
A Tree Decomposition Based Approach to Solve Structured SAT Instances∗

Djamal Habet Lionel Paris
LSIS – UMR CNRS 6168

Université Paul Cézanne, Marseille, France
{Djamal.Habet, Lionel.Paris, Cyril.Terrioux}@lsis.org

Cyril Terrioux

Abstract

The main purpose of the paper is to solve structured
instances of the satisfiability problem. The structure of a
SAT instance is represented by an hypergraph, whose ver-
tices correspond to the variables and the hyper-edges to
the clauses. The proposed method is based on a tree de-
composition of this hyper-graph which guides the enumera-
tion process of a DPLL-like method. During the search, the
method makes explicit some information which is recorded
as structural goods and nogoods. By exploiting this infor-
mation, the method avoids some redundancies in the search,
and so it guarantees a bounded theoretical time complex-
ity which is related to the tree-decomposition. Finally, the
method is assessed on structured SAT benchmarks.

1 Introduction

Propositional satisfiability (SAT) is the problem of de-
ciding whether a Boolean formula in the Conjunctive Nor-
mal Form (CNF) is satisfiable. SAT is one of the most
studied NP-Complete problems because of its theoretical
and practical importances. Encouraged by the impressive
progress in the practical solving of SAT, various applica-
tions ranging from formal verification to planning are en-
coded and solved using SAT. Most of the successful com-
plete SAT solvers are based on a backtrack search algorithm
called Davis-Putnam-Logemann-Loveland (DPLL) proce-
dure [1]. Such basic algorithms are enhanced with many
important pruning techniques like learning, extended use of
Boolean constraint propagation, preprocessing, symmetries
breaking, etc. The impact of these different improvements
depends on the kind of the treated instances. For example,
learning is more relevant when solving instances encoding
real world problems than the randomly generated ones.

Improving the efficiency of the solving methods by ex-
ploiting the problem structure have been widely studied in

∗This work is supported by ANR UNLOC French project (ANR-08-
BLAN-0289-04).

CSP (Constraint Satisfaction Problem) (for example, see
[2]) and less in SAT. Here, the structure of a problem cor-
responds to its structural properties which can be repre-
sented and captured by the theoretical properties of the
(hyper)graph representing that problem. Concerning SAT,
the structure of the instances modeling real-world applica-
tions is the result of the modular design of these problems,
such that the models have a minimal interconnectivity and
each one has its distinct variables [3]. Hence, decompos-
ing the initial SAT problem into a set of subproblems may
facilitate its solving. Accordingly, the main purpose of the
work presented in this paper is to provide a new approach
based on the tree-decomposition of the graph representing
a SAT instance. This decomposition offers an order on the
problem variables which will be exploited by a DPLL-like
method. Moreover, during the search, many information
which correspond either to some fails or to some successes
when attempting to solve the (sub)problem(s) are learned
as goods and nogoods and such learning can permit pruning
the search space. Hence, the proposed approach theoreti-
cally bounds the time complexity of the solving.

The paper is organized as follows. Section 2 introduces
the necessary notions and notations. Section 3 presents our
tree-decomposition based approach (named DPLL-TD) by
giving its theoretical basis and detailing its algorithmic de-
scription. It also gives the proof of its soundness, complete-
ness and termination, then exhibits a proof of its complexity
in time and space. Section 4 presents some implementation
details of DPLL-TD and gives the results obtained on struc-
tured SAT benchmarks issued from the previous SAT com-
petitions. Section 5 presents some existing works on the use
of the tree-decomposition for solving SAT. Finally, Section
6 discusses and concludes the paper.

2 Basic Notions

This section is dedicated to the definition of the SAT
problem, to a reminder of the DPLL algorithm and to the
introduction of some concepts of the graph theory which
are all necessary to understand the rest of the paper.

1

2.1 About SAT

A satisfiability instance F is defined by F = (X , C),
where X is a set of boolean variables (taking their val-
ues from the set {true, false}) and C is a set of clauses.
A clause is a finite disjunction of literals and a literal is
either a variable or its negation. For a given literal l,
var(l) = {v|l = v or l = ¬v} is the singleton-set of the
variable which concerns l. Furthermore, a literal is viewed
as a clause with only one literal which matches with the
definition of a unit clause. Moreover, for a given clause c,
the set var(c) = ∪l in c var(l) defines all the variables that
are involved in c (l in c means that the literal l appears in
c). For example, if c = x1 ∨ ¬x2 ∨ ¬x3 then we have
var(¬x2) = {x2} and var(c) = {x1, x2, x3}.

A truth assignment I of the variables of F is represented
by a set of literals that verifies the condition ∀(l1, l2) ∈ I2

such that l1 6= l2, we have var(l1) 6= var(l2). A vari-
able that appears positively (resp. negatively) in I means
that it is fixed to the value true (resp. false). Besides,
a truth assignment I of the variables X is said to be par-
tial if |I| < |X | and complete if |I| = |X | (all the vari-
ables are fixed). Moreover, given a truth assignment I of
a set of a variables Y ⊆ X and the subset Z ⊆ Y , I[Z]
is the projection of I on the variables of Z. A model for
F is a truth assignment which satisfies all the clauses of
F . Finally, Sol(F) denotes the set of all the models of
F . Accordingly, the satisfiability problem (SAT) consists
in determining whether a CNF formula F admits a model
(Sol(F) 6= ∅). If it is the case, F is said satisfiable, other-
wise F is unsatisfiable.

