
A New Method for Computing Suitable Tree-decompositions
with respect to Structured CSP Solving

Cédric Pinto
LSIS - UMR CNRS 6168

Université Paul Cézanne (Aix-Marseille 3)
Avenue Escadrille Normandie-Niemen

13397 Marseille Cedex 20 (France)
cedric.pinto@etu.univ-cezanne.fr

Cyril Terrioux
LSIS - UMR CNRS 6168

Université Paul Cézanne (Aix-Marseille 3)
Avenue Escadrille Normandie-Niemen

13397 Marseille Cedex 20 (France)
cyril.terrioux@univ-cezanne.fr

Abstract

The tree-decomposition notion [15] plays a central role
in the frame of the structured CSP solving. On the one
hand, it is exploited in many methods like Tree-Clustering
[5], BTD [11] or Cyclic-Clustering (CC [9]). It then leads
to theoretical time complexity bounds among the best ones.
On the other hand, it is often used as a preliminary step
for computing a hypertree-decomposition. Unfortunately,
finding the best tree-decomposition is a NP-hard problem.
So heuristic methods are classically used for computing
tree-decompositions. They mostly rely on triangulations of
graphs. Sometimes, this approach by triangulation can lead
to a rough identification of the structure. Such a drawback
can be avoided by considering a cutset such that the remain-
ing problem corresponds to a set of tree-decompositions.
In this article, from a cutset and the corresponding set of
tree-decompositions, we propose a new method for com-
puting a suitable tree-decomposition w.r.t. CSP solving.
Thanks to this approach, we can exploit BTD on the re-
sulting tree-decomposition instead of CC on the cutset and
the corresponding set of tree-decompositions. Then, unlike
CC, it allows to fully exploit the informations recorded dur-
ing the search, what leads to avoid some redundancies in
the search space. In practice, the first empirical results are
very promising since BTD with a tree-decomposition com-
puted with the proposed method outperforms BTD with a
tree-decomposition based on triangulation and some other
classical algorithms.

1 Introduction

The CSP formalism (Constraint Satisfaction Problem)
offers a powerful framework for representing and solving
efficiently many problems, in particular, many academic or

real problems (e.g. graph coloring, planning, frequency
assignment problems, . . . ). A finite constraint satisfac-
tion problem (X, D, C, R) is defined as a set of variables
X = {x1, . . . xn}, a set of domains D = {d1, . . . dn} (the
domain di contains all the possible values for the variable
xi), and a set C of constraints. A constraint ci ∈ C on
an ordered subset of variables, ci = (xi1 , . . . xiai

) is de-
fined by an associated relation ri ∈ R of allowed combi-
nations of values for the variables in ci. Note that we take
the same notation for the constraint ci and its scope. Let
Y = {x1, . . . xk} be a subset of X . An assignment A is a
tuple (v1, . . . , vk). An assignment A on Y satisfies a con-
straint c ∈ C s.t. c ⊆ Y if A[c] ∈ rc with A[c] the restric-
tion of A to the variables involved in c. A is said consistent
if it satisfies each constraint c ⊆ Y . A solution is an as-
signment of each variable which satisfies all the constraints.
Determining if a solution exists is a NP-complete problem.
In the following, for sake of simplicity, we only consider
binary CSPs (i.e. CSPs whose each constraint involves ex-
actly two variables). Of course, this work can be extended
to non-binary CSPs (see [14] for more details).

The usual methods for solving CSPs (e.g. Forward
Checking [8] or MAC [16]) are based on backtracking
search. This approach, often efficient in practice, has an
exponential theoretical time complexity in O(m.dn) (de-
noted O(exp(n))) for an instance having n variables and
m constraints and whose largest domain has d values. Sev-
eral works have been developed to improve this theoretical
complexity bound thanks to particular features of the in-
stance. Generally, they exploit some structural properties of
the CSP. The structure of a CSP (X, D, C, R) can be rep-
resented by the graph (X, C), called the constraint graph.
In this context, the tree-decomposition notion [15] plays a
central role. A tree-decomposition of a graph G = (X,C)
is a pair (E, T ) where T = (I, F ) is a tree with nodes I and
edges F and E = {Ei : i ∈ I} a family of subsets of X ,



