, C, R) is an assignment of each variable which

satisfies all the constraints. The CSP structure can be
represented by the hypergraph (X, C), called the constraint
(hyper)graph. In this paper (as in [7]), we assume that the
relations are not empty and can be represented by tables
as in relational database theory. Then, we denote by S the
size of a CSP (which verifies S ≤ n.m + a.r.|C| where
r = max{|ri| : ri ∈ R}). Let Y = {x1, . . . xk} be a subset
of X and A an assignment of Y . A can be considered as a
tuple A = (v1, . . . vk). The projection of A on a subset Y ′

of Y , denoted A[Y ′], is the restriction of A to the variables
of Y ′. The projection of the relation ri on the subset Y ′ of
ci is the set of tuples ri[Y ′] = {t[Y ′]|t ∈ ri}. The join of
relations will be denoted !", and the join of A with a rela-
tion ri is A !" ri = {t|t is a tuple on Y ∪ ci and t[Y] =
A and t[ci] ∈ ri}.

2.2 Complexity of Enumeration

The basic approach for solving a CSP is based on the
classical procedure called Backtracking (BT). The time
complexity of this basic algorithm is O(a.r.|C|.mn) since
the number of potential nodes developed during the search
is mn and assuming that a constraint check A[ci] ∈ ri is
computable in O(a.r). To simplify the notations, it can be
expressed by O(S.mn). Generally, this algorithm is never
used because it is clearly inefficient in practice. The most
classical approach to improve BT is based on filtering. The
first algorithm proposed for such a filtering is Forward
Checking (FC). It was initially defined on binary CSPs.
Numerous extensions and generalizations of FC have been
proposed in order to solve non-binary CSPs or to exploit
more powerful filters [2]. One of these extensions called
nFC2 [2] has a filtering level which seems to realize a good
compromise. The complexity of nFC2 is also bounded by
O(S.mn) as indicated in [2]. Recently, [12] proposes a new
bound which considers r the maximum size of relations
(tables) associated to constraints. It has shown that the
time complexity of FC or MAC is O(S.rk), where k is
the size |C′| of a minimum cover C′ of X . Note that C′

is a minimum cover of X if C′ is a cover of X (that is
C′ ⊂ C and ∪ci∈C′ = X) and there is no cover C′′ such
that |C′′| < |C′|. This result can be extended to any other
algorithms which maintain a filtering at least as powerful
as nFC2’s one. For instance, it still holds for nFCi (i ≥ 2)
and MAC.

2.3 Decomposition-based Methods

The decomposition of constraint networks was intro-
duced in [5] with Tree-Clustering (TC). TC and other meth-
ods based on this approach (see [3]) rely on the notion of
tree-decomposition of graphs. Nevertheless, given a non-
binary CSP, and so a constraint hypergraph, we can exploit

X4

X5

X6

X7

X1

X2

X3

X8

X11

X12

X9

X13
X15

1C
2C

3C

4C
5C

6C

7C

8C

X21

X28X23

X26

X10
X17

X14
X16

X18

9C

C10

X25

X27X24

X22

X20X19

X14 X15 X17 X19X13 X16 X18 X20

X8 X9 X10

X1 X2 X3 X4 X5 X6 X7 X8

1E

5E

4E

6E
E83E

2E 7E
X13 X15 X17 X18 X19 X20 X21 X22

X22 X26X25 X24 X27 X28

X11 X12 X13 X14 X15 X16 X17X10 X14 X16 X17 X18 X19 X20 X23 X24

Figure 1. A constraint hypergraph and one of its op-
timal TD (w∗ = 7).

it by considering its primal graph. Let H = (X, C) be a hy-
pergraph, the primal graph of H is the graph G = (X, AC)
where AC = {{x, y} ⊂ X : ∃ci ∈ C s.t. {x, y} ⊂ ci}.
So, given a CSP, we consider its primal graph to define an
associated tree-decomposition of the CSP.

Definition 1 A tree-decomposition of a graph G =
(X, AC) is a pair (E, T) where T = (I, F) is a tree with
nodes I and edges F and E = {Ei : i ∈ I} a family of
subsets of X , s.t. each subset (called cluster) Ei is a node
of T and verifies:

• (i) ∪i∈IEi = X ,

• (ii) for each edge {x, y} ∈ AC , there exists i ∈ I with
{x, y} ⊂ Ei, and

• (iii) for all i, j, k ∈ I , if k is in a path from i to j in T ,
then Ei ∩ Ej ⊂ Ek .

The width w of a tree-decomposition (E, T) is equal to
maxi∈I |Ei| − 1. The tree-width w∗ of G is the minimal
width over all the tree-decompositions ofG.

Figure 1 presents a constraint hypergraph and one of its
possible TD with a minimal width (w∗ = 7).