2.2 About DPLL Algorithm

Despite its simplicity and seniority, the Davis-Putnam-
Logemann-Loveland procedure (DPLL) [1] is one of the
best complete procedures for SAT. DPLL procedure is a
backtracking algorithm: at each step, it chooses a variable
according to some branching heuristic (line 6 in Algorithm
1), satisfies this variable, simplifies the SAT instance and
then recursively checks if the simplified instance can be sat-
isfied (line 7). If this is the case then the initial SAT instance
is satisfiable. Else, an identical recursive call is achieved
assuming the opposite truth value for the current branching
variable (line 8). The simplification step essentially deletes
the satisfied clauses and reduces the size of the clauses con-
taining falsified literals.

Hence, the DPLL algorithm constructs a binary search
tree where its nodes are results of the recursive calls. While
a solution is not found, all leaves represent a dead-end cor-
responding to a contradiction (an empty clause denoted by
2). DPLL procedure performance is closely related to the
selection of the branching variable which affects the search

Algorithm 1: DPLL(in: C, I)

Unit-propagation (C, I)1
if 2 ∈ C then return false2
else3

if C = ∅ then return true4
else5

Choose an unassigned variable v (branching heuristic)6
if DP (C ∪ {v}, I ∪ {v}) then return true7
else return DP (C ∪ {¬v}, I ∪ {¬v})8

Algorithm 2: UnitPropagation(in/out: C, I)

while there is no empty clause and a unit clause l exists in F do1
I ← I ∪ {l} (satisfy l)2
simplify C3

tree size and consequently the required time to solve F .

2.3 About Graph Theory

As it was announced in the introduction, our aim is to
exploit the structural properties of the SAT instances ex-
pressed by their graph representation which will be decom-
posed accordingly. Hence, we should formulate and recall
some definitions related to these points. At first, let us de-
fine the graph representation of a SAT instance that we use
in the hope to capture its structure.

Definition 1 Let F = (X , C) be a SAT instance. The hy-
pergraph H = (V, E) that characterizes F is defined such
that each variable in X is represented by a vertex in V .
Moreover, each clause c ∈ C is represented by an hyper-
edge e ∈ E which is a subset of V , such that var(c) = e.

For example, consider the SAT instance F =
({x1, x2, x3}, {x1 ∨ ¬x2 ∨ x3, ¬x1 ∨ ¬x2 ∨ x3, x1 ∨
¬x3, x2 ∨ x3, x1 ∨ x4}) then its correspond-
ing hypergraph is defined by H = ({x1, x2, x3},
{{x1, x2, x3}, {x1, x3}, {x2, x3}, {x1, x4}}).

However, this hypergraph representation cannot be di-
rectly exploited in terms of the tree decomposition (defined
below) which is defined on graphs and not on hypergraphs.
Hence, we need to define the primal graph associated to the
hypergraph as follows.

Definition 2 The primal graph of an hypergraph H =
(V, E) is the graph GH = (V, EH) such that EH =
{{x, y}|x, y ∈ V and ∃ e ∈ E , {x, y} ⊆ e}. We denote
by G(X ,C) the primal graph associated to the SAT instance
F = (X , C).

Let us consider the above SAT formula F and its hyper-
graph representation H . According to the last definition,
the primal graph associated to H is GH = ({x1, x2, x3},
{{x1, x2}, {x1, x3}, {x2, x3}, {x1, x4}}).

2

Now, we can introduce the tree-decomposition (as de-
fined in [4]) which uses this primal graph representation of
a SAT instance. This decomposition might allow a judicious
exploitation of the structural characteristics of the instance.

Definition 3 Let G(X ,C) = (V, EH) be the (primal) graph
associated to a SAT instance F = (X , C). A tree-
decomposition of G(X ,C) is a pair (E, T) where T = (J, F)
is a tree with nodes J and edges F and E = {Ei : i ∈ J}
a family of subsets of V , such that each subset (called a
cluster) Ei is a node of T and verifies: (i) ∪i∈JEi = V ,
(ii) for each edge {x, y} ∈ EH , there exists i ∈ J with
{x, y} ⊆ Ei, and (iii) for all i, j, k ∈ J , if k is in a path
from i to j in T , then Ei ∩ Ej ⊆ Ek. The width of a tree-
decomposition (E, T) is equal to maxi∈J |Ei| − 1. The
tree-width w of G(X ,C) is the minimal width over all the
tree-decompositions of G(X ,C).

We denote by Desc(Ej) the set of variables belonging to
Ej or to a descendant Ek of Ej . Also, let Ei be a cluster
and Ej one of its children, Epar(j) is the parent cluster Ei

of Ej and we assume that Epar(1) = ∅ (the root cluster).
Moreover, the set C[Ei] contains the clauses belonging
exclusively to the cluster Ei. In other words we have
C[Ei] = {c ∈ C|var(c) ⊆ Ei and var(c) 6⊆ Epar(i)}.

As an example, Figure 1 shows a tree-decomposition
corresponding to some SAT instance (not given). E =
{Ei|i = 1 · · · 7} is the set of clusters and E1 is the root one
of this tree-decomposition. E1 has three children E2, E3

and E4, E2 = {x1, x2, x6, x7}, E1 ∩ E2 = {x1, x2} (this
intersection is called the separator between the cluster E2

and its parent E1), Epar(3) = E1, and finally Desc(E3) =
{x3, x4, x8, x15, x18, x20}.