s.t. each subset (called cluster) Ei is a node of T and veri-
fies: (i) ∪i∈IEi = X , (ii) for each edge {x, y} ∈ C, there
exists i ∈ I with {x, y} ⊆ Ei, and (iii) for all i, j, k ∈ I ,
if k is in a path from i to j in T , then Ei ∩ Ej ⊆ Ek.
The width w of a tree-decomposition (E, T ) is equal to
maxi∈I |Ei| − 1. The tree-width w∗ of G is the minimal
width over all the tree-decompositions of G. On the one
hand, the tree-width leads to one of the best known theo-
retical time complexity bounds, namely O(exp(w∗ + 1))
with w∗ the tree-width. Different methods (e.g. [5, 11])
have been proposed to reach this bound. They aim to clus-
ter variables s.t. the cluster arrangement is a tree. On
the other hand, tree-decompositions are also exploited in
other structural methods. For instance, methods relying on
a hypertree-decomposition of the constraint graph [6] often
require the computation of a tree-decomposition in order to
compute a hypertree-decomposition. Likewise, the Cyclic-
Clustering method [9] exploits a tree-decomposition. More
precisely, it assigns a subset of variables (called a cutset)
s.t. the constraint graph of the problem reduced to the unas-
signed variables is a set of clique trees (which so corre-
sponds to a tree-decomposition).

From a theoretical viewpoint, reach the best theoreti-
cal complexity bound requires to compute an optimal tree-
decomposition (i.e. a tree-decomposition with a minimum
width), which is a NP-hard problem [1]. In practice, it is
clear that it is not reasonable to solve a NP-hard problem
as a preliminary step of the solving of a NP-complete prob-
lem. So heuristic methods are generally used. In most cases,
they rely on triangulated graphs. A graph is triangulated
if it has no cycle of length greater than 3 without a chord
(i.e. an edge between two non consecutive vertices in a cy-
cle). Indeed, from a triangulated graph, we can compute
in linear time an optimal tree-decomposition of this graph
(each maximal clique of a triangulated graph corresponds
to a cluster of an associated optimal tree-decomposition).
As constraint graphs are generally not triangulated, a trian-
gulated graph is computed from the initial constraint graph
by adding edges s.t. the resulting graph is triangulated. This
operation is called a triangulation. As finding the best tri-
angulation (w.r.t. the number of added edge) is NP-Hard,
methods based on heuristic triangulation are generally used
and so we have no guarantee that they add the minimal num-
ber of edges. So, even if some studies have been performed
from a graphical viewpoint or from a CSP solving view-
point [10], in some cases, a heuristic triangulation may add
a lot of edges and, by so doing, not succeed in identifying
precisely the problem structure.

An alternative way to exploit the structure of a graph re-
lies on the cutset notion. A subset V of vertices is a cutset of
a graph (X,C) if the graph (X−V, {{x, y} ∈ C s.t. x, y ∈
X − V }) induced by V has a particular topological prop-
erty. For instance, among all the possible kinds of cutset,

cycle-cutsets are well known. They are defined s.t. the
graph induced by V is acyclic. In our study, we focus on
cutsets s.t. the induced graph is triangulated (i.e. it corre-
sponds to a set of tree-decompositions). For instance, fig-
ure 1 presents a graph having 20 vertices. The set {y1, y2}
forms a cutset of this graph s.t. the induced graph involving
the vertices x1, . . . , x18 is triangulated. This alternative so-
lution requires the use of a method like Cyclic-Clustering.
Such an approach allows to stay closer to the initial graph
than one based on a triangulation and so to better exploit the
structure of the constraint graph. Unfortunately, the Cyclic-
Clustering approach has some limits. For instance, infor-
mations recorded during the search are not fully exploited
to avoid redundant parts of the search space.