In [5], Tree-Clustering - denoted here TC-1989 - was ini-
tially introduced using a polynomial time algorithm (MCS
[17]) for finding the TD. More precisely, the method is sum-
marized by:

1. Compute a TD of the constraint network

(a) Triangulation of the primal graph using MCS
(b) Identify clusters of variables (maximal cliques)
(c) Form the tree of clusters (join-tree)

2. Solve the subproblems defined by clusters of variables

3. Solve the tree problem in a backtrack-free manner

Note that the complexity of the step 1 is limited to
O(n2). Nevertheless, we have no guarantee about the op-
timality for the parameter w. The complexity of the step 2
is O(S.mw+1). So, given a constraint network, the more
the width of the decomposition is small, the more the time
complexity will be small. Unfortunately, the width of the
TD computed thanks to MCS can be very far from the op-
timum. Moreover, finding an optimal TD is an NP-hard
problem. Note that in [3], TC is called Join-Tree Cluster-
ing and each sub-problem is defined as the set of variables
belonging to a cluster and the constraints associated to a
cluster are the constraints whose scope is included in the set
of variables of the cluster. The complexity of the third step
is O(|C|.w.log(m).mw+1). Finally, we can consider that
the total cost is O(S.mw+1). Note that the space complex-
ity is related to the storage of solutions of sub-problems,
O(n.a.mw+1). In [3], Dechter suggests to limit the required
space in memorizing only a part of solutions on cluster, their
projection on intersection, limiting then the space complex-
ity to O(n.a.ms) where s is the maximum size of inter-
section between clusters. Finally, note that TC-1989 was
defined on binary CSPs but extensions have been defined
for non-binary CSPs [3]. Optimizations of TC-1989 have
been proposed to avoid some of its drawbacks (required
memory space, total solving of sub-problems before check-
ing for global consistency of the CSP, value of w) which
make this method not very efficient in practice. For exam-
ple, BTD [14] can be considered has an efficient approach
to exploit tree-decomposition. This practical efficiency is
due to the fact that BTD applies an enumerative algorithm
guided by an ordering of variables induced by the TD. This
approach generally avoids to solve completely all clusters.
As for TC-1989, time complexity of BTD is O(S.mw+1)
while its space complexity is O(n.a.ms). Moreover BTD
considers a given TD which can be obtained using heuristic
algorithms or exact algorithms.

We can consider that TC-1989 is driven by variables
since clusters are defined by set of variables. In [7], a
new method has been proposed, which considers now clus-
ters of constraints. The approach is based on the notion of
hypertree-decomposition which can be seen as a generaliza-
tion of tree-decomposition.

Definition 2 Given a hypergraph H = (X, C), a hyper-
tree for the hypergraph H is a triple (T, χ, λ) where T =
(N, F) is a rooted tree, and χ and λ are labelling functions
which associate to each vertex p ∈ N two sets χ(p) ⊂ X
and λ(p) ⊂ C. We denote the set of vertices N of T by
vertices(T), and the root of T by root(T). Moreover, for
any p ∈ N , Tp denotes the subtree of T rooted at p.
A hypertree-decomposition of H is a hypertree HD =
(T, χ, λ) for H which satisfies all the following four con-
ditions:

• (i) for each edge c ∈ C, ∃p ∈ vertices(T) s.t. c ⊂
χ(p),

1E
C7C6{ }

X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22{ }

X27 X28X24{ }
C10{ }

X23 X24X14 X16 X17 X18 X19 X20{
C8{ }C5 }{

X8 X9 X10{ }
2E E3 6E

4E

E5

E7

X22 X25 X26{ }
C9 }{

C3 C4{ }
X3 X5 X6 X7 X8{ }

X1 X2 X3 X4 X6{ }
C2C1{ }

}

Figure 2. An optimal HD (h∗ = 2).

• (ii) for each vertex x ∈ X , the set {p ∈ vertices(T) :
x ∈ χ(p)} induces a (connected) subtree of T ,

• (iii) for each p ∈ vertices(T), χ(p) ⊂ ∪c∈λ(p)c,

• (iv) for each p ∈ vertices(T),∪c∈λ(p)c ∩ χ(Tp) ⊂
χ(p).

An edge c ∈ C is strongly covered in HD if there exists
p ∈ vertices(T) such that c ⊂ χ(p) and c ∈ λ(p). A
hypertree-decompositionHD is a complete decomposition
of H if every edge of H is strongly covered in HD.
The width h of a hypertree-decompositionHD = (T, χ, λ)
is maxp∈vertices(T)|λ(p)|. The hypertree-width h∗ of H is
the minimum width over all its hypertree-decompositions.

Remark that acyclic hypergraphs are precisely the hyper-
graphs having a hypertree-width equal to one. For solving
CSP, we only consider complete HD. Figure 2 presents a
complete HD of the hypergraph in figure 1. Based on this
notion of hypertree-decomposition, the method, denoted
here MHD-1999, has been proposed in IJCAI 1999 ([7])
is defined by three steps.