E
1

E
2

E
7

E
4

E
5

E
6

E
3

x
1
 x

2
 x

3
 x

4
 x

5

x
1
 x

2
 x

6
x

7
x

3
 x

4
 x

8
 x

15
 x

3
 x

5
 x

16
 x

17

x
1
 x

13
 x

14
x

6
 x

7
 x

19
 x

8
 x

18
 x

20

x
9
 x

10
 x

11
 x

12

Figure 1. A tree-decomposition example.

Before discussing the theoretical and algorithmic details
of our approach, we will first give the basic idea behind it.
The tree-decomposition of the initial instance divides it into
independent (and smaller) parts which correspond to the
clusters, but which are still linked by the separators. Solving
the initial instance amounts to solve its various parts (clus-
ters). Starting from the root and using a depth-first-search
algorithm, each cluster Ei is attacked separately. If all the

clauses restricted to this cluster are satisfied then we will
attack one of its children Ej (if exists) by trying to extend
the truth assignment of the variables of Ei to those of Ej .
To be more precise, it is necessary to satisfy the clauses in
Ej with the respect of the constraints expressed by the truth
assignment of the variables in the separator between Ei and
Ej . In fact, these variables are shared between these two
clusters and consequently should be assigned identically. If
this process fails then we can deduce that it is never possi-
ble to extend the truth assignment of the separator variables
to a model. More interesting still, storing this information
could be helpful to avoid repeating the same treatment in
the case of a backtrack on the cluster Ei and the occurrence
of the same truth assignment of the separator variables. In
the same way and for the same reasons, if the clauses of the
cluster Ei and those of clusters of its descent are satisfied
then it is also useful to store the truth assignment of the vari-
ables of the separator as a scalable truth assignment for this
part of the instance. To summarize, we apply a backtrack
search on the tree-decomposition of the SAT instance, while
saving any useful information to prune the search space.

3 A Tree Decomposition Based Approach for
SAT

This section represents the major contribution of our
work. As a first step, it outlines the various theoretical
aspects related to the use of the tree-decomposition for
SAT. In a second time, it introduces and details DPLL-TD
which is the algorithmic translation of these theoretical as-
pects. Finally, we exhibit evidences on the completeness
and soundness of our algorithm and its complexity in time
and space.

3.1 Theoretical Foundations

In the following, we consider an instance F = (X , C)
and a tree-decomposition (E, T) associated to the graph
G(X ,C). The aim of the first theorem above (easy to prove)
is to show that a tree-decomposition of the graph G(X ,C)
does not change the initial instance (no information is lost)
and a clause belongs to a single cluster.

Theorem 1 The sets (C[Ei])i form a partition of C.

By the use of the definition of C[Ei], let us introduce now
the concept of a subproblem induced by a truth assignment.

Definition 4 Let Ei be a cluster. The subproblem FEi,I

rooted in Ei and induced by a truth assignment I on a sub-
set of Ei ∩ Epar(i) is (Desc(Ei),

⋃
Ek⊆Desc(Ei)

C[Ek] ∪
{l|l ∈ I and var(l) ⊆ Ei ∩ Epar(i)})

In other words, FEi,I is formed by all the clauses and the
variables of the cluster Ei and its descendant clusters with

3

additional constraints expressing the current truth assign-
ment of the variables in the separator between Ei and its
parent. These constraints are simply formulated by the unit
clauses {l|l ∈ I and var(l) ⊆ Ei ∩ Epar(i)}. This defini-
tion means also that solving the sub-problem corresponding
to the subtree rooted in Ei must respect the truth assignment
of the variables that it shares with its parent.

Property 1 Given two truth assignments I and I ′ such
that I ⊆ I ′ and a cluster Ei, we have Sol(FEi,I′) ⊆
Sol(FEi,I).

Proof: FEi,I′ only differs from FEi,I in having some addi-
tional clauses, namely the unit clauses l such that l ∈ I ′− I
and var(l) ⊆ Ei ∩ Epar(i). So, we have necessarily
Sol(FEi,I′) ⊆ Sol(FEi,I).2
This property characterizes the existing relation between the
models of the subproblems rooted in the same cluster but
induced by two different truth assignments where one (I ′)
extends the other (I).

Definition 5 A variable v is an independence variable if
there exists a cluster Ei and two of its children Ej and Ek

such that v ∈ Ei ∩ Ej ∩ Ek. We denote Xind the set of
independence variables of F with respect to the considered
tree-decomposition.

Independence variables have a particular role in the tree-
decomposition of a SAT instance. Specifically, in order to
decompose in a valid way a SAT instance into a set of in-
dependent sub-problems, we must ensure that these vari-
ables are assigned with the same value in the various sub-
problems in which they operate. For example, according to
the Figure 1, there is one independence variable x3 located
on the intersection of E1 with two of its children E3 and E4.
Hence Xind = {x3}. If x3 is not assigned when treating E1

(recall that it is possible to satisfy a set of clauses without
necessary fixing all the variables occurring in these clauses)
then x3 must be assigned identically when treating indepen-
dently the subproblems rooted in E3 and E4. The following
theorem formally establishes the independence between the
sub-problems in terms of the independence variables.