In this paper, we propose a new method for comput-
ing a tree-decomposition. Like in the Cyclic-Clustering
approach, it relies on a triangulated subgraph and a cut-
set. From the triangulated subgraph, we can compute a
set of tree-decompositions (a tree-decomposition by con-
nected component of the triangulated subgraph). These
tree-decompositions are then merged with the cutset in or-
der to form a single tree-decomposition. The first main ad-
vantage of this approach is that a triangulation step is not
required and so we can hope to better exploit the structure
of the initial constraint graph. Moreover, this method al-
lows then to solve the problem thanks to the BTD method
[11] (which is one of the most efficient structural methods).
Finally, by so doing, we record and exploit more informa-
tions during the solving and so more redundancies can be
avoided in practice.

x

1817

16
15xx

x x

2

1

y
y

14

13

x

x

12

11

x

x

109 xx

8

7

x

x

6x

5x

4x

3

2

x

x

1

Figure 1. A graph with 20 vertices.

2 A new approach to compute tree-
decompositions: the Merging

The BTD algorithm [11] records and exploits many
informations in order to speed up the CSP solving. The
Cyclic-Clustering method (and more precisely CC-BTDi

[12]) executes potentially many calls to BTD. However, it
does not reuse the recorded informations during these calls.



So, we propose a new method able to exploit such informa-
tions: the Merging method.

In a similar way of the first step of CC, we compute
a TIS from which we construct an associated set of tree-
decompositions. The vertices which do not belong to
these tree-decompositions form the associated cutset. So,
this structure is well-adapted to the Cyclic-Clustering algo-
rithm. Nonetheless, instead of running CC, we propose to
integrate the cutset in the set of tree-decompositions in or-
der to obtain a unique tree-decomposition. Then, after these
operations, we can run the BTD algorithm.

From a cutset and a set of tree-decompositions, definition
1 describes the construction of a single tree-decomposition.

Definition 1 Let TD = {TD1, ..., TDp} be a set of tree-
decompositions generated from a triangulated subgraph
where each TDj = (Ej , Tj) with Tj = (Ij , Aj) and V a
cutset. TDM = (EM , T M ) with T M = (IM , AM ) is the
decomposition obtained after Merging operations among
each TDj and V defined as follows:

• Let EM
0 be the root of TDM , EM

0 = {y ∈ V }.

• ∀TDj ∈ TD, ∀Eji
∈ Ej , we construct EM

k s.t.
EM

k = Eji ∪ {y ∈ V |∃{x, y} ∈ C with x ∈
Desc(Eji)}.

• We connect EM
0 with each root Ej0 of TD.

Figure 2 provides an example of merging. In figure
2(a), we can see a cutset and a TIS of the graph in fig-
ure 1. In figure 2(b), we add the cutset’s variables in the
tree-decompositions associated to the TIS. In figure 2(c),
we connect the cluster containing the cutset with every root
of the initial tree-decompositions.

Theorem 1 proves that a decomposition constructed in
definition 1 is a valid tree-decomposition (the proofs of the
following theorems are available in [14]).

Theorem 1 TDM is a valid tree-decomposition.

The Merging algorithm is presented in algorithms 1-3.
The first step (lines 1-3 of algorithm 1) adds each variable xi

of the cutset V into a cluster Eji
of the tree-decomposition

TDj if there exists at least one constraint between xi and
a variable belonging to Eji

. The function AddV ariable
consists in adding this variable xi into each cluster located
on the branch between the root Ej0 of TDj and Eji . The
second step (line 4 of algorithm 1) constructs a new cluster
EM

0 which contains the whole cutset. The final step (lines
5-6 of algorithm 1) defines this cluster EM

0 as root of the
built tree-decomposition. We can observe that the second
step is necessary to respect the third condition of the tree-
decomposition definition.

We will denote n the number of variables, m the number
of constraints, d the size of the largest domain, k the size

of cutset, w + 1 the size of the largest cluster of the set of
tree-decompositions, s the size of the largest separator and
p the maximal height of the set of tree-decompositions, i.e.
the maximum number of clusters between a root and a leaf
in a tree-decomposition.