1. Compute a HD of the CSP

2. Solve each cluster using a join of relations

3. Solve the tree problem in a backtrack-free manner

[7] presents an evaluation of the complexity, assuming
that the step 1 can be realized in O(|C|2h∗

.n2) thanks to
the algorithm opt-k-decomp [7]. For that, the considered
hypergraph must have a bounded hypertree-width. The opt-
k-decomp algorithm is able to compute an optimal HD in a
polynomial time for all hypergraphs whose hypertree-width
is bounded. Note that the cost of solving each cluster in step
2 is bounded by O(S.rh). The space complexity is related
to the size of an associated relation, that is O(rh). The prac-
tical interest of MHD-1999 has not been clearly shown yet.
This is probably due to the lack of efficient algorithms to
compute HD, and to the space (O(n.rh)) required to com-
pute the step 2. Nevertheless, from a theoretical viewpoint,
this method is clearly relevant as indicated by the ”Con-
straint Tractability Hierarchy” introduced in [7] (see figure

Hypertree Decomposition

Hinge Decomposition w *

Tree Clustering
treewidth

Biconnected Components

Cycle Hypercutset

Cycle Cutset

Tree Clustering

Hinge Decomposition
+

Figure 3. The Constraint Tractability Hierarchy

3). This hierarchy provides a theoretical comparison of the
well known structural methods for solving CSP and a hier-
archy on these methods. In this hierarchy, a decomposition-
based method D is considered as running in four steps.

1. Recognize that a CSP P is tractable (by verifying if
the width of the decomposition used by D, denoted
D-width, is bounded by a constant).

2. Compute, in polynomial time, a CSP decomposition
for P whose width is less than the constant.

3. Transform P , in polynomial time, into an equivalent
CSP P ′.

4. Solve P ′ in polynomial time (in SD−width since D-
width is bounded by a constant).

So, if we consider MHD-1999, D-width = h∗. Each
CSP whose hypertree-width is bounded is tractable (can be
solved in polynomial time) by MHD-1999. Formally, let
D1 and D2 be two decomposition-based methods. We con-
sider that D2 strongly generalizesD1 (represented by an arc
(D1,D2) in the figure 3) if D2 generalizes D1 (each prob-
lem tractable using D1 is also tractable using D2) and D2

beats D1 (there is a class of problems tractable according
to D2 but not according to D1). While MHD-1999 is at the
top of the hierarchy, note that formally, TC-1989 should not
be included since this method does not guarantee to use a
TD whose width is less than the constant of the first step.
Actually, the width of the TD computed thanks to MCS
can be far from the optimal and so significantly greater
than the constant. There are other decomposition-based
methods which outperform the HD: generalized hypertree-
decomposition [8] and fractional hypertree-decomposition
[10] but the methods based on these decompositions can-
not be considered in the tractable hierarchy. Thus, the
hypertree-decomposition is at the top of this hierarchy. Fi-
nally, note that for efficient implementations of HD, Got-
tlob’s group has recently proposed interesting algorithmic
tools to find efficiently good approximations of h∗ [6].

3 New Methods to Solve Decomposed CSPs

3.1 Solving VS Graphical Decompositions

In practice, decomposition-based methods are not
generally used as assumed in the hierarchy. The steps 1 and
2 are generally merged, the computing of a decomposition
whose width is bounded allowed to conclude that the
problem width is bounded. Moreover, this decomposition
is computed thanks to heuristic algorithms likewise in
TC-1989 instead of exact ones which are too expensive.
Note that from a practical viewpoint, optimal values w∗

or h∗ are not required and can be not desirable [13].
Moreover, steps 3 and 4 can be separated as for TC or
MHD, or limited to one step as for BTD. So, in this paper,
we consider that a decomposition-based method denoted
DMDEC has as input a CSP P and a graphical decomposi-
tion (denoted DEC) of P . Then the decomposition-based
method DM solves P using the considered graphical
decomposition DEC. For example, TCTD denotes the
applying of TC to a CSP P considering an optimal
TD while TCMCS(TD) considers a TD found by MCS
and solves it using TC. Thus TCMCS(TD) corresponds
to TC-1989 while TCTD is then TC referenced in the
hierarchy considering an optimal TD. Finally, MHDHD

corresponds to MHD-1999. In this paper we show the
interest to consider different steps in introducing combined
versions of methods DM ∈ {TC, MHD, BTD} and
graphical decompositions as TD or HD, with optimal or
non-optimal decompositions. We must show now how
methods such as TC or BTD, which have been defined
to run on tree-decompositions can be extended using
hypertree-decompositions.

3.2 From HD to TD and from TD to (G)HD

Let P = (X, D, C, R) be a CSP and HD = (T, χ, λ)
a hypertree-decomposition of H = (X, C) whose width is
h. (T, χ) verifies all the conditions required to be a tree-
decomposition except that there can exist a cluster χ(p)
contained in another χ(p′), with p, p′ ∈ vertices(T). To
compute a tree-decomposition from (T, χ), it is sufficient
to merge each cluster χ(p) in one χ(p′) containing it. The
edges in T joining χ(p) to other nodes will join them to
χ(p′). Thereby, we obtain a tree-decomposition TD(HD).