Theorem 2 Given a cluster Ei, Ej and Ek two of its chil-
dren and a truth assignment I on a subset Y of Ei, if
Xind ∩ Ei ⊆ Y then the subproblems FEj ,I[Ei∩Ej] and
FEk,I[Ei∩Ek] are independent.

Proof: By definition of a tree-decomposition, Desc(Ej) ∩
Desc(Ek) = Ej ∩ Ek ⊆ Ei. Clearly, we have Ej ∩ Ek ⊆
Xind and so Ej ∩ Ek ⊆ Xind ∩ Ei. As the variables of
Xind ∩ Ei are assigned in I , it ensues that these variables
have the same values in any truth assignment which satisfies
in FEj ,I[Ei∩Ej] and FEk,I[Ei∩Ek] thanks to the unit clauses
l s.t. l ∈ I and var(l) ⊆ Ei ∩ Ej ∩ Ek. Moreover, these
unit clauses are the only clauses shared byFEj ,I[Ei∩Ej] and

FEk,I[Ei∩Ek] (according to Theorem 1). Hence the sub-
problems FEj ,I[Ei∩Ej] and FEk,I[Ei∩Ek] are independent.
2

The next corollary states that the satisfiability of the sub-
problems rooted in brother clusters led to the satisfiability
of the subproblem rooted on their parent cluster.

Corollary 1 Given a cluster Ei and a truth assignment I
on a subset Y of Ei, if Xind ∩ Ei ⊆ Y , I satisfies the
clauses of C[Ei], and, for each child Ej of Ei, the subprob-
lem FEj ,I[Ei∩Ej] is satisfiable, then I can be extended to a
model of FEi,I[Ei∩Epar(i)].

Proof: Let MEj
be a model of FEj ,I[Ei∩Ej]. By definition

of FEj ,I[Ei∩Ej], there is no variable v such that I ∪MEj

contains two opposite literals of v. According to theo-
rem 2, for any children Ej and Ek of Ei, FEj ,I[Ei∩Ej]

and FEk,I[Ei∩Ek] are independent. So the truth assignment
I∪

⋃
Ej∈children(Ei)

MEj
satisfies both the clauses of C[Ei]

and ones of FEj ,I[Ei∩Ej] for each child Ej of Ei. So I can
be extended to a model of FEi,I[Ei∩Epar(i)].2
As explained just before the beginning of this section, we
also want to keep track of any useful information that will
allow us to unnecessarily repeat several times the same
treatment, namely solving the same subproblems. This cor-
responds to making cuts in the branches of the tree explor-
ing the search space in the presence of information indi-
cating whether the satisfiability of the sub-problem being
processed. Such information are goods and nogoods which
we define formally as follows.

Definition 6 Given a cluster Ei, a truth assignment I on
a subset of Ei ∩ Epar(i) is a structural good (respectively
nogood) of Ei if any extension of I on Ei ∩ Epar(i) can be
extended to a model of FEi,I (resp. if Sol(FEi,I) = ∅).

In other words, a structural good (resp. nogood) is a truth
assignment I on a subset of Ei ∩ Epar(i) which can (resp.
cannot) be extended to a model of FI,Ei

. Remark that these
(no)goods are recorded on the separator between Ei and
Epar(i)

Property 2 Given a cluster Ei and a subset Y ⊆ X such
that Desc(Ei) ∩ Y ⊆ Ei ∩ Epar(i), for any good g of Ei,
every truth assignment I on Y can be extended to a model
of FEi,I[Ei∩Epar(i)] if there exists an extension eg of g on
Ei ∩ Epar(i) such that I[Ei ∩ Epar(i)] ⊆ eg .

Proof: By definition of a good, eg and so I[Ei ∩ Epar(i)]
(since I[Ei ∩ Epar(i)] ⊆ eg) can be extended to a model
M of FEi,g . It ensues that M satisfies the clauses of⋃

Ek⊆Desc(Ei)
C[Ek]. Moreover, it also satisfies the unit

clauses of {l|l ∈ I and var(l) ⊆ Ei ∩ Epar(i)} since
I[Ei ∩ Epar(i)] ⊆ eg ⊆ M . So M is a model of
FEi,I[Ei∩Epar(i)] and I[Ei ∩ Epar(i)] can be extended to a
model of FEi,I[Ei∩Epar(i)]. 2

4

The previous property gives the condition that allows us
to make a cut according to the recorded goods. Extend-
ing eg to g is the operation of completing g by inter-
preting some (or all) of the unassigned variables on the
separator Ei ∩ Epar(i) in g, if necessary to ensure that
I[Ei ∩ Epar(i)] ⊆ eg , otherwise we have e = eg (and also
when |e| = |Ei ∩ Epar(i)|). In a more obvious manner, the
next property expresses the cut conditions by the nogoods.

Property 3 Given a cluster Ei and a subset Y ⊆ X such
that Desc(Ei) ∩ Y ⊆ Ei ∩ Epar(i), for any nogood ng of
Ei, no truth assignment I on Y such that ng ⊆ I can be
extended to a model of FEi,I[Ei∩Epar(i)].

Proof: We have Sol(FEi,I[Ei∩Epar(i)]) ⊆ Sol(FEi,ng)
(property 1). Moreover, by definition of a nogood,
Sol(FEi,ng) = ∅. So Sol(FEi,I[Ei∩Epar(i)]) = ∅ and I
cannot be extended to a model on Desc(Ei). 2

Now that we made and proved all the theoretical elements
related to our approach, we describe their algorithmic ex-
ploitation below.