Algorithm 1: Merging()

forall x ∈ cutset do1
forall {x, y} ∈ C with y ∈ Eji

and Eji
belongs to a2

tree-decomposition TDj associated to TIS do
AddV ariable(x, ∗Eji

)3

EM
0 ← {x ∈ cutset}4

forall Tree-decomposition TDj do5
ChooseRoot(∗TDj , ∗EM

0 )6

Algorithm 2: AddVariable(x, ∗Eji
)

if x ∈ Eji
then return1

else if Eji
= Ej0 then return2

else3
Eji
← Eji

∪ {x}4
AddV ariable(x, ∗Father(Eji

))5

return6

Algorithm 3: ChooseRoot(∗TDj , ∗EM
0 )

if Ej0 ∩ EM
0 = ∅ then return1

if EM
0 ⊂ Ej0 then EM

0 ← Ej02
else Father(Ej0 )← EM

03

Theorem 2 The time complexities of AddV ariable and
ChooseRoot are respectively O(p) and O(w + k + 1).

Theorem 3 The time complexity of the Merging algorithm
is O(p(k + mkd) + k + n(w + k + 1)) with mkd the num-
ber of constraints between the cutset and the set of tree-
decompositions associated to TIS.

Theorem 4 Let TDM be a tree-decomposition constructed
with Merging algorithm. The time complexity of BTD exe-
cuted on TDM is O(exp(w + k + 1)) and its space com-
plexity is O(exp(s + k)).

3 Experimental results

In this section, we assess the quality of the tree-
decompositions computed thanks to Merging method w.r.t.
the CSP solving and we compare the obtained results with
other classical solving algorithms.

The tests are performed on structured problems. More
exactly, our generator of binary CSPs constructs a triangu-
lated constraint graph. Then, it constructs an other graph



7

2
yy

1

2

1

y
y

E

E

E

E

E

E
9

xx

8
171615
xxx

3 6

17 18

x x x x x1 2 3 54E 1

E 2

x x x xx x x3 5 7 8 4 5 6

4

x x x
2 4 12

5

x x x E
8 9 10 xx x

2 11 12

x x x x11 12 13 14
7

M

2
y

M

21
yy

M

21
yy

M

21
yy

M

M

1y

M

1
y

21
yy

M

M

2
yy

1

E

E

E

E

E

E
9

xx

8 171615 xxx

3 6

17 18

x x x x x1 2 3 54E 1

E
2

x x x xx x x3 5 7 8 4 5 6

4

x x x
2 4 12

5

x x x
E8 9 10

xx x2 11 12

x x x x11 12 13 14 7

0

M
E

21
yy

M

2
y

M

21
yy

M

21
yy

M

21
yy

M

M

1y

M

1
y

21
yy

M

M

E

E

E

E

E

E
9

xx

8 171615 xxx

3 6

17 18

x x x x x1 2 3 54E 1

E
2

x x x xx x x3 5 7 8 4 5 6

4

x x x
2 4 12

5

x x x
E8 9 10

xx x2 11 12

x x x x11 12 13 14

(a) A TIS and a cutset (b) Integration of the cutset (c) Cutset as root

Figure 2. Example of Merging

Classes Smax
CC-BTD FC-BTD

(n,d, r, t, s,k, e1, e2) CC-BTD1 CC-BTD2 Triang Merging Merging
Triang without structure with structure

(50, 15, 15, 65, 5, 15, 80, 50) best
>15 654.78 >5 292.63

10.14 1.34 0.74
∞ 16.94 Mem 2.53

(50, 15, 15, 65, 5, 20, 130, 50) best
176.85 132.19

4.87 0.95 1.38
∞ Mem Mem 2.54

(50, 15, 15, 68, 5, 15, 80, 30) best
>17 1010.61 >1 43.55

>1 98.03 >1 41.78 0.80
∞ Mem Mem 1.45

(50, 15, 20, 54, 5, 10, 35, 20) best
>25 986.02 >9 412.72

>3 174.26 >2 74.39 >2 75.25
∞ Mem Mem 1.45

Table 1. Runtime (in seconds) for the four considered classes

which represents the cutset. Finally, it adds constraints be-
tween both graphs. We need 8 parameters to generate this
kind of problems: n the number of variables of the triangu-
lated graph, d the size of the largest domain, r the size of the
largest clique of triangulated graph, t the number of forbid-
den tuples by the constraints, s the size of the largest sepa-
rator, k the size of the cutset, e1 the number of constraints
into the cutset and e2 the number of constraints between the
cutset and the triangulated graph. So, a class of problems is
defined by these 8 parameters: (n, d, r, t, s, k, e1, e2). For
each considered class, the number of consistent problems
is approximately equal to the number of inconsistent prob-
lems. In our experiments, BTD exploits FC to solve the
clusters. For ordering variables in FC or inside a cluster, we
use the well-known dom/deg heuristic which first chooses
the variable xi which minimizes the ratio |dxi