Finally, since HD defines a cover of the sets
χ(p), ∀p ∈ vertices(T) whose size is at most h, a
minimum cover of each cluster in TD(HD) is also at
most h. In Figure 4, we have a TD which is not optimal
(w = 12) induced by the optimal HD in Figure 2.

Conversely, given a tree-decomposition of TD = (E, T)
of H = (X, C) we could try to compute a hypertree-
decomposition. While compute a hypertree-decomposition

X8 X9 X10{ }X22 X25 X26{ } X23 X24X14 X16 X17 X18 X19 X20{2E E3

X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22{ }1E

X27 X28X24{ }X3 X5 X6 X7 X8{ }4E

X1 X2 X3 X4 X6{ }E5

6E

E7

}

Figure 4. Induced tree-decomposition.

is not immediate, we can easily obtain a generalized
hypertree-decomposition (GHD [8]).

Definition 3 Given a hypergraph H = (X, C), a general-
ized hypertree-decomposition of H is a hypertree GHD =
(T, χ, λ) for H which satisfies the following conditions:

• (i) for each edge c ∈ C, ∃p ∈ vertices(T) s.t. c ⊂
χ(p),

• (ii) for each vertex x ∈ X , the set {p ∈ vertices(T) :
x ∈ χ(p)} induces a (connected) subtree of T ,

• (iii) for each p ∈ vertices(T), χ(p) ⊂ ∪c∈λ(p)c.
An edge c ∈ C is strongly covered in GHD if there
exists p ∈ vertices(T) such that c ⊂ χ(p) and c ∈
λ(p).

A generalized hypertree-decomposition GHD is a com-
plete decomposition of H if every edge of H is
strongly covered in GHD. The width gh of a gen-
eralized hypertree-decomposition GHD = (T, χ, λ) is
maxp∈vertices(T)|λ(p)|. The generalized hypertree-width
gh∗ of H is the minimum width over all its generalized
hypertree-decompositions.

To compute a GHD from the given TD, it is suffi-
cient to cover all the clusters. This is not the case for
the hypertree-decomposition since there is an additional
condition (the fourth) that must be verified. This condition
is in the definition of hypertree-decomposition only to
make sure the existence of an algorithm that can compute
in a polynomial time a HD whose hypertree-width is
bounded by a constant if any. In this context, this aim
has no interest. Since the TD is given, the best induced
HD is the one whose cluster coverings are minimum.
Thus, we will not take in account this condition and will
compute a GHD. We associate a minimum cover λ(p) to
each cluster Ep ∈ E with p ∈ vertices(T). Thus, we
obtain a generalized hypertree-decomposition GHD(TD).
Nevertheless, this GHD is not necessarily complete. To
make it complete, we need to add for each hyperedge c
which is not strongly covered a child to a node p such
that c ⊂ Ep. Let GHDc(TD) be the obtained complete
generalized hypertree-decomposition. GHD(TD) and
GHDc(TD) have the same width. The GHD induced
by the TD in Figure 1 is easily obtained, and its width is

4, because the maximum size of λ(p) is 4 with the node
associated to E6 ({C1, C2, C3, C4} is this minimum cover).
Moreover, if we consider gh∗, the width of a GHD of a
given hypergraph, we know that gh∗ ≤ h∗ ≤ 3.gh∗ + 1
([1]). From this result, there is a hypertree-decomposition
HDc(TD) of width at most 3.k + 1.

3.3 Combined methods

Combined methods. It is now possible to exploit
hypertree-decomposition with methods such as TC or BTD
which have been designed to run on tree-decompositions.
Before, we will define a new extension of TC (denoted
TC-2009) more adapted to CSP defined with non-binary
constraints. Given a CSP and one tree-decomposition
TD = (E, T), as in TC-1989, the subproblem associated
to a cluster Ei is defined by the same set of variables
Ei. But now, the set of constraints for a cluster Ei is
CEi

= {cj ∈ C : cj ∩ Ei += ∅}. The relations associated
to these constraints are REi

= {rj [cj ∩ Ei] : cj ∈ CEi
}.

By the same way, we can define BTD-2009 too. The
motivation to consider partial constraints can eas-
ily be understood by a simple example. Consider
a CSP with three constraints defined on 3(n + 1)
variables: C1 = {x0, x1, . . . xn, y1, . . . yn}, C2 =
{y0, y1, . . . yn, z1, . . . zn} and C3 =
{z0, z1, . . . zn, x1, . . . xn}. The applying of TC in-
duces 4 clusters, one per constraint, plus the ”central”
cluster {x1, . . . xn, y1, . . . yn, z1, . . . zn}. The basic defi-
nition of TC does not consider partial constraints for the
”central” cluster. So, the cost for solving it will be related
to its number of variables. It will be m3n while if we
consider partial constraints, this cost will be limited to r2.
As for TC-1989, we have 3 steps. The first one computes
a TD of the constraint network, using a decomposition
algorithm for (hyper)graphs while the other steps (steps
2 and 3 presented in section 2) are not modified. So, this
step is now parametrized by any graphical decomposition
DEC. If we consider an optimal hypertree-decomposition
HD, we define then TC-2009HD, that is TC running
on a tree-decomposition TD(HD) induced by HD and
considering as subproblems, the clusters of variables and
the constraints whose scope intersects clusters. Likewise,
we can define a large and non-exhaustive collection of
methods:
• TCMCS(TD) =TC-1999: TC with MCS to find TD
• BTDMCS(TD) : BTD with MCS to find TD
• TCHMIN(TD): TC with heuristic HMIN to find TD