3.2 The DPLL-TD Algorithm

Consider a SAT instance F = (X , C) and a tree-
decomposition (E, T) of the primal graph obtained from
the hypergraph representation of F . Algorithm 3 describes
the DPLL-TD (for DPLL with Tree Decomposition) method
to solve the satisfiability problem. During the search,
DPLL-TD attempts to extend the current truth assignment
to a model, if it exists, guided by the tree-decomposition
of F . Moreover, DPLL-TD exploits the information pre-
viously learned (the set of goods G and nogoods N) in or-
der to prune the search space. Hence, DPLL-TD(C, I, Ei,
G,N) returns true (resp. false) if the subproblem FEi,I

rooted in Ei is satisfiable (resp. unsatisfiable). Before giv-
ing more details, some notations and precisions are nec-
essary. The set of goods of a given cluster Ei are rep-
resented and recorded in GEi

and G is the set defined by
G = {GEi |Ei ∈ E}. Moreover, the set of nogoods is N
andN [Ei] is the set of clauses (representing the nogoods as
it will be explained below) belonging only to the cluster Ei.
So, the definition ofN [Ei] matches with this of C[Ei] given
before.

The first call of DPLL-TD is done with the parame-
ters (C, ∅, E1,G,N), where E1 is the root of the tree-
decomposition. In fact, initially there are no assigned vari-
ables and no recorded (no)goods (GEi

= ∅ and N = ∅).
The first step of the algorithm (line 1) is the propagation
of the unit clauses belonging to C ∪ N . Accordingly, if
an empty clause is found then the algorithm returns false
which means that F is unsatisfiable. Else, if C ∪N is emp-
tied thenF is satisfiable and the algorithm returns true (line
4).

Algorithm 3: DPLL-TD(in: C, I, Ei, in/out: G,N)

Unit-propagation (C ∪ N , I)1
if 2 ∈ C ∪ N then return false2
else3

if C ∪ N = ∅ then return true4
else5

if (C ∪ N)[Ei] = ∅ and Xind ∩ Ei = ∅ then6
sat← true7
S ← children(Ei)8
while sat and S 6= ∅ do9

Choose a cluster Ej in S10
S ← S − {Ej}11
if ∃g ∈ GEj

, ∃eg extension of g on Ei ∩12
Ej , I[Ei ∩ Ej] ⊆ eg then

I ← I ∪ g13

else14
sat← DPLL-TD (C, I, Ej ,G,N)15
if sat then16

Let g ∈ GEj
be the last recorded good17

I ← I ∪ g18

else N ← N ∪ {
∨

lk∈I[Ei∩Ej]

¬lk}
19

if sat then GEi
← GEi

∪ {I[Ei ∩ Epar(i)]}20
return sat21

else22
Choose an unassigned variable v in Ei23
if DPLL-TD (C ∪ {v}, I ∪ {v}, Ei,G,N) then24

return True25

else return DPLL-TD (C ∪ {¬v}, I ∪ {¬v}, Ei,G,N)26

Now, consider the set of clauses ((C∪N)[Ei]) and the set
of independence variablesXind∩Ei restricted to the consid-
ered cluster Ei. If one of these sets is not empty, Algorithm
3 proceeds to a DPLL enumeration on Ei in order to fix
some of its variables (lines 23-26). For example, in Figure
1, x3 ∈ X ∩ E1. If x3 is not assigned then an enumeration
on x3 and possibly on the unfixed variables of (C ∪N)[E1]
is done to ensure the same truth value for x3 in both the
clusters E1, E2 and E3. Hence, the independence of sub-
problems rooted in E3 and E4 is guaranteed (Corollary 1).
Otherwise (the condition in line 6 is checked), DPLL-TD
treats the subproblems rooted on the clusters Ej children
of Ei (recall that if all the subproblems FEj ,I[Ei∩Ej] are
satisfied then FEi,I is also satisfied).

When treating the children clusters of Ei, the previ-
ously recorded (no)goods can be useful. Indeed, DPLL-TD
checks if there exists a good g in GEj

between Ej (child
of Ei) and Ei which verifies the cut condition expressed by
Property 2 (line 12). If g is found then FEj ,I[Ei∩Ej] is sat-
isfiable and it is unnecessary to address it again. Otherwise,
the satisfiability of FEj ,I[Ei∩Ej] is unknown and it will be
determined by the recursive call DPLL-TD(C, I, Ej ,G,N).
According to the last case, FEj ,I[Ei∩Ej] is unsatisfiable (the
last call returned false) means that a nogood is detected be-
tween Ej and Ei. This one is represented and recorded as
a new clause defined by ∨lk∈I[Ei∩Ej]¬lk which is added
to the set of nogoods N (line 19). For example, consider

5

Figure 1, the cluster E1, its child E2 and a truth assign-
ment on E1 ∩ E2 = {x1, x2} which is I[{x1, x2}] =
{¬x1, x2}. If F2,{¬x1,x2} is unsatisfiable then {¬x1, x2}
is a nogood, which is recorded by the clause x1 ∨ ¬x2 in
N . Hence, DPLL-TD backtracks on the variables of Ei and
tests the existence of a new truth assignment which satisfies
(C∪N)[Ei]. Note that even if the learned clauses (nogoods)
are saved in a distinct set N , they are considered like any
other clause in C. This distinction is made in order to high-
light the nogoods learned during the search. Moreover, this
nogood representation does not require any particular treat-
ment, mainly testing whether a cut can be achieved through
nogoods. Thus, nogood processing is hidden for DPLL-TD
and the learned clauses may enhance the effectiveness of
the unit propagations (filtering).