|
|Γxi
| with dxi

the current domain of xi and Γxi
the set of the variables

sharing a constraint with xi. We compare BTD based on
triangulation to compute the tree-decomposition and BTD
using Merging. We also compare the obtained results with
ones of CC-BTD1, CC-BTD2, and FC. However, FC turns
to be unable to solve efficiently most of these problems,
within the time limit (namely 30 minutes). We know that
for efficiency reasons, CC-BTD and Merging method need
a cutset with few solutions. Unfortunately, we do not have
any method to recognize such a structure. So, as we aim to
assess the interest of Merging method for structured prob-

lems and not the quality of the computed cutset, we provide
cutset to Merging and CC-BTD. Moreover, as we want to
measure the impact of the knowledge of the structure on the
efficiency of the resolution, we experiment a second variant
of Merging which uses the Balas and Yu’s algorithm [2] to
compute a MTIS, and so the rest of variables forms a cut-
set. The experimentations are performed on a linux-based
PC with an Intel Pentium IV 3.2 GHz and 1 Gb of memory
and the running times are expressed in seconds. For each
class, we solve 50 instances and the presented results are
then the averages of results obtained for each instance. The
notation >i indicates that i instances are unsolved by the
corresponding algorithm. In this case, as we do not know
the real runtime, we add penalty of 30 minutes, for each un-
solved instance. Finally, the notation Mem means that the
memory space (1 Gb) is insufficient for at least one instance.

Thanks to the recorded informations during the resolu-
tion, BTD speeds up the CSP solving. Unfortunately, the
number of recorded informations is exponential in the size
of the largest separator. So, in order to limit the memory
requirements of BTD, we transform the tree-decomposition
s.t. its maximal separator be limited by a parameter Smax.
For our tests, we try many values for Smax. In the re-
sults, Smax = best means that the indicated times are
those obtained with the best value Smax for each algorithm.
Smax =∞ means that we do not limit the separator size.

First, we can note that if the parameter Smax is unlim-
ited then the memory requirements of BTD is often too ex-



pensive except when the structure is known for the Merg-
ing method. As CC-BTD1 and CC-BTD2 know the struc-
ture of problems, it is not necessary to limit Smax since
the largest separator of the set of tree-decompositions as-
sociated to TIS cannot be greater to the value of parame-
ter s which is 5. We note that the main advantage of CC-
BTD is the memory requirements. Unfortunately, CC-BTD
gives bad runtimes and many problems are unsolved espe-
cially for CC-BTD1. For all that, the additional recordings
and reuses realized by CC-BTD2 improve usually the run-
time and the number of solved problems. As predicted, the
knowledge of the structure is important for the efficiency
of the solving. However, the difference takes place partic-
ularly when Smax is unlimited. Finally, we can observe
that BTD using Merging, with or without knowledge of the
structure, is better than BTD using triangulation to com-
pute the tree-decomposition. In order to confirm this result,
we consider the number of added edges by the triangulation
with the number of constraints for each class. We observe
that the number of added edges can sometimes be impor-
tant (from 15% up to 45% of edges of the initial constraint
graph). However, we note that the size of the largest cluster
of the tree-decomposition obtained with triangulation and
with Merging are approximately equal. This means that the
difference of efficiency between Merging and triangulation
mostly depends on the content of clusters.

To sum up, on the considered structured instances, the
tree-decomposition computed thanks to Merging allows
BTD to obtain significantly better results than ones it ob-
tains when the tree-decomposition is based on a triangula-
tion. This improvement concerns as well the required mem-
ory space as the runtime. Indeed, this method permits to
better exploit the structure of problems.