(minimization of w)
• BTDHMIN(TD): BTD with heuristic HMIN to find

TD (minimization of w)
• TCTD: TC with optimal TD (optimility: w = w∗)
• BTDTD: BTD with optimal TD (optimility: w = w∗)
• TC-2009HD: TC-2009with TD induced by an optimal

HD (optimility: h = h∗)

Hinge Decomposition

Biconnected Components

Cycle Hypercutset

Cycle Cutset

Tree Clustering

Hinge Decomposition
+

 HD−1999 h* hypertreewidth

HD TC−2009 BTD−2009HD

 TC BTD w *TD TD

TC−1989

Figure 5. The Constraint Tractability Hierarchy re-
visited

• BTD-2009HD: BTD-2009 with TD induced by an op-
timal HD (optimility: h = h∗)

• TC-2009HMIN(HD): TC-2009 with TD induced by a
HD computed by a heuristic (minimization of h)

• BTD-2009HMIN(HD): BTD-2009 with TD induced
by a HD computed by a heuristic (minimization of h)

Moreover, we can consider more complex heuristics
which consider simultaneously several criteria. For exam-
ple, we can define heuristics with a minimization of w and
then a maximization of constraints per clusters. Then, we
define heuristics such as HMIN(TD)+HMAX(HD) al-
lowing to define methods as BTDHMIN(TD)+HMAX(HD) ,
that is BTD with TD computed using a heuristic to mini-
mize the number of variables per clusters, and then, to max-
imize the number of constraints in clusters.

For the analysis of the complexity of TC-2009HD, as-
sume that the width of HD is h∗. Each sub-problem (clus-
ter) is solved independently (step 2) using an algorithm as
nFC2. Thanks to the result presented in [12] recalled in
section 2, the cost of solving a cluster Ei is now O(Si.r

ki),
where Si is the size of the subproblem associated to Ei,
while ki = k(Ei,CEi

) (i.e. the parameter associated to a
minimum cover of Ei). Note that the size of the set of
solutions in Ei is bounded by O(rki). So the total cost
for solving the whole decomposed CSP is O(S.rk) where
k = max{ki : i ∈ I}. Moreover, we have k ≤ h. So, we
can now establish that:

Theorem 1 The time cost of TC-2009HD is O(S.rh∗

).

Note that this result holds for BTD-2009HD too. This
result allows us to give a more precise presentation of the
Constraint Tractability (Figure 5). Hierarchy since TC-
2009HD and BTD-2009HD are at the same (top) level of
this hierarchy. It proves that TC-2009HD performs at least
as well as MHD-1999. Precisely, the time complexity of
TC-2009HD and then of BTD-2009HD are the same as for
MHD-1999.

TC-1999 TC BTD MHD-1999
MCS mw+1 mw+1 mw+1 mw+1 mw+1 ms UD
HMIN(TD) UD mw+1 mw+1 mw+1 ms UD
HMIN(HD) UD min(mw+1, rh) mw+1 min(mw+1, rh) ms UD
TD UD mw∗+1 mw∗+1 mw∗+1 ms UD
HD UD min(mw+1, rh∗) mw+1 min(mw+1, rh∗) ms rh∗

rh∗

TC-2009 BTD-2009
MCS min(mw+1, rh) mw+1 min(mw+1, rh) ms

HMIN(TD) min(mw+1, rh) min(mw+1, rh) min(mw+1, rh) min(ms , rh)
HMIN(HD) min(mw+1, rh) min(mw+1, rh) min(mw+1, rh) min(ms , rh)
TD min(mw

∗+1 , rh) min(mw
∗+1, rh) min(mw

∗+1, rh) min(ms , rh)
HD min(mw+1, rh

∗

) min(mw+1, rh
∗

) min(mw+1, rh
∗

) min(ms, rh
∗

)

Table 1. Time and space complexities for hybrid methods.

The second consequence is to have now an implemen-
tation of MHD with BTD-2009HD which inherits of the
same time complexity as MHD-1999 while limiting dras-
tically the space complexity and then allowing a potential
practical efficiency. From a practical viewpoint, this fact
can be really significant to get efficient implementations
of decomposition-based methods to solve real instances of
CSPs.

Finally, Table 1 presents the time complexity and the
space complexity of several combined methods. In this
table, s is the maximum size of the intersections between
clusters. In this table, lines represent the considered (hy-
per)graphical decompositions while columns are related to
the solving method. E.g. in the square corresponding the
line TD and the column BTD, we have mw∗ and ms which
are respectively the time complexity and the space complex-
ity of BTD running on an optimal TD, that is the complex-
ities of BTDTD . Note that if a method (e.g. TC-1989) has
not been defined to run on a particular decomposition (TD
for TC-1989), this will be denoted UD for undefined.