Finally, the lines 13 and 18 correspond to the extension
of the current truth assignment according to the used good
in the case of a cut (by Property 2). Hence, I is extended by
adding the literals of the good g to those of I ensuring the
correctness of the good recording on Ei if FEi,I is satis-
fiable (line 20) where a good corresponds to the obtained
truth assignment of the variables of Ei ∩ Epar(i). Note
that, because the independence variables are set in advance,
no contradiction can be found during the extension of the
current truth assignment. For example, reconsider Figure
1, the cluster E2, its child E6 and a truth assignment on
E2 ∩ E6 = {x6, x7} which is I[{x6, x7}] = {x6}. Also,
suppose that there exists a good g = {x6,¬x7} ∈ GE6 . Ac-
cording to Property 2, FE6,{x6} is satisfiable and the current
truth assignment is extended by {¬x7}.

3.3 DPLL-TD Properties

Now, wee are interested in the complexity of DPLL-TD,
to its completeness, soundness and termination.

Theorem 3 DPLL-TD is sound, complete and finishes.

Proof: DPLL-TD differs from DPLL in recording struc-
tural (no)goods and uses these nogoods as new clauses and
these goods to avoid redundancies in the search. As DPLL
is sound, complete and finishes, we have to prove that the
additional treatments achieved by DPLL-TD do not alter
these properties. We assume that DPLL-TD(C, I, Ei,G,N)
is the current call and we want to check the satisfiability of
the subproblem FEi,I[Ei∩Epar(i)].

For this purpose, let us consider the case where I sat-
isfies all the clauses of (C ∪ N)[Ei]. DPLL-TD tries to
extend I on each child of Ei. Let Ej be such a child. If
the condition of line 12 holds then FEj ,I[Ej∩Ei] is satisfi-
able (according to Property 2 expressing the cut conditions
by goods). Otherwise, the satisfiability of FEj ,I[Ej∩Ei] re-
mains unknown, a recursive call DPLL-TD(C, I, Ej ,G,N)
is necessary. If this call returns false (unsatisfiable) this

means that FEj ,I[Ej∩Ei] has no model and recording a no-
good in the form of a clause

∨
lk∈I[Ei∩Ej]

¬lk is a valid
operation. As a structural nogood is a particular case of
nogood then its use as any clause of C is also valid. At
the end of the while loop, if I can be extended to a model
on all its children then I[Ei ∩ Epar(i)] can be extended
to a model of FEi,I[Ei∩Epar(i)] (according to Corollary 1).
Moreover, since I has been extended with the value of each
used good on its children, recording the good I[Ei∩Epar(i)]
of Ei is valid. Thus, recording and exploiting (no)goods are
valid we conclude that DPLL-TD is sound, complete and
finishes.2

Theorem 4 DPLL-TD has a time complexity in O((|E| +
m).2w+s) and a space complexity in O(|E|.s.2s) for an in-
stance having n variables and m clauses. The associated
tree-decomposition to this instance is (E, T) whose width
is w and whose largest intersection between two clusters is
s.

Proof: Let us consider a cluster Ej and a partial truth as-
signment I on Ej ∩ Epar(j). For sake of simplicity, we try
to extend I on Ej by assuming that the variable ordering
is static. If Ej = E1, I = ∅ and DPLL-TD will compute
at most 2|E1|+1 partial truth assignments which extend I .
Otherwise, there are at most 2|Ej |−|I|+1 partial truth assign-
ments extending I . As there is at most 2|I| possible partial
truth assignments of size |I| and the subproblem FEj ,I is
solved only once thanks to recorded (no)goods, the whole
number of partial truth assignments studied by DPLL-TD
for the cluster Ej is at most

∑s
|I|=0 2|Ej |−|I|+1.2|I| =

s.2|Ej |+1. As the cluster Ej is independent of its parent
cluster as soon as the variables of Xind ∩ Ej ∩ Epar(j) are
assigned, DPLL-TD will study at most O(2w+2) truth as-
signments. Moreover, for each partial truth assignments,
DPLL-TD performs unit propagations in O(m + |N |). For
a given separator of size k, the number of partial truth
assignments is bounded by 2k+1. So the whole number
of recorded (no)goods is |E|.2s+1. Finally, recording a
(no)good can be performed in O(s) and the check of line
12 can be achieved in O(s.2s+1). So, the time complexity
of DPLL-TD is O((m + |E|.2s+1).2w+1 + s.2s+1.2w+1,
i.e. O((m + |E|).2w+s).

Concerning the space complexity, it only depends on the
(no)good recording. So, as the space required for recording
a (no)good is O(s), the space complexity of DPLL-TD is
O(|E|.s.2s). 2

In simple terms, the complexity of DPLL-TD depends
on the characteristics of the tree-decomposition , i.e. its
width and the size of the largest separator. Compared to a
classical DPLL procedure, the complexity of this last one is
mainly related to the number of the variables of the treated
instance.