4 Conclusions and future works

In this article, from a cutset and the corresponding set of
tree-decompositions, we have proposed a new method for
computing a suitable tree-decomposition w.r.t. CSP solv-
ing. Thanks to this approach, we can exploit BTD on the
resulting tree-decomposition instead of CC or CC-BTDi on
the cutset and the corresponding set of tree-decompositions.
Then, unlike CC-BTDi, we are now able to fully exploit the
(no)goods recorded during the search, what leads to avoid
some redundancies in the search space. In practice, the first
empirical results are very promising since BTD with a tree-
decomposition computed with the proposed method outper-
forms BTD with a tree-decomposition based on triangula-
tion and some other classical algorithms.

This work raises the problem of finding good cutsets
and/or TIS. Indeed, while a lot of works deal with triangu-
lations, few works have been proposed about cutsets and
TIS. Then, if the cutset and TIS considered here are static,

it could be interesting to extend this work to dynamic cutset
and/or TIS. Finally, this work can be extended to other
domains exploiting tree-decompositions (e.g. in constraint
optimization [17, 4, 13] or in relational databases [3, 7]).

Acknowledgments This work is supported by an ANR
grant (STAL-DEC-OPT project).

References

[1] S. Arnborg, D. Corneil, and A. Proskuroswki. Complexity
of finding embeddings in a k-tree. SIAM Journal of Discrete
Mathematics, 8:277–284, 1987.

[2] E. Balas and C. Yu. Finding a maximum clique in an arbi-
trary graph. Siam J. on Computing, 15(4):1054–1068, 1986.

[3] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the
desirability of acyclic database schemes. J. ACM, 30:479–
513, 1983.

[4] S. de Givry, T. Schiex, and G. Verfaillie. Exploiting Tree De-
composition and Soft Local Consistency in Weighted CSP.
In Proc. of AAAI, pages 22–27, 2006.

[5] R. Dechter and J. Pearl. Tree-Clustering for Constraint Net-
works. Artificial Intelligence, 38:353–366, 1989.

[6] G. Gottlob, N. Leone, and F. Scarcello. A Comparison of
Structural CSP Decomposition Methods. Artificial Intelli-
gence, 124:343–282, 2000.

[7] G. Gottlob, N. Leone, and F. Scarcello. Hypertree De-
compositions and Tractable Queries. J. Comput. Syst. Sci.,
64(3):579–627, 2002.

[8] R. Haralick and G. Elliot. Increasing tree search efficiency
for constraint satisfaction problems. Artificial Intelligence,
14:263–313, 1980.

[9] P. Jégou. Cyclic-Clustering: a compromise between Tree-
Clustering and the Cycle-Cutset method for improving
search efficiency. In Proc. of European Conference on Arti-
ficial Intelligence (ECAI-90), pages 369–371, 1990.

[10] P. Jégou, S. N. Ndiaye, and C. Terrioux. Computing and
exploiting tree-decompositions for solving constraint net-
works. In Proc. of CP, pages 777–781, 2005.

[11] P. Jégou and C. Terrioux. Hybrid backtracking bounded by
tree-decomposition of constraint networks. Artificial Intelli-
gence, 146:43–75, 2003.

[12] P. Jégou and C. Terrioux. A Time-space Trade-off for Con-
straint Networks Decomposition. In Proc. of ICTAI, pages
234–239, 2004.

[13] A. Koster. Frequency Assignment - Models and Algorithms.
PhD thesis, University of Maastricht, Novembre 1999.

[14] C. Pinto and C. Terrioux. A New Method for Comput-
ing Suitable Tree-decompositions with respect to Structured
CSP Solving. Technical report, LSIS, 2008.

[15] N. Robertson and P. Seymour. Graph minors II: Algorithmic
aspects of treewidth. Algorithms, 7:309–322, 1986.

[16] D. Sabin and E. Freuder. Contradicting Conventional Wis-
dom in Constraint Satisfaction. In Proc. of ECAI, pages
125–129, 1994.

[17] C. Terrioux and P. Jégou. Bounded backtracking for the val-
ued constraint satisfaction problems. In Proc. of CP, pages
709–723, 2003.