4 Experiments

In this section, we run experiments to evaluate the practi-
cal interest of the methods defined previously to check con-
sistency of instances.

The available implementations of TC and MHD do not
succeed in solving these instances because of a huge amount
of memory and time they require to solve separately the sub-
problems in a decomposition. Then, we use BTD which has
already shown its effectiveness on structured CSPs.

Moreover, computing an optimal (hyper)tree-decom-
position is an NP-hard problem. The runtime of ex-
act techniques is too large. Yet, there is no guaran-
tee on the practical efficiency using these decompositions.
So, we prefer heuristics with better time complexity to
compute our decompositions. Thus, we will not con-
sider BTDHD and BTDTD . In [9], the Bucket Elimina-

tion for Hypertree ([6]) is evaluated as the best technique
for computing hypertree-decompositions within a reason-
able amount of time. Its implementation is available at
www.dbai.tuwien.ac.at/proj/hypertree/downloads.html. So,
we will consider the method BTD-2009BE(HD). However,
in each cluster, this method takes in account all the con-
straints intersecting it. This approach is different from the
one in MHD where, for solving a cluster, only the con-
straints given by the HD are considered. So, we decide
to define an extension of BTDBE(HD), BTD-HDBE(HD)

which exploits totally the HD likewise in MHD. It guar-
antees the same time complexity bounds than MHD ones.
The Minfill triangulation algorithm (MF) and the MCS one
are known to give very good tree-decompositions w.r.t. the
practical solving of structured problems. Thus, we will
also consider the methods BTD-2009MF (TD) and BTD-
2009MCS(TD). For a complete comparison, we evaluate
an enumerative solving technique (namely FC) and an effi-
cient method which combines several solvers and has won
the CP’2008 competition (Hydra k 10).

The experiments are run on a Linux based PC with Pen-
tium IV 3.2GHz and 1GB of RAM. We first consider the
random structured CSP presented in [11]. Each CSP class
has several parameters (n, d, w, t, s, ns, p). An instance is
defined by n variables whose domain size is d. Its con-
straint graph is a clique-tree with ns nodes whose size is at
most w + 1 and whose separator size is bounded by s. t is
the number of forbidden tuples for each constraint. p is the
percentage of constraints removed from the instance built
by this way. The results presented in the Table 2 for each
class is the average on 30 instances. For each instance the
time out (TO) is fixed to 900s. MO means that the method
runs out of memory for one instance (the memory needed
to solve the problem exceeds 1GB). The poorest results are
obtained by FC which does not take profit of the struc-
tural properties to enhance the solving. Hydra k 10 im-
proves slightly these performances. BTD-HDBE(HD) runs
out of memory in the solving of several instance classes.

CSP (n, d, w, t, s, ns, p) FC Hydra BTD-09MCS(TD) BTD-09MF (TD) BTD-HDBE(HD) BTD-09BE(HD)
time time time w time w time w h time w h

(150, 25, 15, 215, 5, 15, 10) 275.64 122.46 4.21 13 2.56 12.5 1.13 13 7 1.85 13 7
(150, 25, 15, 237, 5, 15, 20) 398.66 92.56 1.64 12.7 2.62 11.7 21.11 12.1 6.7 4.99 12.1 6.7
(150, 25, 15, 257, 5, 15, 30) 219.97 30.76 0.95 12 1.64 10.8 MO 10.5 6 9.72 10.5 6
(150, 25, 15, 285, 5, 15, 40) 259.71 12.46 1.19 11.5 2.49 10 MO 9.6 5.9 33.46 9.6 5.9
(250, 20, 20, 107, 5, 20, 10) 719.28 568.42 12.13 18 49.91 17 222.95 17 9 155.20 17 9
(250, 20, 20, 117, 5, 20, 20) 642.08 394.50 5.56 17.3 24.09 15.9 MO 15.7 8.8 73.49 15.7 8.8
(250, 20, 20, 129, 5, 20, 30) 548.50 195.94 8.24 16.7 16.30 14.9 MO 13.9 8 75.47 13.9 8
(250, 20, 20, 146, 5, 20, 40) 590.84 197.70 15.20 16 45.76 13.9 MO 12.6 7.8 139.60 12.6 7.8
(250, 25, 15, 211, 5, 25, 10) 429.86 393.17 8.32 13 19.74 12.6 5.16 13 7 6.66 13 7
(250, 25, 15, 230, 5, 25, 20) 608.56 351.28 6.13 12.7 21.06 11.9 7.60 12.7 6.9 7.22 12.7 6.9
(250, 25, 15, 253, 5, 25, 30) 484.56 217.85 7.75 12.1 49.41 11 211.93 11 6.1 131.01 11 6.1
(250, 25, 15, 280, 5, 25, 40) 498.94 80.82 5.26 11.7 43.44 10.1 MO 9.9 5.9 61.06 9.9 5.9
(250, 20, 20, 99, 10, 25, 10) 529.61 584.41 105.51 17.9 147.49 17 MO 15.2 9 205.32 15.2 9
(500, 20, 15, 123, 5, 50, 10) 613.11 418.22 7.69 13 43.69 12.9 4.07 13 7 6.54 13 7
(500, 20, 15, 136, 5, 50, 20) 583.69 394.27 6.33 12.8 122.65 12 4.44 12.9 6.96 5.30 12.9 6.96

Table 2. Runtimes (in s) and decomposition parameters on random structured CSPs (BTD-09 stands for BTD-2009).