6

DPLL-TD Minisat Rsat Zchaff Satz DPLL-TD
Benchs. # inst. #s t. #s t. #s t. #s t. #s t. position
linvrinv 8 3 1 3 1 3 2 3 9 3 1 1∗

mod2-3cage-unsat 23 6 2370 18 2579 1 540 0 - 0 - 2
mod2-rand3bip-sat 33 1 351 17 2534 6 1112 7 1646 8 1923 5
mod2-rand3bip-unsat 15 11 793 9 1062 6 872 6 1124 0 - 1
mod2c-3cage-unsat 6 4 115 3 563 0 - 0 - 0 - 1
mod2c-rand3bip-sat 33 0 - 17 2559 11 1410 18 3156 0 - 5
mod2c-rand3bip-unsat 15 15 676 10 1810 8 1337 6 1125 0 - 1
clqcolor 16 7 181 6 171 9 36 9 23 0 - 3
fclqcolor 16 9 136 9 169 9 22 9 11 0 - 1∗

fphp 42 16 617 17 165 16 49 16 28 17 555 3
php 42 16 123 6 258 16 134 12 231 18 721 2
sorge05 104 36 1752 69 5571 59 4347 54 2748 33 1316 4
driverLog 36 32 1 36 < 1 36 < 1 36 < 1 36 2 5
Ferry 36 20 496 36 6 36 4 36 22 17 299 4
rovers 22 22 3 22 < 1 22 < 1 22 < 1 22 1 1∗

satellite 20 20 22 20 < 1 20 < 1 20 < 1 20 259 1∗

difficult-contest05-jarvisalo 10 3 323 2 659 0 - 0 - 0 - 1
medium-contest05-jarvisalo 10 2 782 9 1955 1 470 3 850 3 497 4
spence-medium 10 3 220 9 1031 4 294 4 111 8 877 5
grieu 10 5 1222 1 71 5 347 3 525 5 378 1∗

industrial-jarvisalo 7 1 16 3 112 3 400 2 99 4 448 5

Table 1. DPLL-TD results and comparisons

4 Experimental Results

This section presents some implementation details of
DPLL-TD and compares the results that it obtains to those
of other powerful SAT solvers: Minisat [5], Rsat [6], Satz
[7] and zChaff [8]. DPLL-TD is coded on the basis of Satz
which is used as an enumeration algorithm in the clusters.
We have selected Satz for our good knowledge of its source
code which we have extensively modified (for example, to
consider the nogood recording as clauses). DPLL-TD is
tested on almost 1800 SAT instances (pretreated by SatElite
[9]) issued from the SAT competitions ranging from 2002 to
2007 (www.satcompetition.org). The experiments
are carried on a P4 3.2 Ghz PC with 1 GB of RAM, with
600 seconds. for the CPU time-out per instance. The tree-
decomposition is obtained by the min-fill algorithm [10]
and the root cluster contains the largest number of variables.
To evaluate our approach, we have selected the most rele-
vant instances in Table 1 (instances which present an inter-
esting structure according to the ratio between the number
of the variables and the width of the decomposition, and re-
flect the global observation over the 1800 instances). The
first column corresponds to the benchmark name and the
second one to the number of tested instances per bench-
mark. The rest of the table gives for each solver the num-
ber of solved instances (#s) and the sum of needed times
of successful solving (t). The times reported for DPLL-TD
include the used time to construct the tree decomposition.
The last column give the position of DPLL-TD regarding to
the number of solved instances (1∗ means that DPLL-TD
is not the only one to solve most instances). Regarding to
this last column, it can be announced that our approach is
competitive and can outperform two very powerful solvers,
Minisat and Rsat, on some benchmarks.

Ranking according to the number of solved instances is
used to provide a first reading and interpretation of the re-
sults. In fact, it is hard to present the results obtained on
each instance. Besides, this comparison can be enriched
regarding to the resolution time. However and for a given
benchmark, the tested solvers do not solve necessary the
same instances, which make difficult a strict comparison re-
garding the time columns. Concerning the comparison to
the others approaches based on the tree decomposition, it
is necessary to know that there are a few practicable algo-
rithms (see Section 5). We have also tried to obtain some
of the existing ones but unfortunately they are not main-
tained (the used libraries are obsolete ...) then it is impos-
sible to run them. Furthermore and regarding the results
presented in the papers presenting such approaches (for ex-
ample [3, 11]), these ones are not competitive regarding to
the recent high challenging solvers (Minisat, Rsat...). On
the basis of these very encouraging results, we can argue
that our approach is relevant and we believe that these re-
sults can be improved, by studying other points including
the selecting heuristics of the root cluster, a dynamic clus-
ter selection, the quality of the tree-decomposition, . . . Also,
DPLL-TD improves significantly Satz, which is used as the
basis of our implementation. Consequently, it is conceiv-
able that we can obtain better results if we use more power-
ful solvers such as Minisat and Rsat.