BTD − 09MCS(TD) BTD − 09MF (TD) BTD − HDBE(HD) BTD − 09BE(HD)

bench time w time w time w h time w h
ren-3 11.15 12 10.67 10 42.34 12 3 20.56 12 3
ren-6 3.75 13 3.71 10 1279.55 13 3 2.70 13 3
ren-12 11.85 12 11.64 10 134.24 10 3 10.49 10 3
ren-16 10.36 12 6.04 10 3.65 13 3 6.43 13 3
ren-17 5.42 12 9.59 10 145.06 11 3 3.41 11 3
ren-18 12.09 11 12.23 11 39.34 12 3 10.46 12 3
ren-19 12.07 11 7.74 9 49.25 11 3 16.36 11 3
ren-23 2.81 11 12.87 9 28.82 12 4 3.79 12 4
ren-24 8.05 14 7.97 11 35.01 12 4 7.63 12 4
ren-30 9.81 13 3.80 10 202.05 11 3 8.25 11 3
ren-35 12.28 12 7.32 10 57.33 11 3 13.19 11 3
ren-36 1.78 13 3.80 11 225.76 13 4 4.88 13 4
ren-37 17.01 15 13.68 12 13.64 14 4 21.16 14 4
ren-39 35.55 16 13.45 12 746.24 12 5 1.79 12 5
ren-40 8.60 14 5.86 11 65.55 12 4 9.01 12 4
ren-42 3.44 15 2.48 12 TO 12 3 2.50 12 3
ren-47 21.31 14 53.71 12 324.20 12 5 80.25 12 5

Table 3.Method runtimes (in s) and decomposition parameters on CSP instances modifiedRenault/normalized-renault-
mod-* from benchmarks of CP’2008 competition.

This large amount of memory space required is due to the
important number of solutions in the clusters which leads to
the recording of numerous (no)goods. Although the com-
puted HD has a good tree-width, the reduced number of
constraints in the clusters makes them very difficult to solve
with a large number of solutions. If we consider BTD-
2009BE(HD), the performances are far better. There are
less recorded (no)goods since the clusters are more con-
strained and contain less solutions. Nevertheless, the best
results are obtained by BTD based on tree-decomposition.
The tree-decompositions computed by MCS have a greater
width than those computed by Minfill. However, in prac-
tice, the MCS ones are more effective. They allow a better
dynamic ordering of variables. We observe on these bench-
marks that computing a tree-decomposition with many con-
straints in the clusters is more efficient in practice.

To confirm this observation on decomposition-based
methods, we consider CSP instances from the CP’2008
competition. For each problem, the Time out (TO) is fixed
to 1800s. The results presented in the Table 3 are on the
modifiedRenault class instances. But, we do the same ob-
servations on some other classes like geom. As expected,
BTD-HDBE(HD) has a very bad behavior. It fails in solv-
ing many instances (TO or MO). Its mean runtime is greater
than 248s for the class modifiedRenault reported. The
subproblems in a HD remain very hard to solve in prac-
tice because of the reduced number of constraints consid-
ered. This small constraint number weakens the power
of filtering techniques which contribute a lot in the effi-
ciency of enumerative methods. BTD-2009MCS(TD) and
BTD-2009MF (TD) behave far better thanks to a maximum
number of constraints in the clusters which are easier to

solve. Furthermore, BTD-2009BE(HD) outperforms dras-
tically BTD-HDBE(HD) because it takes in account all pos-
sible constraints. Nevertheless, these results are still worse
than those of BTD-2009MF (TD). Note that, while FC
fails in solving nearly all the modifiedRenault class CSP,
Hydra k 10, as expected, outperforms the others methods
on these problems.

To summarize, we note first that computing a tree-
decomposition with a small width is more relevant in
practice than computing a good HD. Indeed, this tree-
decomposition provides better results in practice as well as
good time complexity bounds w.r.t. the clusters size and
its minimum cover. Furthermore, its clusters can be solved
more efficiently when they contain many constraints. The
fact is justified considering that the more a problem is con-
strained, the more it will be easy to solve (this can be eas-
ily justified by probabilistic arguments). Hence, the most
promising approach consists in computing a TD with very
constrained clusters.

5 Discussion and Conclusion

We have proposed new approaches based on combined
decompositions of CSPs. Precisely, we have introduced two
new optimal methods, TC-2009 and BTD-2009, which ex-
ploit hypertree-decomposition and TC or BTD for solving
problems. This approach allows to get better complexity
bounds while inheriting of practical efficiency of enumer-
ative methods like nFC2, one of the most powerful tech-
niques for solving CSP. We have then also enriched the Con-
straint tractability hierarchy by updating the top of the hier-
archy using methods based on tree-decomposition as TC or
BTD (TC-2009 and BTD-2009). Finally, we have obtained
experimental results that show the interest of our approach.

Our results differ from the one given in [3] (Theorem
7.28, page 231). In this work, Dechter proposes to solve
a tree-decomposition of a CSP in time rhw where hw is
obtained by the sum of the induced hypertree-width h and
the number of variables in cluster which are not covered
by cluster constraints. For TC-2009 and BTD-2009, com-
plexity is now limited to rh (where h is now the induced
generalized hypertree-width). Our results also differ from
the paper in [4] which demonstrates empirically that the
bounding power of the tree-width is often superior in prac-
tice to the hypertree-width in probabilistic or deterministic
networks. In the technical report extending this paper, it is
said that the And/Or Search Graph approach can guarantee
a time complexity bound depending on the width of a given
hypertree-decomposition. But, this method only considers
a subclass of the possible hypertrees meaning that its com-
plexity is weaker than the MHD one. Yet, TC-2009 and
BTD-2009 have a time complexity depending on the width
of a generalized hypertree-decomposition. Thus, their com-
plexity bound is at least equivalent to MHD one.

A natural continuation of this work could be related to

the study of graphical decompositions which combine opti-
mization of parameters as w (minimizing) and h (maximiz-
ing). Moreover, it seems natural to extend this analysis to
COP (optimization) or probabilistic graphical models such
as in [4] (and [15]).

References

[1] I. Adler, G. Gottlob, and M. Grohe. Hypertree width and
related hypergraph invariants. Eur. J. Comb., 28(8):2167–
2181, 2007.

[2] C. Bessière, P. Meseguer, E. C. Freuder, and J. Larrosa. On
forward checking for non-binary constraint satisfaction. Ar-
tificial Intelligence, 141:205–224, 2002.

[3] R. Dechter. Tractable Structures for Constraint Satisfaction
Problems, pages 209–244. Chapter in theHandbook of Con-
straint Programming F. Rossi, T. Walsh and P. van Beek,
2006.

[4] R. Dechter, L. Otten, and R. Marinescu. On the Practical
Significance of Hypertree vs. Tree Width. In ECAI, pages
913–914, 2008.

[5] R. Dechter and J. Pearl. Tree-Clustering for Constraint Net-
works. Artificial Intelligence, 38:353–366, 1989.

[6] A. Dermaku, T. Ganzow, G. Gottlob, B. MacMahan,
N. Musliu, and M. Samer. Heuristic Methods for Hypertree
Decompositions. In MICAI 2008, pages 1–11, 2008.

[7] G. Gottlob, N. Leone, and F. Scarcello. A Comparison of
Structural CSP Decomposition Methods. Artificial Intelli-
gence, 124:343–282, 2000.

[8] G. Gottlob, N. Leone, and F. Scarcello. Robbers, marshals,
and guards: game theoretic and logical characterizations of
hypertree width. Journal of Computer and System Sciences
(JCSS), 66(4):775–808, 2003.

[9] G. Gottlob and M. Samer. A backtracking-based algorithm
for hypertree decomposition. ACM Journal of Experimental
Algorithmics, 13, 2008.

[10] M. Grohe and D. Marx. Constraint solving via fractional
edge covers. In SODA, pages 289–298, 2006.

[11] P. Jégou, S. Ndiaye, and C. Terrioux. Dynamic Heuristics
for Backtrack Search on Tree-Decomposition of CSPs. In
Proc. of IJCAI, pages 112–117, 2007.

[12] P. Jégou, S. Ndiaye, and C. Terrioux. A New Evaluation
of Forward Checking and its Consequences on Efficiency of
Tools for Decomposition of CSPs. In ICTAI, pages 486–490,
2008.

[13] P. Jégou, S. N. Ndiaye, and C. Terrioux. Computing and
exploiting tree-decompositions for solving constraint net-
works. In CP, pages 777–781, 2005.

[14] P. Jégou and C. Terrioux. Hybrid backtracking bounded by
tree-decomposition of constraint networks. Artificial Intelli-
gence, 146:43–75, 2003.

[15] K. Kask, R. Dechter, J. Larrosa, and A. Dechter. Unifying
tree decompositions for reasoning in graphical models. Ar-
tificial Intelligence, 166:165–193, 2005.

[16] N. Robertson and P. Seymour. Graph minors II: Algorithmic
aspects of treewidth. Algorithms, 7:309–322, 1986.

[17] R. Tarjan and M. Yannakakis. Simple linear-time algorithms
to test chordality of graphs, test acyclicity of hypergraphs,
and selectively reduce acyclic hypergraphs. SIAM Journal
on Computing, 13 (3):566–579, 1984.