5 Related Work

Some works try to enhance the performances of SAT
solvers by guiding the variable ordering heuristic by the
tree-decompositions of the treated instances. For examples,
a variable ordering heuristic presented in [11] uses Dtree
[12] (a static binary tree-decomposition) to compute the

7

variable group ordering. A dynamic variable clustering is
presented in [13] without showing any experimental results
to demonstrate if such approach is more promising than a
static variable clustering one. In [14], the authors provide a
heuristic to solve the most constrained subproblem first. But
again, no experimental evaluation is performed. A static
global variable ordering based on recursive min-cut bisec-
tion of hypergraphs was proposed in [15]. In [3], the authors
present dynamic decomposition methods based on the hy-
pergraph (corresponding to the SAT instance) separator. A
constrained partitioning scheme that can be exploited to de-
rive a variable order that can be used to guide and speedup
SAT solvers is described [16]. Opposed to the minimum
tree-width decomposition schemes, this approach performs
constraint partitioning on a hypergraph by analyzing both
the number of the occurrences of the variables among all
the clauses of the SAT instance and the connectivity of these
clauses. Finally, the method DPLL-TD has a clear relation-
ship with the BTD method [2] proposed for CSP but they
are sufficiently different. On the one hand, the resolution
methods for SAT and CSP do not employ exactly the same
techniques and differ on their specificities. For example, if
all the variables must be instantiated to produce a solution
for a CSP, it is not necessary the case in SAT. This simple
difference, apparently insignificant, imposes the need to de-
fine a formal framework specific to SAT when designing the
DPLL-TD algorithm (the introduction of the independence
variables is a direct consequence). On the other hand, the
(no)goods in DPLL-TD can have a variable size and do not
affect all the variables of a separator as in BTD. In this case,
such (no)goods are generic and may permit a more powerful
cuts in DPLL-TD than BTD.

6 Conclusion and Perspectives

We have proposed a new approach (DPLL-TD) based on
the tree decomposition to solve structured satisfiability in-
stances and we have supported our work by both theoret-
ical and practical evidences. The obtained variable order
is static on the clusters and a dynamic over the variables
of these clusters. Also, (no)goods are learnt to prune the
search space and the spatial and temporal complexities of
DPLL-TD are bounded according to the tree-decomposition
characteristics. Even if some works dealing with such ap-
proach exist for SAT, it is necessary to emphasis the fact
that they are rarely supported by an empirical evaluation
that may give a practical impact. Other aspects of solv-
ing SAT by tree-decomposition will be studied, mainly the
triangulation, the choice of the root cluster, the definition
of heuristics to choose the next cluster to treat, . . . We will
also work on the use of the conflict analysis to derive new
nogoods as it is done on the CDCL-based solvers and the
use of restarts (on the basis of the information learned in
previous executions) while changing either the root clus-
ter or the decomposition itself (for example, building a new

tree-decomposition based of the most conflicting variables).
This information can also be used to determine dynamically
the cluster orders based on the most constrained first.

References

[1] M. Davis, G. Logemann, and D. Loveland. A machine pro-
gram for theorem-proving. Commun. ACM, 5(7):394–397,
1962.

[2] P. Jégou and C. Terrioux. Hybrid backtracking bounded by
tree-decomposition of constraint networks. Artificial Intelli-
gence, 146:43–75, 2003.

[3] W. Li and P. van Beek. Guiding real-world sat solving with
dynamic hypergraph separator decomposition. In Proceed-
ings of ICTAI 2004, pages 542–548, 2004.

[4] N. Robertson and P.D. Seymour. Graph minors II: Algorith-
mic aspects of treewidth. Algorithms, 7:309–322, 1986.

[5] N. Eén and N. Sörensson. An extensible sat-solver. In Pro-
ceedings of SAT 2003, pages 402–518, 2003.

[6] K. Pipatsrisawat and A. Darwiche. Rsat 2.0: Sat solver de-
scription. Technical Report D–153, Automated Reasoning
Group, Computer Science Department, UCLA, 2007.

[7] C.M. Li. Exploiting Yet More the Power of Unit Clause
Propagation to solve 3-SAT Problem. In ECAI’96 Workshop
on Advances in Propositional Deduction, pages 11–16, 1996.

[8] L. Zhang and C.F. Madigan. Efficient conflict driven learning
in a boolean satisfiability solver. In Proceedings of ICCAD
2001, pages 279–285, 2001.

[9] N. Eén and N. Sörensson. Effective preprocessing in sat
through variable and clause elimination. In Proceedings of
SAT 2005, pages 61–75, 2005.

[10] U. Kjærulff. Triangulation of graphs: Algorithms giving
small total state space. Technical report, University of Aal-
borg, 1990.

[11] J. Huang and A. Darwiche. A structure-based variable or-
dering heuristic for sat. In Proceedings of IJCAI 2003, pages
1167–1172, 2003.

[12] A. Darwiche. A compiler for deterministic, decomposable
negation normal form. In Proceedings of AAAI 2002, pages
627–634, 2002.

[13] P. Bjesse, J. Kukula, R. Damiano, T. Stanion, and Y. Zhu.
Guiding sat diagnosis with tree decompositions. In Proceed-
ings of SAT 2004, pages 315–329, 2004.

[14] E. Amir and S. Mcilraith. Solving satisfiability using de-
composition and the most constrained subproblem. In LICS
workshop on Theory and Applications of Satisfiability Test-
ing, 2001.

[15] F.A. Aloul, I.L. Markov, and K.A. Sakallah. MINCE: A
Static Global Variable-Ordering Heuristic for SAT Search
and BDD Manipulation. Journal of Universal Computer Sci-
ence (JUCS), 10(12):1562–1596, 2004.

[16] V. Durairaj and P. Kalla. Guiding CNF-SAT search via ef-
ficient constraint partitioning. In Proceedings ICCAD 2004,
pages 498–501, 2004.

8

